
syzbot
and the tale of thousand kernel bugs

Linux Security Summit 2018
Dmitry Vyukov, dvyukov@

Agenda
● Kernel bug disaster

● What we are doing

● Where we need help

"Civilization runs on Linux" [1]
● Android (2e9 users)
● Cloud, servers
● Desktops, notebooks, chromebooks
● Cars
● Air/Car Traffic Control, Nuclear Submarines, Power Plants
● Large Hadron Collider, International Space Station
● ...
● Our coffee machines!

[1] from SLTS project which aims at maintaining kernel releases for 20+ years for industrial use

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.makeuseof.com/tag/linux-taking-over-world/
https://training.linuxfoundation.org/why-our-linux-training/training-reviews/linux-foundation-training-prepares-the-international-space-station-for-linux-migration
https://lwn.net/Articles/749530/

Security is Critical
● Protects privacy of 2 billion people
● Protects corp, government information
● Protects safety-critical systems
● The first line of defence for:

○ all incoming network packets
○ untrusted apps
○ VM guests
○ USB/NFC/Bluetooth (inserting a USB clicker into your notebook)

● Cars/phones/plants: stability and safety are also critical

Linux kernel is one of the most security-critical components in the world today.

Tip of The Iceberg
Bugs with logos and bold headlines

Kernel has lots of bugs
453 CVEs in 2017 including:

● 169 code execution
● 125 gain privileges/information

But lots are unaccounted!

4100 "official" bug fixes in 2017 (again lots are unaccounted).

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://go.pardot.com/l/6342/2017-10-24/3xr3f2/6342/188781/Publication_LinuxKernelReport_2017.pdf

syzbot: continuous kernel fuzzing
For 12 months ~200 bugs/month:

● 1000 bugs in upstream kernel
● 1200 bugs in Android/ChromeOS/internal kernels

+1000 bugs reported manually before syzbot (~40 bugs/mo for 2 years)

= 3200 bugs

https://syzkaller.appspot.com/#upstream
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md

USB Stack State
Barely scratching the surface yielded
80+ externally triggerable bugs
(18 CVEs).

Did not even get past handshake (WIP)

USB is not special. Flow of bugs is
representative for any subsystem
(kvm, tcp, udp, rdma, sound, 9p, bpf, you name it)

8

https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
http://www.openwall.com/lists/oss-security/2017/11/06/8

9

https://syzkaller.appspot.com#upstream
https://syzkaller.appspot.com#upstream

Bug split
Use-after-free 18.5%
Heap-out-of-bounds 5.2%
Stack-out-of-bound 2.4%
Double-free 0.8%
Wild-access 4.8%
Uninit-memory 4.0%
GPF 20.2%
BUG/panic/div0 10.3%
deadlock/hang/stall 12.5%
WARNING 21.1%

Modest estimation: 500 security bugs (not counting DoS; very few have CVEs).
10

Exploit != use-after-free
● "unresponsive" machine -> full guest->host escape

○ page ref leak
○ CVE-2017-2596 / kvm: fix page struct leak in handle_vmon

● WARNING -> inter-VM/process info leaks
○ failure to restore registers
○ WARNING in __switch_to / WARNING in fpu__copy

● stall -> remote network DoS
○ lockup in udp[v6]_recvmsg
○ anything remotely triggerable is a concern

11

https://nvd.nist.gov/vuln/detail/CVE-2017-2596
https://www.spinics.net/lists/kernel/msg2428945.html
https://syzkaller.appspot.com/bug?id=e2e9d44579c04a51b263ce34113b2d6aae10b4c0
https://syzkaller.appspot.com/bug?id=770440bff87dabb220f8c9d8d95fd331e3a62189
https://patchwork.ozlabs.org/patch/804184/

"Stable" releases

Every "looks good and stable" release we produce contains >20'000 bugs.
No, not getting better over time.
No, this is not normal.

+ not backported fixes (700+)
+ not fixed upstream bugs (200+)
+ not found bugs (???)
+ not detectable yet bugs (???)
 (info leaks, races)

https://twitter.com/grsecurity/status/1022599945604526087
https://syzkaller.appspot.com#upstream
https://github.com/google/kmsan/wiki/KMSAN-Trophies
https://github.com/google/ktsan/wiki/Found-Bugs

Distros State
End distros is what matters security-wise in the end.

CVE-2017-18344 discussion on linux-distros@

Stable process is not fully working, CVE process is not working.

Why?

It isn't always possible for distributions
to track the linux-stable tree or fully
monitor the commits that flow into it.

http://seclists.org/oss-sec/2018/q3/76
http://seclists.org/oss-sec/2018/q3/76

"Stable" releases

Bug Forking upstream

Distro 1

Distro 2

Device 1

Device 2

Clouds

Car

Device 3
PlantsDistro 3

Supercomputers

Each bug fork is effectively a new bug for most practical purposes.
Hundreds of thousands of bugs for Google. Millions of bugs industry-wide.

:(

Goal

Reduce bugs/release 100x: 20'000 -> 200

Existing Defences Are Not Enough
● Attack surface reduction

○ large surface is still open
○ most subsystems are still relevant (USB for clients, namespaces for servers)

● Mitigations [1]
○ can't mitigate hundreds of arbitrary memory corruptions (assume there are few bugs)
○ don't mitigate lots of bug types (races, uninit memory, write what/where)
○ some are not backported/enabled (performance!)

[1] KASLR, REFCOUNT_FULL, STACKPROTECTOR, VMAP_STACK, SLAB_FREELIST_RANDOM, STRUCTLEAK, RANDSTRUCT, etc

18

https://www.kernel.org/doc/html/v4.16/security/self-protection.html

Existing Defences Are Not Enough (2)
● Selinux/namespaces/fs-verity

○ logical protection: directly assume that kernel is not buggy ([1])
○ namespaces open even larger attack surface ([1], [2], [3], [4])

● Hiding buggy code "under root"
○ SELinux/AppArmor/IMA/module signing restrict root
○ root is not trusted on some systems (Android)
○ user still needs to do the thing, so they just issue sudo left and right

19

https://www.spinics.net/lists/netdev/msg512206.html
https://groups.google.com/forum/#!msg/syzkaller-bugs/-qYrUYvZx-Y/G9GHia2IBwAJ
https://groups.google.com/forum/#!msg/syzkaller-bugs/al1foGwhIKU/ckZCM62IBwAJ
https://groups.google.com/forum/#!msg/syzkaller-bugs/-Jyti8zBWjU/Qp76d9t0BAAJ
https://groups.google.com/forum/#!msg/syzkaller-bugs/fFUHltJ_P6w/8m1X9gQOAwAJ

What we are doing

What we have
● bug detection:

○ KASAN
○ KMSAN
○ KTSAN

● bug discovery:
○ syzkaller

● systematic testing:
○ syzbot

21

https://www.kernel.org/doc/html/v4.16/dev-tools/kasan.html
https://github.com/google/kmsan
https://github.com/google/ktsan/wiki
https://github.com/google/syzkaller
http://syzkaller.appspot.com/

KASAN (KernelAddressSANitizer)
● security "workhorse"
● Detects:

○ use-after-free
○ out-of-bounds on heap/stack/globals

● detects bugs at the point of occurrence
● outputs informative reports
● easy to use (CONFIG_KASAN=y)
● based on compiler instrumentation (gcc4.9+ or clang)
● fast: ~~2x slowdown, ~~2x memory overhead
● upstream in 4.3 kernel

22

https://demonteam.org/2018/07/20/modern-linux-kernel-0-1-day-unkind-exploitations-with-review/

KMSAN (KernelMemorySanitizer)
Detects uses of uninitialized values.

In the context of security:
● information leaks (local and remote) [easy to exploit: 1, 2]
● control-flow subversion [1]
● data attacks (uninit uid) [1, 2]

Not upstreamed yet (on github), work-in-progress.

Already found 50+ bugs.

23

http://openwall.com/lists/oss-security/2017/06/12/2
https://twitter.com/grsecurity/status/914079864478666753
https://github.com/google/kmsan/blob/master/kmsan-first-bug-writeup.txt
https://github.com/torvalds/linux/commit/c64c0b3cac4c5b8cb093727d2c19743ea3965c0b
https://github.com/torvalds/linux/commit/18bcf2907df935981266532e1e0d052aff2e6fae
https://github.com/google/kmsan/wiki/KMSAN-Trophies

KTSAN (KernelThreadSanitizer)
Detects data races.

Kernel data races represent security threat:

● TOCTOU (time-of-check-time-of-use) ([1])
● uninit/wrong credentials ([1])
● racy use-after-frees/double-frees ([1], [2], [3], [4])

Prototype on github, frozen due to lack of resources, found 20+ bugs.

Main obstacle: kernel is full of "benign" races (undefined behavior in C).

24

https://groups.google.com/forum/#!msg/syzkaller-bugs/MaGtddgU-Yo/RBWZoBvmAgAJ
https://security-tracker.debian.org/tracker/CVE-2015-7613
https://groups.google.com/forum/#!msg/syzkaller-bugs/IcUulw_pqYg/76YnB6A6AAAJ
https://groups.google.com/forum/#!msg/syzkaller-bugs/4fo6aRVW9eg/-18-1kBTBAAJ
https://b.corp.google.com/issues/74346575
https://b.corp.google.com/issues/64733988
https://github.com/google/ktsan/wiki/Found-Bugs

syzkaller
System call fuzzer:
● grammar-based
● coverage-guided
● unsupervised
● multi-OS/arch/machine

As compared to other kernel fuzzers:
● finds deeper bugs
● provides reproducers
● does regression testing
● scalable to large number of bugs

25

Syscall Descriptions

Declarative description of system calls:

open(file filename, flags flags[open_flags],
 mode flags[open_mode]) fd

read(fd fd, buf buffer[out], size len[buf])
close(fd fd)

Tests only what's described.

26

https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md

Programs

Descriptions allow to generate and
mutate "programs" in the following form:

mmap(&(0x7f0000000000), (0x1000), 0x3, 0x32, -1, 0)
r0 = open(&(0x7f0000000000)="./file0", 0x3, 0x9)
read(r0, &(0x7f0000000000), 42)
close(r0)

syzbot: fuzzing automation
● continuous kernel/syzkaller build/update
● test machine management (qemu, GCE VMs, Android phones, ODROID, ...)
● bug deduplication and localization
● bug reporting/status tracking

syzkaller.appspot.com

28

https://syzkaller.appspot.com

We need YOU!

29

More Coverage
More syscall descriptions* -> more bugs. Coverage is not complete.

Poor environment setup: network devices, SELinux policies, etc.

CVE-2017-18017 (remote code exec): didn't test, didn't know netfilter exists
Android use-after-free (severity: high): don't test NSFS

Adding syzkaller descriptions is not hard.

* automatic interface extraction is not feasible (netlink, netfilter, images, string parsing, etc)

30

https://nvd.nist.gov/vuln/detail/CVE-2017-18017
https://source.codeaurora.org/quic/la/kernel/msm-4.9/commit/?id=34742aaf7cb16c95edba4a7afed6d2c4fa7e434b
https://github.com/google/syzkaller/blob/master/sys/linux/ashmem.txt

External Inputs
Injecting external inputs finds the most critical bugs. Need to test:

● Network packets (currently basic coverage via tun)
● USB
● NFC
● CAN
● Bluetooth
● Guest->host (emulation, vring, vsocks, hypercalls)
● Keyboard, mouse, touchscreen, mic, camera
● ...

Some may need better stubbing support, a-la tun.
31

Lots of bugs are unfixed
Hundreds of bugs are unfixed:

● Some are bad vulnerabilities
● Others affect stability or are DoS
● Rest harm syzkaller’s ability to uncover new vulnerabilities

Need help:

● Fixing bugs
● Triaging, routing, duping, closing fixed/obsolete

32

https://syzkaller.appspot.com#upstream

KASAN: manual checks
KASAN checks C accesses wrt kmalloc() size.

Does not check:

● asm accesses
● hardware accesses
● use-after-free with custom caches
● out-of-bounds with amortized growth

But can be checked with manual memory/access annotations:

kasan_check_write(p, size);

KASAN: manual checks: SKB
SKB: core networking data structure, holds packet data.

Uses proactive/amortized growth:

if (pskb_may_pull(skb, 2) {
// can access skb->data[0-1], but not [2]
if (pskb_may_pull(skb, 3) {

// now can access bytes [0-2], but previous skb->data is invalidated
}

}

Very easy to get wrong, bug nest: dozens of remotely-triggerable bugs.

Can make sense to do strict/exact growth under KASAN.

https://bugzilla.kernel.org/show_bug.cgi?id=199055

KASAN: manual checks
Do not want KASAN annotations sprinkled everywhere.

But some "biggest bang for the buck" can be worthy:

● dma/i2c/spi/virtio?
● USB: something in URB?
● something in filesystems?
● ???

Other Tools
● KMEMLEAK: memory leak detector

○ in server context leaks are one of the worst bugs, remote leaks are remote DoS
○ has false positives -> no systematic testing -> bugs are not found/fixed

● KUBSAN: Undefined Behavior SANitizer
○ finds some intra-object overflows
○ invalid bools/enums (control flow hijacking)
○ overflows/invalid shifts (out-of-bound accesses)
○ needs cleanup, fixes face opposition

● KTSAN: data race detector
○ will find thousands of hard-to-localize bugs with actionable reports, but...
○ need to say NO to "benign data races" (undefined behavior in C)
○ all concurrent accesses need to be marked

Kernel Testing
Most bugs can be prevented with proper testing. We do need better testing:
● 20'000 bugs/release
● New bugs are introduced at high rate
● New bugs are backported to stable (1, 2, 3, 4, 5, 6, 7)
● Bugs are re-introduced (1, 2)
● Distros don't keep up

Development is slowed down:
● high reliance on manual labor
● delayed releases
● broken builds (bisection :()
● long fix latency (testing :()
● late feedback, reverts

https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/98d69fb3b175855cdd4c37d41a4b477a0860b1a0
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/b5145685a8bbe0756e5ab8440b5012d74c0daf5b
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/1fab25ce8db367f0d6a22baba96bbe49e68ba5c7
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/474928b8f0a6ba49872ef2769610b80638820aad
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/c7a2c159d6beff177aa9df5037b30a5a9ec08d1b
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/2ef44a3c1a32656dbae30cd16ec5c22a996a4ca9
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable/+/38accd6e50791d1136c0196f187523ba0eed6294
http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-3301
http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2007-4573
https://lkml.org/lkml/2018/7/31/787

Testing MUST be part of dev process
● Tests need to be easier to write, discover and run

○ userspace tests
○ in-kernel tests with hardware mocking (kunit)

● Tests for new functionalities, regression tests
● Automated continuous testing
● Integration into dev process, presubmit testing
● Use of all available tools (trivial bugs [1], [2], [3])

https://blog.linuxplumbersconf.org/2017/ocw/sessions/4830.html
https://groups.google.com/forum/#!msg/syzkaller-bugs/Z4a-3bfklR8/o9WS0EUcAwAJ
https://lkml.org/lkml/2018/4/27/765
https://patchwork.ozlabs.org/patch/904003/

Thank you!

Q&A

Dmitry Vyukov, dvyukov@

Backup

syzkaller coverage-guided algorithm
start with empty corpus of programs
while (true) {

choose a random program from corpus and mutate it (or generate)
execute and collect code coverage
if (gives new coverage)

add the program to corpus
}

Advantages:
● turns exponential problem into linear (more or less)
● inputs are reproducers
● corpus is perfect for regression testing

KMSAN: uses of uninit values
int x;
put_user(&x, user_ptr); // reported

int y;
int x = y; // not reported
put_user(&x, user_ptr); // reported

(just assigning something to a variable does not make its value initialized)

int x = 0, y, z = 0;
if (foo) x = y + z; // not reported
...
if (!foo) put_user(&x, user_ptr); // not reported

(using uninit value in computations is not a use, merely propagation)

HWASAN (HardWareassistedAddressSANitizer)
~KASAN, but with substantially smaller memory overhead (~10%).

Intended to be used on real devices (testing, canarying, maybe end users/prod).

Work-in-progress (patches mailed), only arm64 for now (requires TBI).

Will shine more with proper hardware implementation.

43

https://groups.google.com/d/msg/kasan-dev/r_jhnHTUkAc/2FpgLrpSDQAJ

Hardware-assisted memory safety
1. We can't fix all bugs.

2. Some installations don't get timely updates (or at all).

Need better mitigations! SPARC ADI (or similar):

● Detect & mitigate most of use-after-free and out-of-bounds
● 1-5% CPU, 4-5% RAM overhead
● can actually make things faster:

○ don't need stack cookies, slab randomization, fortification, usercopy hardening, CFI, etc

44

https://swisdev.oracle.com/_files/What-Is-ADI.html

KASAN Report (CVE-2013-7446)
BUG: KASan: use-after-free in remove_wait_queue
Write of size 8 by task syzkaller_execu/10568
Call Trace:
 list_del include/linux/list.h:107
 __remove_wait_queue include/linux/wait.h:145
 remove_wait_queue+0xfb/0x120 kernel/sched/wait.c:50
 ...
 SYSC_exit_group kernel/exit.c:885
Allocated:
 kmem_cache_alloc+0x10d/0x140 mm/slub.c:2517
 sk_prot_alloc+0x69/0x340 net/core/sock.c:1329
 sk_alloc+0x33/0x280 net/core/sock.c:1404
 ...
 SYSC_socketpair net/socket.c:1281
Freed:
 kmem_cache_free+0x161/0x180 mm/slub.c:2745
 sk_prot_free net/core/sock.c:1374
 sk_destruct+0x2e9/0x400 net/core/sock.c:1452
 ...
 SYSC_write fs/read_write.c:585

KMSAN report
BUG: KMSAN: uninit-value in ____nf_conntrack_find
Call Trace:
 ____nf_conntrack_find net/netfilter/nf_conntrack_core.c:539
 __nf_conntrack_find_get+0xc15/0x2190 net/netfilter/nf_conntrack_core.c:573
...
 __x64_sys_sendto+0x1a1/0x210 net/socket.c:1805
Uninit was stored to memory at:
 __nf_conntrack_confirm+0x2700/0x3f70 net/netfilter/nf_conntrack_core.c:793
 nf_conntrack_confirm include/net/netfilter/nf_conntrack_core.h:71
...
 __x64_sys_sendto+0x1a1/0x210 net/socket.c:1805
Uninit was created at:
 kmem_cache_alloc+0xad2/0xbb0 mm/slub.c:2739
 __nf_conntrack_alloc+0x166/0x670 net/netfilter/nf_conntrack_core.c:1137
 init_conntrack+0x635/0x2840 net/netfilter/nf_conntrack_core.c:1219
...
 __x64_sys_sendto+0x1a1/0x210 net/socket.c:1805

KTSAN Report (CVE-2015-7613)
ThreadSanitizer: data-race in ipc_obtain_object_check

Read at 0x123 of size 8 by thread 234 on CPU 5:
 ipc_obtain_object_check+0x7d/0xd0 ipc/util.c:621
 msq_obtain_object_check ipc/msg.c:90
 msgctl_nolock.constprop.9+0x208/0x430 ipc/msg.c:480
 SYSC_msgctl ipc/msg.c:538

Previous write at 0x123 of size 8 by thread 567 on CPU 4:
 ipc_addid+0x217/0x260 ipc/util.c:257
 newque+0xac/0x240 ipc/msg.c:141
 ipcget_public ipc/util.c:355
 ipcget+0x202/0x280 ipc/util.c:646
 SYSC_msgget ipc/msg.c:255

Also: locked mutexes, thread creation stacks, allocation stack, etc.

Say No to "Benign" Data Races

● Proving benignness is time consuming and impossible
● Allows automatic data race bug detection
● Makes code better documented

Proving Benignness

Option 1:

0: mov (%rdi),%rax
3: and $0xfffff,%eax
8: or %rax,%rsi
B: mov %rsi,(%rdi)

*p = (*p & 0xfffff) | v;

Option 2:

0: andq $0xfffff,(%rdi)
7: or %rsi,(%rdi)

This should be atomic, right?
void foo(int *p, int v)
{

// some irrelevant code
*p = v;
// some irrelevant code

}

This should be atomic, right?
void foo(int *p, int v)
{

// some irrelevant code
*p = v;
// some irrelevant code

}

void bar(int *p, int f)
{

int tmp = *p & MASK;
tmp |= f;
foo(p, tmp);

}

This should be atomic, right?
void foo(int *p, int v)
{

// some irrelevant code
*p = v;
// some irrelevant code

}

void bar(int *p, int f)
{

int tmp = *p & MASK;
tmp |= f;
foo(p, tmp);

}
after inlining:

*p = (*p & MASK) | f;

This should be atomic, right? Maybe
void foo(int *p, int v)
{

// some irrelevant code
*p = v;
// some irrelevant code

}

void bar(int *p, int f)
{

int tmp = *p & MASK;
tmp |= f;
foo(p, tmp);

}
after inlining:

*p = (*p & MASK) | f;

0: andq $0xfffff,(%rdi)
7: or %rsi,(%rdi)

Based on Real Bug
--- a/fs/namespace.c
+++ b/fs/namespace.c
@@ -2212,7 +2212,7 @@ static int do_remount(struct path *path, int flags,
int mnt_flags,
 lock_mount_hash();
 mnt_flags |= mnt->mnt.mnt_flags &
 ~MNT_USER_SETTABLE_MASK;
- mnt->mnt.mnt_flags = mnt_flags;
+ WRITE_ONCE(mnt->mnt.mnt_flags, mnt_flags);
 touch_mnt_namespace(mnt->mnt_ns);
 unlock_mount_hash();

Temporary exposes mount without MNT_NOSUID, MNT_NOEXEC, MNT_READONLY flags.

Fragile

● Changing local computations can break such code
● Changing MASK from 0xfe to 0xff can break such code
● New compiler can break such code
● LTO can break such code

