fco

ALLIANCE

FIDO Metadata Statements
FIDO Alliance Proposed Standard 02 February 2017

This version:
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-metadata-statement-v1.1-id-20170202.html

Editors:
Rolf Lindemann, Nok Nok Labs. Inc.
John Kemp, EIDO Alliance
Contributors:

Brad Hill, PayPal, Inc.
Davit Baghdasaryan, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 EIDO Alliance All Rights Reserved.

Abstract

FIDO authenticators may have many different form factors, characteristics and capabilities. This document defines a
standard means to describe the relevant pieces of information about an authenticator in order to interoperate with it, or to
make risk-based policy decisions about transactions involving a particular authenticator.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the
FIDO Alliance specifications index at https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,
including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the
Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such
third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable
document and may be used as reference material or cited from another document. FIDO Alliance's role in making the
Recommendation is to draw attention to the specification and to promote its widespread deployment.

Table of Contents

« 1. Notation
o 1.1 Conformance

e 2. Overview
o 2.1 Scope
o 2.2 Audience
o 2.3 Architecture

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-metadata-statement-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:bhill@paypal.com
https://www.paypal.com/
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

e 3. Types
o 3.1 CodeAccuracyDescriptor dictionary
= 3.1.1 Dictionary CodeAccuracyDescriptor Members
3.2 BiometricAccuracyDescriptor dictionary
= 3.2.1 Dictionary BiometricAccuracyDescriptor Members

o 3.3 PatternAccuracyDescriptor dictionary
= 3.3.1 Dictionary PatternAccuracyDescriptor Members

3.4 VerificationMethodDescriptor dictionary

= 3.4.1 Dictionary verificationMethodDescriptor Members
3.5 verificationMethodANDCombinations typedef
3.6 rgbPaletteEntry dictionary

= 3.6.1 Dictionary rgbraletteEntry Members

3.7 DisplayPNGCharacteristicsDescriptor dictionary
= 3.71 Dictionary DisplayPNGCharacteristicsDescriptor Members

o

o

o

o

o

o 3.8 EcdaaTrustAnchor dictionary
= 3.8.1 Dictionary EcdaaTrustAnchor Members

3.9 ExtensionDescriptor dictionary
= 3.9.1 Dictionary extensionbescriptor Members

o

o 4. Metadata Keys
o 4.1 Dictionary Metadatastatement Members

+ 5. Metadata Statement Format
o 5.1 UAF Example

o 5.2 U2F Example

« 6. Additional Considerations
o 6.1 Field updates and metadata

+ A. References
o A.1 Normative references

o A.2 Informative references

1. Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in “, e.g. “UAF-TLV”.

In formulas we use “I” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL-ED].
Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.
WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.
Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

All diagrams, examples, notes in this specification are non-normative.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members
are marked in the WebIDL definitions found in this document, as required. The keyword required has been
introduced by [WebIDL-ED], which is a work-in-progress. If you are using a WebIDL parser which implements

[WeblIDL], then you may remove the keyword required from your WebIDL and use other means to ensure those
fields are present.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification
are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be
interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

The FIDO family of protocols enable simpler and more secure online authentication utilizing a wide variety of different
devices in a competitive marketplace. Much of the complexity behind this variety is hidden from Relying Party applications,
but in order to accomplish the goals of FIDO, Relying Parties must have some means of discovering and verifying various
characteristics of authenticators. Relying Parties can learn a subset of verifiable information for authenticators certified by
the FIDO Alliance with an Authenticator Metadata statement. The URL to access that Metadata statement is provided by
the Metadata TOC file accessible through the Metadata Service [FIDOMetadataService].

For definitions of terms, please refer to the FIDO Glossary [FIDOGlossary].

2.1 Scope

This document describes the format of and information contained in Authenticator Metadata statements. For a definitive list
of possible values for the various types of information, refer to the FIDO Registry of Predefined Values [FIDORegistry].

The description of the processes and methods by which authenticator metadata statements are distributed and the
methods how these statements can be verified are described in the Metadata Service Specification
[FIDOMetadataService].

2.2 Audience
The intended audience for this document includes:

¢ FIDO authenticator vendors who wish to produce metadata statements for their products.

o FIDO server implementers who need to consume metadata statements to verify characteristics of authenticators and
attestation statements, make proper algorithm choices for protocol messages, create policy statements or tailor
various other modes of operation to authenticator-specific characteristics.

« FIDO relying parties who wish to
o create custom policy statements about which authenticators they will accept

o risk score authenticators based on their characteristics

o verify attested authenticator |Ds for cross-referencing with
third party metadata

2.3 Architecture

RP Server

Metadata
Platform FIDO Server Statement incl.

(OS, BI’DWSEI’} Attestation Trust
Anchor

FIDO
Authenticator

AN
FIDO FIDO Metadata Other Metadata
Sources

Authenticator

Service

Fig. 1 The FIDO Architecture

Authenticator metadata statements are used directly by the FIDO server at a relying party, but the information contained in
the authoritative statement is used in several other places. How a server obtains these metadata statements is described in

[FIDOMetadataService].

The workflow around an authenticator metadata statement is as follows:

1. The authenticator vendor produces a metadata statement describing the characteristics of an authenticator.

2. The metadata statement is submitted to the FIDO Alliance as part of the FIDO certification process. The FIDO
Alliance distributes the metadata as described in [FIDOMetadataService].

3. AFIDO relying party configures its registration policy to allow authenticators matching certain characteristics to be
registered.

4. The FIDO server sends a registration challenge message. This message can contain such policy statement.

5. Depending on the FIDO protocol being used, either the relying party application or the FIDO UAF Client receives the
policy statement as part of the challenge message and processes it. It queries available authenticators for their self-
reported characteristics and (with the user's input) selects an authenticator that matches the policy, to be registered.

6. The client processes and sends a registration response message to the server. This message contains a reference to

the authenticator model and, optionally, a signature made with the private key corresponding to the public key in the
authenticator's attestation certificate.

7. The FIDO Server looks up the metadata statement for the particular authenticator model. If the metadata statement
lists an attestation certificate(s), it verifies that an attestation signature is present, and made with the private key
corresponding to either (a) one of the certificates listed in this metadata statement or (b) corrsponding to the public
key in a certificate that chains to one of the issuer certificates listed in the authenticator's metadata statement.

8. The FIDO Server next verifies that the authenticator meets the originally supplied registration policy based on its
authoritative metadata statement. This prevents the registration of unexpected authenticator models.

9. Optionally, a FIDO Server may, with input from the Relying Party, assign a risk or trust score to the authenticator,
based on its metadata, including elements not selected for by the stated policy.

10. Optionally, a FIDO Server may cross-reference the attested authenticator model with other metadata databases
published by third parties. Such third-party metadata might, for example, inform the FIDO Server if an authenticator
has achieved certifications relevant to certain markets or industry verticals, or whether it meets application-specific
regulatory requirements.

3. Types

This section is normative.

3.1 CodeAccuracyDescriptor dictionary

The codenccuracybescriptor describes the relevant accuracy/complexity aspects of passcode user verification methods.

NOTE
One example of such a method is the use of 4 digit PIN codes for mobile phone SIM card unlock.

We are using the numeral systembase (radix) and minzen, instead of the number of potential combinations since
there is sufficient evidence [iPhonePasscodes] [MoreTopWorstPasswords] that users don't select their code evenly
distributed at random. So software might take into account the various probability distributions for different bases.
This essentially means that in practice, passcodes are not as secure as they could be if randomly chosen.

WebIDL

dictionary CodeAccuracyDescriptor {
required unsigned short base;
required unsigned short minLength;
unsigned short maxRetries;
unsigned short blockSlowdown;

}i

311 Dictionary CodeAccuracyDescriptor Members

base Of type required unsigned short
The numeric system base (radix) of the code, e.g. 10 in the case of decimal digits.

minLength Of type required unsigned short
The minimum number of digits of the given base required for that code, e.g. 4 in the case of 4 digits.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockslowdown Of type unsigned short

Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means this

user verification method will be blocked, either permanently or until an alternative user verification method
method succeeded. All alternative user verification methods must be specified appropriately in the Metadata in

userVerificationDetails.

3.2 BiometricAccuracyDescriptor dictionary

The Biometricaccuracybescriptor describes relevant accuracy/complexity aspects in the case of a biometric user
verification method.

NOTE

The False Acceptance Rate (FAR) and False Rejection Rate (FRR) values typically are interdependent via the
Receiver Operator Characteristic (ROC) curve.

The False Artefact Acceptance Rate (FAAR) value reflects the capability of detecting presentation attacks, such as
the detection of rubber finger presentation.

The FAR, FRR, and FAAR values given here must reflect the actual configuration of the authenticators (as opposed
to being theoretical best case values).

At least one of the valuesmust be set. If the vendor doesn't want to specify such values, then
VerificationMethodDescriptor.babDesc must be omitted.

NOTE

Typical fingerprint sensor characteristics can be found in Google Android 6.0 Compatibility Definition and Apple iOS
Security Guide.

WebIDL

dictionary BiometricAccuracyDescriptor {

double FAR;
double FRR;
double EER;
double FAAR;

unsigned short maxReferenceDataSets;
unsigned short maxRetries;
unsigned short blockSlowdown;

+i

3.21 Dictionary BiometricAccuracyDescriptor Members

FaRr Of type double
The false acceptance rate [ISO19795-1] for a single reference data set, i.e. the percentage of non-matching data

sets that are accepted as valid ones. For example a FAR of 0.002% would be encoded as 0.00002.

NOTE
The resulting FAR when all reference data sets are used is maxReferencebataSets * FAR.

The false acceptance rate is relevant for the security. Lower false acceptance rates mean better security.

Only the live captured subjects are covered by this value - not the presentation of artefacts.

FRR Of type double
The false rejection rate for a single reference data set, i.e. the percentage of presented valid data sets that lead

to a (false) non-acceptance. For example a FRR of 102 would be encoded as o. 1.

NOTE

The false rejection rate is relevant for the convenience. Lower false acceptance rates mean better
convenience.

EER Of type double
The equal error rate for a single reference data set.

Faar of type double
The false artefact acceptance rate [SO30107-1], i.e. the percentage of artefacts that are incorrectly accepted by

the system. For example a FAAR of 0. 15 would be encoded as o0.001.
NOTE

The false artefact acceptance rate is relevant for the security of the system. Lower false artefact
acceptance rates imply better security.

maxReferenceDataSets Of type unsigned short

https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.apple.com/business/docs/iOS_Security_Guide.pdf

Maximum number of alternative reference data sets, e.g. 3 if the user is allowed to enroll 3 different fingers to a
fingerprint based authenticator.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block this method (at least for some time). 0
means it will never block.

blockslowdown Of type unsigned short
Enforced minimum number of seconds wait time after blocking (e.g. due to forced reboot or similar). 0 means that

this user verification method will be blocked either permanently or until an alternative user verification method
succeeded. All alternative user verification methods must be specified appropriately in the metadata in

userVerificationDetails.

3.3 PatternAccuracyDescriptor dictionary

The ratternaccuracybescriptor describes relevant accuracy/complexity aspects in the case that a pattern is used as the
user verification method.

NOTE

One example of such a pattern is the 3x3 dot matrix as used in Android [AndroidUnlockPattern] screen unlock. The
minComplexity would be 1624 in that case, based on the user choosing a 4-digit PIN, the minimum allowed for this

mechanism.

WebIDL

dictionary PatternAccuracyDescriptor {
required unsigned long minComplexity;
unsigned short maxRetries;
unsigned short blockSlowdown;

}i

3.3.1 Dictionary PatternAccuracyDescriptor Members

minComplexity Of type required unsigned long
Number of possible patterns (having the minimum length) out of which exactly one would be the right one, i.e.

1/probability in the case of equal distribution.

maxRetries Of type unsigned short
Maximum number of false attempts before the authenticator will block authentication using this method (at least

temporarily). 0 means it will never block.

blockslowdown Of type unsigned short
Enforced minimum number of seconds wait time after blocking (due to forced reboot or similar mechanism). 0

means this user verification method will be blocked, either permanently or until an alternative user verification
method method succeeded. All alternative user verification methods must be specified appropriately in the

metadata under userverificationDetails.

3.4 VerificationMethodDescriptor dictionary
A descriptor for a specific base user verification methodas implemented by the authenticator.

A base user verification method must be chosen from the list of those described in FIDORegistry]

NOTE

In reality, several of the methods described above might be combined. For example, a fingerprint based user
verification can be combined with an alternative password.

The specification of the related AccuracyDescriptor is optional, but recommended.

WebIDL

dictionary VerificationMethodDescriptor {
required unsigned long userVerification;
CodeAccuracyDescriptor caDesc;
BiometricAccuracyDescriptor baDesc;
PatternAccuracyDescriptor paDesc;

+i

3.4.1 Dictionary verificationMethodnescriptor Members

userVerification Of type required unsigned long
a single user_veriry constant (see [FIDORegistry]), not a bit flag combination. This value must be non-zero.

caDesc Of typq CodeAccuracyDes_criptor
May optionally be used in the case of methoduser vERIFY PASSCODE.

babesc Of type BiometricAccuracyDescriptor
May optionally be used in the case of method UsEr VERIFY FINGERPRINT, USER VERIFY VOICEPRINT,
USER_VERIFY FACEPRINT, USER_VERIFY EYEPRINT, Of USER_VERIFY HANDPRINT.

pabesc Of type PatternAccuracyDescriptor
May optionally be used in case of methoduser VERIFY PATTERN.

3.5 verificationMethodANDCombinations typedef

WebIDL

typedef VerificationMethodDescriptor[] VerificationMethodANDCombinations;

VerificationMethodANDCombinations Must be non-empty. It is a list containing the base user verification methods which
must be passed as part of a successful user verification.

This list will contain only a single entry if using a single user verification method is sufficient.

If this list contains multiple entries, then all of the listed user verification methods must be passed as part of the user
verification process.

3.6 rgbPaletteEntry dictionary

The rgbraletteEntry is an RGB three-sample tuple palette entry

WebIDL

dictionary rgbPaletteEntry {
required unsigned short r;
required unsigned short g;
required unsigned short b;

+i

3.6.1 Dictionary rgbraletteEntry Members

r of type required unsigned short
Red channel sample value

g of type required unsigned short
Green channel sample value

b of type required unsigned short
Blue channel sample value

3.7 DisplayPNGCharacteristicsDescriptor dictionary

The DisplayPNGCharacteristicsDescriptor describes a PNG image characteristics as defined in the PNG [PNG] spec for
IHDR (image header) and PLTE (palette table)

WebIDL

dictionary DisplayPNGCharacteristicsDescriptor {
required unsigned long width;
required unsigned long
required octet
required octet
required octet
required octet
required octet
rgbPaletteEntry[]

+i

3.7.1 Dictionary pisplayPNGCharacteristicsDescriptor Members

width Of type required unsigned long
image width

height Of type required unsigned long
image height

bitbepth Of type required octet
Bit depth - bits per sample or per palette index.

colorType Of type required octet
Color type defines the PNG image type.

compression Of type required octet
Compression method used to compress the image data.

filter Of type required octet
Filter method is the preprocessing method applied to the image data before compression.

interlace Of type required octet
Interlace method is the transmission order of the image data.

plte Of type array of rgbPaletteEntry
1 to 256 palette entries

3.8 EcdaaTrustAnchor dictionary

In the case of ECDAA attestation, the ECDAA-Issuer's trust anchormust be specified in this field.

WebIDL

dictionary EcdaaTrustAnchor {
required DOMString X;
required DOMString Y;
required DOMString c;
required DOMString sx;
required DOMString sy;
required DOMString GlCurve;

}i

3.8.1 Dictionary EcdaaTrustanchor Members

x of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2X = P;X: P5. See [FIDOEcdaaAlgorithm] for
the definition of ECPoint2ToB.

v of type required DOMString
base64url encoding of the result of ECPoint2ToB of the ECPoint2Y = PZ Y = P). See [FIDOEcdaaAlgorithm] for
the definition of ECPoint2ToB.

< of type required DOMString
base64url encoding of the result of BigNumberToB(c). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of cc. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sx Of type required DOMString
base64url encoding of the result of BigNumberToBgxsx). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sxsx. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

sy of type required DOMString
base64url encoding of the result of BigNumberToBgysy). See section "Issuer Specific ECDAA Parameters" in
[FIDOEcdaaAlgorithm] for an explanation of sysy. See [FIDOEcdaaAlgorithm] for the definition of BigNumberToB.

Glcurve Of type required DOMString
Name of the Barreto-Naehrig elliptic curve for G1. "BN_P256", "BN_P638", "BN_ISOP256", and "BN_ISOP512"
are supported. See section "Supported Curves for ECDAA" in [FIDOEcdaaAlgorithm] for details.

NOTE

Whenever a party uses this trust anchor for the first time, it must first verify that it was correctly generated by
verifying s, sX, sys, sx, sy. See [FIDOEcdaaAlgorithm] for details.

3.9 ExtensionDescriptor dictionary

This descriptor contains an extension supported by the authenticator.

WebIDL

dictionary ExtensionDescriptor {
required DOMString id;
DOMString data;
required boolean fail if unknown;

+i

3.9.1 Dictionary Extensionpescriptor Members

ia of type required DOMString

Identifies the extension.

data of type DOMString
Contains arbitrary data further describing the extension and/or data needed to correctly process the extension.

This field may be missing or itmay be empty.
fail_if_ unknown Of type required boolean

Indicates whether unknown extensions must be ignored (ta1se) or must lead to an error (true) when the
extension is to be processed by the FIDO Server, FIDO Client, ASM, or FIDO Authenticator.

e A value of fa1se indicates that unknown extensions must be ignored
o A value of true indicates that unknown extensions must result in an error.

4. Metadata Keys

This section is normative.

WebIDL

dictionary MetadataStatement {

AAID aaid;

AAGUID aaguid;

DOMString]] attestationCertificateKeyIdentifiers;
required DOMString description;

required unsigned short authenticatorVersion;
DOMString protocolFamily;

required Version]] upv;

required DOMString assertionScheme;

required unsigned short authenticationAlgorithm;
required unsigned short publicKeyAlgAndEncoding;
required unsigned short[] attestationTypes;

required VerificationMethodANDCombinations[] userVerificationDetails;
required unsigned short keyProtection;

boolean isKeyRestricted;

boolean isFreshUserVerificationRequired;
required unsigned short matcherProtection;

required unsigned long attachmentHint;

required boolean isSecondFactorOnly;

required unsigned short tcDisplay;

DOMString tcDisplayContentType;
DisplayPNGCharacteristicsDescriptor([] tcDisplayPNGCharacteristics;
required DOMString]] attestationRootCertificates;
EcdaaTrustAnchor(] ecdaaTrustAnchors;

DOMString icon;

ExtensionDescriptor supportedExtensions|[];

+i

4.1 Dictionary metadatastatement Members

aaid of type AAID
The Authenticator Attestation ID. See [UAFProtocol] for the definition of the AAID structure. This field must be
set if the authenticator implements FIDO UAF.

NOTE
FIDO UAF Authenticators support AAID, but they don't support AAGUID.

aaguid of type AAGUID
The Authenticator Attestation GUID. See [FIDOKeyAttestation] for the definition of the AAGUID structure. This
field must be set if the authenticator implements FIDO 2.

NOTE
FIDO 2 Authenticators support AAGUID, but they don't support AAID.

attestationCertificateKeyIdentifiers Of type array ofDOMString
A list of the attestation certificate public key identifiers encoded as hex string. This value must be calculated
according to method 1 for computing the keyldentifier as defined in [RFC5280] section 4.2.1.2. The hex string
must not contain any non-hex characters (e.g. spaces). All hex letters must be lower case. This field must be set
if neither aaid nor aaguid are set. Setting this field implies that the attestation certificate(s) are dedicated to a
single authenticator model.

All attestationCertificateKeyldentifier values should be unique within the scope of the Metadata Service.

NOTE

FIDO U2F Authenticators typically do not support AAID nor AAGUID, but they use attestation certificates
dedicated to a single authenticator model.

description Of type required DOMString
A human-readable short description of the authenticator.

NOTE

This description should help an administrator configuring authenticator policies. This description might
deviate from the description returned by the ASM for that authenticator.

This description should contain the public authenticator trade name and the publicly known vendor name.

authenticatorVersion Of type required unsigned short
Earliest (i.e. lowest) trustworthy authenticatorversion meeting the requirements specified in this metadata

statement.

Adding new statusreport entries with status uepate_avarzasre to the metadata roc object
[FIDOMetadataService] must also change this authenticatorversion if the update fixes severe security issues,
e.g. the ones reported by preceding statusreport entries with status code user VERIFICATION BYPASS,
ATTESTATION KEY COMPROMISE, USER_KEY REMOTE_COMPROMISE, USER_KEY_ PHYSICAL_COMPROMISE, REVOKED.

It is recommended to assume increased risk if this version is higher (newer) than the firmware version present in
an authenticator. For example, if a statusreport entry with status user_vErRIFICATION BYPASS Of
USER_KEY REMOTE COMPROMISE precedes the urpare avarrasre entry, than any firmware version lower (older) than
the one specified in the metadata statement is assumed to be vulnerable.

protocolFamily Of type DOMString
The FIDO protocol family. The values "uaf", "u2f", and "fido2" are supported. If this field is missing, the assumed
protocol family is "uaf'. Metadata Statements for U2F authenticators must set the value of protocolFamily to "u2f"
and FIDO 2.0 Authenticators implementations must set the value of protocolFamily to "fido2".

upv Of type array ofrequired Version
The FIDO unified protocol version(s) (related to the specific protocol family) supported by this authenticator. See
[UAFProtocol] for the definition of theversion structure.

assertionScheme Of type required DOMString
The assertion scheme supported by the authenticator. Must be set to one of the enumerated strings defined in
the FIDO UAF Registry of Predefined Values [UAFRegistry] or to "FIDOV2" in the case of the FIDO 2 assertion
scheme.

authenticationAlgorithm Of type required unsigned short
The authentication algorithm supported by the authenticator. Must be set to one of the arc_ constants defined in
the FIDO Registry of Predefined Values [FIDORegistry]. This value must be non-zero.

publicKeyAlgAndEncoding Of type required unsigned short
The public key format used by the authenticator during registration operations. Must be set to one of the arc_xev
constants defined in the FIDO Registry of Predefined Values [FIDORegistry]. Because this information is not
present in APIs related to authenticator discovery or policy, a FIDO server must be prepared to accept and
process any and all key representations defined for any public key algorithm it supports. This value must be non-
zero.

attestationTypes Of type array ofrequired unsigned short
The supported attestation type(s). (e.g. Tac_arresrarion Basic rurn) See Registry for more information
[UAFRegistry].

userVerificationDetails Of type array ofrequired VerificationMethodANDCombinations
A list of alternative VerificationMethodANDCombinations. Each of these entries is one alternative user
verification method. Each of these alternative user verification methods might itself be an "AND" combination of
multiple modalities.

All effectively available alternative user verification methodsmust be properly specified here. A user verification
method is considered effectively available if this method can be used to either:

« enroll new verification reference data to one of the user verification methods
or
o unlock the UAuth key directly after successful user verification

keyProtection Of type required unsigned short
A 16-bit number representing the bit fields defined by the xev_proTEcTION COnstants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

NOTE

The keyProtection specified here denotes the effective security of the attestation key and Uauth private
key and the effective trustworthiness of the attested attributes in the “sign assertion”. Effective security
means that key extraction or injecting malicious attested attributes is only possible if the specified
protection method is compromised. For example, if keyProtection=TEE is stated, it shall be impossible to
extract the attestation key or the Uauth private key or to inject any malicious attested attributes without
breaking the TEE.

isKeyRestricted Of type boolean

This entry is set to true, if the Uauth private key is restricted by theauthenticator to only sign valid FIDO
signature assertions.

This entry is set to fa1se, if the authenticator doesn't restrict the Uauth key to only sign valid FIDO signature
assertions. In this case, the calling application could potentially get any hash value signed by the authenticator.

If this field is missing, the assumed value is isKeyRestricted=rue

NOTE

Note that only in the case of isKeyRestricted=:rue, the FIDO server can trust a signature counter or
transaction text to have been correctly processed/controlled by the authenticator.

isFreshUserVerificationRequired Of type boolean
This entry is set to true, if Uauth key usage always requires a fresh user verification.
If this field is missing, the assumed value is isFreshUserVerificationRequired=rue.

This entry is set to fa1se, if the Uauth key can be used without requiring a fresh user verification, e.g. without any
additional user interaction, if the user was verified a (potentially configurable) caching time ago.

In the case of isFreshUserVerificationRequired=ta1se, the FIDO server must verify the registration response
and/or authentication response and verify that the (maximum) caching time (sometimes also called
"authTimeout") is acceptable.

This entry solely refers to the user verification. In the case of transaction confirmation, the authenticator must
always ask the user to authorize the specific transaction.

NOTE

Note that in the case of isFreshUserVerificationRequired==a1se, the calling App could trigger use of the
key without user involvement. In this case it is the responsibility of the App to ask for user consent.

matcherProtection Of type required unsigned short
A 16-bit number representing the bit fields defined by the uaTcuer proTECTION COnstants in the FIDO Registry of
Predefined Values [FIDORegistry].

This value must be non-zero.

NOTE

If multiple matchers are implemented, then this value must reflect the weakest implementation of all
matchers.

The matcherProtection specified here denotes the effective security of the FIDO authenticator’s user
verification. This means that a false positive user verification implies breach of the stated method. For
example, if matcherProtection=TEE is stated, it shall be impossible to trigger use of the Uauth private key
when bypassing the user verification without breaking the TEE.

attachmentHint Of type required unsigned long
A 32-bit number representing the bit fields defined by the arracement zinT constants in the FIDO Registry of
Predefined Values [FIDORegistry].

NOTE

The connection state and topology of an authenticator may be transient and cannot be relied on as
authoritative by a relying party, but the metadata field should have all the bit flags set for the topologies
possible for the authenticator. For example, an authenticator instantiated as a single-purpose hardware
token that can communicate over bluetooth should set arTacsveEnT HINT ExTERNAL but not
ATTACHMENT HINT INTERNAL.

isSecondFactoronly Of type required boolean
Indicates if the authenticator is designed to be used only as a second factor, i.e. requiring some other
authentication method as a first factor (e.g. username+password).

tcbisplay Of type required unsigned short
A 16-bit number representing a combination of the bit flags defined by the TransacTION conFIrRMATION DISPLAY
constants in the FIDO Registry of Predefined Values [FIDORegistry].

This value must be 0, if transaction confirmation is not supported by the authenticator.

NOTE

The tcDisplay specified here denotes the effective security of the authenticator’s transaction confirmation
display. This means that only a breach of the stated method allows an attacker to inject transaction text to
be included in the signature assertion which hasn't been displayed and confirmed by the user.

tcDisplayContentType Of type DOMString
Supported MIME content type [RFC2049] for the transaction confirmation display, such as text/plain Or

image/png.
This value must be present if transaction confirmation is supported, i.e. tcpisplay is non-zero.

tcDisplayPNGCharacteristics Of type array of DisplayPNGCharacteristicsDescriptor
A list of alternative DisplayPNGCharacteristicsDescriptor. Each of these entries is one alternative of supported
image characteristics for displaying a PNG image.

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcbisplay is non-zero
and tcbisplayContentType iS image/png.

attestationRootCertificates Of type array ofrequired DOMString
Each element of this array represents a PKIX RFC5280] trust root X.509 certificate that is valid for this
authenticator model. Multiple certificates might be used for different batches of the same model. The array does
not represent a certificate chain, but only the trust anchor of that chain.

Each array element is a base64-encoded (section 4 of [RFC4648]), DER-encoded [ITU-X690-2008] PKIX
certificate value. Each element must be dedicated for authenticator attestation.

NOTE

A certificate listed here is a trust root. It might be the actual certificate presented by the authenticator, or it
might be an issuing authority certificate from the vendor that the actual certificate in the authenticator
chains to.

In the case of "uaf" protocol family, the attestation certificate itself and the ordered certificate chain are
included in the registration assertion (see [UAFAuthnrCommands]).

Either
1. the manufacturer attestation root certificate
or
2. the root certificate dedicated to a specific authenticator model

must be specified.

In the case (1), the root certificate might cover multiple authenticator models. In this case, it must be possible to
uniquely derive the authenticator model from the Attestation Certificate. When using AAID or AAGUID, this can
be achieved by either specifying the AAID or AAGUID in the attestation certificate using the extension id-fido-
gen-ce-aaid{136141457241 11 }orid-fido-gen-ce-aaguid {136 1 4145724 1 1 4 } or - when neither AAID
nor AAGUID are defined - by using the attestationCertificateKeyIdentifier method.

In the case (2) this is not required as the root certificate only covers a single authenticator model.

When supporting surrogate basic attestation only (see [UAFProtocol], section "Surrogate Basic Attestation"), no
attestation root certificate is required/used. So this array must be empty in that case.

ecdaaTrustAnchors Of type array of EcdaaTrustAnchor
A list of trust anchors used for ECDAA attestation. This entry must be present if and only if attestationType
includes TAG_ATTESTATION_ECDAA. The entries in attestationrootcertificates have no relevance for
ECDAA attestation. Each ecdaaTrustAnchor must be dedicated to a single authenticator model (e.g as identified
by its AAID/AAGUID).

icon of type DOMString
A data: url [RFC2397] encoded PNG [PNG] icon for the Authenticator.

supportedExtensions|[] Of type ExtensionDescriptor
List of extensions supported by the authenticator.

5. Metadata Statement Format

This section is non-normative.

NORMATIVE

A FIDO Authenticator Metadata Statement is a document containing a JSON encoded dictionary MetadataStatement.

5.1 UAF Example
Example of the metadata statement for an UAF authenticator with:

« authenticatorVersion 2.

o Fingerprint based user verification allowing up to 5 registered fingers, with false acceptance rate of 0.002% and rate
limiting attempts for 30 seconds after 5 false trials.

¢ Authenticator is embedded with the FIDO User device.

The authentication keys are protected by TEE and are restricted to sign valid FIDO sign assertions only.
The (fingerprint) matcher is implemented in TEE.

¢ The Transaction Confirmation Display is implemented in a TEE.

» The Transaction Confirmation Display supports display of "image/png" objects only.

o Display has a width of 320 and a height of 480 pixel. A bit depth of 16 bits per pixel offering True Color (=Color Type
2). The zlib compression method (0). It doesn't support filtering (i.e. filter type of=0) and no interlacing support
(interlace method=0).

o The Authentiator can act as first factor or as second factor, i.e. isSecondFactorOnly = false.
o It supports the "UAFV1TLV" assertion scheme.

e ltusesthearc sicn sEcp256rR1_ECDSA sHA256 Raw authentication algorithm.

It uses the arc_kev Ecc x962 raw public key format (Ox100=256 decimal).

It only implements the tac_aTrTESTATION BAasIc rFurn method (0x3E07=15879 decimal).

o Itimplements UAF protocol version (upv) 1.0 and 1.1.

{ "aaid": "1234#5678",

"description": "FIDO Alliance Sample UAF Authenticator",
"authenticatorvVersion": 2,

"upv": [{ "major": 1, "minor": 0 }, { "major": 1, "minor": 1 }],
"assertionScheme": "UAFV1TLV",

"authenticationAlgorithm": 1,
"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],
"userVerificationDetails": [[{ "userVerification": 2, "baDesc":
{ "FAR": 0.00002, "maxRetries": 5, "blockSlowdown": 30, "maxReferenceDataSets": 5 } }] 1,

"keyProtection": 6,
"isKeyRestricted": true,
"matcherProtection": 2,
"attachmentHint": 1

’
"isSecondFactorOnly": "false",
"tcDisplay": 5,
"tcDisplayContentType": "image/png",
"tcDisplayPNGCharacteristics": [{"width": 320, "height": 480, "bitDepth": 16,

"colorType": 2, "compression": 0, "filter": 0, "interlace": 0}1],

"attestationRootCertificates": [
"MIICPTCCAeOgAwWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHSxIDAeBgNVBAMM
F1NhbXBsZSBBdHR1c3RhdGlvbiBSb290MRYWFAYDVQQKDA1GSURPIEFsSbGlhbmN1
MREwDwWYDVQQLDAhVQUYgVFAHLDESMBAGA1UEBwwJUGFsbyBBbHRVMQOswCQYDVQQTI
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQwWN jE4MTMzMzMyWhcNNDEXMTAZMTMzMzMy
WjB7MSAwHgYDVQQODDBATYW1wbGUgQXR0OZXNOYXRpb24gUm9vdDEWMBQGA1UECgwWN
Rk1ETyBBbGXpYW5jZTERMASGA1UECWWIVUFGIFRXRYWXE jAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXCzAJBgNVBAYTA1VTMFkwEWYHK0ZIzjOCAQYIKOZI
zjO0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgOBb58pxGqHIRyX/6NOME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It72E4w8hk5EJ/MB8GAlUdIWQYMBaAFPOHA3CLhxXxFbCO0It72zE4w8hk5EJ/MAWG
AlUJEwQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQIhAJ06QSXt9ihIbEKYKIjsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN
10=="1,

"icon": "data:image/png;baseé64,
iVBORWOKGgOAAAANSUhEUgAAAES8AAAAVCAYAAACiwIfcAAAAAXNSROIArs4c6QAAAARNQUIBAACK
jwv8YQUAAAAJCEhZcwAADSMAAA7DAcdVvgGOAAAahSURBVGhD7Zr5bxR1GME9KzTB8AM/YEhE2WT7p
QZCWKKBc1SpHAT1ELARE7kNECCA3FKWKOCKKSCFISKBcgVCDWGNESJAYidwgggIBiRiMhFc/4wy8
884zu9Nd1lnGT£ZJIP2n3n0++88933fveBBx+PqCzJkTUVBbLmMpUDWVBTImpcCSZvXLCAX9R055k19
bb5atf599£fG+/erA5419q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7aidn7QzPMwbdys2erU2XMg
Udy8+ZcaNmGimE8yXN3RUd3al8nF0fUlovZ+0CTzWpd2Vj+eOmlbEyy6Dx4i5pUMGWve05069227
dtuWBIuffr6oWpVOFPNLhowl751Nm21LvPH3rVtWjfz66Lfgl8tX7FR19YFSXsmSseb9ceOGbYk7
MNUcGPg8ZsbMe9rfQUaaV/IMX9sqdzDCSvpOkZHMTZg9x7bLHcMnThbl6eJ+mVEQq8yaUZONG64 1
XZ+0/kg6u0ZF00QtatdWKEXnRQ99Bj9I1R50IFnk54 jNOmMkUiglO3XDW+M1+98mKB6tW7rWpZcPc+
0zg4tLrY1lUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUghu
7JLvrVsQU81zkzOPeemMRYVVuUQsX7PbiDQY5JvZonftK+1VY8HIutx530h0ob+jmRYgj6oua¥YvEe
nW/W1Yjp8cwbMm682tPwgWlR4tj/2SH13IRIY14moZvXpiSqDr7dXtQHxa/PK3/+BWsK1dTgHuU6Vv
8tQJI3bwFkwpFru0Q50slr3levm8zZcql7+BBaw7K81lEK5gzkYeark9A8p7P3GzDK+nd3DQow+6UC
8SVN82iuv38im7NtaXtV1CVg6Rgwépksmbdi3bu2De7YfaBBxcqfvgPrUjFONTQ221£fdUVVT68rT
JKF5DnSmUjgdgg4mSS9Ipms fDIJR3G6ToH0iW9aV7/LWLHYXK11TDtOLTAtkYIaamplQjVv++uyGUxV
dJODNVXSm+b1lgRxpl84ddfX1Lpl0/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6%57CIKMWXefIdO
7Z94bb90gqd1RONS7gITTzHimMgivb03g0DdVyk3WQBhBztK35YKNdOnc803acS6£fDZFgKaXLsEJp5
rdrliBgp89cJcs/m7Tvs0rkjGEN4b0kPozZn3UJuIOrnz22yP1l£fmvUx+05gSgebVim+zSuYNVhg7T
WbDiLVv1jplLlop6CLXP+2gtvGLIL/1vimISdMBgzSoFZyu6Tqgd+jzxgsPavIBCgee/NjYk6v61K
9cwilUc/STtf1HDpM3b592y7h3Thx502zK6 9HLpYWuAwagS5cv26qg7ceb8efVYaReP3iFU8zjlknSw

ZXHMmnCjY00galo7UQfSCM3gQQr2H/XFP7ssXx45Y191ByeCep4moZoH+1£G3xD4tT7x8kwyj8nw
b9ev26V0B6d+7H4zKvudAH537F jqyzOHdInHEuzmXq/WjxObvNMbv7nhywsX2avVsWtC8+48alLeap
E7p5wKZ1i0A2AQRV5nvR4E+uJc+b61kApgInxBgmd/4V5QP/mt18HDC7sRHftmeu51mhv0rn/ALX2
32bgd4BFnDx7VilcWS2uff0IbB4 7gexxmUjoQutYjupd3tYD6abWBBMrh+apNbOKrNF1l+ugCa4dri
XGfwMPPtViavhU3YMOAANuUb/RO7L0Oy0Se0adE88ApsXFGEf£f30ynhl1JIgM51CU6VNIEZgnpvHBFUyY
iVraePiwJ53DF5ZTZnomENg85kNUd20J1i2Wpr4Ommk fN4x4 zHf iVFc8Dv8NzuhNg0idilGvA6DGuU
eZw078AAQN6CciEk6+rw5VevjvgNDYPOoIUwaKShrxAuXL1kH4aYuGEMYDcl0WF5Ta31hPJOfcUhr
U/J1INi6c6elRYdBpo6++Yfjx611GNfRMAMD5rJ1j3FoGHNjDSBNar YUgMLyMs zKpb7tXpoHfPs8
h3WplLzNfNk54XxC1lwDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRJHEKkk7zaFKYQA2hGQU1
z+85NFWpXDrkz3vx10GgxQ6BzeNboBk5n8k4nebRh+k1hWfXTFOD1EyWUs5nv+dgQgKaxzuCdEO i
sH102NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi310fxmT6PWoqG9+DZukYna56mSZt5WWSy
5gVAlrwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRUSErkJggg=="

Example of an User Verification Methods entry for an authenticator with:

» Fingerprint based user verification method, with:
o the ability for the user to enroll up to 5 fingers (reference data sets) with
= a false acceptance rate of 1 in 50000 (0.002%) per finger. This results in a FAR of 0.01% (0.0001).
= The fingerprint verification will be blocked after 5 unsuccessful attempts.

+ A PIN code with a minimum length of 4 decimal digits has to be set-up as alternative verification method. Entering the
PIN will be required to re-activate fingerprint based user verification after it has been blocked.

[
[{ "userVerification": 2, "baDesc": { "FAR": 0.00002, "maxReferenceDataSets": 5,
"maxRetries": 5, "blockSlowdown": 0} }1,
[{ "userVerification": 4, "caDesc": { "base": 10, "minLength": 4 } }]

1

5.2 U2F Example
Example of the metadata statement for an U2F authenticator with:

» authenticatorVersion 2.

¢ Touch based user presence check.

« Authenticator is a USB pluggable hardware token.

o The authentication keys are protected by a secure element.

o The user presence check is implemented in the chip.

The Authentiator is a pure second factor authenticator.

It supports the "U2FV1BIN" assertion scheme.

e ltusesthearc sicn secp256r1_ECDSA sHA256 Raw authentication algorithm.
o ltusesthearc kev Ecc x962 raw public key format (0x100=256 decimal).
It only implements the tac_aTrTEsTarIon Basic rurn method (0x3E07=15879 decimal).
o Itimplements U2F protocol version 1.0 only.

{ "description": "FIDO Alliance Sample U2F Authenticator",
"attestationCertificateKeyIdentifiers": ["7c0903708b87115b0b422def3138c3c864e44573"],
"protocolFamily": "u2f",

"authenticatorVersion": 2,
"upv": [{ "major": 1, "minor": 0 }],
"assertionScheme": "U2FV1BIN",

"authenticationAlgorithm": 1,

"publicKeyAlgAndEncoding": 256,

"attestationTypes": [15879],

"userVerificationDetails": [[{ "userVerification": 1} 1 1,

"keyProtection": 10,

"matcherProtection": 4,

"attachmentHint": 2,

"isSecondFactorOnly": "true",

"tcDisplay": O,

"attestationRootCertificates": [
"MIICPTCCAeOgAWIBAgIJAOuexvU30y2wMAOGCCgGSM4 9BAMCMHsXxIDAeBgNVBAMM
F1NhbXBsZSBBdHR1c3RhdGlvbiBSb290MRYWFAYDVQQKDA1GSURPIEFsbGlhbmN1
MREwDwWYDVQQLDAhVQUYgVFAHLDESMBAGA1UEBwwJUGFsbyBBbHRVMQOswCQYDVQQTI
DAJDQTELMAkKGA1UEBhMCVVMwHhcNMTQwWN jE4MTMzMzMyWhcNNDEXMTAZMTMzMzMy
WjB7MSAwHgYDVQQODDBATYW1wbGUgQXR0OZXNOYXRpb24gUm9vdDEWMBQOGA1UECgwWN
Rk1ETyBBbGXpYW5jZTERMA8GA1UECWWIVUFGIFRXRYWXE jAQBgNVBACMCVBhbG8g
QWx0bzELMAKGA1UECAWCQOEXCzAJBgNVBAYTA1VTMFkwEWYHK0ZIZzjOCAQYIKOZI
zjO0DAQCcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd10Bg9vAUpOZ3ajnuQ94PR7
aMzH33nUSBr8fHYDrgOBb58pxGgqHIRyX/6NOME4wHQYDVROOBBYEFPOHA3CLhxFb
CO0It72zE4w8hk5EJ/MB8GA1UdIWQYMBaAFPOHA3CLhXFbCO0It7zE4w8hk5EJ/MAWG
AlUJEwQFMAMBAf8wCgYIKoZIzjOEAWIDSAAWRQIhAJ06QSXt9ihIbEKYKI jsPkri
VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQ0eAHjIzA9Xm63rruAXBZ9ps9z2XN
10=="1,

6. Additional Considerations

This section is non-normative.

6.1 Field updates and metadata

Metadata statements are intended to be stable once they have been published. When authenticators are updated in the
field, such updates are expected to improve the authenticator security (for example, improve FRR or FAR). The
authenticatorversion must be updated if firmware updates fixing severe security issues (e.g. as reported previously) are
available.

NOTE

The metadata statement is assumed to relate to all authenticators having the same AAID.

NOTE

The FIDO Server is recommended to assume increased risk if theauthenticatorversion specified in the metadata
statement is newer (higher) than the one present in the authenticator.

NORMATIVE

Significant changes in authenticator functionality are not anticipated in firmware updates. For example, if an
authenticator vendor wants to modify a PIN-based authenticator to use "Speaker Recognition" as a user verification
method, the vendor must assign a new AAID to this authenticator.

NORMATIVE

A single authenticator implementation could report itself as two "virtual" authenticators using different AAIDs. Such
implementations must properly (i.e. according to the security characteristics claimed in the metadata) protect vauth keys
and other sensitive data from the other "virtual" authenticator - just as a normal authenticator would do.

NOTE

Authentication keys (uauth.pub) registered for one AAID cannot be used by authenticators reporting a different AAID
- even when running on the same hardware (see section "Authentication Response Processing Rules for FIDO
Server" in [UAFProtocol]).

A. References

A.1 Normative references

[1IS019795-1]

ISO/IEC JTC 1/SC 37, Information Technology - Biometric peformance testing and reporting - Part 1: Principles and
framework, URL: http://www.iso.org/iso/catalogue detail.htm?csnumber=41447

[1ISO30107-1]
ISO/IEC JTC 1/SC 37, Information Technology - Biometrics - Presentation attack detection - Part 1: Framework URL:
http://www.iso.org/iso/catalogue detail.htm?csnumber=53227

[RFC2049]
N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and

Examples (RFC 2049), IETF, November 1996, URL:http://www.ietf.org/rfc/rfc2049.txt
[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119
[RFC2397]
L. Masinter. The "data” URL scheme. August 1998. Proposed Standard. URL:https://tools.ietf.org/html/rfc2397
[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

A.2 Informative references

[AndroidUnlockPattern]
Android Unlock Pattern Security Analysis. Sinustrom.info web site. URL:
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDOEcdaaAlgorithm]
R. Lindemann, J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Urian,FIDO ECDAA Algorithm. FIDO
Alliance Implementation Draft. URLs:
HTML.: fido-ecdaa-v1.1-id-20170202.html
PDF: fido-ecdaa-v1.1-id-20170202.pdf.

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft.
URLs:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=41447
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53227
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
http://www.sinustrom.info/2012/05/21/android-unlock-pattern-security-analysis/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-v1.1-id-20170202.pdf

HTML.: fido-glossary-v1.1-id-20170202.pdf
[FIDOKeyAttestation]
FIDO 2.0: Key attestation format URL: https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-
ps-20150904.html
[FIDOMetadataService]
R. Lindemann, B. Hill, D. Baghdasaryan, FIDO Metadata Service v1.0. FIDO Alliance Implementation Draft. URLs:
HTML.: fido-metadata-service-v1.1-id-20170202.pdf
[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values. FIDO Alliance Implementation Draft.
URLs:
HTML.: fido-registry-v1.1-id-20170202.pdf
[ITU-X690-2008]
X.690: Information technology - ASN. 1 encoding rules: Specification of Basic Encoding Rules (BER). Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). International
Telecommunications Union, November 2008 URL.: http://www.itu.int/rec/T-REC-X.690-200811-I/en
[MoreTopWorstPasswords]
10000 Top Passwords, Mark Burnett (Accessed July 11, 2014) URL:https://xato.net/passwords/more-top-worst-
passwords/
[PNG]
Tom Lane. Portable Network Graphics (PNG) Specification (Second Edition). 10 November 2003. W3C
Recommendation. URL: https://www.w3.0rg/TR/PNG/
[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL:

http://www.ietf.org/rfc/rfc4648.ixt
[RFC5280]

D. Cooper, S. Santesson, s. Farrell, S.Boeyen, R. Housley, W. Polk;Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, IETF, May 2008, URL:http://www.ietf.org/rfc/rfc5280.txt
[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO
Alliance Implementation Draft. URLs:
HTML.: fido-uaf-authnr-cmds-v1.1-id-20170202.pdf
[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0.
FIDO Alliance Proposed Standard. URLSs:
HTML.: fido-uaf-protocol-v1.1-id-20170202.pdf
[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values FIDO Alliance Proposed
Standard. URLs:
HTML: fido-uaf-reg-v1.1-id-20170202.pdf
[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL:
https://heycam.github.io/webidl/
[iPhonePasscodes]
Most Common iPhone Passcodes, Daniel Amitay (Accessed July 11, 2014) URL:

http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

Processing math: 100%

https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-service-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
http://www.itu.int/rec/T-REC-X.690-200811-I/en
http://www.itu.int/rec/T-REC-X.690-200811-I/en
https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/
https://www.w3.org/TR/PNG/
https://www.w3.org/TR/PNG/
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes
http://danielamitay.com/blog/2011/6/13/most-common-iphone-passcodes

	FIDO Metadata Statements
	FIDO Alliance Proposed Standard 02 February 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Conformance

	2. Overview
	2.1 Scope
	2.2 Audience
	2.3 Architecture

	3. Types
	3.1 CodeAccuracyDescriptor dictionary
	3.1.1 Dictionary CodeAccuracyDescriptor Members

	3.2 BiometricAccuracyDescriptor dictionary
	3.2.1 Dictionary BiometricAccuracyDescriptor Members

	3.3 PatternAccuracyDescriptor dictionary
	3.3.1 Dictionary PatternAccuracyDescriptor Members

	3.4 VerificationMethodDescriptor dictionary
	3.4.1 Dictionary VerificationMethodDescriptor Members

	3.5 verificationMethodANDCombinations typedef
	3.6 rgbPaletteEntry dictionary
	3.6.1 Dictionary rgbPaletteEntry Members

	3.7 DisplayPNGCharacteristicsDescriptor dictionary
	3.7.1 Dictionary DisplayPNGCharacteristicsDescriptor Members

	3.8 EcdaaTrustAnchor dictionary
	3.8.1 Dictionary EcdaaTrustAnchor Members

	3.9 ExtensionDescriptor dictionary
	3.9.1 Dictionary ExtensionDescriptor Members

	4. Metadata Keys
	4.1 Dictionary MetadataStatement Members

	5. Metadata Statement Format
	5.1 UAF Example
	5.2 U2F Example

	6. Additional Considerations
	6.1 Field updates and metadata

	A. References
	A.1 Normative references
	A.2 Informative references

