Matti Raasakka

Matti Raasakka

Finland
53 followers 52 connections

Experience

Education

  •  Graphic

    -

  • -

  • -

  • -

Licenses & Certifications

Publications

  • Spacetime granularity from finite-dimensionality of local observable algebras

    Classical and Quantum Gravity

    There are important indications that nature may be locally finite-dimensional, i.e. that any spatially bounded subsystem can be described by a finite-dimensional local observable algebra. Motivated by these ideas, we show that operational spacetime topology is described by an atomistic Boolean algebra if (i) local observable algebras are finite-dimensional factors, (ii) the intersection of two local algebras is also local, and (iii) the commutant of a local algebra is also local. Thus, in this…

    There are important indications that nature may be locally finite-dimensional, i.e. that any spatially bounded subsystem can be described by a finite-dimensional local observable algebra. Motivated by these ideas, we show that operational spacetime topology is described by an atomistic Boolean algebra if (i) local observable algebras are finite-dimensional factors, (ii) the intersection of two local algebras is also local, and (iii) the commutant of a local algebra is also local. Thus, in this case, spacetime has a point-free granular behavior at small scales.

    See publication
  • Spacetime-Free Approach to Quantum Theory and Effective Spacetime Structure

    SIGMA 13 (2017), 006

    Motivated by hints of the effective emergent nature of spacetime structure, we formulate a spacetime-free algebraic framework for quantum theory, in which no a priori background geometric structure is required. Such a framework is necessary in order to study the emergence of effective spacetime structure in a consistent manner, without assuming a background geometry from the outset. Instead, the background geometry is conjectured to arise as an effective structure of the algebraic and dynamical…

    Motivated by hints of the effective emergent nature of spacetime structure, we formulate a spacetime-free algebraic framework for quantum theory, in which no a priori background geometric structure is required. Such a framework is necessary in order to study the emergence of effective spacetime structure in a consistent manner, without assuming a background geometry from the outset. Instead, the background geometry is conjectured to arise as an effective structure of the algebraic and dynamical relations between observables that are imposed by the background statistics of the system. Namely, we suggest that quantum reference states on an extended observable algebra, the free algebra generated by the observables, may give rise to effective spacetime structures. Accordingly, perturbations of the reference state lead to perturbations of the induced effective spacetime geometry. We initiate the study of these perturbations, and their relation to gravitational phenomena.

    See publication
  • Next-to-leading order in the large N expansion of the multi-orientable random tensor model

    Annales Henri Poincaré

    In this paper we analyze in detail the next-to-leading order (NLO) of the recently obtained large N expansion for the multi-orientable (MO) tensor model. From a combinatorial point of view, we find the class of Feynman tensor graphs contributing to this order in the expansion. Each such NLO graph is characterized by the property that it contains a certain non-orientable ribbon subgraph (a non-orientable jacket). Furthermore, we find the radius of convergence and the susceptibility exponent of…

    In this paper we analyze in detail the next-to-leading order (NLO) of the recently obtained large N expansion for the multi-orientable (MO) tensor model. From a combinatorial point of view, we find the class of Feynman tensor graphs contributing to this order in the expansion. Each such NLO graph is characterized by the property that it contains a certain non-orientable ribbon subgraph (a non-orientable jacket). Furthermore, we find the radius of convergence and the susceptibility exponent of the NLO series for this model. These results represent a first step towards the larger goal of defining an appropriate double-scaling limit for the MO tensor model.

    Other authors
    • Adrian Tanasa
    See publication
  • Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data

    SIGMA 10 (2014), 067

    We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical…

    We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.

    Other authors
    • Daniele Oriti
    See publication
  • Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory

    Seminaire Lotharingien de Combinatoire 70 (2014), B70d

    The Ben Geloun-Rivasseau quantum field theoretical model is the first tensor model shown to be perturbatively renormalizable. We define here an appropriate Hopf algebra describing the combinatorics of this new tensorial renormalization. The structure we propose is significantly different from the previously defined Connes-Kreimer combinatorial Hopf algebras due to the involved combinatorial and topological properties of the tensorial Feynman graphs. In particular, the 2- and 4-point function…

    The Ben Geloun-Rivasseau quantum field theoretical model is the first tensor model shown to be perturbatively renormalizable. We define here an appropriate Hopf algebra describing the combinatorics of this new tensorial renormalization. The structure we propose is significantly different from the previously defined Connes-Kreimer combinatorial Hopf algebras due to the involved combinatorial and topological properties of the tensorial Feynman graphs. In particular, the 2- and 4-point function insertions must be defined to be non-trivial only if the superficial divergence degree of the associated Feynman integral is conserved.

    Other authors
    • Adrian Tanasa
    See publication
  • On UV/IR Mixing via Seiberg-Witten Map for Noncommutative QED

    Phys.Rev.D81:125004, 2010

    We consider quantum electrodynamics in noncommutative spacetime by deriving a θ-exact Seiberg-Witten map with fermions in the fundamental representation of the gauge group as an expansion in the coupling constant. Accordingly, we demonstrate the persistence of UV/IR mixing in noncommutative QED with charged fermions via Seiberg-Witten map, extending the results of Schupp and You.

    Other authors
    • Anca Tureanu
    See publication
  • Quantization maps, algebra representation and non-commutative Fourier transform for Lie groups

    J. Math. Phys. 54, 083508 (2013)

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined…

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations and non-commutative plane waves.

    Other authors
    • Carlos Guedes
    • Daniele Oriti
    See publication
  • Quantum Mechanics on SO(3) via Non-commutative Dual Variables

    Phys.Rev.D84:025003, 2011

    We formulate quantum mechanics on SO(3) using a non-commutative dual space representation for the quantum states, inspired by recent work in quantum gravity. The new non-commutative variables have a clear connection to the corresponding classical variables, and our analysis confirms them as the natural phase space variables, both mathematically and physically. In particular, we derive the first order (Hamiltonian) path integral in terms of the non-commutative variables, as a formulation of the…

    We formulate quantum mechanics on SO(3) using a non-commutative dual space representation for the quantum states, inspired by recent work in quantum gravity. The new non-commutative variables have a clear connection to the corresponding classical variables, and our analysis confirms them as the natural phase space variables, both mathematically and physically. In particular, we derive the first order (Hamiltonian) path integral in terms of the non-commutative variables, as a formulation of the transition amplitudes alternative to that based on harmonic analysis. We find that the non-trivial phase space structure gives naturally rise to quantum corrections to the action for which we find a closed expression. We then study both the semi-classical approximation of the first order path integral and the example of a free particle on SO(3). On the basis of these results, we comment on the relevance of similar structures and methods for more complicated theories with group-based configuration spaces, such as Loop Quantum Gravity and Spin Foam models.

    Other authors
    • Daniele Oriti
    See publication

Languages

  • English

    Full professional proficiency

  • Finnish

    Native or bilingual proficiency

  • Swedish

    Elementary proficiency

  • Greek

    Elementary proficiency

View Matti’s full profile

  • See who you know in common
  • Get introduced
  • Contact Matti directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Matti Raasakka

Add new skills with these courses