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Analytic Collaborative Frameworks (ACF)New Observing Strategies (NOS)

Observation Requests

Assimilate Observations

Assimilate many 
various data into 
models and analytic 
workflows.

What additional 
observations are 
needed?

Acquire coordinated 
observations

Track dynamic and 
spatially distributed 

phenomena

NOS+ACF acquires and integrates complementary and coincident data to build a more 
complete and in-depth picture of science phenomena 

NOS and ACF for Science Data Intelligence 
Optimize measurement acquisition 

using many diverse observing 
capabilities, collaborating across 

multiple dimensions and creating 
a unified architecture

Enhance and enable focused Science 
investigations by facilitating access, integration 
and understanding of disparate datasets using 
pioneering visualization and analytics tools as 
well as relevant computing environments

Example: OceanWorks, ACF for Ocean 
Science https://oceanworks.jpl.nasa.gov

Example: NOS Testbed Demonstration planned 
for Spring 2021 targeting Mid-West Floods with 
LIS Models as well as Space and ground 
observations

https://oceanworks.jpl.nasa.gov/
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Analytics

Integration

Search

Data Archives
Focus on data capture, storage, and management

Each user has to find, download, integrate, and analyze

Analytic Centers
Focus on the science user

Integrated data analytics & tools tailored for a science discipline

Science

Applications

Decision
Support

20%       Prepare
80%       Analyze

?!

Visualization

80%       Prepare
20%       Analyze

Facilitates collaborative science across 
multiple missions and data sets

From Archives to Analytic Centers: 
Focus on the Science User



Analytic Collaborative Frameworks (ACF)
Focus is on the Science User

Project Work 
Environment

Tools
• Discovery & Catalog
• Work Management
• Data Interfaces
• Analytic Tools
• Modeling
• Collaboration
• Visualization
• Sharing/ Publication
• Local/custom

Computational
Infrastructure

• Computing
o Capacity
o Capability

• Storage
• Communications

Data
• Catalog
• NASA DAAC
• Other US Govt
• Non-US
• Local or non-public

User
• Project Definition
• Plan for Investigation

• Data Containers
• Thematic model
• Metadata/Ontology
• Resulting Products
• Published data
• Provenance

Storage Computing

• Local systems
• High End Computing
• Cloud Computing 

Capability
• Quantum Computing
• Neuromorphic 

Computing

Allow flexibility/tailor 
configurations for 

Science investigators to 
choose among a large 
variety of datasets & 

tools

Reduce repetitive work 
in data access and pre-

processing, e.g., 
develop reusable 

components



Precipitation
(Beck, UAH))

Wildfire
(Coen, UCAR)

Quakes
(Donnellan, JPL)

Methane
(Duren, UAz)

Biodiversity
(Jetz, Yale)

Aquaculture
(Uz, GSFC)

Air Quality
(Holm, City of LA)

GeoSPEC
(Townsend, UWisc)

Analytic Collaborative Frameworks (ACF)
support several Earth Science Disciplines



ADVANCED ANALYTICS:
• Data Accessibility (Duren, Jetz, Coen) 
• Data Fusion (Donnellan, Duren, Jetz, Uz, Coen)
• Big Data Analytics (Hua, Ives, Swenson, 

Townsend)
• Data Mining (Donnellan)
• On-Demand Product Generation (Hua, 

Townsend) 
• Data Operations Workflows (Zhang)
• Data Incorporation of Metadata, Provenance, 

Semantics, etc. (Huffer)

AI CAPABILITIES:
• Machine Learning (Beck, Holm, Huffer, Uz) 
• Deep Learning (Beck, Holm, Huffer, Uz) 
• Data Services Discovery (Zhang) 
• Uncertainty Quantification Methods (Ives)

COMPUTATIONAL ENVIRONMENTS:
• Cloud Computing (Beck)

IMPROVED MODELING CAPABILITIES: 
• Science Data Model Validation/Automation 

(Moisan)
• Science Code Development and Reuse (Henze, 

Moisan)
• Modeling Systems (Martin)
• Model Data Inter-Comparisons (Henze, Swenson)
• Custom Tools (Martin)
• Forecasting/Prediction (Jetz, Swenson, Townsend, 

Moisan)

Technologies Currently Being 
Developed in ACF Projects



ACF Review Schedule – 01/22/2021
January 22nd, 2021     Analytics Collaborative Framewoks (ACF-Group B) Technical Annual Reviews

Tech Science Name Title Start Stop
Le Moigne Introductions 11:00 AM 11:20 AM

Ceilometers, ML PBL Halem A Deep Learning LIDAR-based Ceilometer Atmospheric 
Boundary Layer Height Over CONUS   

11:20 PM 12:00 PM

Science Code Development, 
Model Data Inter-
Comparisons

Atmospheric 
Composition, Atmos Gas Henze Surrogate modeling for atmospheric chemistry and data 

assimilation
12:00 PM 12:40 PM

Modeling Systems, Custom 
Tools

Atmospheric 
Composition, Atmos Gas Martin Development of GCHP to enable improved access to high-

res atmospheric modeling
12:40 PM 1:20 PM

Autonomy, ML, Sensor 
Calibration & Validation

Atmospheric 
Composition, Total 
Ozone and Aerosols

Holm Predicting What We Breathe: Using ML to Understand 
Urban Air Quality

1:20 PM 2:00 PM

Break 2:00 PM 2:20 PM

Data Fusion, Data Mining Earth Surface, Surface 
deformation Donnellan Quantifying Uncertainty and Kinematics of Earthquake 

Systems (QUAKES-A)
2:20 PM 3:00 PM

Big Data Analytics, On-
Demand Products

Earth Surface, Surface 
deformation Hua Smart On-Demand of SAR ARDs in Multi-Cloud & HPC 3:00 PM 3:40 PM

Data Fusion & Accessibility Carbon Cycle, 
Atmospheric Gas Duren Multi-scale Methane Analytic Framework 3:40 PM 4:20 PM

Data Operations Workflows, 
Data Services Discoverability

Climate variability, 
Global / regional climate 
systems

Zhang Mining Chained Modules in Analytics Center Framework 4:20 PM 5:00 PM



ACF Review Schedule – 02/05/2021
February 5th, 2021     Analytics Collaborative Framewoks (ACF-Group A) Technical Annual Reviews

Tech Science Name Title Start Stop
Le Moigne Introductions 11:00 AM 11:20 AM

Data Fusion, Big Data 
Analytics Ocean Biology Chirayath NeMO-Net – The Neural Multi-Modal Observation & 

Training Network for Global Coral Reef Assessment
11:20 AM 12:00 PM

Autonomy, ML, Data Fusion Carbon cycle, ocean 
color Schollaert Uz Shellfish aquaculture in the Chesapeake bay using AI for 

water quality
12:00 PM 12:40 PM

Science Data Modeling, 
Science Code Development

Carbon cycle, ocean 
color Moisan NASA Evolutionary Programming Analytic Center (NEPAC) 12:40 PM 1:20 PM

Autonomy, ML, Cloud 
Computing

Rain Rate, Drop Size, 
Water & Energy Beck Cloud-based Analytic Framework for Precipitation 

Research (CAPRi)
1:20 PM 2:00 PM

Big Data Analytics, 
Uncertainty Quantification

Carbon cycle, 
Ecosystems Ives Statistical tool to analyze large datasets for pattern 

changes and forecasting
2:00 PM 2:40 PM

Break 2:40 PM 2:50 PM
Data Fusion, Data 
Accessibility

Carbon cycle, 
Biodiversity Jetz Biodiversity - Environment Analytic Center Modeling 2:50 PM 3:30 PM

Model Data Intercomparison, 
Big Data Analytics

Climate variability, 
bio-diversity Swenson Canopy condition to continental scale biodiversity 

forecasts
3:30 PM 4:10 PM

On-Demand Products, Big 
Data Analytics

Carbon cycle, 
Biodiversity Townsend GeoSPEC 4:10 PM 4:50 PM

Autonomy, ML, Metadata Carbon cycle, 
Ecosystems Huffer AMP: An Automated Metadata Pipeline 4:50 PM 5:30 PM



AIST Group Project Review Objectives
• Regular Annual Reporting Requirements

• Individual Programmatic Annual Reviews
• Technical Annual Reviews Grouped by Topics

• Establish relationship between awardees
• Introduce AIST PIs and their work to one another
• Enable desired collaborations
• Potentially share algorithms, codes or cross-cutting ideas
• GoogleDocs:

https://docs.google.com/document/d/1CvmgehHflwqDoTKtmrq7bdCm7NMY30bh1u2cHpIv5g8/edit?usp=sharing

• Present AIST-18 Projects and PIs to broader community
• Present AIST-18 projects to NASA ESD Program Managers and partner organizations
• Support technology infusions and knowledge transfer of AIST projects upon completion.

• Review Needs in terms of:
• ESIP: Project analysis to improve infusion and transition opportunities
• SMCE (NASA Science Managed Cloud Environment): AWS system access

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.google.com%2Fdocument%2Fd%2F1CvmgehHflwqDoTKtmrq7bdCm7NMY30bh1u2cHpIv5g8%2Fedit%3Fusp%3Dsharing&data=04%7C01%7Cjacqueline.j.lemoigne-stewart%40nasa.gov%7C8dddf5e34c964c82260808d8be3fdff4%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637468528905203230%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=2XJXVyuCb8cHzmX6teHbPnQZ%2B1PohTXAqeiEGMjHeeU%3D&reserved=0
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Evaluators are compensated for their 
time, increasing the likelihood of a 
thorough, comprehensive evaluation.

FUNDING

ESIP works with PIs to set specific 
objectives taking into consideration TRL.  

OBJECTIVES

ESIP facilitates evaluator calls, 
development of evaluation plan, 

communication with PIs.  

FACILITATION

ESIP PROVIDES AN EVALUATION 
FRAMEWORK THAT EXPOSES 
DEVELOPING TECHNOLOGY TO 
POTENTIAL END-USERS AND 
ADOPTERS, ULTIMATELY 
INCREASING ITS UTILITY AND 
USABILITY. 

FRAMEWORK



TECHNICAL EXCHANGE MEETING
PI team meets evaluators. Big picture to 
backend… evaluators should have a solid 
understanding of the purpose and goals of tech.

FINAL REPORT

EVALUATION PERIOD
ESIP coordinates evaluation process. 

Evaluators meet regularly, requesting 
information from PIs when necessary.

ESIP works with evaluators to create final 
report to be shared with PIs & AIST. 
Reports can be public upon PI request.



I M P A C T

ROBUST

USABLE USEFUL



THANK YOU

ANNIE BURGESS, PHD

ANNIEBURGESS@ESIPFED.ORG

esipfed.org | #ESIPfed

ESIP is 
supported 

by:



AIST SMCE Options
Marge Cole

• A  critical component of the success of AIST projects is access to cost effective, flexible, 
and scalable compute and storage infrastructure. 

• The Science Managed Cloud Environment (SMCE) is a managed Amazon Web Service 
(AWS) based infrastructure for NASA funded projects that can leverage cloud computing 
capabilities. This environment is designed to:
o Provide cloud access to NASA PIs with non-NASA team members.
o Perform research using new computing capabilities without extensive start-up time.
o Use new tools and methods from AWS’s product catalogue easily and affordably.
o Scale computing for high-demand, high-bandwidth needs.

• More information at: https://www.nccs.nasa.gov/systems/SMCE

• NASA Managed (AWS) Cloud Environment  Access
o Pay-as-you-go cloud account access with NASA security already built in
o Enables ease of cloud-based project transition to NASA programs due to NASA level security already

requirements already being met.



PI's Introductions

Around the Virtual Room
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Towards an R2O Deep Machine Learning Hourly Boundary Layer 
Height Visualization Product over CONUS from Ceilometer and 

Satellite based Lidar Aerosol Backscatter 

PI M.Halem, CO-PI B. Demoz,  CO-Is, P. Nguyen, J. Sleeman,
V. Caicedo, R. Delgado, D. Chapman, Z.Yang, 

J. Dorband, P. Gentine

AIST Technical Review (Virtual)

NNH16ZDA001 AIST-16-0091
Supplement P0011(9/22/20-11/30/21)

Jan. 22, 2021
halem@umbc.edu
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Presentation Overview

• Prototyping a Ceilometer/Satellite LIDAR backscatter streaming acquisition network.

• AI/ML LIDAR and Model Validated  Atmospheric Boundary Layer Height (ABLH)

• Fused Visualization and Aerosol Backscatter Data Archive 

• Next Steps and Summary:
(i)  Fully test a Secure, Fault Tolerant, Edge Streaming, Reliable ABLH Network

(ii) Evaluate NU-WRF-CHEM-GOCART ABLH Data Assimilation

(iii) Train a NAS1 AI Emulator for NU-WRF-CHEM parameterizations  

(iv) Embed Deep HED2 in GOCART/Microphysics and fuse ABLH with PBLH 

1 Neural Architecture Search
2 Hierarchical Edge Detector 
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A Deep Learning Ceilometer (LIDAR)-based Atmospheric Boundary Layer Height Product Over 
CONUS   M. Halem, B. Demoz, UMBC

4/09

Objectives:
Task 1: Identify, acquire and implement an internet, edge streaming, 
secure, fault-tolerant ingest L1 system of Ceilometer/Satellite and Model-
based LIDAR backscatter observations over the CONUS to generate L2 
ABLH products.
Task 2: Develop and test automated synchronized hybrid L2 ABLH 
LIDAR processing system for continental wide US profiles combining 
Machine Learning, Wavelets and Mixture of Experts to generate hourly 
product with validating error bounds.
Task 3: Generate point wise, regional and CONUS wide 3-D hourly 
visualization and longer-term animations. Provide data management, 
archival and community delivery system of LIDAR Level 1, 2 and 3 
products
Task 4: Conduct model output and radiosonde acquisition system for 
product validation and verifications. 
Task 5.  Produce quarterly reports and conduct semi-annual reviews and 
convene external advisory group for system evaluation. . 
Approach
• Data Acquisition plan. 

Integrate 4 JCET +3 CSEE ceilometers into automatic data ingest
system 

• Develop a hybrid machine learning processing system  for 
generating hourly ABLH. Provide Project ATBD or on Giuthub for  
processing system.

• Validate v1.0 performance and accuracies during op'ns test.
Identify areas for Improving edge detection method. Continue  
evaluation of v1.0  methods Add denoising method
Integrate the LSTM method with the boundary detection method.

• PBLH spatial Visualization.
Create ABLH spatial maps and dynamic visualizations.
Fuse UMBC hrly ceilometer ABLH with NOAA PBLH forecast.

03/18

Key Milestones
-Acquire 3 NASA Luft ceilometers, install at VA Tech, Bristol PA 
and NTU ceilometers and conduct 1st end-to-end system test (10) of 
edge streaming ground system  Level 1/2/3 operations.         6/21                
-Conduct 2nd level 1/2/3 end-end test with ground/satellite and 
model generated backscatter data in near real time.               9/21                   
-Produce a robust Ceilometer web-based ABLH hybrid machine 
learning based system scalble to processing streaming 5-minute 
data from more than 100 ceilometer stations.                        11/21
- Provide a visualization service of PBLH products and generate 
spatial hourly plots with Zoom capabilities                             9/21

- Demonstrate fault tolerant, secure, edge streaming 2- week end-to 
end  validated test of the unified hybrid ground/space/model AI/ML 
generation of Regional ABLH web accessible surface         11/21

TRLin=  5              TRLfin = 7

-

AIST-16-00XX
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Task 1. Aggregate Acquisition Processing System
P. Nguyen, R. Gite, S.  Shivadekar

Task 1: Identify, negotiate, acquire and implement an internet based distributed edge streaming computing 
system of Level 1 ground-based ceilometer LIDAR PBLH observations over the CONUS.

Data source: Ceilometers/Radiosondes from AIST/CSEE grant, UMBC/JCET, DOE/ARM, San Jose University 
Model Output: from NOAA (HRRR hourly 13km), our WRF model output. 
Satellites IceSat-2 backscatter,  ADM wind, backscatter radiation  
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• 2 Ceilometers from  grant at Bristol and VA Tech started operation June, August 2020 
• 4 Ceilometers from JCET UMBC (1 ceil ~4 years of data from UMBC)
• 3 Ceilometers from ARM SGP (1 ceil ~20 years from ARM/OK 2011-now,  2 ceil started Jan 2020-now)
• Field campaign PECAN sites 2015 Ceilometers, Radiosondes
• NASA Icesat-2, ESA Aeolus ADM?, Model Output: from NOAA (HRRR hourly at 3km), WRF-CHEM-GOCART

Ceilometers and Model output
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Task 1: Ceilometers Acquisition
R. Delgardo

• Procurement of a 3rd Lufft Ceilometer as part of Augmentation 
(November 2020)

• Verification/Validation of Ceilometer Operability at UMBC (Jan. 2021)
Instruments evaluation at UMBC before deployment:

- Signal to noise
- Overlap factor
- VPN Data transmission

• Deployment (Locations Under Consideration)
South and Southwestern US 
- Dust Storms (Southern Texas/New Mexico/Arizona)
- Smoke from Agricultural Fires in Central America/Mexico

*Navajo Technical University 
- Field Campaigns: TRACER (Houston 2021) @ *NASA TOLNET sites
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Task 1: NASA Grant Ceilometer Deployment
R. Delgado

• Locations
1- Pennsylvania Department of Environmental Protection 

Bristol Air Quality Monitoring Station
2- Virginia Tech (Elena Lind)

Ceilometer Aerosol Profiling (PBLH) to aid PANDORA profiling retrievals
3- Navajo Technical University

Integration of Remote Sensing to Computer/Environmental Science

California Wildfire Smoke
September 17, 2020

Bristol, PA Blacksburg, VA

https://www.timeanddate.com/weather/@5181688/historic?month=9&year=2020

https://www.timeanddate.com/weather/@5181688/historic?month=9&year=2020
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xAce Intra-net
J. Dorband

• Intra-net Security
– VPN access security (user unique certificate & password)
– Node security (VPN access & user unique password)
– Connections in are secure
– Connections out are open

• Once connected to Intra-net:
– Access from any machine to any other machine with valid user account

• User workstation (laptop, desktop)
• Compute nodes
• Instrument node 

• Instrument node (~ $50 Raspberry Pi)
– Local data backup from instrument (up to 3 yrs)
– Periodically passes data on to xAce cluster database
– Can send data to other offsite nodes/organizations (future)
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xAce Hardware Infrastructure
D. Chapmanand J.Dorband

Creation and expansion of Hardware compute 
infrastructure for Aerosol processing

Claude 1&2 servers ($4K)
- Dual 14.2 Teraflop  Nvidia Geforce 2080Ti 

CUDA capable GPUs (~Nvidia V100)
- 32 Core AMD Ryzen Threadripper 2990wx (~Epyc)

3.0 GHz CPU
Claude 3&4 server (under acquisition) ($6K)

- Dual 36 Teraflop Geforce 3090 CUDA GPUs (~A100)
- 24 Core AMD Ryzen Threadripper 3960X 3.8 Ghz
- 10 Gigabit ethernet NIC and router

Drobo storage configuration ($5K)
- 96 Terabyte Network Attached Storage

xAce Claude and Drobo servers
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Prototype an Edge Streaming, Secure, Fault Tolerant 
Automated Data Ingestion and Processing System

o Develop Data Ingestion to collect 
multiple data sources Ceilometers (9 
ceilometers) from different 
organizations, multiple Satellite 
instruments (ICESat-2, ESA’s ADM-
Aeolus), Operational model output 
data products from NOAA.

o Pulling the data from NOAA’s Model 
Output (PBLH, HRRR hourly product) 
and 3 ceilometers data from ARM 
SGP (automatically)

o Building Ingestion Server: use
Apache Kafka handles streams of 
data from multiple ceilometers 
automatically and backing up pre-
processing (raw ceilometer profiles) 
Level 1B daily data products.

o Distributed cluster of GPU Servers: 
train AI models and process pipelines 
for improving scalability and 
throughput and reduce latency. 
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Task 1 Summary

Current: 
• Deployed/operational 2 Ceilometers and 3rd on order
• Developed pilot edge streaming, fault tolerant aerosol preprocessing system
• Ingested, Archived Ceilometers Level 0 instrument profiles. Produced Level 

1B backscatter daily data products from Level 0 backscatter profile from 
Ceilometers, Satellite Lidars and NOAA’s Model Output  

• End to End tested Data ingesting, Data Preprocessing, ML workflow using 
Apache Kafka stream automatically.

Plans:
• Continue End to End System Data Acquisition, Preprocessing, ML, Production 

of L2 ABLH data product, Data Archive and Web Retrieval Services
• Develop Edge Streaming AI system using a cluster of GPUs Server for 

increasing throughput and scalability to ingest and process multiple 
Ceilometers/Satellite data. 

• Deploy/Acquire additional Ceilometer data 
• Acquire/Evaluate the ingest of Satellite Lidar aerosol backscatter
• Request/Ingest additional Ceilometer data from other organizations(EPA/ESA)
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Task 2. Using Machine Learning to Identify PBL Heights
Dr's Jennifer Sleeman, Vanessa Caicedo and Dorsa Ziaei

Figure 1. Integration of Machine Learning Methods for Operational PBLH

Mixture 
of 

Experts 
Model
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Deep Learning Framework

Multi-Station Processing and Integration

We have integrated multi-station processing with the data acquisition 
team and visualization team for a September 10th experiment. 

Data Preprocessing and Storage

Bristol,PANew York City, NY Fairhill, MD Blacksburg, VACatonsville, MD

~15s
to process 
a single 
hourly
profile for 
one 
location
can be 
processed in 
parallel

Visualization 

September 10, 2020September 10, 2020 September 10, 2020 September 10, 2020September 10, 2020

Deep Edge Detection Deep Edge Detection Deep Edge DetectionDeep Edge DetectionDeep Edge Detection

Figure 2.  Integration Process 
with Data Acquisition and 
Visualization
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Deep Boundary Detection and Wavelet PBL Height Retrieval 
Hybrid Method - Mixing Layer Heights Correlation Matrix

Figure 5. Correlation Matrix of December 2016 Campaign Radiosonde Mixing Layer Heights 
measurements and the Deep Boundary Detection model (DBD) and the Haar Covariance Method 
(HCM) compared with The Mixture of Experts Model which combines decisions between the Deep 
Boundary Detection model (DBD) and the Haar Covariance Method (HCM)

The Mixture of Experts method could add 8 additional MLH 
measurements for the December 2016 Ad-hoc campaign.
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Deep Boundary Detection Method Regression Results

Current Efforts and Updates:

● Continued experimentation of deep boundary detection method including mixing layer heights and cloud 
based heights without denoising 

Figure 3. Regression Results for MLH and CBH
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Mixture of Experts and Multi-Source Convolutional LSTM

● Using multiple sources of data to 
estimate the PBLH

● Experimenting with a multi-sourced 
stacked convolutional LSTM 

● Learns PBLH over time for given 
geographical locations using a 
combination of source data 

○ WRF-CHEM model backscatter
○ Ceilometer-based backscatter
○ Satellite-based backscatter 

Figure 9. Multi-Source Convolutional LSTM.
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Extending Deep Boundary Detection to Other Sources: 
ICESat2

● Current efforts underway to compare a traditional method for 
estimating PBLH for ICESat2 data and using the Deep Boundary 
Layer Detection method

● Stacked LSTM to process ICESat2 data (working in combination with 
the WRF-CHEM model data LSTM and Ceilometer-based LSTM)

● Results will be forthcoming in a future meeting

Edges 
Detected

Figure 6a. ICESat2 for Arctic and 6b. ICESat2 -ATL09_20190501105015_05070301_003 With Overlay 
of Edges Detected for Location around UMBC
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Deep Denoising Autoencoder

Early results of the denoising autoencoder.  Experiments are 
underway to evaluate its effect on the deep edge detector 
(Publication forthcoming).

Figure 4.  Denoising Autoencoder Early Results.
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Comparison of WRF-CHEM Backscatter Exp. With Ceilometers 
Domain Setup

Experiment Design:
Time period: Sep 9 2020 – Sep 11 2020

Spatial resolution: 9 km × 9 km (mother domain, Northeast);

3 km × 3 km (nest domain, Maryland);

30 Levels 

Sensitivity experiments: WRF-Chem (YSU, with chemistry);

WRF-Chem (MYNN, with chemistry).

Atmospheric 
Processes

WRF-Chem

Shortwave Radiation RRTMG

Longwave Radiation RRTMG

Microphysics WSM5 (Hong et al., 2004)

Cumulus Grell ensemble
Boundary Layer YSU or MYNN
Land surface model Noah LSM
Photolysis TUV
Gas-phase Mechanism RADM2

Aerosol process(Dust) MADE/SORGAM(GOCART)

Datasets:
Meteorological Data: NARR (North American 
Regional Reanalysis Data);
Anthropogenic Emission: NEI 2011 (National 
Emission Inventory)
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Extending Deep Edge Detection to WRF-CHEM model

We processed backscatter from 
WRF-CHEM model and applied 
HED to output and compared 
anomalies from Pecan campaign 
with ceilometer backscatter below

Top. LIDAR Backscatter Image 12/1/2016 UTZ. 
Passing clouds no rain. 12:00UTZ (7:00AM) Left of 
image is Night and right is daytime with cloud 
capped boundary layer. b.) GoCART Model 
Backscatter Image at 1000 nm, every hour, at 40 
levels  initialized at Nov. 29, 2016 and c.) an 
Interpolated GoCART Model Backscatter for 
December 1, 2016.

https://www.timeanddate.com/weather/usa/baltimore/historic?month=11&year=2016

Mid Fig. R2 Corr. of  (PBLH,Ceil) = 0.63 for 
26 pts. R2 Corr. of (ABLH,Ceil) = 0.66 for 
14 pts. Bias of PBLH and backscatter ABLH 
of opposite sign
Botom (PBLH,Ceil) mean 914, (Rawins,Ceil) 
mean 1118,  Ceilometer mean 1209 for 26pts.
Rawinsonde mean 1160, ABLH 1634 
Ceilometer 1192 for14pts. 

https://www.timeanddate.com/weather/usa/baltimore/historic?month=11&year=2016
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Operational System:  Using Machine Learning to Identify PBL Heights
Dr's Jennifer Sleeman, Vanessa Caicedo and Dorsa Ziaei 

Current Efforts and Updates:

● Continued work on Deep Boundary Layer detection as part of WRF-CHEM
● Evaluating performance for simultaneous processing of 1000’s of geographical locations

Figure 11. Comparing WRF-CHEM models with Ceilometer Output for UMBC Location.  Dec 1, 2016.
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PBLH Diurnal Variation

@Catonsville:
• Diurnal cycle;
• YSU: fluctuation; MYNN: smooth
• Afternoon&Nighttime: PBLHYSU < PBLHMYNN; Morning: PBLHYSU > PBLHMYNN;
• PBLHYSU = 0?

Sep 10, 2020
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Machine Learning Methods to Identify PBL Heights

● Simultaneous processing of 5 stations (Proof of concept integration with data 
acquisition team and visualization team)

● Continued evaluation of the Deep Boundary Layer Performance results 
including Residual Layer Heights  and Cloud Base Heights 

● Covariance Method and Deep Boundary Layer Method Mixture of Experts 
Early Results and Proposed Network

● Breakthrough results with LSTM model using hourly edge detection images 
for PBLH prediction and Proposed Model for Multi-Source LSTM

● Simultaneous processing of 1000’s of stations for WRF-CHEM integration

Summary of Progress from the Machine Learning Algorithmic 
Development Team:
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Task  3. PBLH Spatial Fusion and Visualization
D. Chapman, P. Bindu

● Objectives
− Create Level 3 hourly gridded 

PBLH from ceilometers at 3.2km
− Hourly fusion with Ceilometer, 

WRF-Chem Model output PBLH
− NOAA GFS Model forecasts
− Web accessible interactive 

visualization + geobrowser

Ceilometer PBLH                         WRF-Chem PBLH

Level 3 Data Fusion

PBLH Visualization
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PBLH Level 3 Spatial Fusion
and Visualization

• Integration of Ceilometer profiles from four sites along i95 corridor
- End to end processing including data streaming, L2 retrievals

and L3 gridded PBLH maps

• Fusion of L2 ceilometer profiles with WRF-CHEM model outputs
- Method of compressive sensing with 2D+time wavelet transform
- 3.2km resolution and hourly timescales over BW i95 corridor

• Prototype interactive visualization geobrowser
- Display ceilometer derived L3 gridded PBLH profiles
- Comparison of L3 product with raw WRF-chem shows large

differences in PBLH

Key Accomplishments
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Level 3 Gridded PBLH via Compressive Sensing Fusion
● Compressive Sensing for Level 3 PBLH grid

− Fusion of Ceilometer Profiles and WRF-chem to 
infer gridded PBLH at 3.2km resolution.

− Fusion with WRF-chem model outputs can 
interpolate between ceilometer point backscatter 
measurements while maintaining high frequency 
signal due to surface interaction.

− PBLH spatial fusion using L1 Compressive 
Sensing with Wavelet basis space.

− PBLH profiles from 5 ceilometers along greater 
BW metropolitan area.

Interactive Visualization of L3 Fused PBLH product
Left: wrf-chem PBLH  Right: fused PBLH

Ceilometer Stations including PCAN 
and greater BW metro areaC:  diagonal calibration matrix,  G: Sensing matrix,  W: wavelet transform   

X:  Inferred Signal    B:   Observation vector
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Visualization Features

• Compressive Sensing Fusion of PBLH from    
Ceilometer and WRF-Chem Model:

− Interactive Data visualization using-

● U.S. Census Bureau's MAF/TIGER 
Database

● HTML5 web servlet technology
● Integration with Data Archive + Apache

Data Fusion

Ceilometer PBLH                 WRF-Chem PBLH

Visualization in Progress● Objectives:
− Create Level 3 hourly gridded PBLH 

from ceilometers at 3.2km
− Hourly data fusion of Ceilometer ABLH 

with WRF-Chem Model output PBLH
or  NOAA HRRR Model forecasts

− Web accessible interactive visualization 
+ geobrowser
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1. Towards demonstrating the feasibility of an edge streaming, secure, scalable, fault-tolerant 
nationwide pilot to ingest, pre-process, infer aerosol boundary layer heights and archive all in 
near real-time based on ceilometer and remote sensed  lidar aerosol backscatter profiles.

2.    Developing a validated Hybrid Deep Hierarchical Machine Learning Edge Detection and
Covariance Wavelet algorithm for an end-to end hourly Aerosol Boundary Layer Height
(ABLH) product from  Ceilometer and remote sensed Lidar aerosol backscatter 

3.    Producing  3-D hourly boundary layer height maps by a compressive sensing fusion
methodology from the derived ceilometer ABLH and operational reanalysis PBLH.

Plans Going Forward:

● Complete scaling out the ground-based portion of the edge streaming, fault tolerant, secure  
prototype NRT ML aerosol backscatter inferring boundary layer height and visualization 
products by mid summer.

● Test, evaluate and incorporate the ingest of satellite Lidar aerosol backscatter and application 
of a Deep LSTM derived ABLH product as a compliment to ground based Lidar systems.

● Perform and evaluate data assimilation of ABLH into regional forecast models

● Conduct an OSSE for the proposed NASA Wind Lidar to compliment the NASA Icesat-2 and  
ESA Aeolus ADM Lidar sensors for a CONUS R2O  Regional Subseasonal Forecast. 

Summary of Accomplishments
B. Demoz, M.Halem
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Thanks to ESTO/AIST



Surrogate Modeling for Atmospheric Chemistry and  
Data Assimilation

Daven Henze (PI, CU Boulder, Mechanical Engineering)
Alireza Doostan (co-I/Science PI, CU Boulder, Aerospace Engineering)

AIST-18-0072 Annual Technical Review  
1/22/2021

Additional Team Members: Dr. Hee-Sun Choi, Dr. William Tsui, (CU Boulder),  
Nicolas Bousserez (Collaborator, ECMWF)
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01/21

07/21

10/21

01/22

• Surrogate of GEOS-Chem chemical solver  
delivered to GEOS-Chem code repository

• Surrogate model generating toolbox  
available to AQ community

• Surrogate-based GEOS-Chem 4D-Var  
applied to assimilation of pseudoTEMPO  
NO2

• Surrogate model for CAMS delivered to  
ECMWF for implementation

• Surrogate-based GEOS-Chem 4D-Var  
delivered to GEOSChem code repository 01/22

• Generate a training dataset (107 samples) using globalGEOS-
Chem High Performance model

• Construct surrogate model with low-rank tensor decomposition
using Canonical Polyadic (CP) formalism for compressed  
sensing (machine learning) and/or DNN

• Implement multi-scale preconditioning to address stiffness of
chemical kinetics and regularization and general cross  
validation for rigorous error control

• Apply and distribute a software development toolbox for
surrogate model generation process

TRLin =2 TRLcurrent =2
Co-PI: Alireza Doostan, University of Colorado, Boulder
Collaborator: Nicolas Bousserez, ECMWF

01/21 AIST-18-0072

Key MilestonesApproach
Steps for surrogate model generation:

Surrogate modeling for atmospheric chemistry and data assimilation
PI: Daven Henze, University of Colorado, Boulder

Objective
• Enhance computational efficiency of air quality (AQ) simulations  

through development and application of surrogate models for  
atmospheric gas-phase chemistry

• Demonstrate value through implementation within a widely  
used global 3-D chemical transport model, the GEOS-Chem  
4D-Var chemical data assimilation system

• Provide surrogate-generation toolbox to enable community  
applications with user-provided chemical mechanisms

• Apply surrogate-based AQ modeling framework for assimilation  
of geostationary observations of atmospheric composition  
(TEMPO, pseudo observations of NO2)

Fig: Surrogate improves runtime over classic ODE solver approaches
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Background / Objectives

Relevance:
• R&A and Applications science goals: Atmospheric Composition, Health & Air Quality
• AIST goals: “analytic tools to characterize the natural phenomena or physical processes from data”  

and “data-driven modeling tools enabling the forecast of future behavior of the phenomena.”
• NASA’s remote sensing of atmospheric composition (e.g., TEMPO)
• Build upon previously funded NASA support for GEOS-Chem 4D-Var

(e.g., PI Henze’s NASA grants NNX13AK86G, NNX16AF97G, NNX17AF63G).
• Could contribute to efficiency improvements in other models that use GEOS-Chem’s chemistry  

routines, such as the NASA GEOS model.

Background:
• Computational bottleneck of AQ models is  

chemistry (50 to 90% of run time)
• Several applications need more efficient models:

• data assimilation and forecasting  
(e.g., US NAQFC, ECMWF)

• higher resolution for health impacts
• longer simulations for chemistryóclimate

• Previous surrogate modeling attempts inaccurate
and/or slow (e.g., Keller and Evans, 2019; Kelp et
al., 2020), not focused on data assimilation

• New methods in compressive sensing, tensor  
decomposition, and machine learning hold  
promise for parameter space exploration and UQ  
of large-scale dynamical systems

GEOS-Chem simulation of aerosol sulfate

Construction of  
high-D surrogates  
by exploiting  
sparsity or low-
rank structures of  
the parameter to  
observable maps.

4



Objectives
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Objectives and Information Technology (bold) :
• Develop, test, and deliver a surrogate model for chemistry in GEOS-Chem
• Generalize surrogate model generation procedure within a software toolbox
• Demonstrate benefits of surrogate-based AQ modeling framework for chemical data

assimilation of geostationary observations of atmospheric composition

Science goals:
• Develop new techniques for surrogate modeling of high-dimensional, non-linear, large-

scale dynamical chemical systems
• Improve O3 forecasting through assimilating NO2 observations from geostationary remote

sensing measurements.
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Technical and Science Advancements

• Problem description
• Temperature at !  = ! !
• Pressure at !  = ! !
• The rate of constants at !  = ! !
• Chemical conc. at !  = ! !

• Chemical conc.  
at ! = ! ! + Δt
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DNN models for air quality
GEOS-Chem 3D model
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Performance of DNN models
GEOS-Chem 3D model

Train
80%

Validation
20%

Samples from
GEOS-Chem
global 2x2.5

9

• DNN model (Ver 0)
(1) Independent surrogate models for respective chemical species
(2) $$ values > 0.98 for all surrogate models



Performance of DNN models
GEOS-Chem 3D model

Train
80%

Validation
20%

Samples from
GEOS-Chem
global 2x2.5

10

• DNN model (Ver 0)
(1) Independent surrogate models for respective chemical species
(2) $$ values > 0.98 for all surrogate models



Technical and Science Advancements

24 hours

Input concentrations,  
rate constants, temperatures

Surrogate replaces ODEs

Output concentrations

Surrogate model

Beginning of  
GEOS-Chem simulation

Other processes

End of GEOS-
Chem simulation

Box model with  
surrogate replaces  

chemical solver

Box model GEOS-Chem

11

Using surrogate models with the box model and GEOS-Chem
(1) Train surrogate models using one-hour timestep data from GEOS-Chem simulations
(2) Run surrogate models for up to 24 hours and compare to box model
(3) Replace chemical ODE solver in GEOS-Chem with surrogate models and run for up to



Surrogate module

Technical and Science Advancements

concentrations using the surrogates

.txt filesSurrogate model

Beginning of  
GEOS-Chem simulation

Other processes

End of GEOS-
Chem simulation

ODE Solver

GEOS-Chem

Currently adding option to choose from multiple surrogate  
models (1A, 1B, 1C,…)

Incorporating surrogate model into GEOS-Chem (Fortran)
(1) Surrogate models are trained using Python Keras
(2) Model features are extracted to text files
(3) A separate module was written in fortran which reads the text files to predict chemical

Python Keras  
Tensorflow

Extract weights,
biases, activation
functions to .txt files

Fortran

12



Technical and Science Advancements

Global GEOS-Chem simulations of O3 for ODEs and surrogate (Ver. 0) over 24 hours

With ODEs
One real-scaled surrogate  
per species

With surrogate

2 hours
SDA = 1.64

13

6 hours
SDA = 1.04

24 hours
SDA = 0.64

Significant digits of  
accuracy (SDA) - grid cell  
modified root mean square  
norm [Sandu et al. (1997),  
Henze et al. (2007)], typical  
SDA of ODE solver 1.8-2.0



Technical and Science Advancements

Global GEOS-Chem simulations of NO2 for ODEs and surrogates over 24 hours
With surrogate

2 hours

6 hours

24 hours

With ODEs

14



Technical and Science Advancements

Single grid cell comparison for GEOS-Chem + surrogate (remote regions)

Surrogate predictions of O3 are largely within 10% difference and not divergent from the ODE  
solution over 24 hours for remote regions

LAT = 42, LON = -50 (remote)LAT = 14, LON = -15 (remote) LAT = 60, LON = 90 (remote)

15



Technical and Science Advancements

Single grid cell comparison for GEOS-Chem + surrogate (urban regions)

Divergence from ODE solution for the surrogate corresponds to inaccurate NO2 predictions  
in many urban regions

O3 at LAT = 48, LON = 2.5 (urban) NO2 at LAT = 48, LON = 2.5 (urban)

16



Technical and Science Advancements

%*: surr. model  
for &-th conc.

**: prediction for ) = ) + , -

• Main Issue: Inaccuracy of time-transient O3 predictions from surrogate models  
(Kelp et al, 2020; Sturm and Wexler, 2020)

Surr. Model (Ver.0)

X: Temp at '  = ' !
Press at ' =  ' !
Rate const. at '  = ' !
Chem. conc. at ) = )+

17



Technical and Science Advancements

• DNN updates to improve the time-transient O3 prediction
(1) Nonnegativity constraint (Ver. 1A)

%*: surr. model  
for &-th conc.

X: Temp at '  = ' !
Press at ' =  ' !
Rate const. at '  = ' !
Chem. conc. at ) = )+

**: prediction for ) = ) + , -

If ** < 0,  
redefine ** = 0

%*: surr. model  
for &-th conc.

X: Temp at '  = ' !
Press at ' =  ' !
Rate const. at '  = ' !
Chem. conc. at ) = )+

**: prediction for ) = ) + , -

Inherently, ** ≥ 0

No process  
needed

18



Technical and Science Advancements

• DNN updates to improve the time-transient O3 prediction
(1) Nonnegativity constraint (Ver. 1A)

After imposing the constraint

19

Before imposing the constraint



Technical and Science Advancements
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• DNN updates to improve the time-transient O3 prediction
(1) Nonnegativity constraint
(2) Chemical / physical regimes

• By O3 production regime (NOx or VOC limited)
• By day / night



Technical and Science Advancements

For high [VOC]/[NOx],
, - (

, ' ∝ / - .

This is the NOx-limited regime.

For low [VOC]/[NOx],
, - (

, '
∝ 0 - ! , 1

/ - .

This is the VOC-limited regime.

• To improve accuracy of O3 predictions, we apply regime-specific surrogate models

Following the work of Duncan et al. (2010),
we determine the regime in each grid cell
of GEOS-Chem using input formaldehyde
to NO2 concentration ratios:

• [Form]/[NO2] < 1 à NOx-limited
• [Form]/[NO2] > 2 à VOC-limited
• 1 < [Form]/[NO2] < 2 à Neither regime

21



Technical and Science Advancements

• Applying different regimes of O3 production improves hourly O3 predictions

Without NOx/VOC-limited regimes With NOx/VOC-limited regimes

• Since regimes are defined by formaldehyde and NO2 concentrations, the use of the  
correct surrogate model for O3 prediction is highly dependent on the accuracy of  
formaldehyde and NO2 surrogate models

22



Technical and Science Advancements

• DNN updates to improve the time-transient O3 prediction
(1) Nonnegativity constraint
(2) Chemical / physical regimes
(3) Wide ranges of air condition values
à Log-scaled training (Ver. 1C) GEOS-Chem raw data

Transformed data

Train DNN models

Achieve predictions

Predictions in real-scale

Log10 transform

23

Inverse Log10 transform

From trained surrogate models
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Technical and Science Advancements

• Log-scaled training results (NO2) – Ver. 1C



Technical and Science Advancements

➢ Real-scaled training (Ver. 0)

25

➢ Log-scaled training (Ver. 1C)

• One hour update solutions from NO2 surrogate models



Technical and Science Advancements

• DNN updates to improve the time-transient O3 prediction
(1) Nonnegativity constraint (Ver. 1A)
(2) Chemical / physical regimes (Ver. 1B)
(3) Wide ranges of air condition values
à Log-scaled training (Ver. 1C)
** Categorization of chemical species depending on the data distributions

Normal-like Long shallow front ISOP-like

26
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Technical and Science Advancements

• Log-scaled training results (ISOP) – Ver. 0
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Technical and Science Advancements

• Log-scaled training results (ISOP) – Ver. 1C
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Summary

30

• Surrogate model development
• Ensemble of DDN models (one for each individual concentration)
• Tested / developed in box-model R&D using samples from 3D model

• 3D implementation:
• Initial implementation (Ver 0) reasonable for a few hrs followed by error growth
• Now adding flexibility to accommodate multiple surrogate model versions
• Current computational cost 10% savings w/o any optimization or further  

parallelization

• Surrogate model updates for improved accuracy:
• Non-negative constraints
• Chemical and physical regimes
• Log-scaling

• Next steps:
• Evaluate updates (Ver 1A - 1C) in 3D for accuracy and efficiency
• Explore additional ideas for enhanced stability / accuracy (e.g., time-

dependent training)
• Apply to chemical data assimilation with GEOS-Chem
• Apply to other models: collect samples from CAMS model (ECMWF

collaborator)
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Publications
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Conference presentations:
• AMS Atmospheric Chemistry, January, 2021

• Session on “Machine-learning Applications for Atmospheric Chemistry”



Acronyms
List of Acronyms
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• 3D
• 4D-Var
• AQ
• CAMS
• DNN
• ECMWF
• GCHP
• GEOS
• NAQFC
• ODE
• PCE
• RNN
• TEMPO

3 Dimensional
4Dimensionoal Variational Data Assimilation  
Air Quality
Copernicus Atmosphere Monitoring Service (ECMWF’s AQ model)  
Deep Neural Network
European Centre for Medium-Range Weather Forecasts
GEOS-Chem High Performance  
Goddard Earth Observing System
National Air Quality Forecast Center (US national AQ forecasts from NOAA)  
Ordinary Differential Equation
Polynomial Chaos Expansion
Recurrent Neural Network
Tropospheric Emissions: Monitoring of Pollution
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Development of the High Performance Version of 
GEOS-Chem (GCHP) to enable broad community 
access to high-resolution atmospheric chemistry 

modeling in support of NASA Earth Science

Randall Martin (Washington University)

with contributions (alphabetical) from 
Liam Bindle (WashU), Tom Clune (NASA GSFC), Will Downs (Harvard), 

Sebastian Eastham (MIT), Daniel Jacob (Harvard), Christoph Keller (NASA 
GSFC), Lizzie Lundgren (Harvard), Jun Meng (WashU/Dalhousie), Steven 

Pawson (GMAO), Bob Yantosca (Harvard), Jiawei Zhuang (Harvard)

AIST-18-0011 Annual Technical Review
January 22, 2021



2AIST-18-0011

PI: Randall Martin, Washington University

• Develop the High Performance Version of GEOS-Chem 
(GCHP), a global 3-D chemical transport model, to enable 
broad community access to high-resolution atmospheric 
chemistry modeling and chemical data assimilation

• Make GCHP highly accessible by the atmospheric chemistry 
community to enable the atmospheric chemistry community to 
better exploit the GEOS system.

• Integrate the following technologies: high performance 
atmospheric chemistry model; Earth System Modeling 
Framework; cubed sphere meteorology; stretched grid; multi-
node cloud capability; software build system generator; 
software package manager; software containers.

• Updated the current MAPL and improved 
the build system. 05/20

• Developed initial cubed-sphere archive 
of GEOS assimilated met data. 11/20

• Improved installation through a package 
manager and software containers. 11/20

• Implement an operational cubed-sphere 
archive 05/21

• Implement a stretched grid capability in GCHP 09/21

Co-Is/Partners: Daniel Jacob, Harvard; Tom Clune, Christoph 
Keller, GMAO; Steven Barrett, Sebastian Eastham, MIT

Make this high-performance version of GEOS-Chem highly 
accessible by:

• Updating to the current version of the Modeling Analysis and 
Prediction Layer (MAPL) and enabling seamless updates. 

• Improving GCHP performance and portability.

• Generating an operational cubed-sphere archive of GEOS 
assimilated meteorological data.

Schematic of GEOS-Chem chemical module used offline as a 
chemical transport model or online in an Earth system model with 
interfaces managed through the Earth system modeling framework. 

TRLin = 3 TRLcurrent = 5

01/21

Development of the High Performance Version of GEOS-Chem (GCHP) to Enable Broad Community 
Access to High-resolution Atmospheric Chemistry Modeling in Support of NASA Earth Science
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Background and Objectives

• This project helps meet the R&A and Applications science goals for several cross 
cutting science areas (highest relevance bolded)

• Carbon Cycle; Climate Variability; Water & Energy; Atmospheric Comp; 
Weather; Eco Forecasting; Disasters; Health & Air Quality; Energy 
Management; Water & Food; Fires; Planetary Boundary Layer; Snow and Ice;

• Overall goal to develop the High Performance Version of GEOS-Chem (GCHP) to 
enable broad community access to high-resolution atmospheric chemistry modeling 
and chemical data assimilation

• Performance goals include fully parallelizing the model and enabling the atmospheric 
chemistry community to better exploit the GEOS system
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Objectives

Vibrant Community Seeking Tools 
to Keep Pace with GEOS

Sophisticated Meteorology & 
MAPL/ESMF Framework

GEOS/GMAO
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Input meteorological data from NASA GEOS-5 system:
MERRA-2, 1980-present (0.5ox0.625o)
GEOS-FP, 2012-present (0.25ox0.3125o)

Modules
• transport (TPCORE)
• emissions (HEMCO)
• chemistry (KPP with FlexChem)
• photolysis (Fast-JX)
• aerosol microphysics (APM, TOMAS)
• deposition

Model solves 3-D chemical continuity equations
on global or nested domains, at native or coarser resolution

Model adjoint

GEOS-Chem Off-line Atmospheric Chemistry Model

Detailed chemical simulation of troposphere and stratosphere
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OAdvection

ESMF

any 3-D grid specified at run time

Chemistry
(FlexChem):

dC/dt = P –L - D

Emissions
(HEMCO):
dC/dt = E

ESMF ESMF

GEOS-Chem chemical module

Mixing
Convection

ESMF

off-line 
GEOS-Chem CTM

GEOS-Chem as Offline and Online Chemical Module
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O

any 3-D grid specified at run time

Chemistry
(FlexChem):

dC/dt = P –L - D

Emissions
(HEMCO):
dC/dt = E

ESMF ESMF

GEOS-Chem chemical module

Dynamics,
chemical transport

ESMF

GEOS-Chem as Offline and Online Chemical Module

GEOS ESM with on-line 
GEOS-Chem chemistry
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O

any 3-D grid specified at run time

Chemistry
(FlexChem):

dC/dt = P –L - D

Emissions
(HEMCO):
dC/dt = E

ESMF ESMF

GEOS-Chem chemical module

Dynamics,
chemical transport

ESMF

GEOS ESM with on-line 
GEOS-Chem chemistry

Mixing
Convection

ESMF

Advection

ESMF

GEOS-Chem CTM 
community contributes 

model advances

Advances are incorporated 
into standard GEOS-Chem

ESM GEOS-Chem module 
is automatically updated 

and stays current

Off-line and on-line GEOS-Chem chemical modules use exactly the same code

Off-line 
GEOS-Chem CTM

GEOS-Chem as Offline and Online Chemical Module
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High-Performance GEOS-Chem (GCHP) 

GEOS-Chem Classic GCHP
Inefficient above 16 Cores
Shared Memory (OpenMP)

Massively Parallel
Distributed Memory (MPI)

Regular lat-lon Cubed-sphere

Putman and 
Lin (2007)
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Objectives

Make the high-performance version of GEOS-Chem (GCHP) highly accessible by 
the atmospheric chemistry community in sustained partnership with GMAO. Allow 
the atmospheric chemistry community to better exploit the GEOS system through 

its applications of GEOS-Chem, and to advance atmospheric chemistry knowledge 
for the benefit of the GEOS system and NASA’s Earth science mission. 
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Updating MAPL and Enabling Seamless Updates

GEOS MAPL: ESMF-based software layer which handles communication between 
atmospheric domains. Initial implementation was manually integrated into GCHP and 
frozen.  

Updating to MAPL 2.2.7 enabled
• Improved parallelization of regridding and I/O
• Improved error diagnostics
• Potential for stretched grid simulations

Using forks of GMAO software repositories as Git submodules enabled
• Seamless pulling of updates 
• Promoted collaboration, e.g. grid-box corners, improved error handling

Lizzie Lundgren (Harvard), 
Tom Clune (GMAO)
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Problem
• Building (compiling) GCHP was hard for users
• Set up on new cluster required expertise 

Why is was hard
• Written in a low-level language (Make)
• Complex software stack (dependencies)
• Interorganizational code base 

Work completed
• Completely overhauled the build system

• Written in higher-level language (CMake)
• Higher-level functionality facilitates

• Interfacing with MAPL’s build system
• A more structured build system
• Automatically finds software dependencies

Impacts (feedback and experience)
• Much easier to build
• Procedure to build GCHP is simpler/streamlined
• Easier to support/troubleshoot user issues

Improved Build System

Liam Bindle (WashU)
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Implementation of the Spack Package Manager

• Challenge: installation of GCHP was complicated by multiple versions, 
configurations, platforms, and compilers

• Spack: innovative package manager designed to ease installation of 
scientific software

• Spack implementation now provides ‘recipes’ for GCHP dependencies
– Compilers, MPI, NetCDF libraries, Cmake
– Significantly streamlines system setup
– Offers choice of compilers and MPI implementations
– Includes updated ESMF version

• Instructions now available on GCHP Read The Docs 

• Will allow creation of GCHP Spack package for single-line setup

Will Downs (Harvard)
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Providing GCHP Software Containers

• Containers facilitate fast setup and running of GCHP
– Include pre-built source code and executable
– Users only need to install MPI and Singularity

• Now provide GCHP container images on Docker Hub
• Usage instructions available on GCHP Read The Docs
• Ideal for casual users, demonstrations, testing
• Slight performance decrease due to lack of system-specific optimizations

Will Downs (Harvard)
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Challenge
• Avoid information loss from unnecessary regridding
• Operational advection fields generated by GMAO on cubed-sphere, regridded to 

lat-lon for dissemination, and regridded to cubed-sphere for GCHP

Work completed
• Ability to ingest cubed-sphere data in GCHP
• Generated 2017 MERRA2 archives (hourly C180 resolution)
• Developed mass fluxes transport tracer simulation
• Identified development tasks to eliminate meteorological input preprocessing (for 

GEOS-Chem)

Offline Advection Archive

Christoph Keller (GMAO),
Seb Eastham (MIT), 
Lizzie Lundgren (Harvard),
Liam Bindle (WashU)

Lat-lon Winds
Cubed-sphere 
Mass-Fluxes

Putman and Lin (2007)
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Effect of changing from lat-lon winds to 
cubed-sphere mass fluxes

Plotted: Relative change in 
222Rn from switching from LL 
winds -> CS mass fluxes

Quantities ratioed: Zonal mean
222Rn for July 30, 2017 

Simulation: July 2017

Impact:
• Better resolves vertical 

transport

Eliminating Double Regridding Preserves 
Vertical Motion

Liam Bindle (WashU)
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Mass fluxes for GCHP

Fixing the fixer

• GCHP updated to accept mass 
fluxes directly from GMAO

• Almost eliminates long-standing 
CTM error (Jöckel et al, 2001)

• Now extending work to allow flux 
regridding using ESMF

• Manuscript is in preparation

Using fluxes 
almost 
eliminates 
error in 
transport of 
a CH3I-like 
tracer

Seb Eastham (MIT)
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Stretched-grid Capability for Targeted High-resolution 
Simulations using GCHP

Bindle et al., submitted
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● Transformation to the 
cube-sphere’s grid-
boxes

● Grid-boxes shrink 
over target region

● Grid-boxes expand on 
the opposite face

● No added computational 
effort

Stretched-grid capability for targeted high-resolution simulations using GCHP

Bindle et al., submitted
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Stretched-grid simulation with C720 (12 km) resolution
Full chemistry simulation over California (surface ozone)

Complex topography and source structure better 
represented at fine resolution

Implicit 2-way ‘nesting’

At expense of global C48 (~2o x 2.5o)

Bindle et al., submitted
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Grid Independent Emissions Enable Consistent 
Emissions across Multiple Resolutions

Mineral Dust Emissions

Challenge
• Emissions change with meteorological resolution
• Especially problematic for stretched-grid

Work completed
• Contributed to development of grid independent emissions
• Develop archive at native resolution
• Enables representation of emissions at the finest resolution

Meng et al., submitted
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GCHP on the AWS cloud

Zhuang et al., JAMES 2020

Current standard version of GEOS-
Chem, properly configured and ready 
to execute

GEOS and HEMCO 
input data

Configure/execute your run, 
analyze output
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• Demonstration tests with 7-day global 50-km resolution (C180) GEOS-Chem benchmark

• Intel-MPI (with EFA) scales well to 1152 cores; faster than NASA Pleiades by 20%

• OpenMPI (with TCP) cannot scale beyond 576 scores, due to major slow down in I/O 
and minor slow down in advection. 

Progress Toward Multi-node Cloud Capability

Zhuang et al., 2020
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Supporting Community through Documentation

• Tutorials on YouTube: https://www.youtube.com/c/geoschem

• ReadTheDocs: https://gchp.readthedocs.io/en/latest/
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GCHP Demonstration

Full chemistry at C360 (~25km) resolution
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Summary of Accomplishments and Future Plans

• Completed activities as planned
• Updated MAPL
• Enabled seamless updates
• Improved build system
• Implemented package manager
• Implemented containers
• Generated offline advection archive
• Enhanced documentation

• Ongoing work
• Complete parallelization assessment and improvement
• Support multi-node cloud capability
• Support stretched grid implementation
• Operationalize cubed-sphere archive
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Publications

Zhuang, J., D.J. Jacob, H. Lin, E.W. Lundgren, R.M. Yantosca, J. Flo Gaya, M.P. 
Sulprizio, S.D. Eastham, and K. Jorissen, Enabling high-performance cloud 
computing for Earth science modeling on over a thousand cores: application to the 
GEOS-Chem atmospheric chemistry model, Journal of Advances in Modeling Earth 
Systems, doi: 10.1029/2020MS002064, 2020. 

Bindle, L., Martin, R. V., Cooper, M. J., Lundgren, E. W., Eastham, S. D., Auer, B. M., 
Clune, T. L., Weng, H., Lin, J., Murray, L. T., Meng, J., Keller, C. A., Pawson, S., and 
Jacob, D. J., Grid-Stretching Capability for the GEOS-Chem 13.0.0 Atmospheric 
Chemistry Model. Geoscientific Model Development, doi: 10.5194/gmd-2020-398, 
2020, in review.

Meng, J., Martin, R. V., Ginoux, P., Hammer, M., Sulprizio, M. P., Ridley, D. A., van 
Donkelaar, A., Grid-independent High Resolution Dust Emissions (v1.0) for Chemical 
Transport Models: Application to GEOS-Chem (version 12.5.0). Geosci. Model Dev., 
doi: 10.5194/gmd-2020-380, 2020, in review. 
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Presentations

Eastham, S. D., Chossière, G., Speth, R. L., & Barrett, S.R.H. The role of aviation 
and intercontinental transport in local air quality (poster). American Geoscientists 
Union (AGU) Annual Fall Meeting, 2019.

Eastham, S. D., Monier, E., Rothenberg, D., & Selin, N. Time of emergence for the 
influence of climate change on surface ozone (presentation). American 
Meteorological Society (AMS) Annual Meeting, 2020. 

Jacob, D.J. and R.V. Martin, GEOS-Chem model overview, Joint keynote 
presentation, 1st GEOS-Chem Europe Meeting, 1 September 2020.

Martin, R.V., Progressing from Global to Urban Scales for Air Quality Applications, 
Earth Science Information Partners Virtual Meeting, 15 July 2020. 

Martin, R.V., Advancing Understanding of Air Quality from Global to Urban Scales, 
Frontiers of Atmospheric Science, American Geophysical Union Virtual Conference, 
December 2020.
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List of Acronyms

• AMI Amazon Machine Image
• CS Cubed-Sphere
• EC2 Elastic Compute Cloud
• EFA Elastic Fabric Adapter
• ESMF Earth System Modeling Framework
• GCHP GEOS-Chem High Performance
• GEOS Goddard Earth Observation System
• GMAO Global Modeling and Assimilation Office
• HEMCO Harvard-NASA EMission Component
• MAPL Modeling Analysis and Prediction Layer
• MPI Message Passing Interface
• S3 Simple Storage Service
• TCP Transmission Control Protocol
• TRL Technology Readiness Level
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Predicting What We Breathe

Jeanne Holm (PI, City of Los Angeles) 
Dr. Mohammad Pourhomayoun (Co-I, California State University, Los Angeles) 

Jeremy Taub (Co-I, OpenAQ) 
Dawn Comer (Project Manager, City of Los Angeles) 

 
AIST-18-0099 Interim Review  

January 22, 2021  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Co-I: Dr. Mohammad Pourhomayoun, Cal State LA

Key Milestones

Objective  

● Increase the accessibility and use of space data by using 
machine learning to help cities predict air quality (AQ) in ways 
that can be acted upon to improve human health outcomes. 

● Provide these tools and algorithms to future Earth science 
missions (e.g., MAIA) to provide rapid ground truth, combine 
multiple data sources, and support more rapid use of mission 
data.

Approach:

● Develop machine learning (ML) algorithms for predictive 
models for air quality based on measurements of 2.5 micron 
particulate matter (PM2.5) and other air pollutants

● Develop a big data analytics algorithm for integrating ground 
and space data

● Develop predictive models for health risk using deep 
learning and machine learning

● Build an open source PM2.5 stack for integrating ground and 
space data

● Create a model for cities with shared attributes to 
understand predictions and effective interventions

TRLin = 3

• Data identification (Phase 1 complete) 06/20
• ESTO Science Forum (Complete) 06/20
• Identify initial ML models (Complete) 07/20
• Develop initial ML algorithm (Complete) 12/20
• Identify city interventions and attributes (Complete)  11/20
• AGU and CSCI Conferences - 4 papers (Complete) 12/20            
• Conduct ML training runs (Phase 1 complete) 12/20
• Pre- and post-intervention analysis 02/21
• ESTO Science Forum 06/21
• Validate algorithm 10/21
• Publish open source 08/21
• OpenAQ workshops 11/21

AIST-18-009901/21

 Predicted Air Pollution         Actual Air Pollution 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Background and Objectives

• AIST Research Focus
• Develop machine learning algorithms and models that link ground- and 

space-based air quality data to
■ Classify patterns
■ Deduce and forecast pollution events
■ Identify AQ similarities amongst megacities

• Project Objectives
• Increase the accessibility and use of space data by using machine learning to 

help cities predict air quality in ways that will improve human health
• Provide tools and algorithms to future Earth science missions (such as MAIA) 

to provide rapid ground truth, conduct data fusion across diverse datasets, and 
support rapid use of mission data
1.  Create a model for cities to enamine in-situ PM2.5, NO2, PM10, and ozone
2.  Apply machine learning to big datasets from ground and space
3.  Improve decision making on health outcomes in cities
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Project Schedule - Overview 

Year One (Note that our project start was May 2020)
● Identify ground and space-based datasets
● Develop a framework to collect and analyze data, look at historical trends and 

events
● Data pre-processing and integration
● Select a data architecture and models
● Initialize the computational space and migrate data to it
● Create, run, and validate initial machine learning algorithms against training data

Year Two
● Sister cities will be identified and recruited
● Include possible additional datasets
● Validate the models based on emergent research
● Run and retrain the algorithms against control and expanded data
● Initial open source publication
● Regional and international workshops to socialize the models, promote the open 

source, and gather requirements

Orange = Underway; Green = complete for this phase
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Technical Advances

High-Level Approach to ML Models

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Real-Time 
Spatiotemporal Air Pollution Prediction with Deep Convolutional LSTM through Satellite Image Analysis,” The 16th Int. 
Conference on Data Science (ICDATA’20), 2020.



8

Machine Learning Deep Neural Network Models 

• Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM): 
For the temporal correlation in the data

• Convolutional Neural Network (CNN): For the spatial correlation
• Convolutional RNN/LSTM: For the spatiotemporal correlation
• CNN RNN/LSTM: For the spatiotemporal correlation

Technical Advances (continued)
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Considering Temporal and Spatial Patterns in the Data 

Technical Advances (continued)
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Deep Convolutional RNN/LSTM 

•

•

•

Technical Advances (continued)
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Predictive Model 1: Predicting PM2.5 in L.A. County every 46 
hours based on satellite observations and ground sensors 

Input data
● Satellite observations 

NASA MAIAC MODIS: 
○ Spatial Resolution: 

1-km/pixel (40x40km)
○ Temporal Resolution:

46-hr frequency
● Ground-based sensors 

(13 in L.A. County), hourly
● Meteorological data 

(L.A. County) 

Technical Advances (continued)

Accuracy Frame #

  Frame 1: 46 hours in future

  Frame 2: 4 days in future

  Frame 3: 6 days in future

  Frame 4: 8 days in future

  Frame 5: 10 days in future

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Satellite 
Image Atmospheric Air Pollution Prediction through Meteorological Graph Convolutional Network with Deep Convolutional 
LSTM,” The 2020 International Conference on Computational Science and Computational Intelligence (CSCI'20), 2020.



12

-

-

-
-

 

Technical Advances (continued)

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Satellite 
Image Atmospheric Air Pollution Prediction through Meteorological Graph Convolutional Network with Deep Convolutional 
LSTM,” The 2020 International Conference on Computational Science and Computational Intelligence (CSCI'20), 2020.
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Predictive Model 2: Predicting NO2 in L.A. County every 46 
hours based on satellite observations and ground sensors 

Input data
● Satellite observations 

NASA MAIAC MODIS: 
○ Spatial Resolution: 

1-km/pixel (40x40km)
○ Temporal Resolution:

46-hour frequency
● Ground-based sensors 

(13 in L.A. County), hourly
● Meteorological data 

(L.A. County) 

Technical Advances (continued)

Accuracy Frame #

84%   Frame 1: 46 hours in future

81%   Frame 2: 4 days in future

80%   Frame 3: 6 days in future

73%   Frame 4: 8 days in future

70%   Frame 5: 10 days in future

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Satellite 
Image Atmospheric Air Pollution Prediction through Meteorological Graph Convolutional Network with Deep Convolutional 
LSTM,” The 2020 International Conference on Computational Science and Computational Intelligence (CSCI'20), 2020.
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Predictive Model 3: Predicted NO2 in L.A. every 46 hours 
based on satellite observations and ground sensors 

Input data
● Satellite images (ESA Sentinel-2 

Satellite imagery, 945.1 nm 
spectral band of NO2)

● Ground-based sensors 
● Meteorological data 

Technical Advances (continued)

Accuracy Frame #

79%   Frame 1: 46 hours in future

78%   Frame 2: 4 days in future

75%   Frame 3: 6 days in future

70%   Frame 4: 8 days in future

68%   Frame 5: 10 days in future

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Real-Time 
Spatiotemporal Air Pollution Prediction with Deep Convolutional LSTM through Satellite Image Analysis,” The 16th Int. 
Conference on Data Science (ICDATA’20), 2020.



15

Predictive Model 4: Predicting ozone in L.A. County every 
46 hours based on satellite observations and ground 
sensors 

Input data
● Satellite observations 

(NASA MAIAC MODIS): 
1-km/pixel, 46-hr frequency

● Ground-based sensors 
(13 in L.A. County), hourly

● Meteorological data 
(L.A. County) 

Technical Advances (continued)

Accuracy Frame #

  Frame 1: 46 hours in future

  Frame 2: 4 days in future

  Frame 3: 6 days in future

  Frame 4: 8 days in future

  Frame 5: 10 days in future

[Ref]: P. Muthukumar, E. Cocom, J. Holm, D. Comer, A. Lyons, I. Burga, Ch. Hasenkopf, and M. Pourhomayoun, “Satellite 
Image Atmospheric Air Pollution Prediction through Meteorological Graph Convolutional Network with Deep Convolutional 
LSTM,” The 2020 International Conference on Computational Science and Computational Intelligence (CSCI'20), 2020.
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Accomplishments Since Last Review

● Develop ML models from existing satellite and ground level data 
● Focus for technology maturation has been on

○ Predictive models for health risk prediction
■ Initial Machine Learning Algorithms are being tested and trained with AQ data sets

○ Predictive models for air quality
■ Using MAIAC and AQMD data to develop 1-10 day predictive models using training 

data and validation
● Next six months focus will be on

○ Big data analytics algorithms (3)
■ Combining datasets from two satellites and another one of multiple ground sensors 

for pre-processing (4)
○ Open source PM2.5 stack (4)

■ Define components for the phase 1 stack build
■ Operationalize this as all the components in a shared environment with researchers 

and cities (5)
○ Virtual calibration (3)

■ Show calibration proof of concept on one space- and one ground-based dataset +
○ Predictive models (2)

■ Define useful formats and outputs for health organizations
■ Work with Anthem, AQMD, and Propeller Health for a proof of concept on ingestion 

and projecting impact (3)

TRL Assessment 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TRL Assessment

Component Entry 
TRL

Entry Justification Exit 
TRL

Exit Justification

Predictive models for air quality 
based on several deep RNN models 
that takes into account both temporal 
and spatial correlation in ground/space 
data

3 Models using RNN have not 
been demonstrated related to 
air quality data

4 Model will be able to predict 1-2 
year later data after undergoing 
training

Big data analytics algorithms for 
integrating ground and space data

3 Able to preprocess data 
based on the type and nature 
of the data

5 Extract knowledge from the data 
and prepare it for machine learning

Predictive models for health risk 
prediction based on deep learning 
and machine learning algorithms 
trained on historical data and for air 
quality predictive model

2 Current health predictions are 
for long-range forecasts and 
don’t use ML

4 Train the ML algorithms against a 
historical dataset and predict health 
risks accurately in the near term

Open source PM2.5 stack: Combining 
open source stack to integrate satellite 
and ground data for PM2.5

4 Tools individually are at TRL 
9-10, but unable to easily 
combine them to provide an 
integrated view at ground up 
to 700 km

6 Provide reliable data over time 
across multiple sources to measure 
PM2.5 for a specific location in Los 
Angeles

Virtual calibration: Model to provide 
federation of space data with ground 
data

3 Under the relationship 
between PM2.5 ground and 
space data for a given region

4 Use machine learning algorithm to 
validate calibration of space- or 
ground-based data
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Summary 

• Project launched May 18, 2020
○ Spending and obligations are in line with the phasing plan

• Team meets regularly and connects to new partners
○ AQMD
○ Propeller Health
○ OpenAQ
○ SmartAirLA
○ SafeCast
○ Southern California Asthma Association

• Identified initial datasets
• Data processing and integration
• Fine tuning ML model options
• Close coordination with other AIST partners

○ NASA data standards
• Already engaging cities
• Scoping citizen science data collection opportunities with LAPL
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Current State

• Administrative
○ Project commenced on May 18, 2020 (post COVID-19 delay)
○ Contracts established between the City and OpenAQ and Cal State L.A.
○ Project award formally accepted by City Council
○ Participated in ESIP Winter 2020 meeting
○ Participating in MAIA early adopter meetings
○ Bi-weekly and monthly meetings for core, partners, and community
○ Launched project website - airquality.lacity.org, and project email address - 

airquality@lacity.org

• Data Preparation
○ Identification of ground-based and satellite datasets available from NASA, OpenAQ 

and existing City department projects
○ Established regular engagement within the AQ data community to collaborate on best 

practices for accessing and using data (NASA, OpenAQ, L.A. County Health, etc.)
○ Initial use of NASA satellite data for machine learning algorithms

• Technical Preparation
○ Data processing and integration
○ Designing machine learning approaches
○ Developing and training machine learning Aagorithms for discovering spatiotemporal 

patterns in the data and make predictions

•

http://airquality.lacity.org
mailto:airquality@lacity.org
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Current State (continued)

● Community Engagement

○ Published and presented 6 peer-reviewed papers and 3 meeting papers (details on 
slides 33-34)

○ Continued engagement with community advocates (Anthem Blue Cross, Southern 
California Asthma Association, SmartAirLA, and AQMD)

○ Concept meeting with Agents of Climate augmented reality app for citizen science
○ Initial identification of citizen science project with LA Public Library and SafeCast 

sensors
○ Identification of AQ sister cities completed
○ Initial identification of AQ interventions to measure
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Plan Forward 

Next Steps

• Continue evolution of model, algorithms, and validation

• Adding new datasets to the predictive models including more high-resolution satellite 
observations from NASA and fire/smoke data.

• Continue to identify and integrate local data (health, polluters, traffic, roads, ports) from 
IOT and in-situ sensors

• Identify gaps in AQ sensor coverage

• Continue to engage citizen scientists (libraries, SafeCast, SmartAirLA, and more), 
community for environmental justice for awareness and support, and healthcare partners 
(Propeller Health, Anthem Blue Cross, Southern California Asthma Association) to 
improve health outcomes

• Share findings via smart city air quality intervention and toolkit (C40 cities, U.N. 
Sustainable Development Goals Network, Climate Mayors, etc.)

• Develop and conduct training workshops on finding and using air quality data for both LA 
government and community stakeholder representatives, and for a group of global cities 
interested in learning more about project models that can be replicated.
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Publications 

• Journal / Conference Papers (6 peer-reviewed papers, 3 meeting papers)
○ 2 Papers Published/Presented in 2020 International Conference on Computational 

Science and Computational Intelligence (CSCI'20: December 16-18, 2020, Las 
Vegas, USA)  https://www.american-cse.org/csci2020/
■ Satellite Image Atmospheric Air Pollution Prediction through Meteorological 

Graph Convolutional Network with Deep Convolutional LSTM
■ Sensor-Based Air Pollution Prediction Using Deep CNN-LSTM

○ 2 Abstracts Presented in AGU (American Geophysical Union) Fall Meeting 
Presentation (December 7-11, 2020) - submissions complete
■ Particulate Matter Forecasting in Los Angeles County with Ground-Based 

Sensor Data Analytics
■ Real-Time Spatiotemporal NO2 Air Pollution Prediction with Deep 

Convolutional LSTM through Satellite Image Analytics
○ Paper presented at ICDATA conference (July 27) : presentation video

■ Real-Time Spatiotemporal Air Pollution Prediction with Deep ConvLSTM via 
Satellite Image Analysis

https://www.american-cse.org/csci2020/
https://www.agu.org/fall-meeting
https://www.agu.org/fall-meeting
https://www.youtube.com/watch?v=Bd_JWHaKdYQ
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Publications (continued) 

• Journal/Conference Papers
○ Presented project at the Environmental Law Institute (July 29)

■ ELI is supporting the U.S. EPA in an effort to characterize and learn from how 
states, tribes and local governments are using citizen science in their 
programs

○ Peer-reviewed paper at International Astronautical Congress (October 11)
○ European Space Agency’s Space for Twin Cities broadcast (November 19)

• Other
○ Project mentioned by Mayor Garcetti @ SCAQMD EJ Conference
○ UN International Day of Clean Air - City of L.A. Social Media  (September 7)
○ Clean Air Day - City of L.A.  Press Release and Social Media (October 7)
○ Project presented at City of L.A. Chief Sustainability Officer Meeting (November 

18)

https://www.eli.org/
https://www.iafastro.org/events/iac/iac-2020/
https://drive.google.com/file/d/1zwj5YEvmO5_TZwtGSVlUAkFAskNWa4jX/view?usp=sharing
https://twitter.com/LACity/status/1304540219753062400?s=20
https://www.lamayor.org/mayor-garcetti-announces-13-million-grant-nasa-improve-air-quality-measurements-across-los-angeles#:~:text=LOS%20ANGELES%20%E2%80%94%20On%20California%20Clean,predict%2C%20and%20address%20air%20quality
https://twitter.com/MayorOfLA/status/1313923986066038784?s=20
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• Public
– City of Los Angeles
– NASA/JPL
– Southern California Air 

Quality Management 
District

– SafeCast
• Private

– OpenAQ
– SmartAirLA

• Academic
– California State University, 

Los Angeles
– LA Data Science 

Federation
• Organizations

– Mayor Garcetti leads the 
C40 Cities

– Climate Mayors

Partners 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Acronyms

• AQMD South Coast Air Quality Management District
• ML Machine learning
• Cal State LA California State University, Los Angeles
• RNN Recurrent Neural Network
• LSTM Long Short Term Memory
• CNN Convolutional Neural Network
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QUANTIFYING UNCERTAINTY AND KINEMATICS OF 
EARTHQUAKE SYSTEMS (QUAKES-A) ANALYTIC 

CENTER FRAMEWORK

Andrea Donnellan (PI, Jet Propulsion Laboratory, California Institute of Technology)
Jay Parker (Co-I, Jet Propulsion Laboratory, California Institute of Technology), 

Robert Granat (Co-I, City College of New York), 
Marlon Pierce (Co-I, Indiana University), 

John Rundle (Co-I, University of California Davis), 
Lisa Grant Ludwig (Co-I, University of California Irvine)

AIST-18-001 Annual Technical Review
January 22, 2021

© 2021 California Institute of Technology. Government Support Acknowledged
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Investigators

Name Org Position Role
Andrea Donnellan JPL PI Oversight, testing and evaluation 
Jay Parker JPL Co-I InSAR edge detection and 

displacement estimation
Robert Granat CCNY Co-I Data fusion and uncertainty 

quantification
Marlon Pierce Indiana U Co-I Science gateway analytic center 

framework
John Rundle UC Davis Co-I Geodetic/seismicity forecasting 
Lisa Grant Ludwig UC Irvine Co-I Target communities interface
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Current Team Members and Students

Name Org Level Role
Brian Hawkins JPL Staff UAVSAR GNSS adjustment
Jun Wang Indiana U Staff GIS, web services
Michael Heflin JPL Staff GNSS time series/velocity field
Maggi Glasscoe JPL Staff Response and Hazard
Nathan Pulver JPL/CPP B.S. UAVSAR GNSS adjustment
Megan Mirkhanian UC Irvine Ph.D. User guide and community 

engagement
Nick Mowery Indiana U B.S. Science gateway
Cameron Saylor UC Davis Ph.D. Radar analysis
Gregory Lyzenga JPL Staff Data and modeling
Juan Carlos Beltran UC Riverside B.S. UAVSAR time series analysis
Joe Yazbeck UC Davis Ph.D. Radar damage assessment
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Quantifying Uncertainty and Kinematics of Earthquake Systems (QUAKES-A)

Co-Is/Partners: R. Granat, J. Parker (JPL), M. Pierce (IU), 
J. Rundle (UCD), L. Grant Ludwig (UCI) / Partners: SCEC, FEMA, 
US and CA Geological Surveys

PI: Andrea Donnellan, JPL/Caltech

TRLin = 3 TRLcurrent = 4

4/09

Objective

Create a uniform crustal deformation reference model for the 
active plate margin of California 
• Fused InSAR, topographic, and GNSS geodetic imaging data
• Quantify uncertainties for the reference model
• Improve earthquake forecast models
• Improve understanding of the physical processes leading to 

and following earthquakes

Approach
• Infuse GNSS network solutions into UAVSAR baseline 

estimation and extract features from data
• Develop cluster analysis to identify and rank active fault systems 

spatially and temporally
• Fuse/interpolate all available geodetic imaging data to provide a 

uniformly sampled deformation field based in part on results from 
the clustering analysis

• Assimilate and correlate the crustal deformation products into 
seismicity-based earthquake forecasts and back test to 
understand possible improvements. 

01/2021

Key Milestones

• InSAR Adjustment/Machine Learning Nov/20
• Reference Model (Data Fusion) Apr/21
• Uncertainty Quantification Aug/21
• Geodetic/Seismicity Earthquake Forecasts Nov/21

AIST-18-00001

Left: Cluster boundaries (black) for k=9 and faults (gray)
Right: Baseline adjusted interferogram showing fault slip

San Andreas fault

Coachella Valley

North

Azimuth 5 km

Range
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Background and Objectives

• Background: Crustal deformation measurements provide inside into earthquake 
processes

• Data come from various instruments of differing characteristics
• Facilitates understanding tectonic, crustal deformation, and earthquake processes 

a goal of NASA’s Earth Surface and Interior program.
• Objective: Create a uniform crustal deformation reference model for the active plate 

margin of California
• Harmonize data products in a time-dependent adaptive gridded product
• Quantify uncertainties
• Deploy in a science gateway (GeoGateway)

InSAR

GNSS

InSAR

lidar/photogrammetry

Deformation Imaging Topography and Change
space

space
drones

aircraft
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Objective

• Fused InSAR, topographic, 
and GNSS geodetic imaging 
data

• Quantify uncertainties for the 
reference model

• Improve earthquake forecast 
models

• Improve understanding of the 
physical processes leading to 
and following earthquakes

Create a uniform crustal deformation reference model for 
the active plate margin of California
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Technical and Science Advancements

• Fuse InSAR, topographic, and GNSS geodetic imaging data
• Use GNSS data to adjust UAVSAR baseline estimate (position difference between 

first and second pass) 
• Extract features in InSAR images
• Develop clustering algorithms to identify deformation boundaries in GNSS data

• Quantify uncertainties for the reference model
• Improve earthquake forecast models
• Improve understanding of the physical processes leading to and following earthquakes
• Uniform crustal deformation model serves as reference for modeling and analysis
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Interpolation

Coseismic (north) Velocity (vertical)

1. Creates synthetic interferogram for UAVSAR baseline adjustment
2. Creates initial uniform posting gridded deformation field
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UAVSAR Baseline Adjustment

20 km
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Line-of-sight motion across image for velocity product

Enables extraction of plate tectonic motion and variations

East West
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Insar Edge Detection

Detected edges and amplitude of slip
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GNSS Clustering

Velocities k=2-10
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Coseismic Clustering Results

EMC

R
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Regional Seismicity Correlation Timeseries
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Eigen Patterns from Seismicity

El Mayor-
Cucupah (2010)

Landers (1992)  
Hector Mine (1999)
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Summary of Accomplishments and Future Plans

• Developed and demonstrated method and workflow for carrying out UAVSAR baseline 
adjustment

• InSAR feature extraction methodology was completed and demonstrated (Parker et al, in 
preparation)

• Clustering algorithms were developed to identify deformation boundaries in GNSS data 
(Granat et al, in preparation)

• Uncertainty quantification methods are under consideration and evaluation
• GNSS clustering methodology is being used to guide the development of 

geodetic/seismicity earthquake forecasts
• GeoGateway has been rewritten using new standards and was released in December
• Userguide was developed and 

the team taught a workshop on 
the use of GeoGateway at the 
Annual Geological Society of 
America Meeting in October

• Student Megan Mirkhanian was 
featured in the annual ESTO report
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Publications

• Donnellan, A., J. Parker, M. Heflin, M. Glasscoe, G. Lyzenga, M. Pierce, J. Wang, J. Rundle. L. Grant 
Ludwig, R. Granat, M. Mirkhanian, 2021, Improving Access to Geodetic Imaging Crustal Deformation 
Data Using GeoGateway, Earth Science Informatics, DOI: 10.1007/s12145-020-00561-7.

• Granat, R., A. Donnellan, M. Heflin, G. Lyzenga. M. Glasscoe, J. Parker, M. Pierce, J. Wang, J. Rundle, 
L. Grant Ludwig, in preparation, Clustering Analysis Methods for GNSS Observations: A Data-Driven 
Approach to Identifying California’s Major Faults, Earth and Space Science

• Parker. J, A. Donnellan, R. Bilham, L Grant Ludwig, J. Wang, M. Pierce, N. Mowery, in preparation, 
Highly Resolved 2010 Triggered Creep on the Coachella Segment, San Andreas Fault, Earth and Space 
Science.

• Rundle, John B, and Andrea Donnellan, Nowcasting Earthquakes in Southern California With Machine 
Learning: Bursts, Swarms, and Aftershocks May Be Related to Levels of Regional Tectonic Stress, Earth 
and Space Science 7.9 (2020): e2020EA001097.

• Rundle, John B, Andrea Donnellan, James Crutchfield and Geoffrey Fox, Nowcasting earthquakes: 
Imaging the earthquake cycle in California with Machine Learning, to be submitted to Earth and Space 
Science.

• Rundle, John B., Seth Stein, Andrea Donnellan, Donald L Turcotte, William Klein and Cameron Saylor, 
The Complex Dynamics of Earthquake Fault Systems: New Approaches to Forecasting and Nowcasting 
of Earthquakes, revised, Reports on Progress in Physics (invited)

• Saylor, Cameron, John B Rundle, Andrea Donnellan , in review, Estimating Fault Configurations From 
InSAR Data Using A Genetic Algorithm, Earth and Space Science

• Parker, J. A. Donnellan, M. Glasscoe, submitted, Survey of Transverse Range Fire Scars in Ten Years of 
UAVSAR Polarimetry, Earth and Space Science.
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List of Acronyms

• QUAKES Quantifying Uncertainty and Kinematics of Earthquake Systems
• GNSS Global Navigation Satellite System
• InSAR Interferometric Synthetic Aperture Radar
• UAVSAR Uninhabited Aerial Vehicle Synthetic Aperture Radar 



1

Smart On-Demand Analysis of Multi-
Temporal and Full Resolution SAR 

ARDs in Multi-Cloud & HPC

Hook Hua (PI, JPL)
Science Data System: Gerald Manipon (Co-I, JPL), Mohammed Karim (JPL), Marjorie Lucas (JPL), 
Zhangfan Xing (JPL), Joseph Jacob (JPL), Alex Dunn (JPL), Dustin Lo (JPL), Susan Neely (JPL)
Systems Engineer: Rishi Verma (JPL)
Flood and Damage Assessment: Sang-Hu Yun (Co-I, JPL), Jungkyo Jung (Co-I , JPL)
Solid Earth Science: Susan Owen (Co-I, JPL), David Bekaert (Co-I, JPL), Eric Fielding (Co-I, JPL)
Intern: David Tran

AIST-18-0085 Annual Technical Review
Friday, January 22, 2021
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Smart On-Demand Analysis of Multi-Temporal and Full 
Resolution SAR ARDs in Multi-Cloud & HPC

PI: Hook Hua / JPL

Co-Is: Gerald Manipon, Sang-Ho Yun, Eric Fielding, Jungkyo
Jung, David Bekaert, Susan Owen, JPL

Key Milestones

• Address pain-points in the complexities of large-scale 
algorithm development and on-demand analysis of 
handling voluminous SAR measurements at full resolution 
from L1 SLCs to L3 time series.

• Increase multi-temporal and full resolution SAR data 
use as well as facilitate algorithm development and 
analysis for higher fidelity surface deformation and urgent 
response use cases.

• Enable algorithm development and deployment at scale 
in multi-cloud & HPC environment

• Mitigate costs of large-scale SAR data analysis

Approach:
• Generation of SAR Analysis Ready Data (ARD) using science 

notebook-based algorithm development environment 
where algorithms are deployed as runtimes

• On-demand analysis runtimes are run across multi-cloud 
(AWS, Google Cloud Platform, and Microsoft Azure) and 
NASA HPC (Pleiades) environments.

• Enabling “smart on-demand” where analysis are ML-
forecast and cost-model-informed to help address the cost 
of large-scale analysis jobs across multi-cloud. E.g. optimizing 
for fast processing vs lower costs requests.

• Demonstration use cases for multi-temporal and full resolution 
SAR ARDs for solid earth and urgent response.

TRLin = 4

04/2019 AIST-18-0085

Initial cloud-native SDS with EONET events 8/20

Multi-Temporal and Full Resolution SAR prototype ARD 
using Sentinel-1A/B

10/20

Integrate algorithm development environment with on-
demand cloud science data processing

1/21

Analysis Processing on Multi-Cloud 10/21

Smart On-Demand Analysis with ML Forecasting and 
Estimation

1/22

Tech demo of time series and Change Detection (DPM 
and/or FPM) analysis from ADE

1/22

Objective:
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Background
• Motivation

• Increasing gap between SDS in cloud capability vs algorithm 
development needs

• SAR data can aid in decision making for floods, earthquakes, and 
other monitoring and response scenarios where rapid information for 
situational awareness is required.

• Increasing international SAR observations
• SAR intrinsically high data volume, compute, and variety of 

algorithm analysis methods.

• Analytic Collaborative Framework (ACF)
• Address disconnect between algorithm development and large-

scale Science Data Systems (SDSes) in the cloud
• Enables more rapid time to market from algorithm development to 

data product generation, production, validation
• Facilitating algorithm development of multi-temporal and full 

resolution SAR analysis
• Prototype an Analysis Ready Data (ARD) for SAR
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Objectives

• Address need for rapid & scalable algorithm development 
environment

• Provides pathways for algorithms to run at large-scale science data 
systems and corresponding efficient handling of voluminous 
datasets.

• Increase accessibility of multi-sensor SAR analysis to users
• Cost-efficient computational capacity for these larger L2 and L3 

analysis is already becoming a bottleneck for effective algorithm 
development and analysis.

• Assess Analysis Ready Data (ARD) approach to SAR to consolidate 
algorithm development

• Demonstrate multi-cloud (AWS, Google Cloud Platform, Azure) and 
NASA HEC approach to on-demand processing

• Leverage Machine Learning-based cost optimization across multi-cloud



6

Objectives / Tech Advance
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DPM1 DPM2/3

Before/After Scenes
Processing: 1 hour
“Downloading”: 1.5 hours

Time Series of Scenes
Processing: 26 days
“Downloading”: 40 hours

Need for Algorithm Development--at Scale

Landslides Triggered by the M6.6 Hokkaido Earthquake (Sept 2018)

Source: Sang-Ho Yun, Jungkyo Jung
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NISAR and SWOT On-demand Needs

This AIST’s technology demonstration is in alignment with NISAR and 
SWOT’s on-demand needs :

1. Type A: “Tunable” On-Demand Processing
• “Bring your own parameters” scenario
• Trigger SDS to run standard product PGEs with custom tunable parameters.

– Example: Re-run L2 GUNW generation but with nearest 3 neighbor pairing strategy (small-
scale and large-scale processing in AWS).

2. Type B: Science Notebook Development Environment (for L1-L3 Cal/Val 
and ADT)
• “Bring your own code” scenario
• A Juypter notebook algorithm development environment that is collocated with SDS

– Example: Running ISCE3 in a Juypter notebook next to L1 SLC data generated by SDS
• Running notebooks at-scale in SDS

– Example: Running global biomass estimate using custom L2 biomass model

3. Type C: Automatic Generation of Custom Products in Keep-Up Mode 
“Subscription” scenario
• Triggering your own code or custom parameters based on new data stream
• Allows custom code for urgent response and forward stream processing.

– Example: Set up a variant of coherence change detection algorithm to run automatically for 
any new L1 SLC acquisitions.
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Key Concepts

Analytics 
Optimized Data 

Services 
(AODS)

Analysis Users

Data 
Analysis

Pre-
processing

Analysis 
Read Data 

(ARD)

Science, 
Algorithm, & Tool 
Developers

Algorithm 
Development

Algorithm 
Catalog

Value-
Added 

Products

Operator

Data 
Processing

Multi-Mission 
DataStandard 

Products

• Algorithm development environment (Jupyter notebooks)
• Collocated in cloud with science data processing
• Algorithm test bed –at scale
• SAR ARDs for easier analysis
• Events catalog to natural events
• Production Rules Triggers to link events to automated analysis via user’s notebooks

Earth 
Observatory 

Natural 
Events 

Production 
Rules
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Integration of NASA EONET Events
• Goal: to provide natural events as 

“triggers” for automating data 
processing with “notebook 
algorithms”

• NASA Earth Observatory Natural 
Event Tracker (EONET)

– Providing a curated source of 
continuously updated natural event 
metadata.

• Curated Events
– Severe Storms: Tropical Cyclones

• National Hurricane Center
• Joint Typhoon Warning Center

– Volcanoes
• Smithsonian/USGS Weekly 

Volcanic Activity Report
– Wildfires

• Alberta Wildfire
• British Columbia Wildfire Service
• California Department of Forestry 

and Fire Protection
• InciWeb
• Manitoba Wildfire Program
• Pacific Disaster Center

– Sea and Lake Ice: icebergs
• National Ice Center

Continuous ingest of 
EONET events into 
analysis environment
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Orchestration of Jupyter Notebooks—at scale

Earth 
Observatory 

Natural 
Events 

Standard 
Products 
& ARDs

Output 
Dataset

Production 
Rules

Repeats

Run at Scale in SDS

Algorithm Development Environment
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On-demand SAR Analysis and Products with 
Sentinel-1A/B

S1-
IW_
SLC

L1 SLCs

ASF 
DAAC

Copernic
us Open 
Access 

Hub 

Coregis
tered
SLC 

stack

L2 co-
registered 

SLC stacks

Sentinel-1A/B
TOPS stack 
processor

S1-
GUNW

ISCE 
topsApp

L2
GUNW 

(displacement)

S1-
GUNW
COSEIS

MIC

L2
GUNW (coseismic

displacement)

DPM L3 Damage Proxy 
Map v2+

DPM

L2 Damage Proxy 
Map v1

FPM

L2 Flood Proxy 
Map v1

PS time 
series

L3 high-resolution 
time seriesStaMPS

Example on-demand tunable parameters:
• Range looks
• Azimuth looks
• Filter strength
• Different DEMs
• Different phase unwrappers
• InSAR network pairings

FPM L3 Flood Proxy 
Map v2+

Amplitude & 
Coherence 

change

General Relationship of Strain and time 
of a series of creep deformation 
(Adapted from Saito, 1965 )

Source: Eric Fielding (JPL)
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SAR Algorithms in Jupyter Notebooks 
Collocated with DAAC in AWS

Notebook running collocated with ASF 
DAAC in AWS us-west-2 (Oregon region)

Discovery/Access of Sentinel-1 
ancillary orbits from ESA

Discovery/Access of Sentinel-1 
L1 IW_SLC from ASF DAAC
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SAR Algorithms in Jupyter Notebooks 
Collocated with DAAC in AWS

Sentinel-1A/B GUNW processing
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Automating Science Notebooks into 
Executable Containers

• Enable running same Jupyter notebooks at scale in SDS
– Enables running large analysis with notebooks across collection of data

• Automated generation of Jupyter notebooks as executable containers
– Building annotated science notebooks to execute with open source tool 

papermill, then Containerize, and deploy to SDS--to run at scale
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Registering Science Notebooks to Run at 
Scale in Science Data Systems (SDS)

Annotated Jupyter Notebooks 
built and deployed as scalable 
processing step in science 
data system

Continuous Integration / 
Continuous Deployment
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On-demand SAR Analysis in SDS at Scale,
from Jupyter Notebooks

• Outer top-level driver 
notebook can be used to do 
map-reduce of mapping n-
stacks to n-distributed jobs

• Original SAR analysis 
notebook deployed  as 
Containerized processing 
step

– Distributed data access
– process a single product 

(e.g. SLC stack, GUNW)

On-demand 
invocation of 

Jupyter
notebook for 

GUNW data 
product 

generation to 
run at scale in 

SDS

(right) On-demand notebook dispatched 
and running in SDS in auto-scaling fleet 

using lower-cost AWS spot market
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ARD-like Coregistered SLC Stack Generation 
Example

• Coregistration of of SLCs 
into geocoded stacks

• ARD-like stack as basis of 
other SAR analysis
– Damage proxy maps
– Flood proxy map
– High resolution 

displacement time series
• Ported to run in Jupyter

notebook and deployable 
into SDS

• Updates to align with 
latest ISCE2 open source 
development

• Benchmarked and 
optimized performance 
runs with multi-core 
parellelization

c5d.9xlarge
(36 vCPU, 72 GiB)

c5.24xlarge
(96 vCPU, 192 GiB)

x1e.2xlarge
(8 vCPU, 244 GiB)

1 year (~30 SLCS, 4 bursts) 7 hrs, 24 mins, 46 
secs 4 hrs, 38 mins, 33 secs

2 years (~60 SLCS, 4 bursts) 13 hrs, 37 mins, 39 
secs 8 hrs, 16 min, 46 secs

1.7 years (54 SLCS) Beirut 2.63 hrs (50% HT)

2.7 years (84 SLCS) Beirut 4.09 hrs (50% HT)

0.7 years (26 SLCs) Beirut 2.76 hrs (50% HT)
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Example Potential of SAR Analysis
at Scale with Notebooks

• Approach for ARD-like Sentinel-1 SLC stack 
generation—at scale

– Decompose each SLC footprint temporal stack 
generation to be handled by its own Jupyter
notebook instance.

– Coarse grain parallelization: scale up parallel SLC 
stack notebooks to run in parallel in SDS in AWS

– Fine graine parallelization: each notebook 
leverages multi-core processing

– Leverage lower costs AWS spot market 
instances for deploying Jupyter notebooks at 
scale

• Each SLC footprint stack processing is 
deployed to run at scale in SDS via 
Containerized Jupyter notebooks

• * Operational costs of these kinds of large 
processing jobs are outside the scope of AIST 
technology demonstration

(left) Sentinel-1A/B ascending track over U.S. : ~650 
parallel stack processor jobs running at scale

Sentinel-1A/B descending track over U.S. : ~426 
parallel stack processor jobs running at scale

• 7-months to process in parallel 36-core machine
vs

• 5 hours in this on-demand ACF

à Enables more rapid algorithm development 
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Addressing SAR Analysis Cloud Costs

• Large compute needs and costs of SDSes in both NISAR and SWOT
• Address vendor lock-in issues
• Early cost analysis shows potential for savings across multi-cloud
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Multi-Cloud Onboarding via NASA Managed 
Cloud Environments (MCE)

• Access to Google Cloud Platform (GCP), Azure, and AWS for 
NASA requires going through an MCE
– FedRAMP
– Cybersecurity compliance
– Consolidated accounting, billing
– EAR and ITAR compliance

• AWS onboarded via JPL’s “MCE”
• AIST SMCE supports AWS.
• MSFC has MCE that has early onboarding of GCP and Azure

– MCE in cloud vendor is behind LaRC firewall
• Identified extraneous data egress and costs via Trusted 

Internet Connection (TIC)
– TIC is an OMB/DHS IT security mandate (OMB MEMO M-08-05)

• Currently assessing alternate MCEs to onboard into GCP and 
Azure
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Impact of Trusted Internet Connection (TIC)
to Distributed Multi-Cloud Analysis

• TIC Mandate requires all data leaving a federal agency (federal IP address space) to first pass 
through a TIC for data monitoring and traffic analysis

• NASA deployed TIC architecture: 
– Goddard Space Flight Center (GSFC)
– Johnson Space Center (JSC)
– Ames Research Center (ARC)
– Marshal Space Flight Center (MSFC)

• Traffic from MCE GCP in Oregon region back to AWS Oregon will “trombone” from Oregon to LaRC
• Same cloud region to cloud region data transfer may also incur “tromboning” of data and 

therefore add full egress costs
• Assessing if can setup compute nodes outside of TIC boundary

TIC @ LaRC
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End-to-End On-demand Analysis with Multi-Cloud & HEC



25

Normalization of Algorithm Deployment 
Across Multi-cloud + HPC

• Seeking container deployment solution that is:
– Supported across multiple cloud vendors and NASA’s HPC environment (Pleiades)
– Compatible with Kubernetes by selecting an appropriate container runtime.

• Considered Docker, Podman, Singularity
• Docker is not supported on Pleiades due to security concerns

– Large user base; native in AWS, Google, Azure. Support in HySDS (used by NISAR, 
SWOT, SMAP in cloud)

– Requires root access to build and run containers.  This violates Pleiades security 
protocols.

• Podman is a remarkably complete drop in replacement for Docker, with 
some shortcomings
– Identical syntax to Docker for common operations
– Can run in rootless mode required for HPC!
– But in rootless mode, has a number of shortcomings.  Most notably, lacks rootless 

support for NFS and parallel filesystems.  This is a major limitation on Pleaides 
where NFS mounts and Lustre are extensively used.

• Singularity is a good compromise:
– Portable containers that can be built and run by nonprivileged users.
– Wide support on HPC systems
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Prototyped Auto-scaling Compute Across AWS 
and NASA Pleiades

• Augmented effort started 
under ESI funding for ARIA in 
HEC

• Auto-scaling of Containerized 
SAR processing across AWS 
and Pleiades

• Developed parity of auto-
scaling across in AWS with 
HECC

• Algorithms deployed to 
run at scale in AWS can 
also run on Pleiades 
(cross-build to 
Singularity)

• Optimizes compute use 
on Pleiades via auto-
scaled single-node jobs
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On-demand Analysis Metrics - Towards 
Machine Learning-based Cost Optimization

• To enable machine learning-based multi-cloud process migration, need to train 
machine learning model of temporal forecasting of analysis workloads in SDS

• Need for collecting detailed analytics of
– Notebook processing steps in SDS
– SDS performance metrics

• Intern (David Tran) worked on SDSWatch tool
– Collects on-demand processing system metrics
– Analytics of data system
– Metrics as input to ML forecasting for cost estimation

Example showing distribution over time of 
running jobs over time 9am-1pm PT sampling

Example showing distribution over time 
of jobs-processed and its states
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Summary of Accomplishments

• Setup SDS in AWS and on-premise (JPL) using open source 
HySDS (same system used by NISAR, SWOT, OCO-2 in 
cloud, SMAP in cloud)

• Setup Jupyter Hub as the algorithm development 
environment (ADE) with demonstration notebooks

• Demonstration SAR algorithms in Jupyter notebooks for
• Sentinel-1 coregistered SLC stacks
• Sentinel-1 GUNW

• Integrated ADE and SDS for running Jupyter notebooks on-
demand and at scale in SDS

• Initial Design for on-demand multi-cloud (AWS, GCP, 
Azure) and HEC Pleiades

• Metrics collection prototype of on-demand for later use in 
ML forecasting for cost optimization
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Infusion Plans with NISAR and SWOT

• Coordination with SDSes from NISAR and SWOT on this AIST contributing to the 
on-demand algorithm development and test bed environment

• For algorithm improvement and data product improvement
• SWOT

• Interests in hydrology algorithm development environment
• NISAR

• Science teams already started exploring science notebooks for algorithms
• Cal/Val and ADT

• Similar to this AIST, algorithm development environment (ADE) and processing 
control and management (PCM) system deployed with NISAR SDS

• Access to S1-GUNW (Sentinel-1A/B variant of NISAR L2 GUNW standard 
product)

• L1 geocoded SLC stacks from Sentinel-1A/B
• Demonstration of “executable notebooks” running at scale via SDS

• NISAR’s similar on-demand system (AIST contribution) will be demoed at the 
next NISAR Science Team meeting in February 2021.

• Interest in ML-Forecasting-based cloud optimization for lowering costs of on-
demand analysis



31

Future Plans

• Invite beta users to use the on-demand Jupyter environment for 
testing algorithm development and running in SDS

• Demonstration of ADE+PCM for additional SAR algorithm 
development at scale

• Coregistered SLC
• Mintpy time series
• ML classification of SAR coregistered SLCs and time series 

for anomaly event detection
• Continue coordination with NISAR and SWOT
• Coordination with OCIO for on-boarding multi-cloud vendors 

(Google Cloud Platform and Azure)
• Updates to Containerized Jupyter deployment onto HEC 

Pleiades for compatibility with multi-cloud
• ML-based forecasting from metrics for multi-cloud cost model
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Publications

Journal / Conference Papers
• IGARSS 2020: abstract accepted for, 'Anomaly 

Detection and On-Demand Algorithm-Based 
Analysis Center Framework For Multi-Temporal 
SAR ARDs‘

Dissertations
• n/a

Other
• n/a
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Acronyms
List of Acronyms

• ADE Algorithm Development Environment
• ADT Algorithm Development Team
• ARD Analysis Ready Data
• AODS Analysis Optimized Data Services
• AWS Amazon Web Services
• DPM Damage Proxy Map
• EONET Earth Observatory Network Event Tracker
• FPM Flood Proxy Map
• GCP Google Cloud Services
• HEC High End Computing
• HPC High Performance Computing
• HySDS Hybrid Cloud Science Data System
• InSAR Interferometric Synthetic Aperture Radar
• PGE Product Generation Executive
• PS time series Persistent Scatter time series
• SAR Synthetic Aperture Radar
• SDS Science Data System
• SLC Single Looks Complex
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Multi-scale Methane Analytic Framework (M2AF)

Riley Duren (PI, University of Arizona/JPL, Caltech)
Natasha Stavros (Exiting PDM, JPL, Caltech)/ 

Judy Lai (Entering PDM, JPL, Caltech)
AIST-18-0044 2020 Review

22 Jan 2021
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Multi-scale Methane Analytic Framework (M2AF)
PI: Riley Duren, University of Arizona and Jet Propulsion Laboratory

• Develop and mature technologies to support the data discovery, 
efficient processing, analysis and use of methane data from 
multiple satellite and airborne observations, surface 
measurements and modeling systems from global to facility 
(point source) scales. 

• Test and demonstrate system using existing diverse methane 
data sets for California with stakeholder participation.

• Requirements, architecture, design complete               6/2020

• System Test 1: local and regional (CA) analytics         12/2020

• Deploy workflow for California state-scale analytics      6/2021

• System Test 2:  N America emissions analytics           12/2021

Co-Is: J. Worden, J. Jacob, D. Cusworth, V. Yadav, A. Thorp, N. 
Stavros, JPL; D. Jacob, Harvard

Leverage and extend nascent component capabilities by:
• Optimizing workflow for GEOS-chem flux inversions (global 2 

deg/N. America 50 km), enabling annual updates and 
improved attribution to key emission sectors

• Extending prototype multi-observation local scale flux 
inversion system (e.g., HRRR 3 km scale) to a more 
generalized capability for priority regions

• Optimizing workflow for facility scale point-source analysis to 
reducing latencies from >6 months to 2 weeks

• Integrating the above into a common, searchable system for 
discovery, fusion and assessment

TRLin = 3 TRLcurrent = 3

01/20
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Background / Objectives

• Improving understanding of methane as a major climate forcing agent, is key to the tracking and 
characterizing the mechanisms of environmental change objective in NASA’s Strategic Plan

• M2AF contributes to the US Carbon Cycle Science Plan objectives:
• (Goal-1) provide clear and timely explanation of past and current variations observed in 

atmospheric CO2 and CH4–and the uncertainties surrounding them
• (Goal-6) address decision maker needs for current and future carbon cycle information and 

provide data and projections that are relevant, credible, and legitimate

• M2AF is responsive to NASA’s Carbon Cycle and Ecosystems focus by reducing uncertainty in:
• (Goal-1) how the global carbon cycle, terrestrial and aquatic ecosystems are changing
• (Goal-3) future changes in global methane cycling as inputs for improved climate change 

projections

• M2AF aims to reduce risk, cost, and time for delivering products from current and future Earth 
Science missions as highlighted by the 2017 Earth Decadal Survey:

• priority for measurements of methane fluxes and trends at global and regional scales with 
quantification of point sources and identification of source types (Earth System Explorer, 
Greenhouse Gas thrust)  

• M2AF is responsive to NASA Applied Sciences Program as it is endorsed by public and private 
sector stakeholders indicating interest and strong potential for infusing the technologies
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backup

• Methane: #2 anthropogenic climate forcing agent and ozone precursor
• Large uncertainty (50% to unknown) across many scales
• ~ 34X and 86X global warming potential of CO2 on 100 and 20 yr horizons

Why methane?



6Fletcher and Schaefer, Science, 2019

California Greenhouse Gas mitigation 
targets

…and currently incompatible with greenhouse 
gas mitigation goals

Methane growth rate: causes are poorly 
understood….
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Tiered Observing & Analysis Strategy

(1) Satellites: Global 
mappers and point source 
mappers

(3) Airborne surveys:  Local-
regional net fluxes & point-
source mappers

(4) On-site and on-road 
surveys

(2) Regional & local 
surface in-situ networks 
(towers)

Specific use-cases drive measurement strategies, spatio-temporal sampling,  
detection limits, and instrument precision requirements

7
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Objectives / Technical Advance

• Improve component workflows to reduce methane data product (Levels 4 and 5) latency and 
integrate common core functions 

• Create new tools for on-demand analytics including fusion across multiple products and 
spatial scales 

• Improved data search, discovery and visualization capabilities of Methane data
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Fall 2016 Fall 2018

Yadav et al., 2019

Cusworth et al., 2020

Tiered observing system in action:
Landfill emissions mitigation
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Leverage existing Methane Source Finder data 
portal for on-demand Analytics
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Q3 Update Overview

● Requirements, architecture and interface definitions
● Workflow refinements

• Global
• Regional
• Local

● Cross-scale workflow integration
● Complete Test 1 – TRL advancement
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Current State: Global Workflow Refinements

• Streamlining bottom-up inventory workflows and updating 
data of:

• 2017 global fuel emissions (expected end of 
summer), other years ongoing

• 2017 and 2018 EPA (expected end of summer), 
other years ongoing

• Wetlands using a combination of process-based 
information from recent studies along with more 
empirical approach involving comparison of our 
WETCHARTS ensemble models to satellite data

• COMPLETED Top-down fluxes using GOSAT in 2017-18
• Next using TROPOMI in 2019+ for top-down fluxes
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Current State: Regional Workflow Refinements

• Regional Workflow Refinements
• Implemented regional STILT inversion frameworks and deployed in Permian Basin 

and Los Angeles, in-progress in Central California
• Working version sector attribution over CONUS; currently scaling up to include 

entire global domain
• Looking at pre- and post-COVID inversions Permian Basin, Los Angeles, Central 

California, among others
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Current State: Local Workflow Refinements

• Local Workflow Refinements
• Demonstrated operational, automated methane data pipeline that 

can accommodate multiple instruments (AVIRIS-NG/GAO)
• Latency reduced from months to days 

• Additional workflow testing using recent airborne campaigns over 
California and Permian to compare post-COVID to pre-COVID 
previously acquired data

• Completed verification and validation of data pipeline for point 
source identification

• Developing interfaces between current ad-hoc multi-sensor on 
premise (AVIRIS SDS) and a cloud (AWS) software deployment 
for seamless multi-sensor integration
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Current State: Cross-Scale Integration

• System Design complete
• Implicit workflow management system on AWS using lambda and batch
• Interfaces with two supercomputers
• SDAP for on-demand analytics

• Development of local workflows in the AWS 
• Development of interfaces for streamlined regional workflow deployment on Pleiades

• Two user portals: 
• Public users- Methane Source Finder
• Authenticated users - Control Management Portal
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Current State: Cross-Scale Integration

• Development of interfaces for streamlined regional workflow 
deployment on Pleiades:

1. Developer MSF – testing added functionalities without disrupting operations
2. Control Management Portal (CMP) – for “blessed” collaborators/science team use and 

looks like MSF with additional tabs at top: 1) submitting a Pleiades job and 2) QA/QC.
3. CARB MSF – general public MSF updated with on-the-fly analytics
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Completed Test 1 and 2

• Test 1: Plumbing Automated Workflows
– Regional

• Link Control Management Portal to submit job to Pleiades
• Run regional forward model STILT on Pleiades
• AWS inversion run

– Local - Mostly automated plume list generation in AWS
• Test 2: Local Workflows Tested and SDAP Deployed

– Wind ingest to SDAP data store; includes readers for file and projection 
conversion

– Run end-to-end local plume workflow including batch CNN through 
extended plume list and source aggregator

– Reader for extended plume list from new domain to display in MSF
– Tested developments
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Summary

● After COVID-related impacts and staffing changes, 
we are now fully staffed

● Good progress on Global, Regional, and Local 
workflows as well as cross-scale integration

● Test 1 and 2 demonstrated migration of workflows 
to serverless AWS and on-demand super computer 
job submission

● Analysis underway for summer airborne campaigns 
and COVID impact assessment
○ Framework is supporting other R&A program 

funded tasks
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Plan Forward

June - Test 3: Regional Analytics through SDAP displayed in 
MSF and QA/QC Portal

AIST.T1.01 Sector Emissions Attribution 4/15/2020 2/28/2021
AIST.T6.11 Ingest regional  datasets to SDAP for testing 1/15/2021 5/30/2021
AIST.T6.13 CMP job status update implementation 1/15/2021 5/30/2021
AIST.T6.14 JPL CMP integration with JPL Public MSF via authentication 1/15/2021 5/30/2021
AIST.T6.12 QA/QC Portal integration to CPM 1/15/2021 12/31/2021
AIST.T5.04 Add support (imaging, query & analysis) for regional datasets 1/15/2021 5/30/2021
AIST.T1.02 Streamline annual bottom-up inventory generation 4/15/2020 5/30/2021

AIST.T6.11
Deploy to AWS and test (version 3): Deploy workflow for state-
scale analytics 6/1/2021 6/30/2021

Task Task Name START 
DATE END DATE
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Publications/Conferences/Meetings

Date Category What Publisher Who

Feb 2020 Paper

Fast and accurate retrieval of methane 
concentrations from imaging spectrometer data 
using sparsity prior

IEEE 
Transactions on 
Geoscience 
and Remote 
Sensing

Foote, Dennison, Thorpe, et 
al.

Mar 2020 Paper

Synthesis of methane observations across scales: 
Strategies for deploying a multi-tiered observing 
network GRL

Cusworth, Duren, Thorpe, 
Yadav

Mar 2020 Paper

Using remote sensing to detect, validate, and 
quantify methane emissions from California solid 
waste operations ERL Cusworth, Duren, Thorpe

Oct 2020 Paper

Attribution of the accelerating increase in atmospheric 
methane during 2010–2018 by inverse analysis of 
GOSAT observations ACP Daniel Jacob

Date Category What Presentation Location Who

June 3, 2020 Conference

16th international workshop on 
greenhouse gas measurements from 

space
Darmstadt, 
Germany Cusworth/Thorpe

June 23, 2020 Meeting
NASA’s 17th annual Earth Science 

Technology Forum
Multi-Scale Methane Analytic 

Framework Virtual Stavros

May 4, 2020 Meeting KISS COVID-19 Virtual Study Virtual Cusworth

Dec 2020 Conference AGU Fall Meeting 15 posters/presentations Virtual All

https://doi.org/10.5194/acp-2020-964
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Acronyms
List of Acronyms

AVIRIS-ng Airborne Visible Infrared Imaging Spectrometer Next Generation
CH4 Methane
DAAC Data Active Archive Center
GEOS Geostationary Operational Environment Satellite
GOSAT Greenhouse Gases Observing Satellite
HEC High End Computing
HRRR-
STILT

High-Resolution Rapid Refresh - Stochastic Time-Inverted 
Lagrangian Transport

IDS NASA Inter-Disciplinary Science Program
M2AF Multi-scale Methane Analytic Framework
MERRA Modern-Era Retrospective analysis for Research and Applications
MSF Methane Source Finder
NARR North American Regional Reanalysis
SDS Science Data System
TROPOMI TROPOspheric Monitoring Instrument
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Mining Chained Modules in
Analytic Center Framework

Jia Zhang (PI, Southern Methodist University)
Seungwon Lee (Co-I, JPL)

Ramakrishna Nemani (Co-I, Ames)
Alex Goodman (Co-I, JPL)
Benyang Tang (Co-I, JPL)

AIST-18-0059 Annual Review
01/22/2021
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Team Members

Jia Zhang (PI, Professor,

Southern Methodist University)
Seungwo Lee (Co-I, JPL) Alex Goodman (Co-I, JPL)

Benyang Tang (Co-I, JPL)Ramakrishna Nemani

(Co-I, Ames)

Kyle Pearson (Co-I, JPL)



4

Presentation Contents

• Background and Objectives 

• Technical and Science Advancements

• Summary of Accomplishments and Future Plans

• Publications - List of Acronyms



5

Background and Objectives

• NASA is building Analytic Center Framework (ACF) as a 
collaboration platform for community users to harmonize existing 
tools, data and computing environments. 

• In the next 5-10 years, it can be anticipated many data analytics tools 
and models will be published onto NASA ACF as reusable modules.

• A large number of software modules will make it difficult for Earth 
scientists to choose from.

• How to help Earth scientists find suitable software modules at ACF from 
a sea of available candidates and use them productively?

• This AIST project targets for the next 5-10-year timeframe, aiming to 
develop a unique and important building block for ACF:

a workflow tool capable of recommending 
chained software snippets when a
geoscientist designs a data analytics 
workflow



6

Service Oriented Science

[Foster-Science’05]

Application Programming Interface (API)

• Scientists expose data and 
computational algorithms as 
remotely accessible web services

remote
accessibility

Service reuse can help scientists
focus on science in data analytics 
procedure (workflow)

Intelligent Service Oriented Workflow Recommendation

ACF
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Unit of Work

Mine service usage history (workflow provenance) and identify reusable, 
and maybe unprecedented, service chain snippets (UoW) to facilitate 
automatic data analytics workflow development.
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Task 1: Develop CMDA workflows using Jupyter Notebook

• We created a Jupyter Notebook using CMDA webservices and Python function calls. 

• The Jupyter Notebook calls a CMDA service as a HTTP GET request.

• The Jupyter Notebook provides an interactive input configuration for the CMDA service call. 

• The Jupyter Notebook provides an interactive output plotting for the CMDA output data.  

• The Jupyter Notebook prepares the CMDA service output data as Xarray Dataset object.

• Further analysis steps are implemented in Python function calls. 

• Each Jupyter Notebook provides a scientific workflow representing one or more CMDA 

service calls and other Python function calls. 
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CMDA Service Web Interface CMDA Service Jupyter Notebook Interface

Task 1: Develop CMDA workflows using Jupyter Notebook
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Task 1: Develop CMDA workflows using Jupyter Notebook
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Example of One-Step CMDA Workflow in Jupyter Notebook

1. Interactive 
input configuration

2. REST API call to 
CMDA service

3. Output data 
download and 

processing
4. Interactive 

output visualization

Task 1: Develop CMDA workflows using Jupyter Notebook
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1. Calculate the 
time-averaged 

radiation fluxes.  

2. Calculate the net 
radiative flux.

3. Calculate the 
space-averaged net 

radiative flux.

4. Interactive 
output visualization

Example 1 of Multi-Step Scientific Workflow
Question: Calculate the global net radiative flux imbalance at Top of Atmosphere (TOA).

from cmda import ServiceViewer
import numpy as np
import panel as pn
pn.extension()
app = ServiceViewer()
rsdt = app.open_url('http://api.jpl-cmda.org/svc/mapView? model1=NASA_CERES&var1=rsdt& …) 
rsut = app.open_url('http://api.jpl-cmda.org/svc/mapView? model1=NASA_CERES&var1=rsdt& …)
rlut = app.open_url('http://api.jpl-cmda.org/svc/mapView? model1=NASA_CERES&var1=rlut& …)

rad_net = rsdt.rsdt - rsut.rsut - rlut.rlut

rad_net_space_averaged = rad_net.weighted(np.cos(np.deg2rad(rad_net.latitude))).mean(('longitude', 'latitude'))

xarray.DataArray
array(8.01082829)
Coordinates: (0)
Attributes: (0)

xarray.DataArray
latitude: 180
longitude: 360
array([[ -39.3181 , -39.3181 , -39.3181 , ..., -39.3181 , -39.3181 , -39.3181 ], ….

import cartopy.crs as ccrs
rad_net.hvplot.quadmesh('longitude', 'latitude',

title='CERES Net Radiative Flux (W/m^2) at TOA (2001-2011)', geo=True, 
projection=ccrs.PlateCarree(),
crs=ccrs.PlateCarree(), coastline=True,
width=800, rasterize=True)

Task 1: Develop CMDA workflows using Jupyter Notebook
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1. Calculate the time 
series of GRACE 

water storage in 3 
regions.  

2. Plot the GRACE 
time series to see 
general patterns.

3. Calculate the power 
spectrum of the 

GRACE time series. 

4. Calculate the time 
series of AIRS 

temperature and 
TRIMM precipitation in 

South Central Asia. 

Example 2 of Multi-Step Scientific Workflow
Question: Investigate the seasonality of GRACE land water storage in comparison with AIR surface air 
temperature and TRIMM precipitation. 

from cmda import ServiceViewer
import numpy as np
import panel as pn
pn.extension()
app = ServiceViewer()
grace_global = app.open_url('http://api.jpl-cmda.org/svc/timeSeries? model1=NASA_GRACEvlatS1=-90&vlatE1=90&vlonS1=0&vlonE1=360)
grace_sc_asia = app.open_url('http://api.jpl-cmda.org/svc/timeSeries? model1=NASA_GRACE&vlatS1=23&vlatE1=35&vlonS1=66&vlonE1=96)
grace_sw_us = app.open_url('http://api.jpl-cmda.org/svc/timeSeries? model1=NASA_GRACE&vlatS1=31&vlatE1=42&vlonS1=236&vlonE1=258)
grace = xr.concat([grace_global, grace_sc_asia, grace_sw_us], dim='Region').assign_coords(Region=['Global', 'SC Asia', 'SW US']).squeeze()

grace.hvplot(x='time', y='variable', by='Region', title='GRACE Water Storage', legend='bottom')

f, p = signal.periodogram(grace.variable, 1/12, detrend='linear’) 
f[f == 0] = np.nan
grace['power'] = ('Region', 'frequency’), 
p grace = grace.assign_coords(frequency=(1/(12*f))) 
grace.power.hvplot(by='Region', title='GRACE Water Storage Power 
Spectra', legend='bottom')

ds_sca = app.open_url('http://api.jpl-
cmda.org/svc/timeSeries?purpose=&timeS=200209&timeE=201506&
model1=NASA_AIRS&var1=tas&pres1=-
999999&vlatS1=23&vlatE1=35&vlonS1=66&vlonE1=96&model2=NA
SA_GRACE&var2=zl&pres2=-
999999&vlatS2=23&vlatE2=35&vlonS2=66&vlonE2=96&model3=NA
SA_TRMM&var3=pr&pres3=-
999999&vlatS3=23&vlatE3=35&vlonS3=66&vlonE3=96&nVar=3')

Task 1: Develop CMDA workflows using Jupyter Notebook



15

5. Plot the GRACE, 
AIRS, TRIMM time 

series to see 
general patterns.

6. Calculate the 
power spectrum of 

the time series. 

7. Calculate the 
interannual 

variability of the 
three parameters.

8. Calculate the time-
lagged  correlation 
between GRACE 
and TRMM/AIRS. 

Example 2 of Multi-Step Scientific Workflow
Question: Investigate the seasonality of GRACE land water storage in comparison with AIR surface air 
temperature and TRIMM precipitation. 

ds_sca.hvplot(x='time', y='variable', by='Dataset', legend='bottom')

f, p = signal.periodogram(ds_sca.variable, 1/12, detrend='linear')
f[f == 0] = np.nan
ds_sca['power'] = ('Dataset', 'frequency'), p 
ds_sca = ds_sca.assign_coords(frequency=(1/(12*f)))
ds_sca.power.hvplot(by='Dataset', title='GRACE, AIRS, and TRMM 
Power Spectra', legend='bottom')

ds_sca.rolling(time=12).mean().hvplot(x='time', y='variable', 
by='Dataset', legend='bottom')

Task 1: Develop CMDA workflows using Jupyter Notebook

lags = np.arange(-12,13)
corr9 = np.zeros((len(lags),))
count = -1
for lag in lags:
count += 1
if lag>0: grace1 = GRACE_ts[lag:]; airs1 = AIRS_ts[:-lag]
elif lag==0: grace1 = GRACE_ts;  airs1 = AIRS_ts
else: lag2 = -lag; airs1 = AIRS_ts[lag2:]; grace1 = GRACE_ts[:-lag2]
corr9[count] = np.corrcoef(grace1,airs1)[0,1]
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1. Calculate the EOF of 
ECMWF zonal wind 

and sea surface 
temperature 
anomalies.  

2. Plot the first EOF 
spatial patterns.

3. Plot the first EOF 
time series. 

4. Calculate the time-
lagged correlation of 
SST to zonal wind.

Example 3 of Multi-Step Scientific Workflow
Question: EOF and time-correlation analysis of the tropical zonal wind and sea surface temperature

from cmda import ServiceViewer
import numpy as np
import panel as pn
pn.extension()
app = ServiceViewer()
east_wind = app.open_url('http://api.jpl-cmda.org/svc/EOF?model1=ECMWF_interim&var1=uas&pres1=-999999&purpose=&lonS=-
180&lonE=180&latS=-25&latE=25&timeS=197901&timeE=201312&anomaly=1') sst = app.open_url('http://api.jpl-
cmda.org/svc/EOF?model1=ECMWF_interim&var1=tos&pres1=-999999&purpose=&lonS=-180&lonE=180&latS=-
25&latE=25&timeS=197901&timeE=201312&anomaly=1')

lags = np.arange(-12,13) 
corr9 = np.zeros((len(lags),)) 
count = -1 
ww = east_wind.tser[0].values 
ss = sst.tser[0].values 
for lag in lags: 
count += 1 
if lag>0: sst1 = ss[lag:] wind1 = ww[:-lag] 
elif lag==0: sst1 = ss wind1 = ww
else: lag2 = -lag wind1 = ww[lag2:] sst1 = ss[:-lag2] 

corr9[count] = np.corrcoef(sst1,wind1)[0,1]

Task 1: Develop CMDA workflows using Jupyter Notebook

EOF time series of SST EOF time series of Zonal Wind
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Task 2: Algorithms to Analyze CMDA Notebooks 

• De facto choice for data science
• Commonly comprises rich descriptions and 

explanations, which are helpful as context for 
machines to learn toward explainability

• Used for enrich service usage scenarios

topic1.ipynb
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Model to Analyze CMDA Notebooks 

Cells: cell_type, metadata, source, execution_count
Describe each cell’s information

Metadata: kernelspec, language_info
Describe source file information
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Unit of Work & Intent Analysis

code
markdown
parameters

Earth science-focused 
notebooks at Jupyter
Notebook online 
repository
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Task 3. Network Analysis Algorithm
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Task 3.1 Genetic Algorithm-based Solution 
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q On top of 
q Open NASA Earth Exchange 

(OpenNEX) platform
q CMAC App Store project

q Recommender system
q Browse all notebooks
q Search notebook
q Manage notebook execution
logs

q Register new notebook
q Publish interesting notebook
usages

q Used at 2020 JPL Summer 
School

Task 4: Workflow Recommendation System
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Demo on Workflow Tool

https://youtu.be/vt6uBc4zL4s?t=107
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Task 5: User Test (2020 Virtual NASA Summer School)

• CMDA and OpenNEX App Store were used to support the virtual NASA Summer 
School on Satellite Observations and Climate Models in 2020. 

• The NASA Summer School brings together the next generation of climate scientists to 
engage with premier climate scientists. 

• The summer school students perform a group research project using CMDA analysis 
tools and OpenNEX collaboration supporting tools. 

• We provided both the CMDA service web interface (original) and the CMDA service 
Jupyter Notebook interface (new). 

• The survey after the virtual summer shows that about 50% of the students used the 
web interface and the other 50% of students used the Jupyter Notebook interface. 

Web Interface: http://api.jpl-cmda.org
Jupyter Notebook Interface: http://hub.jpl-cmda.org

Group Research Topics

https://opennex.org

http://api.jpl-cmda.org/
https://opennex.org/
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https://opennex.org

https://opennex.org/
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Summary of Accomplishments and Future Plans

• Task 1: CMDA Jupyter notebook examples                                  04/20
• Task 2: Algorithms to analyze CMDA notebooks 06/20
• Task 3: Network analysis algorithms 08/20
• Task 4: Workflow recommendation system 09/20
• Task 5: User test; CMDA notebooks 10/20

• Task 6: Notebook templates; refined notebook analysis 01/21
• Task 7: Notebook templates; Enhanced workflow tool 07/21
• Task 8: JPL Summer School 09/21
• Task 9: User testing and documentation                                     10/21
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“Mining Units of Work in Scientific Workflow Provenance”
under revision at IEEE Transactions on Services Computing

Publications

“Unit of Work Supporting Generative Scientific Workflow 
Recommendation”
(J. Zhang, M. Pourreza, S. Lee, R. Nemani, and T.J. Lee) 
International Conference on Service Oriented Computing (ICSOC)
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Acronyms

• ACF Analytic Center Framework
• API REST web service, remotely accessible software component
• Workflow Multi-step data analytics procedure, also known as mashup
• REST REpresentational State Transfer
• UoW Unit of Work
• CMDA Climate Model Diagnostic Analyzer
• NEX NASA Earth eXchange
• OpenNEX Open NASA Earth eXchange
• Notebook Juypter notebook
• Provenance Data analytics history, data analytics procedure execution logs
• SOC Service Oriented Computing
• ENSO El Nino-Southern Oscillation
• SST Sea-Surface Temperatures
• EOF Empirical Orthogonal Function 
• NLP Natural Language Processing
• NRC National Research Council 
• IPCC Intergovernmental Panel on Climate Change 
• AR6 Assessment Report 
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