
FIDO UAF Authenticator-Specific Module API
FIDO Alliance Proposed Standard 02 February 2017
This version:

https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
Previous version:

https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-asm-api-v1.1-id-20170202.html
Editors:

Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Brad Hill, PayPal, Inc.
Roni Sasson, Discretix, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2017 FIDO Alliance All Rights Reserved.

Abstract
UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific
Module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the
functionality of UAF authenticators and hides internal communication complexity from FIDO UAF Client.

This document describes the internal functionality of ASMs, defines the UAF ASM API and explains how FIDO UAF Clients should use the API.

This document's intended audience is FIDO authenticator and FIDO FIDO UAF Client vendors.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO
Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please Contact
Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation,
patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any
manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be used as
reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the specification and to
promote its widespread deployment.

Table of Contents
1. Notation

1.1 Key Words
2. Overview

2.1 Code Example format
3. ASM Requests and Responses

3.1 Request enum
3.2 StatusCode Interface

3.2.1 Constants
3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

3.3 ASMRequest Dictionary
3.3.1 Dictionary ASMRequest Members

3.4 ASMResponse Dictionary
3.4.1 Dictionary ASMResponse Members

3.5 GetInfo Request
3.5.1 GetInfoOut Dictionary

3.5.1.1 Dictionary GetInfoOut Members

https://www.fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-asm-api-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-uaf-asm-api-v1.1-id-20170202.html
mailto:rolf@noknok.com
https://www.noknok.com/
mailto:john@jkemp.net
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://www.fidoalliance.org/specifications/translation/
https://www.fidoalliance.org/
https://www.fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

3.5.2 AuthenticatorInfo Dictionary
3.5.2.1 Dictionary AuthenticatorInfo Members

3.6 Register Request
3.6.1 RegisterIn Object

3.6.1.1 Dictionary RegisterIn Members
3.6.2 RegisterOut Object

3.6.2.1 Dictionary RegisterOut Members
3.6.3 Detailed Description for Processing the Register Request

3.7 Authenticate Request
3.7.1 AuthenticateIn Object

3.7.1.1 Dictionary AuthenticateIn Members
3.7.2 Transaction Object

3.7.2.1 Dictionary Transaction Members
3.7.3 AuthenticateOut Object

3.7.3.1 Dictionary AuthenticateOut Members
3.7.4 Detailed Description for Processing the Authenticate Request

3.8 Deregister Request
3.8.1 DeregisterIn Object

3.8.1.1 Dictionary DeregisterIn Members
3.8.2 Detailed Description for Processing the Deregister Request

3.9 GetRegistrations Request
3.9.1 GetRegistrationsOut Object

3.9.1.1 Dictionary GetRegistrationsOut Members
3.9.2 AppRegistration Object

3.9.2.1 Dictionary AppRegistration Members
3.9.3 Detailed Description for Processing the GetRegistrations Request

3.10 OpenSettings Request
4. Using ASM API
5. Using the ASM API on various platforms

5.1 Android ASM Intent API
5.1.1 Discovering ASMs
5.1.2 Alternate Android AIDL Service ASM Implementation

5.2 Windows ASM API
6. Security and Privacy Guidelines

6.1 KHAccessToken
6.2 Access Control for ASM APIs

A. References
A.1 Normative references
A.2 Informative references

1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript [ECMA-262] bindings for WebIDL [WebIDL-ED].

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document are to
be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB, Bluetooth, etc). The UAF Authenticator-Specific
module (ASM) is a software interface on top of UAF authenticators which gives a standardized way for FIDO UAF Clients to detect and access the

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the WebIDL
definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-progress. If you
are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL and use other means to
ensure those fields are present.

functionality of UAF authenticators, and hides internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to FIDO UAF Clients, enabling them to discover and communicate with one or more
available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this document is FIDO UAF authenticator and FIDO UAF Client vendors.

The FIDO UAF protocol and its various operations is described in the FIDO UAF Protocol Specification [UAFProtocol]. The following simplified
architecture diagram illustrates the interactions and actors this document is concerned with:

Fig. 1 UAF ASM API Architecture

2.1 Code Example format

ASM requests and responses are presented in WebIDL format.

3. ASM Requests and Responses
This section is normative.

The ASM API is defined in terms of JSON-formatted [ECMA-404] request and reply messages. In order to send a request to an ASM, a FIDO UAF
Client creates an appropriate object (e.g., in ECMAscript), "stringifies" it (also known as serialization) into a JSON-formated string, and sends it to the
ASM. The ASM de-serializes the JSON-formatted string, processes the request, constructs a response, stringifies it, returning it as a JSON-formatted
string.

Authenticator implementers may create custom authenticator command interfaces other than the one defined in [UAFAuthnrCommands]. Such
implementations are not required to implement the exact message-specific processing steps described in this section. However,

1. the command interfaces must present the ASM with external behavior equivalent to that described below in order for the ASM to properly respond
to the client request messages (e.g. returning appropriate UAF status codes for specific conditions).

2. all authenticator implementations must support an assertion scheme as defined [UAFRegistry] and must return the related objects, i.e.
TAG_UAFV1_REG_ASSERTION and TAG_UAFV1_AUTH_ASSERTION as defined in [UAFAuthnrCommands].

3.1 Request enum

WebIDL

enum Request {
 "GetInfo",
 "Register",
 "Authenticate",
 "Deregister",
 "GetRegistrations",
 "OpenSettings"
};

NOTE

Platform vendors might choose to not expose the ASM API defined in this document to applications. They might instead choose to expose ASM
functionality through some other API (such as, for example, the Android KeyStore API, or iOS KeyChain API). In these cases it's important to
make sure that the underlying ASM communicates with the FIDO UAF authenticator in a manner defined in this document.

NOTE

The ASM request processing rules in this document explicitly assume that the underlying authenticator implements the "UAFV1TLV" assertion
scheme (e.g. references to TLVs and tags) as described in [UAFProtocol]. If an authenticator supports a different assertion scheme then the
corresponding processing rules must be replaced with appropriate assertion scheme-specific rules.

Enumeration description
GetInfo GetInfo
Register Register
Authenticate Authenticate
Deregister Deregister
GetRegistrations GetRegistrations
OpenSettings OpenSettings

3.2 StatusCode Interface

If the ASM needs to return an error received from the authenticator, it shall map the status code received from the authenticator to the appropriate ASM
status code as specified here.

If the ASM doesn't understand the authenticator's status code, it shall treat it as UAF_CMD_STATUS_ERR_UNKNOWN and map it to UAF_ASM_STATUS_ERROR if it
cannot be handled otherwise.

If the caller of the ASM interface (i.e. the FIDO Client) doesn't understand a status code returned by the ASM, it shall treat it as UAF_ASM_STATUS_ERROR.
This might occur when new error codes are introduced.

WebIDL

interface StatusCode {
 const short UAF_ASM_STATUS_OK = 0x00;
 const short UAF_ASM_STATUS_ERROR = 0x01;
 const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;
 const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;
 const short UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT = 0x04;
 const short UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY = 0x09;
 const short UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED = 0x0b;
 const short UAF_ASM_STATUS_USER_NOT_RESPONSIVE = 0x0e;
 const short UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;
 const short UAF_ASM_STATUS_USER_LOCKOUT = 0x10;
 const short UAF_ASM_STATUS_USER_NOT_ENROLLED = 0x11;
};

3.2.1 Constants

UAF_ASM_STATUS_OK of type short
No error condition encountered.

UAF_ASM_STATUS_ERROR of type short
An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED of type short
Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short
Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT of type short
Transaction content cannot be rendered, e.g. format doesn't fit authenticator's need.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY of type short
Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED of type short
Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE of type short
The user took too long to follow an instruction, e.g. didn't swipe the finger within the accepted time.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short
Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_LOCKOUT of type short
The operation failed because the user is locked out and the authenticator cannot automatically trigger an action to change that. Typically the
user would have to enter an alternative password (formally: undergo some other alternative user verification method) to re-enable the use of
the main user verification method.

UAF_ASM_STATUS_USER_NOT_ENROLLED of type short
The operation failed because the user is not enrolled to the authenticator and the authenticator cannot automatically trigger user enrollment.

3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on those responses and also map the status code
returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator Status Code ASM Status Code Comment
UAF_CMD_STATUS_OK UAF_ASM_STATUS_OK Pass-through success status.

UAF_CMD_STATUS_ERR_UNKNOWN UAF_ASM_STATUS_ERROR Pass-through unspecific error status.

UAF_CMD_STATUS_ACCESS_DENIED UAF_ASM_STATUS_ACCESS_DENIED Pass-through status code.

According to [UAFAuthnrCommands], this

NOTE

Any method the user can use to (re-) enable the main user verification method is considered an alternative user verification method
and must be properly declared as such. For example, if the user can enter an alternative password to re-enable the use of fingerprints
or to add additional fingers, the authenticator obviously supports fingerprint or password based user verification.

UAF_CMD_STATUS_USER_NOT_ENROLLED
UAF_ASM_STATUS_USER_NOT_ENROLLED (or
UAF_ASM_STATUS_ACCESS_DENIED in some situations)

might occur at the Sign command or at the
Register command if the authenticator cannot
automatically trigger user enrollment. The
mapping depends on the command as follows.

In the case of "Register" command, the error is
mapped to
UAF_ASM_STATUS_USER_NOT_ENROLLED
in order to tell the calling FIDO Client the there
is an authenticator present but the user
enrollment needs to be triggered outside the
authenticator.

In the case of the "Sign" command, the Uauth
key needs to be protected by one of the
authenticator's user verification methods at all
times. So if this error occurs it is considered an
internal error and hence mapped to
UAF_ASM_STATUS_ACCESS_DENIED.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT
Pass-through status code as it indicates a
problem to be resolved by the entity providing
the transaction text.

UAF_CMD_STATUS_USER_CANCELLED UAF_ASM_STATUS_USER_CANCELLED Map to UAF_ASM_STATUS_USER_CANCELLED

UAF_CMD_STATUS_CMD_NOT_SUPPORTED UAF_ASM_STATUS_OK or UAF_ASM_STATUS_ERROR

If the ASM is able to handle that command on
behalf of the authenticator (e.g. removing the
key handle in the case of Dereg command for a
bound authenticator), the UAF_ASM_STATUS_OK
must be returned. Map the status code
UAF_ASM_STATUS_ERROR otherwise.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not requested one of the supported
attestation types indicated in the authenticator's
response to the GetInfo command.

UAF_CMD_STATUS_PARAMS_INVALID UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM has
obviously not provided the correct parameters
to the authenticator when sending the
command.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates that the
Uauth key disappeared permanently and the
RP App might want to trigger re-registration of
the authenticator.

UAF_STATUS_CMD_TIMEOUT UAF_ASM_STATUS_ERROR
Retry operation and map to
UAF_ASM_STATUS_ERROR if the problem persists.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE UAF_ASM_STATUS_USER_NOT_RESPONSIVE
Pass-through status code. The RP App might
want to retry the operation once the user
attention to the application again.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES Pass-through status code.

UAF_CMD_STATUS_USER_LOCKOUT UAF_ASM_STATUS_USER_LOCKOUT Pass-through status code.

Any other status code UAF_ASM_STATUS_ERROR

Map any unknown error code to
UAF_ASM_STATUS_ERROR. This might happen when
an ASM communicates with an authenticator
implementing a newer UAF specification than
the ASM.

Authenticator Status Code ASM Status Code Comment

3.3 ASMRequest Dictionary

All ASM requests are represented as ASMRequest objects.

WebIDL

dictionary ASMRequest {
 required Request requestType;
 Version asmVersion;
 unsigned short authenticatorIndex;
 object args;
 Extension[] exts;
};

3.3.1 Dictionary ASMRequest Members

requestType of type required Request
Request type

asmVersion of type Version
ASM message version to be used with this request. For the definition of the Version dictionary see [UAFProtocol]. The asmVersion must be
1.1 (i.e. major version is 1 and minor version is 1) for this version of the specification.

authenticatorIndex of type unsigned short
Refer to the GetInfo request for more details. Field authenticatorIndex must not be set for GetInfo request.

args of type object
Request-specific arguments. If set, this attribute may take one of the following types:

RegisterIn

AuthenticateIn

DeregisterIn

exts of type array of Extension
List of UAF extensions. For the definition of the Extension dictionary see [UAFProtocol].

3.4 ASMResponse Dictionary

All ASM responses are represented as ASMResponse objects.

WebIDL

dictionary ASMResponse {
 required short statusCode;
 object responseData;
 Extension[] exts;
};

3.4.1 Dictionary ASMResponse Members

statusCode of type required short
must contain one of the values defined in the StatusCode interface

responseData of type object
Request-specific response data. This attribute must have one of the following types:

GetInfoOut

RegisterOut

AuthenticateOut

GetRegistrationOut

exts of type array of Extension
List of UAF extensions. For the definition of the Extension dictionary see [UAFProtocol].

3.5 GetInfo Request

Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports
2. Collect information about all of them
3. Assign indices to them (authenticatorIndex)
4. Return the information to the caller

For a GetInfo request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

ASMResponse.responseData must be an object of type GetInfoOut. In the case of an error the values of the fields might be empty (e.g. array with no
members).

See section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codesfor details on the mapping of authenticator status codes to ASM status
codes.

3.5.1 GetInfoOut Dictionary

WebIDL

dictionary GetInfoOut {
 required AuthenticatorInfo[] Authenticators;
};

3.5.1.1 Dictionary GetInfoOut Members

Authenticators of type array of required AuthenticatorInfo
List of authenticators reported by the current ASM. may be empty an empty list.

3.5.2 AuthenticatorInfo Dictionary

WebIDL

NOTE

Where possible, an authenticatorIndex should be a persistent identifier that uniquely identifies an authenticator over time, even if it is repeatedly
disconnected and reconnected. This avoids possible confusion if the set of available authenticators changes between a GetInfo request and
subsequent ASM requests, and allows a FIDO client to perform caching of information about removable authenticators for a better user
experience.

NOTE

It is up to the ASM to decide whether authenticators which are disconnected temporarily will be reported or not. However, if disconnected
authenticators are reported, the FIDO Client might trigger an operation via the ASM on those. The ASM will have to notify the user to connect the
authenticator and report an appropriate error if the authenticator isn't connected in time.

dictionary AuthenticatorInfo {
 required unsigned short authenticatorIndex;
 required Version[] asmVersions;
 required boolean isUserEnrolled;
 required boolean hasSettings;
 required AAID aaid;
 required DOMString assertionScheme;
 required unsigned short authenticationAlgorithm;
 required unsigned short[] attestationTypes;
 required unsigned long userVerification;
 required unsigned short keyProtection;
 required unsigned short matcherProtection;
 required unsigned long attachmentHint;
 required boolean isSecondFactorOnly;
 required boolean isRoamingAuthenticator;
 required DOMString[] supportedExtensionIDs;
 required unsigned short tcDisplay;
 DOMString tcDisplayContentType;
 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
 DOMString title;
 DOMString description;
 DOMString icon;
};

3.5.2.1 Dictionary AuthenticatorInfo Members

authenticatorIndex of type required unsigned short
Authenticator index. Unique, within the scope of all authenticators reported by the ASM, index referring to an authenticator. This index is used
by the UAF Client to refer to the appropriate authenticator in further requests.

asmVersions of type array of required Version
A list of ASM Versions that this authenticator can be used with. For the definition of the Version dictionary see [UAFProtocol].

isUserEnrolled of type required boolean
Indicates whether a user is enrolled with this authenticator. Authenticators which don't have user verification technology must always return
true. Bound authenticators which support different profiles per operating system (OS) user must report enrollment status for the current OS
user.

hasSettings of type required boolean
A boolean value indicating whether the authenticator has its own settings. If so, then a FIDO UAF Client can launch these settings by sending
a OpenSettings request.

aaid of type required AAID
The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the authenticator. See [UAFProtocol] for the definition of the
AAID structure.

assertionScheme of type required DOMString
The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

authenticationAlgorithm of type required unsigned short
Indicates the authentication algorithm that the authenticator uses. Authentication algorithm identifiers are defined in are defined in
[FIDORegistry] with ALG_ prefix.

attestationTypes of type array of required unsigned short
Indicates attestation types supported by the authenticator. Attestation type TAGs are defined in [UAFRegistry] with TAG_ATTESTATION prefix

userVerification of type required unsigned long
A set of bit flags indicating the user verification method(s) supported by the authenticator. The values are defined by the USER_VERIFY
constants in [FIDORegistry].

keyProtection of type required unsigned short
A set of bit flags indicating the key protections used by the authenticator. The values are defined by the KEY_PROTECTION constants in
[FIDORegistry].

matcherProtection of type required unsigned short
A set of bit flags indicating the matcher protections used by the authenticator. The values are defined by the MATCHER_PROTECTION constants in
[FIDORegistry].

attachmentHint of type required unsigned long
A set of bit flags indicating how the authenticator is currently connected to the system hosting the FIDO UAF Client software. The values are
defined by the ATTACHMENT_HINT constants defined in [FIDORegistry].

isSecondFactorOnly of type required boolean
Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator of type required boolean
Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString
List of supported UAF extension Ids. may be an empty list.

tcDisplay of type required unsigned short
A set of bit flags indicating the availability and type of the authenticator's transaction confirmation display. The values are defined by the
TRANSACTION_CONFIRMATION_DISPLAY constants in [FIDORegistry].

This value must be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString
Supported transaction content type [FIDOMetadataStatement].

NOTE

Because the connection state and topology of an authenticator may be transient, these values are only hints that can be used by
server-supplied policy to guide the user experience, e.g. to prefer a device that is connected and ready for authenticating or confirming
a low-value transaction, rather than one that is more secure but requires more user effort. These values are not reflected in
authenticator metadata and cannot be relied on by the relying party, although some models of authenticator may provide attested
measurements with similar semantics as part of UAF protocol messages.

This value must be present if transaction confirmation is supported, i.e. tcDisplay is non-zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction Portable Network Graphic (PNG) type [FIDOMetadataStatement]. For the definition of the
DisplayPNGCharacteristicsDescriptor structure see [FIDOMetadataStatement].

This list must be present if PNG-image based transaction confirmation is supported, i.e. tcDisplay is non-zero and tcDisplayContentType is
image/png.

title of type DOMString
A human-readable short title for the authenticator. It should be localized for the current locale.

description of type DOMString
Human-readable longer description of what the authenticator represents.

icon of type DOMString
Portable Network Graphic (PNG) format image file representing the icon encoded as a data: url [RFC2397].

3.6 Register Request

Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Register
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type RegisterIn

For a Register response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type RegisterOut. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.6.1 RegisterIn Object

WebIDL

dictionary RegisterIn {
 required DOMString appID;
 required DOMString username;
 required DOMString finalChallenge;
 required unsigned short attestationType;
};

3.6.1.1 Dictionary RegisterIn Members

appID of type required DOMString
The FIDO server Application Identity.

username of type required DOMString
Human-readable user account name

finalChallenge of type required DOMString
base64url-encoded challenge data [RFC4648]

NOTE

If the ASM doesn't return a title, the FIDO UAF Client must provide a title to the calling App. See section "Authenticator interface" in
[UAFAppAPIAndTransport].

NOTE

This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified in the metadata statement for the
authenticator [FIDOMetadataStatement].

If the ASM doesn't return a description, the FIDO UAF Client will provide a description to the calling application. See section
"Authenticator interface" in [UAFAppAPIAndTransport].

NOTE

If the ASM doesn't return an icon, the FIDO UAF Client will provide a default icon to the calling application. See section "Authenticator
interface" in [UAFAppAPIAndTransport].

attestationType of type required unsigned short
Single requested attestation type

3.6.2 RegisterOut Object

WebIDL

dictionary RegisterOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.6.2.1 Dictionary RegisterOut Members

assertion of type required DOMString
FIDO UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString
Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol specification [UAFProtocol].

3.6.3 Detailed Description for Processing the Register Request

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.
2. If a user is already enrolled with this authenticator (such as biometric enrollment, PIN setup, etc. for example) then the ASM must request that the

authenticator verifies the user.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.

If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED
3. If the user is not enrolled with the authenticator then take the user through the enrollment process.

If neither the ASM nor the Authenticator can trigger the enrollment process, return UAF_ASM_STATUS_USER_NOT_ENROLLED.
If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function (FinalChallengeHash)

An authenticator's preferred hash function information must meet the algorithm defined in the AuthenticatorInfo.authenticationAlgorithm field.

6. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator
1. Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username, UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType

1. Depending on AuthenticatorType some arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.

7. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details).

8. Parse TAG_UAFV1_REGISTER_CMD_RESP
1. Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) and extract TAG_KEYID

9. If the authenticator is a bound authenticator
1. Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in the ASM's database.

10. Create a RegisterOut object
1. Set RegisterOut.assertionScheme according to AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_REG_ASSERTION) in base64url format and set as RegisterOut.assertion.
3. Return RegisterOut object

3.7 Authenticate Request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to Authenticate.
ASMRequest.asmVersion must be set to the desired version.
ASMRequest.authenticatorIndex must be set to the target authenticator index.
ASMRequest.args must be set to an object of type AuthenticateIn

For an Authenticate response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), then the ASM must obtain this token in order to later
include it with the Register command.

NOTE

What data an ASM will store at this stage depends on underlying authenticator's architecture. For example some authenticators might
store AppID, KeyHandle, KeyID inside their own secure storage. In this case ASM doesn't have to store these data in its database.

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

UAF_ASM_STATUS_USER_LOCKOUT

UAF_ASM_STATUS_USER_NOT_ENROLLED

ASMResponse.responseData must be an object of type AuthenticateOut. In the case of an error the values of the fields might be empty (e.g. empty
strings).

3.7.1 AuthenticateIn Object

WebIDL

dictionary AuthenticateIn {
 required DOMString appID;
 DOMString[] keyIDs;
 required DOMString finalChallenge;
 Transaction[] transaction;
};

3.7.1.1 Dictionary AuthenticateIn Members

appID of type required DOMString
appID string

keyIDs of type array of DOMString
base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString
base64url [RFC4648] encoded final challenge

transaction of type array of Transaction
An array of transaction data to be confirmed by user. If multiple transactions are provided, then the ASM must select the one that best
matches the current display characteristics.

3.7.2 Transaction Object

WebIDL

dictionary Transaction {
 required DOMString contentType;
 required DOMString content;
 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.7.2.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according to its metadata statement (see [FIDOMetadataStatement])

content of type required DOMString
Contains the base64url-encoded [RFC4648] transaction content according to the contentType to be shown to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See
[FIDOMetadataStatement].

3.7.3 AuthenticateOut Object

WebIDL

dictionary AuthenticateOut {
 required DOMString assertion;
 required DOMString assertionScheme;
};

3.7.3.1 Dictionary AuthenticateOut Members

assertion of type required DOMString
Authenticator UAF authentication assertion.

assertionScheme of type required DOMString
Assertion scheme

3.7.4 Detailed Description for Processing the Authenticate Request

Refer to the [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

1. Locate the authenticator using authenticatorIndex. If the authenticator cannot be located, then fail with
UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN setup, etc.), return UAF_ASM_STATUS_ACCESS_DENIED
3. The ASM must request the authenticator to verify the user.

If the user is locked out (e.g. too many failed attempts to get verified) and the authenticator cannot automatically trigger unblocking, return
UAF_ASM_STATUS_USER_LOCKOUT.
If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Construct KHAccessToken (see section KHAccessToken for more details)
5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific hash function (FinalChallengeHash).

The authenticator's preferred hash function information must meet the algorithm defined in the AuthenticatorInfo.authenticationAlgorithm field.

6. If this is a Second Factor authenticator and AuthenticateIn.keyIDs is empty, then return UAF_ASM_STATUS_ACCESS_DENIED
7. If AuthenticateIn.keyIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the
KeyHandles associated with it.

Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the related key disappeared permanently from the authenticator.
Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as KeyHandles
8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.

1. Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not empty), FinalChallengeHash, KHAccessToken,
UserVerificationToken, KeyHandles

Depending on AuthenticatorType some arguments may be optional. Refer to [UAFAuthnrCommands] for more information on
authenticator types and their required arguments.
If multiple transactions are provided, select the one that best matches the current display characteristics.

Decode the base64url encoded AuthenticateIn.Transaction.content before passing it to the authenticator
9. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the

authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details).

10. Parse TAG_UAFV1_SIGN_CMD_RESP
If it's a first-factor authenticator and the response includes TAG_USERNAME_AND_KEYHANDLE, then

1. Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields
2. If two or more equal usernames are found, then choose the one which has registered most recently

3. Show remaining distinct usernames and ask the user to choose a single username
4. Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle associated with the selected username.
5. Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

11. Create the AuthenticateOut object
1. Set AuthenticateOut.assertionScheme as AuthenticatorInfo.assertionScheme
2. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g. TAG_UAFV1_AUTH_ASSERTION) in base64url format and set as

AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement must truly indicate the type of transaction confirmation display implementation. Typically the "Transaction
Confirmation Display" flag will be set to TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise) or TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

3.8 Deregister Request

Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be omitted:

ASMRequest.requestType must be set to Deregister

NOTE

If the authenticator supports UserVerificationToken (see [UAFAuthnrCommands]), the ASM must obtain this token in order to later
pass to Sign command.

NOTE

This may, for example, depend on whether user's device is positioned horizontally or vertically at the moment of transaction.

NOTE

After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's database may delete the redundant
KeyHandles from the ASM's database. This avoids having unusable (old) private key in the authenticator which (surprisingly)
might become active after deregistering the newly generated one.

NOTE

Some authenticators might support "Transaction Confirmation Display" functionality not inside the authenticator but within the boundaries of the
ASM. Typically these are software based Transaction Confirmation Displays. When processing the Sign command with a given transaction such
ASM should show transaction content in its own UI and after user confirms it -- pass the content to authenticator so that the authenticator
includes it in the final assertion.

See [FIDORegistry] for flags describing Transaction Confirmation Display type.

ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index
ASMRequest.args must be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_ACCESS_DENIED

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

3.8.1 DeregisterIn Object

WebIDL

dictionary DeregisterIn {
 required DOMString appID;
 required DOMString keyID;
};

3.8.1.1 Dictionary DeregisterIn Members

appID of type required DOMString
FIDO Server Application Identity

keyID of type required DOMString
Base64url-encoded [RFC4648] key identifier of the authenticator to be de-registered. The keyID can be an empty string. In this case all keyIDs
related to this appID must be deregistered.

3.8.2 Detailed Description for Processing the Deregister Request

Refer to [UAFAuthnrCommands] for more information about the TAGs and structures mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex
2. Construct KHAccessToken (see section KHAccessToken for more details).
3. If this is a bound authenticator, then

If the value of DeregisterIn.keyID is an empty string, then lookup all pairs of this appID and any keyID mapped to this authenticatorIndex
and delete them. Go to step 4.
Otherwise, lookup the authenticator related data in the ASM database and delete the record associated with DeregisterIn.appID and
DeregisterIn.keyID. Go to step 4.

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken and DeregisterIn.keyID and pass it to the authenticator.

5. Invoke the command and receive the response. If the authenticator returns an error, handle that error appropriately. If the connection to the
authenticator gets lost and cannot be restored, return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation finally fails, map the
authenticator error code to the appropriate ASM error code (see section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for
details). Return proper ASMResponse.

3.9 GetRegistrations Request

Return all registrations made for the calling FIDO UAF Client.

For a GetRegistrations request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to GetRegistrations
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should
be omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

UAF_ASM_STATUS_ERROR

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

The ASMResponse.responseData must be an object of type GetRegistrationsOut. In the case of an error the values of the fields might be empty
(e.g. empty strings).

3.9.1 GetRegistrationsOut Object

WebIDL

dictionary GetRegistrationsOut {
 required AppRegistration[] appRegs;
};

3.9.1.1 Dictionary GetRegistrationsOut Members

NOTE

In the case of roaming authenticators, the keyID passed to the authenticator might be an empty string. The authenticator is supposed to
deregister all keys related to this appID in this case.

appRegs of type array of required AppRegistration
List of registrations associated with an appID (see AppRegistration below). may be an empty list.

3.9.2 AppRegistration Object

WebIDL

dictionary AppRegistration {
 required DOMString appID;
 required DOMString[] keyIDs;
};

3.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString
FIDO Server Application Identity.

keyIDs of type array of required DOMString
List of key identifiers associated with the appID

3.9.3 Detailed Description for Processing the GetRegistrations Request

1. Locate the authenticator using authenticatorIndex
2. If this is bound authenticator, then

Lookup the registrations associated with CallerID and AppID in the ASM database and construct a list of AppRegistration objects

3. Create GetRegistrationsOut object and return

3.10 OpenSettings Request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user interface, then the ASM must invoke
TAG_UAFV1_OPEN_SETTINGS_CMD to display it.

For an OpenSettings request, the following ASMRequest member(s) must have the following value(s). The remaining ASMRequest members should be
omitted:

ASMRequest.requestType must be set to OpenSettings
ASMRequest.asmVersion must be set to the desired version
ASMRequest.authenticatorIndex must be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) must have the following value(s). The remaining ASMResponse members should be
omitted:

ASMResponse.statusCode must have one of the following values:
UAF_ASM_STATUS_OK

4. Using ASM API
This section is non-normative.

In a typical implementation, the FIDO UAF Client will call GetInfo during initialization and obtain information about the authenticators. Once the
information is obtained it will typically be used during FIDO UAF message processing to find a match for given FIDO UAF policy. Once a match is found
the FIDO UAF Client will send the appropriate request (Register/Authenticate/Deregister...) to this ASM.

The FIDO UAF Client may use the information obtained from a GetInfo response to display relevant information about an authenticator to the user.

5. Using the ASM API on various platforms
This section is normative.

5.1 Android ASM Intent API

On Android systems FIDO UAF ASMs may be implemented as a separate APK-packaged application.

The FIDO UAF Client invokes ASM operations via Android Intents. All interactions between the FIDO UAF Client and an ASM on Android takes place
through the following intent identifier:

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this document, an intent must also have its type attribute set to application/fido.uaf_asm+json.

ASMs must register that intent in their manifest file and implement a handler for it.

FIDO UAF Clients must append an extra, message, containing a String representation of a ASMRequest, before invoking the intent.

FIDO UAF Clients must invoke ASMs by calling startActivityForResult()

FIDO UAF Clients should assume that ASMs will display an interface to the user in order to handle this intent, e.g. prompting the user to complete the
verification ceremony. However, the ASM should not display any user interface when processing a GetInfo request.

After processing is complete the ASM will return the response intent as an argument to onActivityResult(). The response intent will have an extra,
message, containing a String representation of a ASMResponse.

5.1.1 Discovering ASMs

NOTE

Some ASMs might not store this information inside their own database. Instead it might have been stored inside the authenticator's
secure storage area. In this case the ASM must send a proprietary command to obtain the necessary data.

FIDO UAF Clients can discover the ASMs available on the system by using PackageManager.queryIntentActivities(Intent intent, int flags) with
the FIDO Intent described above to see if any activities are available.

A typical FIDO UAF Client will enumerate all ASM applications using this function and will invoke the GetInfo operation for each one discovered.

5.1.2 Alternate Android AIDL Service ASM Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative transport mechanism to Android Intents. Please see
Android Intent API section [UAFAppAPIAndTransport] for differences between the Android AIDL service and Android Intent implementation.

5.2 Windows ASM API

On Windows, an ASM is implemented in the form of a Dynamic Link Library (DLL). The following is an example asmplugin.h header file defining a
Windows ASM API:

EXAMPLE 1
/*! @file asm.h
*/

#ifndef __ASMH_
#define __ASMH_
#ifdef _WIN32
#define ASM_API __declspec(dllexport)
#endif

#ifdef _WIN32
#pragma warning (disable : 4251)
#endif

#define ASM_FUNC extern "C" ASM_API
#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.
* Authenticator specific error codes are returned in JSON form.
* See JSON schemas for more details.
*/

enum asmResult_t
{
 Success = 0, /**< Success */
 Failure /**< Generic failure */
};

/*! \brief Generic structure containing JSON string in UTF-8
* format.
* This structure is used throughout functions to pass and receives
* JSON data.
*/

struct asmJSONData_t
{
 int length; /**< JSON data length */
 char pData; /*< JSON data */
};

/*! \brief Enumeration event types for authenticators.
These events will be fired when an authenticator becomes
 available (plugged) or unavailable (unplugged).
*/

enum asmEnumerationType_t
{
 Plugged = 0, /**< Indicates that authenticator Plugged to system */
 Unplugged /**< Indicates that authenticator Unplugged from system */
};

namespace ASM
{
 /*! \brief Callback listener.
 FIDO UAF Client must pass an object implementating this interface to
 Authenticator::Process function. This interface is used to provide
 ASM JSON based response data.*/
 class ICallback
 {
 public
 virtual ~ICallback() {}
 /**
 This function is called when ASM's response is ready.
 *
 @param response JSON based event data
 @param exchangeData must be provided by ASM if it needs some
 data back right after calling the callback function.
 The lifecycle of this parameter must be managed by ASM. ASM must
 allocate enough memory for getting the data back.
 */

 virtual void Callback(const asmJSONData_t &response,
 asmJSONData_t &exchangeData) = 0;
 };

 /*! \brief Authenticator Enumerator.
 FIDO UAF Client must provide an object implementing this
 interface. It will be invoked when a new authenticator is plugged or
 when an authenticator has been unplugged. */

 class IEnumerator
 {
 public
 virtual ~IEnumerator() {}
 /**
 This function is called when an authenticator is plugged or
 unplugged.
 * @param eventType event type (plugged/unplugged)
 @param AuthenticatorInfo JSON based GetInfoResponse object
 */

 virtual void Notify(const asmEnumerationType_t eventType, const
 asmJSONData_t &AuthenticatorInfo) = 0;
 };
}

/**
Initializes ASM plugin. This is the first function to be
 called.
*
@param pEnumerationListener caller provided Enumerator
*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent, int)

A Windows-based FIDO UAF Client must look for ASM DLLs in the following registry paths:

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The FIDO UAF Client iterates over all keys under this path and looks for "path" field:

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path must point to the absolute location of the ASM DLL.

6. Security and Privacy Guidelines
This section is normative.

ASM developers must carefully protect the FIDO UAF data they are working with. ASMs must follow these security guidelines:

ASMs must implement a mechanism for isolating UAF credentials registered by two different FIDO UAF Clients from one another. One FIDO UAF
Client must not have access to FIDO UAF credentials that have been registered via a different FIDO UAF Client. This prevents malware from
exercising credentials associated with a legitimate FIDO Client.

An ASM designed specifically for bound authenticators must ensure that FIDO UAF credentials registered with one ASM cannot be accessed by
another ASM. This is to prevent an application pretending to be an ASM from exercising legitimate UAF credentials.

Using a KHAccessToken offers such a mechanism.

An ASMs must implement platform-provided security best practices for protecting UAF related stored data.

ASMs must not store any sensitive FIDO UAF data in its local storage, except the following:

CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

ASMs should ensure that applications cannot use silent authenticators for tracking purposes. ASMs implementing support for a silent
authenticator must show, during every registration, a user interface which explains what a silent authenticator is, asking for the users consent for
the registration. Also, it is recommended that ASMs designed to support roaming silent authenticators either

Run with a special permission/privilege on the system, or
Have a built-in binding with the authenticator which ensures that other applications cannot directly communicate with the authenticator by
bypassing this ASM.

6.1 KHAccessToken

KHAccessToken is an access control mechanism for protecting an authenticator's FIDO UAF credentials from unauthorized use. It is created by the ASM
by mixing various sources of information together. Typically, a KHAccessToken contains the following four data items in it: AppID, PersonaID, ASMToken and

 *pEnumerationListener);
/**
Process given JSON request and returns JSON response.
*
If the caller wants to execute a function defined in ASM JSON
 schema then this is the function that must be called.
*
@param pInData input JSON data
@param pListener event listener for receiving events from ASM
*/
ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,
 ASM::ICallback *pListener);
/**
Unitializes ASM plugin.
*
*/
ASM_FUNC asmResult_t asmUninit();
#endif // __ASMPLUGINH_

NOTE

ASMs must properly protect their sensitive data against malware using platform-provided isolation capabilities in order to follow the
assumptions made in [FIDOSecRef]. Malware with root access to the system or direct physical attack on the device are out of scope for this
requirement.

NOTE

The following are examples for achieving this:

If an ASM is bundled with a FIDO UAF Client, this isolation mechanism is already built-in.
If the ASM and FIDO UAF Client are implemented by the same vendor, the vendor may implement proprietary mechanisms to bind its
ASM exclusively to its own FIDO UAF Client.
On some platforms ASMs and the FIDO UAF Clients may be assigned with a special privilege or permissions which regular
applications don't have. ASMs built for such platforms may avoid supporting isolation of UAF credentials per FIDO UAF Clients since
all FIDO UAF Clients will be considered equally trusted.

NOTE

An ASM, for example, must never store a username provided by a FIDO Server in its local storage in a form other than being decryptable
exclusively by the authenticator.

CallerID.

AppID is provided by the FIDO Server and is contained in every FIDO UAF message.

PersonaID is obtained by the ASM from the operational environment. Typically a different PersonaID is assigned to every operating system user account.

ASMToken is a randomly generated secret which is maintained and protected by the ASM.

CallerID is the ID the platform has assigned to the calling FIDO UAF Client (e.g. "bundle ID" for iOS). On different platforms the CallerID can be
obtained differently.

The ASM uses the KHAccessToken to establish a link between the ASM and the key handle that is created by authenticator on behalf of this ASM.

The ASM provides the KHAccessToken to the authenticator with every command which works with key handles.

Bound authenticators must support a mechanism for binding generated key handles to ASMs. The binding mechanism must have at least the same
security characteristics as mechanism for protcting KHAccessToken described above. As a consequence it is recommended to securely derive
KHAccessToken from AppID, ASMToken, PersonaID and the CallerID.

If an ASM for roaming authenticators doesn't use a KHAccessToken which is different for each AppID, the ASM must include the AppID in the command for
a deregister request containing an empty KeyID.

6.2 Access Control for ASM APIs

The following table summarizes the access control requirements for each API call.

ASMs must implement the access control requirements defined below. ASM vendors may implement additional security mechanisms.

Terms used in the table:

NoAuth -- no access control
CallerID -- FIDO UAF Client's platform-assigned ID is verified
UserVerify -- user must be explicitly verified
KeyIDList -- must be known to the caller

Commands First-factor bound
authenticator

Second-factor bound
authenticator

First-factor roaming
authenticator

Second-factor roaming
authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

NOTE

In a typical implementation an ASM will randomly generate an ASMToken when it is launched the first time and will maintain this secret until the
ASM is uninstalled.

NOTE

For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

NOTE

The following example describes how the ASM constructs and uses KHAccessToken.

During a Register request
Set KHAccessToken to a secret value only known to the ASM. This value will always be the same for this ASM.
Append AppID

KHAccessToken = AppID

If a bound authenticator, append ASMToken, PersonaID and CallerID
KHAccessToken |= ASMToken | PersonaID | CallerID

Hash KHAccessToken
Hash KHAccessToken using the authenticator's hashing algorithm. The reason of using authenticator specific hash function is to
make sure of interoperability between ASMs. If interoperability is not required, an ASM can use any other secure hash function it
wants.
KHAccessToken=hash(KHAccessToken)

Provide KHAccessToken to the authenticator
The authenticator puts the KHAccessToken into RawKeyHandle (see [UAFAuthnrCommands] for more details)

During other commands which require KHAccessToken as input argument
The ASM computes KHAccessToken the same way as during the Register request and provides it to the authenticator along with other
arguments.
The authenticator unwraps the provided key handle(s) and proceeds with the command only if RawKeyHandle.KHAccessToken is equal
to the provided KHAccessToken.

NOTE

It is recommended for roaming authenticators that the KHAccessToken contains only the AppID since otherwise users won't be able to use them on
different machines (PersonaID, ASMToken and CallerID are platform specific). If the authenticator vendor decides to do that in order to address a
specific use case, however, it is allowed.

Including PersonaID in the KHAccessToken is optional for all types of authenticators. However an authenticator designed for multi-user systems will
likely have to support it.

Authenticate
UserVerify
AppID
CallerID
PersonaID

UserVerify
AppID
KeyIDList
CallerID
PersonaID

UserVerify
AppID

UserVerify
AppiD
KeyIDList

GetRegistrations* CallerID
PersonaID

CallerID
PersonaID X X

Deregister
AppID
KeyID
PersonaID
CallerID

AppID
KeyID
PersonaID
CallerID

AppID
KeyID

AppID
KeyID

A. References
A.1 Normative references

[ECMA-262]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDOGlossary]
R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, FIDO Technical Glossary. FIDO Alliance Implementation Draft. URLs:
HTML: fido-glossary-v1.1-id-20170202.pdf

[FIDOMetadataStatement]
B. Hill, D. Baghdasaryan, J. Kemp, FIDO Metadata Statements v1.0. FIDO Alliance Implementation Draft. URLs:
HTML: fido-metadata-statements.pdf

[FIDORegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Registry of Predefined Values. FIDO Alliance Implementation Draft. URLs:
HTML: fido-registry-v1.1-id-20170202.pdf

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC4648]
S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

[UAFAuthnrCommands]
D. Baghdasaryan, J. Kemp, R. Lindemann, R. Sasson, B. Hill, FIDO UAF Authenticator Commands v1.0. FIDO Alliance Implementation Draft.
URLs:
HTML: fido-uaf-authnr-cmds-v1.1-id-20170202.pdf

[UAFProtocol]
R. Lindemann, D. Baghdasaryan, E. Tiffany, D. Balfanz, B. Hill, J. Hodges, FIDO UAF Protocol Specification v1.0. FIDO Alliance Proposed
Standard. URLs:
HTML: fido-uaf-protocol-v1.1-id-20170202.pdf

[UAFRegistry]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO UAF Registry of Predefined Values. FIDO Alliance Proposed Standard. URLs:
HTML: fido-uaf-reg-v1.1-id-20170202.pdf

[WebIDL-ED]
Cameron McCormack, Web IDL, W3C. Editor's Draft 13 November 2014. URL: http://heycam.github.io/webidl/

A.2 Informative references

[ECMA-404]
The JSON Data Interchange Format. 1 October 2013. Standard. URL: https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf

[FIDOSecRef]
R. Lindemann, D. Baghdasaryan, B. Hill, FIDO Security Reference. FIDO Alliance Implementation Draft. URLs:
HTML: fido-security-ref-v1.1-id-20170202.pdf

[RFC2397]
L. Masinter. The "data" URL scheme. August 1998. Proposed Standard. URL: https://tools.ietf.org/html/rfc2397

[UAFAppAPIAndTransport]
B. Hill, D. Baghdasaryan, B. Blanke, FIDO UAF Application API and Transport Binding Specification. FIDO Alliance Implementation Draft. URLs:
HTML: fido-uaf-client-api-transport-v1.1-id-20170202.pdf

[WebIDL]
Cameron McCormack; Boris Zbarsky; Tobie Langel. Web IDL. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-glossary-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-metadata-statement-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-registry-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-authnr-cmds-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
PDF: <a href=
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-reg-v1.1-ps-20170202.html
PDF: <a href=
http://heycam.github.io/webidl/
http://heycam.github.io/webidl/
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-security-ref-v1.1-ps-20170202.html
PDF: <a href=
https://tools.ietf.org/html/rfc2397
https://tools.ietf.org/html/rfc2397
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-client-api-transport-v1.1-ps-20170202.html
PDF: <a href=
https://heycam.github.io/webidl/
https://heycam.github.io/webidl/

	FIDO UAF Authenticator-Specific Module API
	FIDO Alliance Proposed Standard 02 February 2017
	Abstract
	Status of This Document
	Table of Contents
	1. Notation
	1.1 Key Words

	2. Overview
	2.1 Code Example format

	3. ASM Requests and Responses
	3.1 Request enum
	3.2 StatusCode Interface
	3.2.1 Constants
	3.2.2 Mapping Authenticator Status Codes to ASM Status Codes

	3.3 ASMRequest Dictionary
	3.3.1 Dictionary ASMRequest Members

	3.4 ASMResponse Dictionary
	3.4.1 Dictionary ASMResponse Members

	3.5 GetInfo Request
	3.5.1 GetInfoOut Dictionary
	3.5.2 AuthenticatorInfo Dictionary

	3.6 Register Request
	3.6.1 RegisterIn Object
	3.6.2 RegisterOut Object
	3.6.3 Detailed Description for Processing the Register Request

	3.7 Authenticate Request
	3.7.1 AuthenticateIn Object
	3.7.2 Transaction Object
	3.7.3 AuthenticateOut Object
	3.7.4 Detailed Description for Processing the Authenticate Request

	3.8 Deregister Request
	3.8.1 DeregisterIn Object
	3.8.2 Detailed Description for Processing the Deregister Request

	3.9 GetRegistrations Request
	3.9.1 GetRegistrationsOut Object
	3.9.2 AppRegistration Object
	3.9.3 Detailed Description for Processing the GetRegistrations Request

	3.10 OpenSettings Request

	4. Using ASM API
	5. Using the ASM API on various platforms
	5.1 Android ASM Intent API
	5.1.1 Discovering ASMs
	5.1.2 Alternate Android AIDL Service ASM Implementation

	5.2 Windows ASM API

	6. Security and Privacy Guidelines
	6.1 KHAccessToken
	6.2 Access Control for ASM APIs

	A. References
	A.1 Normative references
	A.2 Informative references

