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Abstract
The goal of the Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication mechanism for a particular end user or
interaction, while preserving the option to leverage emerging device security capabilities in the future without requiring additional integration
effort.

This document describes the FIDO architecture in detail, it defines the flow and content of all UAF protocol messages and presents the
rationale behind the design choices.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current FIDO Alliance publications and the latest revision of this technical report can be found in the FIDO Alliance specifications index at
https://www.fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this document, please
Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without
limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held,
responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT
LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and may be
used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment.
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1. Notation
Type names, attribute names and element names are written as code.

String literals are enclosed in “”, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

The notation base64url refers to "Base 64 Encoding with URL and Filename Safe Alphabet" [RFC4648] without padding.

Following [WebIDL-ED], dictionary members are optional unless they are explicitly marked as required.

WebIDL dictionary members must not have a value of null — i.e., there are no declarations of nullable dictionary members in this specification.

Unless otherwise specified, if a WebIDL dictionary member is DOMString, it must not be empty.

Unless otherwise specified, if a WebIDL dictionary member is a List, it must not be an empty list.

UAF specific terminology used in this document is defined in [FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional” in this document
are to be interpreted as described in [RFC2119].

2. Overview
This section is non-normative.

The goal of this Universal Authentication Framework is to provide a unified and extensible authentication mechanism that supplants passwords
while avoiding the shortcomings of current alternative authentication approaches.

NOTE

Note: Certain dictionary members need to be present in order to comply with FIDO requirements. Such members are marked in the
WebIDL definitions found in this document, as required. The keyword required has been introduced by [WebIDL-ED], which is a work-in-
progress. If you are using a WebIDL parser which implements [WebIDL], then you may remove the keyword required from your WebIDL
and use other means to ensure those fields are present.



The design goal of the protocol is to enable Relying Parties to leverage the diverse and heterogeneous set of security capabilities available on
end users' devices via a single, unified protocol.

This approach is designed to allow the FIDO Relying Parties to choose the best available authentication mechanism for a particular end user
or interaction, while preserving the option for a relying party to leverage emerging device security capabilities in the future, without requiring
additional integration effort.

2.1 Scope

This document describes FIDO architecture in detail and defines the UAF protocol as a network protocol. It defines the flow and content of all
UAF messages and presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this document. This document is not intended to answer questions such as:

What does an HTTP binding look like for UAF?
How can a web application communicate to FIDO UAF Client?
How can FIDO UAF Client communicate to FIDO enabled Authenticators?

The answers to these questions can be found in other UAF specifications, e.g. [UAFAppAPIAndTransport] [UAFASM] [UAFAuthnrCommands].

2.2 Architecture

The following diagram depicts the entities involved in UAF protocol.

Fig. 1 The UAF Architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

FIDO Server, running on the relying party's infrastructure
FIDO UAF Client, part of the user agent and running on the FIDO user device
FIDO Authenticator, integrated into the FIDO user device

It is assumed in this document that a FIDO Server has access to the UAF Authenticator Metadata [FIDOMetadataStatement] describing all the
authenticators it will interact with.

2.3 Protocol Conversation

The core UAF protocol consists of four conceptual conversations between a FIDO UAF Client and FIDO Server.

Registration: UAF allows the relying party to register a FIDO Authenticator with the user's account at the relying party. The relying party
can specify a policy for supporting various FIDO Authenticator types. A FIDO UAF Client will only register existing authenticators in
accordance with that policy.

Authentication: UAF allows the relying party to prompt the end user to authenticate using a previously registered FIDO Authenticator.
This authentication can be invoked any time, at the relying party's discretion.

Transaction Confirmation: In addition to providing a general authentication prompt, UAF offers support for prompting the user to
confirm a specific transaction.

This prompt includes the ability to communicate additional information to the client for display to the end user, using the client's
transaction confirmation display. The goal of this additional authentication operation is to enable relying parties to ensure that the user is
confirming a specified set of the transaction details (instead of authenticating a session to the user agent).

Deregistration: The relying party can trigger the deletion of the account-related authentication key material.

Although this document defines the FIDO Server as the initiator of requests, in a real world deployment the first UAF operation will always
follow a user agent's (e.g. HTTP) request to a relying party.



The following sections give a brief overview of the protocol conversation for individual operations. More detailed descriptions can be found in
the sections Registration Operation, Authentication Operation, and Deregistration Operation.

2.3.1 Registration

The following diagram shows the message flows for registration.

Fig. 2 UAF Registration Message Flow

2.3.2 Authentication

The following diagram depicts the message flows for the authentication operation.

Fig. 3 Authentication Message Flow

2.3.3 Transaction Confirmation

The following figure depicts the transaction confirmation message flow.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow FIDO UAF Client to do some "housekeeping" tasks.



Fig. 4 Transaction Confirmation Message Flow

2.3.4 Deregistration

The following diagram depicts the deregistration message flow.

Fig. 5 Deregistration Message Flow

3. Protocol Details
This section is normative.

This section provides a detailed description of operations supported by the UAF Protocol.

Support of all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from Unicode codepoints within the set U+0000..U+007F.

Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64 Encoding with URL and Filename Safe
Alphabet" [RFC4648] without padding.

The notation string[5] reads as five unicode characters, represented as a UTF-8 [RFC3629] encoded string of the type indicated in the
declaration, typically a WebIDL [WebIDL-ED] DOMString.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

The client application should use the appropriate API to inform the FIDO UAF Client of the results of the operation (see section 2.3.1 in
[UAFAppAPIAndTransport]) in order to allow the FIDO UAF Client to do some "housekeeping" tasks.

NOTE

All data used in this protocol must be exchanged using a secure transport protocol (such as TLS/HTTPS) established between the FIDO
UAF Client and the relying party in order to follow the assumptions made in [FIDOSecRef]; details are specified in section 4.1.7 TLS
Protected Communication.



As the UTF-8 representation has variable length, the maximum byte length of string[5] is string[4*5].

All strings are case-sensitive unless stated otherwise.

This document uses WebIDL [WebIDL-ED] to define UAF protocol messages.

Implementations must serialize the UAF protocol messages for transmission using UTF-8 encoded JSON [RFC4627].

3.1 Shared Structures and Types

This section defines types and structures shared by various operations.

3.1.1 Version Interface

Represents a generic version with major and minor fields.

WebIDL

interface Version {
    readonly    attribute unsigned short major;
    readonly    attribute unsigned short minor;
};

3.1.1.1 Attributes

major of type unsigned short, readonly
Major version.

minor of type unsigned short, readonly
Minor version.

3.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

WebIDL

enum Operation {
    "Reg",
    "Auth",
    "Dereg"
};

Enumeration description
Reg Registration

Auth
Authentication or Transaction
Confirmation

Dereg Deregistration

3.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

WebIDL

dictionary OperationHeader {
    required Version   upv;
    required Operation op;
    DOMString          appID;
    DOMString          serverData;
    Extension[]        exts;
};

3.1.3.1 Dictionary OperationHeader Members

upv of type required Version
UAF protocol version (upv). To conform with this version of the UAF spec set, the major value must be 1 and the minor value must be
1.

op of type required Operation
Name of FIDO operation (op) this message relates to.

appID of type DOMString
string[0..512].

The application identifier that the relying party would like to assert.

There are three ways to set the AppID [FIDOAppIDAndFacets]:

1. If the element is missing or empty in the request, the FIDO UAF Client must set it to the FacetID of the caller.

NOTE

"Auth" is used for both authentication and transaction confirmation.



2. If the appID present in the message is identical to the FacetID of the caller, the FIDO UAF Client must accept it.
3. If it is an URI with HTTPS protocol scheme, the FIDO UAF Client must use it to load the list of trusted facet identifiers from the

specified URI. The FIDO UAF Client must only accept the request, if the facet identifier of the caller matches one of the trusted
facet identifiers in the list returned from dereferencing this URI.

serverData of type DOMString
string[1..1536].

A session identifier created by the relying party.

exts of type array of Extension
List of UAF Message Extensions.

3.1.4 Authenticator Attestation ID (AAID) typedef

WebIDL

typedef DOMString AAID;

string[9]

Each authenticator must have an AAID to identify UAF enabled authenticator models globally. The AAID must uniquely identify a specific
authenticator model within the range of all UAF-enabled authenticator models made by all authenticator vendors, where authenticators of a
specific model must share identical security characteristics within the model (see Security Considerations).

The AAID is a string with format "V#M", where

"#" is a separator

"V" indicates the authenticator Vendor Code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator Model Code. This code consists of 4 hexadecimal digits.

The Augmented BNF [ABNF] for the AAID is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

The FIDO Alliance is responsible for assigning authenticator vendor Codes.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators. Authenticator vendors must assign
unique AAIDs to authenticators with different security characteristics.

AAIDs are unique and each of them must relate to a distinct authentication metadata file ([FIDOMetadataStatement])

3.1.5 KeyID typedef

WebIDL

typedef DOMString KeyID;

base64url(byte[32...2048])

KeyID is a unique identifier (within the scope of an AAID) used to refer to a specific UAuth.Key. It is generated by the authenticator and registered
with a FIDO Server.

The (AAID, KeyID ) tuple must uniquely identify an authenticator's registration for a relying party. Whenever a FIDO Server wants to provide
specific information to a particular authenticator it must use the (AAID, KeyID) tuple.

NOTE

The new key pair that the authenticator generates will be associated with this application identifier.

Security Relevance: The application identifier is used by the FIDO UAF Client to verify the eligibility of an application to trigger
the use of a specific UAuth.Key. See [FIDOAppIDAndFacets]

NOTE
The relying party can opaquely store things like expiration times for the registration session, protocol version used and other
useful information in serverData. This data is opaque to FIDO UAF Clients. FIDO Servers may reject a response that is
lacking this data or is containing unauthorized modifications to it.

Servers that depend on the integrity of serverData should apply appropriate security measures, as described in Registration
Request Generation Rules for FIDO Server and section ServerData and KeyHandle.

NOTE

HEXDIG is case insensitive, i.e. "03EF" and "03ef" are identical.

NOTE

Adding new firmware/software features, or changing the underlying hardware protection mechanisms will typically change the security
characteristics of an authenticator and hence would require a new AAID to be used. Refer to ([FIDOMetadataStatement]) for more details.



KeyID must be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the FIDO Server should provide the KeyID back to the authenticator for the latter
to locate the appropriate user authentication key, and perform the necessary operation with it.

Roaming authenticators which don't have internal storage for, and cannot rely on any ASM to store, generated key handles should provide the
key handle as part of the AuthenticatorRegistrationAssertion.assertion.KeyID during the registration operation (see also section ServerData
and KeyHandle) and get the key handle back from the FIDO Server during the step-up authentication (in the MatchCriteria dictionary which is
part of the policy) or deregistration operations (see [UAFAuthnrCommands] for more details).

3.1.6 ServerChallenge typedef

WebIDL

typedef DOMString ServerChallenge;

base64url(byte[8...64])

ServerChallenge is a server-provided random challenge. Security Relevance: The challenge is used by the FIDO Server to verify whether an
incoming response is new, or has already been processed. See section Replay Attack Protection for more details.

The ServerChallenge should be mixed into the entropy pool of the authenticator. Security Relevance: The FIDO Server should provide a
challenge containing strong cryptographic randomness whenever possible. See section Server Challenge and Random Numbers.

3.1.7 FinalChallengeParams dictionary

WebIDL

dictionary FinalChallengeParams {
    required DOMString       appID;
    required ServerChallenge challenge;
    required DOMString       facetID;
    required ChannelBinding  channelBinding;
};

3.1.7.1 Dictionary FinalChallengeParams Members

appID of type required DOMString
string[1..512]

The value must be taken from the appID field of the OperationHeader

challenge of type required ServerChallenge

The value must be taken from the challenge field of the request (e.g. RegistrationRequest.challenge,
AuthenticationRequest.challenge).

facetID of type required DOMString
string[1..512]

The value is determined by the FIDO UAF Client and it depends on the calling application. See [FIDOAppIDAndFacets] for more
details. Security Relevance: The facetID is determined by the FIDO UAF Client and verified against the list of trusted facets retrieved
by dereferencing the appID of the calling application.

channelBinding of type required ChannelBinding

Contains the TLS information to be sent by the FIDO Client to the FIDO Server, binding the TLS channel to the FIDO operation.

3.1.8 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [RFC5056].

NOTE

The exact structure and content of a KeyID is specific to the authenticator implementation.

NOTE

The minimum challenge length of 8 bytes follows the requirement in [SP800-63] and is equivalent to the 20 decimal digits as required in
[RFC6287].

NOTE

The maximum length has been defined such that SHA-512 output can be used without truncation.

NOTE

The mixing of multiple sources of randomness is recommended to improve the quality of the random numbers generated by the
authenticator, as described in [RFC4086].

NOTE



Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the FIDO UAF Client (i.e. included in this dictionary),
it must be used according to the relevant specification .

2. All channel binding methods described here must be supported by the FIDO Server. The FIDO Server may reject operations if the
channel binding cannot be verified successfully.

WebIDL

dictionary ChannelBinding {
    DOMString serverEndPoint;
    DOMString tlsServerCertificate;
    DOMString tlsUnique;
    DOMString cid_pubkey;
};

3.1.8.1 Dictionary ChannelBinding Members

serverEndPoint of type DOMString

The field serverEndPoint must be set to the base64url-encoded hash of the TLS server certificate if this is available. The hash
function must be selected as follows:

1. if the certificate's signatureAlgorithm uses a single hash function and that hash function is either MD5 [RFC1321] or SHA-1
[RFC6234], then use SHA-256 [FIPS180-4];

2. if the certificate's signatureAlgorithm uses a single hash function and that hash function is neither MD5 nor SHA-1, then use
the hash function associated with the certificate'ssignatureAlgorithm;

3. if the certificate's signatureAlgorithm uses no hash functions, or uses multiple hash functions, then this channel binding type's
channel bindings are undefined at this time (updates to this channel binding type may occur to address this issue if it ever
arises)

This field must be absent if the TLS server certificate is not available to the processing entity (e.g., the FIDO UAF Client) or the hash
function cannot be determined as described.

tlsServerCertificate of type DOMString

This field must be absent if the TLS server certificate is not available to the FIDO UAF Client.

This field must be set to the base64url-encoded, DER-encoded TLS server certificate, if this data is available to the FIDO UAF
Client.

tlsUnique of type DOMString
must be set to the base64url-encoded TLS channel Finished structure. It must, however, be absent, if this data is not available to the
FIDO UAF Client [RFC5929].

The use of the tlsUnique is deprecated as the security of the tls-unqiue channel binding type [RFC5929] is broken, see [TLSAUTH].

cid_pubkey of type DOMString

must be absent if the client TLS stack doesn't provide TLS ChannelID [ChannelID] information to the processing entity (e.g., the web
browser or client application).

must be set to "unused" if TLS ChannelID information is supported by the client-side TLS stack but has not been signaled by the
TLS (web) server.

Otherwise, it must be set to the base64url-encoded serialized [RFC4627] JwkKey structure using UTF-8 encoding.

3.1.9 JwkKey dictionary

JwkKey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key [JWK].

This public key is the ChannelID public key minted by the client TLS stack for the particular relying party. [ChannelID] stipulates using only a
particular elliptic curve, and the particular coordinate type.

WebIDL

dictionary JwkKey {
    required DOMString kty = "EC";
    required DOMString crv = "P-256";
    required DOMString x;

Security Relevance:The channel binding may be verified by the FIDO Server in order to detect and prevent MITM attacks.

At this time, the following channel binding methods are supported:

TLS ChannelID (cid_pubkey) [ChannelID]
serverEndPoint [RFC5929]
tlsServerCertificate
tlsUnique [RFC5929]

NOTE

If channel binding data is accessible to the web browser or client application, it must be relayed to the FIDO UAF Client in order to
follow the assumptions made in [FIDOSecRef].
If channel binding data is accessible to the web server, it must be relayed to the FIDO Server in order to follow the assumptions
made in [FIDOSecRef]. The FIDO Server relies on the web server to provide accurate channel binding information.



    required DOMString y;
};

3.1.9.1 Dictionary JwkKey Members

kty of type required DOMString, defaulting to "EC"
Denotes the key type used for Channel ID. At this time only elliptic curve is supported by [ChannelID], so it must be set to "EC"
[JWA].

crv of type required DOMString, defaulting to "P-256"
Denotes the elliptic curve on which this public key is defined. At this time only the NIST curve secp256r1 is supported by [ChannelID],
so the crv parameter must be set to "P-256".

x of type required DOMString
Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte value).

y of type required DOMString
Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte value).

3.1.10 Extension dictionary

FIDO extensions can appear in several places, including the UAF protocol messages, authenticator commands, or in the assertion signed by
the authenticator.

Each extension has an identifier, and the namespace for extension identifiers is FIDO UAF global (i.e. doesn't depend on the message where
the extension is present).

Extensions can be defined in a way such that a processing entity which doesn't understand the meaning of a specific extension must abort
processing, or they can be specified in a way that unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.

Generic extensions used in various operations.

WebIDL

dictionary Extension {
    required DOMString id;
    required DOMString data;
    required boolean   fail_if_unknown;
};

3.1.10.1 Dictionary Extension Members

id of type required DOMString
string[1..32].

Identifies the extension.

data of type required DOMString
Contains arbitrary data with a semantics agreed between server and client. Binary data is base64url-encoded.

This field may be empty.

fail_if_unknown of type required boolean
Indicates whether unknown extensions must be ignored (false) or must lead to an error (true).

A value of false indicates that unknown extensions must be ignored
A value of true indicates that unknown extensions must result in an error.

3.1.11 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

NOTE

The FIDO UAF Client might (a) process an extension or (b) pass the extension through to the ASM. Unknown extensions must be
passed through.

The ASM might (a) process an extension or (b) pass the extension through to the FIDO authenticator. Unknown extensions must be
passed through.

The FIDO authenticator must handle the extension or ignore it (only if it doesn't know how to handle it and fail_if_unknown is not set). If
the FIDO authenticator doesn't understand the meaning of the extension and fail_if_unknown is set, it must generate an error (see
definition of fail_if_unknown above).

When passing through an extension to the next entity, the fail_if_unknown flag must be preserved (see [UAFASM]
[UAFAuthnrCommands]).

FIDO protocol messages are not signed. If the security depends on an extension being known or processed, then such extension should
be accompanied by a related (and signed) extension in the authenticator assertion (e.g. TAG_UAFV1_REG_ASSERTION,
TAG_UAFV1_AUTH_ASSERTION). If the security has been increased (e.g. the FIDO authenticator according to the description in the metadata
statement accepts multiple fingers but in this specific case indicates that the finger used at registration was also used for authentication)
there is no need to mark the extension as fail_if_unknown (i.e. tag 0x3E12 should be used [UAFAuthnrCommands]). If the security has
been degraded (e.g. the FIDO authenticator according to the description in the metadata statement accepts only the finger used at
registration for authentication but in this specific case indicates that a different finger was used for authentication) the extension must be
marked as fail_if_unknown (i.e. tag 0x3E11 must be used [UAFAuthnrCommands]).



The MatchCriteria object is considered to match an authenticator, if all fields in the object are considered to match (as indicated in the
particular fields).

WebIDL

dictionary MatchCriteria {
    AAID[]           aaid;
    DOMString[]      vendorID;
    KeyID[]          keyIDs;
    unsigned long    userVerification;
    unsigned short   keyProtection;
    unsigned short   matcherProtection;
    unsigned long    attachmentHint;
    unsigned short   tcDisplay;
    unsigned short[] authenticationAlgorithms;
    DOMString[]      assertionSchemes;
    unsigned short[] attestationTypes;
    unsigned short   authenticatorVersion;
    Extension[]      exts;
};

3.1.11.1 Dictionary MatchCriteria Members

aaid of type array of AAID
List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts, but
m.aaid must not be combined with any other match criteria field.

If m.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided.

The match succeeds if at least one AAID entry in this array matches AuthenticatorInfo.aaid [UAFASM].

vendorID of type array of DOMString
The vendorID causing matching to be restricted to authenticator models of the given vendor. The first 4 characters of the AAID are
the vendorID (see AAID)).

The match succeeds if at least one entry in this array matches the first 4 characters of the AuthenticatorInfo.aaid [UAFASM].

keyIDs of type array of KeyID
A list of authenticator KeyIDs causing matching to be restricted to a given set of KeyID instances. (see TAG_KEYID in
[UAFRegistry]).

This match succeeds if at least one entry in this array matches.

userVerification of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the user verification method (see [FIDORegistry]).

NOTE

This field corresponds to MetadataStatement.aaid [FIDOMetadataStatement].

NOTE

This field corresponds to the first 4 characters of MetadataStatement.aaid [FIDOMetadataStatement].

NOTE

This field corresponds to AppRegistration.keyIDs [UAFASM].

NOTE
The match with AuthenticatorInfo.userVerification ([UAFASM]) succeeds, if the following condition holds (written in Java):

if (
        // They are equal
        (AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

        // USER_VERIFY_ALL is not set in both of them and they have at least one common bit set
        (
            ((AuthenticatorInfo.userVerification & USER_VERIFY_ALL) == 0) &&
            ((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&
            ((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)
        )
   )
      

NOTE
This field value can be derived from MetadataStatement.userVerificationDetails as follows:

1. if MetadataStatement.userVerificationDetails contains multiple entries, then:
1. if one or more entries MetadataStatement.userVerificationDetails[i] contain multiple entries, then: stop, direct

derivation is not possible. Must generate MatchCriteria object by providing a list of matching AAIDs.
2. if all entries MetadataStatement.userVerificationDetails[i] only contain a single entry, then: combine all entries

MetadataStatement.userVerificationDetails[0][0].userVerification to
MetadataStatement.userVerificationDetails[N-1][0].userVerification into a single value using a bitwise OR



keyProtection of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the key protections used (see [FIDORegistry]).

This match succeeds, if at least one of the bit flags matches the value of AuthenticatorInfo.keyProtection [UAFASM].

matcherProtection of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the matcher protection (see [FIDORegistry]).

The match succeeds if at least one of the bit flags matches the value of AuthenticatorInfo.matcherProtection [UAFASM].

attachmentHint of type unsigned long
A set of 32 bit flags which may be set if matching should be restricted by the authenticator attachment mechanism (see
[FIDORegistry]).

This field is considered to match, if at least one of the bit flags matches the value of AuthenticatorInfo.attachmentHint [UAFASM].

tcDisplay of type unsigned short
A set of 16 bit flags which may be set if matching should be restricted by the transaction confirmation display availability and type.
(see [FIDORegistry]).

This match succeeds if at least one of the bit flags matches the value of AuthenticatorInfo.tcDisplay [UAFASM].

authenticationAlgorithms of type array of unsigned short
An array containing values of supported authentication algorithm TAG values (see [FIDORegistry], prefix ALG_SIGN) if matching
should be restricted by the supported authentication algorithms. This field must be present, if field aaid is missing.

This match succeeds if at least one entry in this array matches the AuthenticatorInfo.authenticationAlgorithm [UAFASM].

assertionSchemes of type array of DOMString
A list of supported assertion schemes if matching should be restricted by the supported schemes. This field must be present, if field
aaid is missing.

See section UAF Supported Assertion Schemes for details.

This match succeeds if at least one entry in this array matches AuthenticatorInfo.assertionScheme [UAFASM].

attestationTypes of type array of unsigned short
An array containing the preferred attestation TAG values (see [UAFRegistry], prefix TAG_ATTESTATION). The order of items must be
preserved. The most-preferred attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in AuthenticatorInfo.attestationTypes [UAFASM].

operation.
2. if MetadataStatement.userVerificationDetails contains a single entry, then: combine all entries

MetadataStatement.userVerificationDetails[0][0].userVerification to
MetadataStatement.userVerificationDetails[0][N-1].userVerification into a single value using a bitwise OR
operation and (if multiple bit flags have been set) additionally set the flag USER_VERIFY_ALL.

This method doesn't allow matching authenticators implementing complex combinations of user verification methods, such as
PIN AND (Fingerprint OR Speaker Recognition)  (see above derivation rules). If such specific match rules are required, they
need to be specified by providing the AAIDs of the matching authenticators.

NOTE

This field corresponds to MetadataStatement.keyProtection [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.matcherProtection metadata statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.attachmentHint metadata statement.

NOTE

This field corresponds to the MetadataStatement.tcDisplay metadata statement. See [FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.authenticationAlgorithm metadata statement. See
[FIDOMetadataStatement].

NOTE

This field corresponds to the MetadataStatement.assertionScheme metadata statement. See [FIDOMetadataStatement].

NOTE



authenticatorVersion of type unsigned short
Contains an authenticator version number, if matching should be restricted by the authenticator version in use.

This match succeeds if the value is lower or equal to the field AuthenticatorVersion included in TAG_UAFV1_REG_ASSERTION or
TAG_UAFV1_AUTH_ASSERTION or a corresponding value in the case of a different assertion scheme.

The use of authenticatorVersion in the policy is deprecated since there is no standardized way for the FIDO Client to learn the
authenticatorVersion. The authenticatorVersion is included in the auhentication assertion and hence can still be evaluated in the
FIDO Server.

exts of type array of Extension
Extensions for matching policy.

3.1.12 Policy dictionary

Contains a specification of accepted authenticators and a specification of disallowed authenticators.

WebIDL

dictionary Policy {
    required MatchCriteria[][] accepted;
    MatchCriteria[]            disallowed;
};

3.1.12.1 Dictionary Policy Members

accepted of type array of array of required MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for the server to accept either a FIDO
registration, or authentication operation for a particular purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e. the sets) are alternatives (OR condition).

All elements within a set must be combined:

The first array index indicates OR conditions (i.e. the list). Any set of authenticator(s) satisfying these MatchCriteria in the first index
is acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e. the set) indicate that multiple authenticators (i.e. each set element) must be
registered or authenticated to be accepted by the server.

The MatchCriteria array represents ordered preferences by the server. Servers must put their preferred authenticators first, and
FIDO UAF Clients should respect those preferences, either by presenting authenticator options to the user in the same order, or by
offering to perform the operation using only the highest-preference authenticator(s).

disallowed of type array of MatchCriteria
Any authenticator that matches any of MatchCriteria contained in the field disallowed must be excluded from eligibility for the
operation, regardless of whether it matches any MatchCriteria present in the accepted list, or not.

3.2 Processing Rules for the Server Policy

This section is normative.

The FIDO UAF Client must follow the following rules while parsing server policy:

1. During registration:
1. Policy.accepted is a list of combinations. Each combination indicates a list of criteria for authenticators that the server wants the

user to register.
2. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.

This field corresponds to the MetadataStatement.attestationTypes metadata statement. See [FIDOMetadataStatement].

NOTE

Since the semantic of the authenticatorVersion depends on the AAID, the field authenticatorVersion should always be
combined with a single aaid in MatchCriteria.

This field corresponds to the MetadataStatement.authenticatorVersion metadata statement. See [FIDOMetadataStatement].

NOTE
This list must not be empty. If the FIDO Server accepts any authenticator, it can follow the example below.

EXAMPLE 1: Example for an 'any' policy
{
  "accepted": 
  [ 
 [{ "userVerification": 1023 }]
  ]
}

NOTE

1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... | USER_VERIFY_NONE



3. Choose the combination whose criteria best match the features of the currently available authenticators
4. Collect information about available authenticators
5. Ignore authenticators which match the Policy.disallowed criteria
6. Match collected information with the matching criteria imposed in the policy (see MatchCriteria dictionary for more details on

matching)
7. Guide the user to register the authenticators specified in the chosen combination

2. During authentication and transaction confirmation:

1. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest priority first.
2. Choose the combination whose criteria best match the features of the currently available authenticators
3. Collect information about available authenticators
4. Ignore authenticators which meet the Policy.disallowed criteria
5. Match collected information with the matching criteria described in the policy
6. Guide the user to authenticate with the authenticators specified in the chosen combination
7. A pending operation will be approved by the server only after all criteria of a single combination are entirely met

3.2.1 Examples

This section is non-normative.

Combining these two bit-flags and the flag USER_VERIFY_ALL (USER_VERIFY_ALL = 1024) into a single userVerification value would match
authenticators implementing FPS and Face Recognition as a mandatory combination of user verification methods.

The next example requires two authenticators to be used:

Other criteria can be specified in addition to the userVerification:

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

NOTE

Policy.accepted is a list of combinations. Each combination indicates a set of criteria which is enough to completely
authenticate the current pending operation

EXAMPLE 2: Policy matching either a FPS-, or Face Recognition-based Authenticator
{
  "accepted": 
  [ 
 [{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}],
     [{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
  ]
}

EXAMPLE 3: Policy matching authenticators implementing FPS and Face Recognition as alternative combination of user verification
methods.

{
  "accepted": 
  [ 
 [{ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}]
  ]
}

EXAMPLE 4: Policy matching authenticators implementing FPS and Face Recognition as mandatory combination of user verification
methods.

{
  "accepted": [ [{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}] ]
}

EXAMPLE 5: Policy matching the combination of a FPS based and a Face Recognition based authenticator
{
  "accepted": 
  [ 
 [ 
   { "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}, 
   { "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
 ]
  ]
}

EXAMPLE 6: Policy requiring the combination of a bound FPS based and a bound Face Recognition based authenticator
{
  "accepted": 
  [ 
 [
   { "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]},
   { "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}
        ]
  ]
}

EXAMPLE 7: Policy accepting all authenticators from vendor with ID 1234



3.3 Version Negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of Key Registration Data and Signed Data objects
(identified by their respective tags, see [UAFRegistry]), and the ASM version, see [UAFASM].

As a consequence the FIDO UAF Client must select the authenticators which will generate the appropriately versioned constructs.

For version negotiation the FIDO UAF Client must perform the following steps:

1. Create a set (FC_Version_Set) of version pairs, ASM version (asmVersion) and UAF Protocol version (upv) and add all pairs supported by
the FIDO UAF Client into FC_Version_Set

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

2. Intersect FC_Version_Set with the set of upv included in UAF Message (i.e. keep only those pairs where the upv value is also contained in
the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:
Construct a set (Authnr_Version_Set) of version pairs including authenticator supported asmVersion and the compatible upv(s).

e.g. [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]
Intersect Authnr_Version_Set with FC_Version_Set and select highest version pair from it.

Take the pair where the upv is highest. In all these pairs leave only the one with highest asmVersion.
Use the remaining version pair with this authenticator

3.4 Registration Operation

{
  "accepted": 
  [ [{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes": ["UAFV1TLV"]}] ]
}

NOTE

The Key Registration Data and Signed Data objects have to be parsed and verified by the FIDO Server. This verification is only possible
if the FIDO Server understands their encoding and the content. Each UAF protocol version supports a set of Key Registration Data and
SignedData object versions (called Assertion Schemes). Similarly each of the ASM versions supports a set Assertion Scheme versions.

NOTE

The ASM versions are retrieved from the AuthenticatorInfo.asmVersion field. The UAF protocol version is derived from the related
AuthenticatorInfo.assertionScheme field.

NOTE

Each version consists of major and minor fields. In order to compare two versions - compare the Major fields and if they are equal
compare the Minor fields.

Each UAF message contains a version field upv. UAF Protocol version negotiation is always between FIDO UAF Client and FIDO Server.

A possible implementation optimization is to have the RP web application itself preemptively convey to the FIDO Server the UAF
protocol version(s) (UPV) supported by the FIDO Client. This allows the FIDO Server to craft its UAF messages using the UAF
version most preferred by both the FIDO client and server.

NOTE

The Registration operation allows the FIDO Server and the FIDO Authenticator to agree on an authentication key.



Fig. 6 UAF Registration Sequence Diagram

The steps 11a and 11b and 12 to 13 are not always necessary as the related data could be cached.

The following diagram depicts the cryptographic data flow for the registration sequence.

Fig. 7 UAF Registration Cryptographic Data Flow

The FIDO Server sends the AppID (see section AppID and FacetID Assertion), the authenticator Policy, the ServerChallenge and the
Username to the FIDO UAF Client.

The FIDO UAF Client computes the FinalChallengeParams (FCH) from the ServerChallenge and some other values and sends the AppID,
the FCH and the Username to the authenticator.

The authenticator creates a Key Registration Data object (e.g. TAG_UAFV1_KRD, see [UAFAuthnrCommands]) containing the hash of FCH,
the newly generated user public key (UAuth.pub) and some other values and signs it (see section Authenticator Attestation for more
details). This KRD object is then cryptographically verified by the FIDO Server.



3.4.1 Registration Request Message

UAF Registration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as RegistrationRequest dictionary.

EXAMPLE 8: UAF Registration Request
[{
    "header": {
      "upv": {
        "major": 1,
        "minor": 1
      },
      "op": "Reg",
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "serverData": "IjycjPZYiWMaQ1tKLrJROiXQHmYG0tSSYGjP5mgjsDaM17RQgq0
dl3NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFqL4n
2IiUY6XZWVbOnvg"
    },
    "challenge": "H9iW9yA9aAXF_lelQoi_DhUk514Ad8Tqv0zCnCqKDpo",
    "username": "apa",
    "policy": {
      "accepted": [
        [
          {
            "userVerification": 512,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 4,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 2,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1,
              3
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 2,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 32,
            "keyProtection": 2,
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],



3.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

WebIDL

dictionary RegistrationRequest {
    required OperationHeader header;
    required ServerChallenge challenge;
    required DOMString       username;
    required Policy          policy;
};

3.4.2.1 Dictionary RegistrationRequest Members

header of type required OperationHeader
Operation header. Header.op must be "Reg"

challenge of type required ServerChallenge
Server-provided challenge value

username of type required DOMString
string[1..128]

A human-readable user name intended to allow the user to distinguish and select from among different accounts at the same relying
party.

policy of type required Policy
Describes which types of authenticators are acceptable for this registration operation

3.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

WebIDL

dictionary AuthenticatorRegistrationAssertion {
    required DOMString                    assertionScheme;
    required DOMString                    assertion;
    DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;
    Extension[]                           exts;
};

3.4.3.1 Dictionary AuthenticatorRegistrationAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode the assertion. See UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the TAG_UAFV1_REG_ASSERTION object containing the assertion scheme specific

            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 4,
            "keyProtection": 1,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ]
      ],
      "disallowed": [
        {
          "userVerification": 512,
          "keyProtection": 16,
          "assertionSchemes": [
            "UAFV1TLV"
          ]
        },
        {
          "userVerification": 256,
          "keyProtection": 16
        },
        {
          "aaid": [
            "ABCD#ABCD"
          ],
          "keyIDs": [
            "RfY_RDhsf4z5PCOhnZExMeVloZZmK0hxaSi10tkY_c4"
          ]
        }
      ]
    }
}]

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.



KeyRegistrationData (KRD) object which in turn contains the newly generated UAuth.pub and is signed by the Attestation Private
Key.

This assertion must be generated by the authenticator and it must be used only in this Registration operation. The format of this
assertion can vary from one assertion scheme to another (e.g. for "UAFV1TLV" assertion scheme it must be TAG_UAFV1_KRD).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor
Supported transaction PNG type [FIDOMetadataStatement]. For the definition of the DisplayPNGCharacteristicsDescriptor structure
See [FIDOMetadataStatement].

exts of type array of Extension
Contains Extensions prepared by the authenticator

3.4.4 Registration Response Message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary contains a registration response for a specific
protocol version. The array must not contain two dictionaries of the same protocol version. The response is defined as RegistrationResponse
dictionary.

3.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

WebIDL

dictionary RegistrationResponse {
    required OperationHeader                      header;
    required DOMString                            fcParams;
    required AuthenticatorRegistrationAssertion[] assertions;
};

3.4.5.1 Dictionary RegistrationResponse Members

header of type required OperationHeader
Header.op must be "Reg".

fcParams of type required DOMString
The base64url-encoded serialized [RFC4627] FinalChallengeParams using UTF8 encoding (see FinalChallengeParams dictionary)
which contains all parameters required for the server to verify the Final Challenge.

assertions of type array of required AuthenticatorRegistrationAssertion
Response data for each Authenticator being registered.

3.4.6 Registration Processing Rules

3.4.6.1 Registration Request Generation Rules for FIDO Server

The policy contains a two-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set must be registered simultaneously in
order to match the policy. But any of those sets in the list are valid, as the list elements are alternatives.

EXAMPLE 9: Registration Response
[{
    "assertions": [
      {
        "assertion": "AT7uAgM-sQALLgkAQUJDRCNBQkNEDi4HAAABAQEAAAEKLiAA9t
BzZC64ecgVQBGSQb5QtEIPC8-Vav4HsHLZDflLaugJLiAAZMCPn92yHv1Ip-iCiBb6i4ADq6
ZOv569KFQCvYSJfNgNLggAAQAAAAEAAAAMLkEABJsvEtUsVKh7tmYHhJ2FBm3kHU-OCdWiUY
VijgYa81MfkjQ1z6UiHbKP9_nRzIN9anprHqDGcR6q7O20q_yctZAHPjUCBi5AACv8L7YlRM
x10gPnszGO6rLFqZFmmRkhtV0TIWuWqYxd1jO0wxam7i5qdEa19u4sfpHFZ9RGI_WHxINkH8
FfvAwFLu0BMIIB6TCCAY8CAQEwCQYHKoZIzj0EATB7MQswCQYDVQQGEwJVUzELMAkGA1UECA
wCQ0ExCzAJBgNVBAcMAlBBMRAwDgYDVQQKDAdOTkwsSW5jMQ0wCwYDVQQLDAREQU4xMRMwEQ
YDVQQDDApOTkwsSW5jIENBMRwwGgYJKoZIhvcNAQkBFg1ubmxAZ21haWwuY29tMB4XDTE0MD
gyODIxMzU0MFoXDTE3MDUyNDIxMzU0MFowgYYxCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJDQT
EWMBQGA1UEBwwNU2FuIEZyYW5jaXNjbzEQMA4GA1UECgwHTk5MLEluYzENMAsGA1UECwwERE
FOMTETMBEGA1UEAwwKTk5MLEluYyBDQTEcMBoGCSqGSIb3DQEJARYNbm5sQGdtYWlsLmNvbT
BZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABCGBt3CIjnDowzSiF68C2aErYXnDUsWXOYxqIP
im0OWg9FFdUYCa6AgKjn1R99Ek2d803sGKROivnavmdVH-SnEwCQYHKoZIzj0EAQNJADBGAi
EAzAQujXnSS9AIAh6lGz6ydypLVTsTnBzqGJ4ypIqy_qUCIQCFsuOEGcRV-o4GHPBph_VMrG
3NpYh2GKPjsAim_cSNmQ",
        "assertionScheme": "UAFV1TLV"
      }
    ],
    "fcParams": "eyJhcHBJRCI6Imh0dHBzOi8vdWFmLXRlc3QtMS5ub2tub2t0ZXN0LmN
vbTo4NDQzL1NhbXBsZUFwcC91YWYvZmFjZXRzIiwiY2hhbGxlbmdlIjoiSDlpVzl5QTlhQVh
GX2xlbFFvaV9EaFVrNTE0QWQ4VHF2MHpDbkNxS0RwbyIsImNoYW5uZWxCaW5kaW5nIjp7fSw
iZmFjZXRJRCI6ImNvbS5ub2tub2suYW5kcm9pZC5zYW1wbGVhcHAifQ",
    "header": {
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "op": "Reg",
      "serverData": "IjycjPZYiWMaQ1tKLrJROiXQHmYG0tSSYGjP5mgjsDaM17RQgq0
dl3NNDDTx9d-aSR_6hGgclrU2F2Yj-12S67v5VmQHj4eWVseLulHdpk2v_hHtKSvv_DFqL4n
2IiUY6XZWVbOnvg",
      "upv": {
        "major": 1,
        "minor": 1
      }
    }
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.



The FIDO Server must follow the following steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to be registered simultaneously that need to be
identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously that can be identified by the same rule, create a
MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.
If m.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided

2. Add m to v, e.g. v[j+1]=m.
2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.
1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and add AAID and corresponding KeyIDs to m.aaid and m.KeyIDs.

The FIDO Server must include already registered AAIDs and KeyIDs into field p.disallowed to hint that the client should
not register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed Authenticators to m.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [FIDOMetadataService]) of some authenticators might
be unacceptable. Such authenticators should be included in p.disallowed.

3. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)
4. Add all m to p.disallowed.

2. Create a RegistrationRequest object r with appropriate r.header for each supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData.

FIDO Servers that depend on the integrity of r.header.serverData should apply and verify a cryptographically secure Message
Authentication Code (MAC) to serverData and they should also cryptographically bind serverData to the related message, e.g. by
re-including r.challenge, see also section ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. Assign the username of the user to be registered to r.username
4. Assign p to r.policy.
5. Append r to the array o of message with various versions (RegistrationRequest)

3. Send o to the FIDO UAF Client

3.4.6.2 Registration Request Processing Rules for FIDO UAF Clients

The FIDO UAF Client must perform the following steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message m
3. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation
4. Filter the available authenticators with the given policy and present the filtered authenticators to User. Make sure to not include already

registered authenticators for this user specified in RegRequest.policy.disallowed[].keyIDs
5. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation
6. Obtain TLS data if it is available
7. Create a FinalChallengeParams structure fcp and set fcp.appID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see section Version Negotiation) and user agrees to register:
1. Add AppID, Username, FinalChallenge, AttestationType and all other required fields to the ASMRequest [UAFASM].

The FIDO UAF Client must follow the server policy and find the single preferred attestation type. A single attestation type must be
provided to the ASM.

2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the
ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.4.6.2.1 Mapping ASM Status Codes to ErrorCode

ASMs are returning a status code in their responses to the FIDO Client. The FIDO Client needs to act on those responses and also map the
status code returned the ASM [UAFASM] to an ErrorCode specified in [UAFAppAPIAndTransport].

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.



The mapping of ASM status codes to ErrorCode is specified here:

ASM Status Code ErrorCode Comment
UAF_ASM_STATUS_OK NO_ERROR Pass-through success status.

UAF_ASM_STATUS_ERROR UNKNOWN Map to UNKNOWN.

UAF_ASM_STATUS_ACCESS_DENIED AUTHENTICATOR_ACCESS_DENIED Map to AUTHENTICATOR_ACCESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED USER_CANCELLED Pass-through status code.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT INVALID_TRANSACTION_CONTENT

Map to INVALID_TRANSACTION_CONTENT.
This code indicates a problem to be
resolved by the entity providing the
transaction text.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY KEY_DISAPPEARED_PERMANENTLY

Pass-through status code. It indicates
that the Uauth key disappeared
permanently and the RP App might
want to trigger re-registration of the
authenticator.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED
NO_SUITABLE_AUTHENTICATOR or
WAIT_USER_ACTION

Retry operation with other suitable
authenticators and map to
NO_SUITABLE_AUTHENTICATOR if the
problem persists. Return
WAIT_USER_ACTION if being called while
retrying.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE USER_NOT_RESPONSIVE

Pass-through status code. The RP App
might want to retry the operation once
the user pays attention to the
application again.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES INSUFFICIENT_AUTHENTICATOR_RESOURCES
The FIDO Client shall try other
authenticators matching the policy. If
none exist, pass-through status code.

UAF_ASM_STATUS_USER_LOCKOUT USER_LOCKOUT Pass-through status code.

UAF_ASM_STATUS_USER_NOT_ENROLLED USER_NOT_ENROLLED Pass-through status code.

Any other status code UNKNOWN

Map any unknown error code to
UNKNOWN. This might happen when a
FIDO Client communicates with an
ASM implementing a newer UAF
specification than the FIDO Client.

3.4.6.3 Registration Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Register Command".

3.4.6.4 Registration Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create a RegistrationResponse message
2. Copy RegistrationRequest.header into RegistrationResponse.header

3. Set RegistrationResponse.fcParams to FinalChallenge (base64url encoded serialized and utf8 encoded FinalChallengeParams)
4. Append the response from each Authenticator into RegistrationResponse.assertions
5. Send RegistrationResponse message to FIDO Server

3.4.6.5 Registration Response Processing Rules for FIDO Server

The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (RegistrationResponse.header.upv) is not supported – reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that RegistrationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

NOTE

The following processing rules assume that Authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with
corresponding processing rules.



section ServerData and KeyHandle.
3. base64url decode RegistrationResponse.fcParams and convert it into an object (fcp)
4. Verify each field in fcp and make sure it is valid:

1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
3. Make sure fcp.channelBinding is as expected (see section ChannelBinding dictionary)

4. Reject the response if any of these checks fails
5. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired

5. For each assertion a in RegistrationResponse.assertions
1. Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and

make sure it contains all mandatory fields (indicated in Authenticator Metadata) it is supposed to have and has a valid syntax.
If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Verify that the AAID indeed matches the policy specified in the registration request.

If it doesn't match the policy - continue with next assertion
5. Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement] using the AAID.
6. Hash RegistrationResponse.fcParams using hashing algorithm suitable for this authenticator type. Look up the hash algorithm in

authenticator metadata, field AuthenticationAlgs. It is the hash algorithm associated with the first entry related to a constant with
prefix ALG_SIGN.

FCHash = hash(RegistrationResponse.fcParams)

7. if a.assertion contains an object of type TAG_UAFV1_REG_ASSERTION, then
1. if a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD as first element:

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that a.assertion.TAG_UAFV1_REG_ASSERTION
contains the most preferred attestation tag specified in field MatchCriteria.attestationTypes in
RegistrationRequest.policy (if this field is present).

If a.assertion.TAG_UAFV1_REG_ASSERTION doesn't contain the preferred attestation - it is recommended to skip this
assertion and continue with next one

2. Make sure that a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallengeHash == FCHash
If comparison fails - continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased risk. See sections "StatusReport dictionary" and "Metadata TOC object Processing Rules" in
[FIDOMetadataService] for more details on this.

4. Check whether a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is acceptable, i.e. it is either not
supported (value is 0 or the field isKeyRestricted is set to 'false' in the related Metadata Statement) or it is not
exceedingly high

If a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is exceedingly high, this assertion might be
skipped and processing will continue with next one

5. If a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_ATTESTATION_BASIC_FULL tag
1. If entry AttestationRootCertificates for the AAID in the metadata [FIDOMetadataStatement] contains at least

one element:
1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_FULL object. The occurrences are ordered
(see [UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate
chain.

2. Obtain all entries of AttestationRootCertificates for the AAID in authenticator Metadata, field
AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

The AAID in TAG_UAFV1_KRD is contained in a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions included in
this RegistrationResponse in order to determine whether this AAID matches the policy.



If verification fails – continue with next assertion
4. Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ATTESTATION_BASIC_FULL.Signature using

the attestation certificate (obtained before).
If verification fails – continue with next assertion

2. If Metadata(AAID).AttestationRootCertificates for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified

6. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type TAG_ATTESTATION_BASIC_SURROGATE
1. There is no real attestation for the AAID, so we just assume the AAID is the real one.
2. If entry AttestationRootCertificates for the AAID in the metadata is empty

Verify a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_ATTESTATION_BASIC_SURROGATE.Signature using
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_PUB_KEY

If verification fails – continue with next assertion
3. If entry AttestationRootCertificates for the AAID in the metadata is not empty - continue with next assertion (as

the AAID obviously is expecting a different attestation method).
4. Mark assertion as positively verified

7. If a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type TAG_ATTESTATION_ECDAA
1. If entry ecdaaTrustAnchors for the AAID in the metadata [FIDOMetadataStatement] contains at least one element:

1. For each of the ecdaaTrustAnchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

If verification fails – continue with next ecdaaTrustAnchors entry
2. If no ECDAA Verify operation succeeded – continue with next assertion

2. If Metadata(AAID).ecdaaTrustAnchors for this AAID is empty - continue with next assertion
3. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the AAID.

8. If a.assertion.TAG_UAFV1_REG_ASSERTION contains another TAG_ATTESTATION tag - verify the attestation by following
appropriate processing rules applicable to that attestation. Currently this document defines the processing rules for
Basic Attestation and direct anonymous attestation (ECDAA).

2. if a.assertion.TAG_UAFV1_REG_ASSERTION contains a different object than TAG_UAFV1_KRD as first element, then follow the rules
specific to that object.

3. Extract a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into PublicKey,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into KeyID,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter into SignCounter,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERTION_INFO.authenticatorVersion into AuthenticatorVersion,
a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID into AAID.

8. if a.assertion doesn't contain an object of type TAG_UAFV1_REG_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_REG_ASSERTION is defined).

6. For each positively verified assertion a
Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and a.tcDisplayPNGCharacteristics into a record associated
with the user's identity. If an entry with the same pair of AAID and KeyID already exists then fail (should never occur).

3.5 Authentication Operation

NOTE



3.5.1 Transaction dictionary

Contains the Transaction Content provided by the FIDO Server:

WebIDL

dictionary Transaction {
    required DOMString                  contentType;
    required DOMString                  content;
    DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;
};

3.5.1.1 Dictionary Transaction Members

contentType of type required DOMString
Contains the MIME Content-Type supported by the authenticator according its metadata statement (see [FIDOMetadataStatement]).

This version of the specification only supports the values text/plain or image/png.

content of type required DOMString
base64url(byte[1...])

Contains the base64-url encoded transaction content according to the contentType to be shown to the user.

If contentType is "text/plain" then the content must be the base64-url encoding of the ASCII encoded text with a maximum of 200
characters.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor
Transaction content PNG characteristics. For the definition of the DisplayPNGCharacteristicsDescriptor structure See

Fig. 8 UAF Authentication Sequence Diagram

The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of Transaction Confirmation (see section 3.5.1 Transaction dictionary), it is
absent in the case of a pure Authenticate operation.

During this operation, the FIDO Server asks the FIDO UAF Client to authenticate user with server-specified authenticators, and return an
authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously shared registration.

Fig. 9 UAF Authentication Cryptographic Data Flow

Diagram of cryptographic flow:

The FIDO Server sends the AppID (see [FIDOAppIDAndFacets]), the authenticator policy and the ServerChallenge to the FIDO UAF
Client.

The FIDO UAF Client computes the hash of the FinalChallengeParams, produced from the ServerChallenge and other values, as
described in this document, and sends the AppID and hashed FinalChallengeParams to the Authenticator.

The authenticator creates the SignedData object (see TAG_UAFV1_SIGNED_DATA in [UAFAuthnrCommands]) containing the hash of the final
challenge parameters, and some other values and signs it using the UAuth.priv key. This assertion is then cryptographically verified by
the FIDO Server.



[FIDOMetadataStatement]. This field must be present if the contentType is "image/png".

3.5.2 Authentication Request Message

UAF Authentication request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The request is
defined as AuthenticationRequest dictionary.

EXAMPLE 10: UAF Authentication Request
[{
    "header": {
      "upv": {
        "major": 1,
        "minor": 1
      },
      "op": "Auth",
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "serverData": "5s7n8-7_LDAtRIKKYqbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsF_pLYjNVm_l7bplAx4bkEwK6ibil9EHGfdfKOQ1q0tyEkNJFOgqdjVmLioroxgThlj8Is
tpt7q"
    },
    "challenge": "HQ1VkTUQC1NJDOo6OOWdxewrb9i5WthjfKIehFxpeuU",
    "policy": {
      "accepted": [
        [
          {
            "userVerification": 512,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 1,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 4,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 4,
            "keyProtection": 2,
            "tcDisplay": 1,
            "authenticationAlgorithms": [
              1,
              3
            ]
          }
        ],
        [
          {
            "userVerification": 2,
            "keyProtection": 2,
            "authenticationAlgorithms": [
              2
            ]
          }
        ],
        [
          {
            "userVerification": 32,
            "keyProtection": 2,
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 2,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [



3.5.3 AuthenticationRequest dictionary

Contains the UAF Authentication Request Message:

WebIDL

dictionary AuthenticationRequest {
    required OperationHeader header;
    required ServerChallenge challenge;
    Transaction[]            transaction;
    required Policy          policy;
};

3.5.3.1 Dictionary AuthenticationRequest Members

header of type required OperationHeader
Header.op must be "Auth"

challenge of type required ServerChallenge
Server-provided challenge value

transaction of type array of Transaction
Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes. Refer to [FIDOMetadataStatement]
for more information about Transaction Confirmation Display characteristics.

policy of type required Policy
Server-provided policy defining what types of authenticators are acceptable for this authentication operation.

3.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

WebIDL

dictionary AuthenticatorSignAssertion {
    required DOMString assertionScheme;
    required DOMString assertion;
    Extension[]        exts;
};

3.5.4.1 Dictionary AuthenticatorSignAssertion Members

assertionScheme of type required DOMString
The name of the Assertion Scheme used to encode assertion. See UAF Supported Assertion Schemes for details.

assertion of type required DOMString
base64url(byte[1..4096]) Contains the assertion containing a signature generated by UAuth.priv, i.e. TAG_UAFV1_AUTH_ASSERTION.

exts of type array of Extension
Any extensions prepared by the Authenticator

3.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered authenticators.

              "UAFV1TLV"
            ]
          },
          {
            "userVerification": 4,
            "keyProtection": 1,
            "authenticationAlgorithms": [
              1,
              3
            ],
            "assertionSchemes": [
              "UAFV1TLV"
            ]
          }
        ]
      ],
      "disallowed": [
        {
          "userVerification": 512,
          "keyProtection": 16,
          "assertionSchemes": [
            "UAFV1TLV"
          ]
        },
        {
          "userVerification": 256,
          "keyProtection": 16
        }
      ]
    }
}]

NOTE

This assertionScheme is not part of a signed object and hence considered the suspected assertionScheme.



WebIDL

dictionary AuthenticationResponse {
    required OperationHeader              header;
    required DOMString                    fcParams;
    required AuthenticatorSignAssertion[] assertions;
};

3.5.5.1 Dictionary AuthenticationResponse Members

header of type required OperationHeader
Header.op must be "Auth"

fcParams of type required DOMString
The field fcParams is the base64url-encoded serialized [RFC4627] FinalChallengeParams in UTF8 encoding (see
FinalChallengeParams dictionary) which contains all parameters required for the server to verify the Final Challenge.

assertions of type array of required AuthenticatorSignAssertion
The list of authenticator responses related to this operation.

3.5.6 Authentication Response Message

UAF Authentication response message is represented as an array of dictionaries. The array must contain exactly one dictionary. The response
is defined as AuthenticationResponse dictionary.

3.5.7 Authentication Processing Rules

3.5.7.1 Authentication Request Generation Rules for FIDO Server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be considered a list (first dimension) of sets
(second dimension) of authenticators (identified by MatchCriteria). All authenticators in a specific set must be used for authentication
simultaneously in order to match the policy. But any of those sets in the list are valid, i.e. the list elements are alternatives.

The FIDO Server must follow the steps:

1. Construct appropriate authentication policy p
1. for each set of alternative authenticators do

1. Create an 1-dimensional array of MatchCriteria objects v containing the set of authenticators to be used for authentication
simultaneously that need to be identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication simultaneously that can be identified by the same
rule, create a MatchCriteria object m, where

m.aaid may be combined with (one or more of) m.keyIDs, m.attachmentHint, m.authenticatorVersion, and m.exts,
but m.aaid must not be combined with any other match criteria field.
If m.aaid is not provided - at least m.authenticationAlgorithms and m.assertionSchemes must be provided
In case of step-up authentication (i.e. in the case where it is expected the user is already known due to a previous
authentication step) every item in Policy.accepted must include the AAID and KeyID of the authenticator registered
for this account in order to avoid ambiguities when having multiple accounts at this relying party.

2. Add m to v, e.g. v[j+1]=m.
2. Add v to p.allowed, e.g. p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.
1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators to m.aaid.

The status (as provided in the metadata TOC [FIDOMetadataService]) of some authenticators might be unacceptable. Such
authenticators should be included in p.disallowed.

EXAMPLE 11: UAF Authentication Response
[{
    "assertions": [
      {
        "assertion": "Aj7WAAQ-jgALLgkAQUJDRCNBQkNEDi4FAAABAQEADy4gAHwyJA
EX8t1b2wOxbaKOC5ZL7ACqbLo_TtiQfK3DzDsHCi4gAFwCUz-dOuafXKXJLbkUrIzjAU6oDb
P8B9iLQRmCf58fEC4AAAkuIABkwI-f3bIe_Uin6IKIFvqLgAOrpk6_nr0oVAK9hIl82A0uBA
ACAAAABi5AADwDOcBvPslX2bRNy4SvFhAwhEAoBSGUitgMUNChgUSMxss3K3ukekq1paG7Fv
1v5mBmDCZVPt2NCTnjUxrjTp4",
        "assertionScheme": "UAFV1TLV"
      }
    ],
    "fcParams": "eyJhcHBJRCI6Imh0dHBzOi8vdWFmLXRlc3QtMS5ub2tub2t0ZXN0LmN
vbTo4NDQzL1NhbXBsZUFwcC91YWYvZmFjZXRzIiwiY2hhbGxlbmdlIjoiSFExVmtUVVFDMU5
KRE9vNk9PV2R4ZXdyYjlpNVd0aGpmS0llaEZ4cGV1VSIsImNoYW5uZWxCaW5kaW5nIjp7fSw
iZmFjZXRJRCI6ImNvbS5ub2tub2suYW5kcm9pZC5zYW1wbGVhcHAifQ",
    "header": {
 "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets",
      "op": "Auth",
      "serverData": "5s7n8-7_LDAtRIKKYqbAtTTOezVKCjl2mPorYzbpxRrZ-_3wWro
MXsF_pLYjNVm_l7bplAx4bkEwK6ibil9EHGfdfKOQ1q0tyEkNJFOgqdjVmLioroxgThlj8Is
tpt7q",
      "upv": {
        "major": 1,
        "minor": 1
      }
    }
}]

NOTE

Line breaks in fcParams have been inserted for improving readability.



2. If needed - create MatchCriteria m for other disallowed criteria (e.g. unsupported authenticationAlgs)
3. Add all m to p.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for the supported version, and
1. FIDO Servers should not assume any implicit integrity protection of r.header.serverData. FIDO Servers that depend on the integrity

of r.header.serverData should apply and verify a cryptographically secure Message Authentication Code (MAC) to serverData and
they should also cryptographically bind serverData to the related message, e.g. by re-including r.challenge, see also section
ServerData and KeyHandle.

2. Generate a random challenge and assign it to r.challenge
3. If this is a transaction confirmation operation - look up TransactionConfirmationDisplayContentTypes/

TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of every participating AAID, generate a list of
corresponding transaction content and insert the list into r.transaction.

If the authenticator reported (a dynamic) AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during
Registration - it must be preferred over the (static) value specified in the authenticator Metadata.

4. Set r.policy to our new policy object p created above, e.g. r.policy = p.
5. Add the authentication request message the array

3. Send the array of authentication request messages to the FIDO UAF Client

3.5.7.2 Authentication Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message m

If a mandatory field in the UAF message is not present or a field doesn't correspond to its type and value then reject the operation
3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation
4. Filter available authenticators with the given policy and present the filtered list to User.
5. Let the user select the preferred Authenticator.
6. Obtain TLS data if its available
7. Create a FinalChallengeParams structure fcp and set fcp.AppID, fcp.challenge, fcp.facetID, and fcp.channelBinding appropriately.

Serialize [RFC4627] fcp using UTF8 encoding and base64url encode it.
FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with message version
AuthenticationRequest.header.upv (see Version Negotiation) and user agrees to authenticate with:

1. Add AppID, FinalChallenge, Transactions (if present), and all other fields to the ASMRequest.
2. Send the ASMRequest to the ASM. If the ASM returns an error, handle that error appropriately. The status code returned by the

ASM [UAFASM] must be mapped to a status code defined in [UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping
ASM Status Codes to ErrorCode.

3.5.7.3 Authentication Request Processing Rules for FIDO Authenticator

See [UAFAuthnrCommands], section "Sign Command".

3.5.7.4 Authentication Response Generation Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Create an AuthenticationResponse message
2. Copy AuthenticationRequest.header into AuthenticationResponse.header

3. Fill out AuthenticationResponse.FinalChallengeParams with appropriate fields and then stringify it
4. Append the response from each authenticator into AuthenticationResponse.assertions
5. Send AuthenticationResponse message to the FIDO Server

3.5.7.5 Authentication Response Processing Rules for FIDO Server

NOTE

All other FIDO components (except the FIDO server) will treat r.header.serverData as an opaque value. As a consequence
the FIDO server can implement any suitable cryptographic protection method.

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID in this header to the facetID (see
[FIDOAppIDAndFacets]).

NOTE

The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme. Currently "UAFV1TLV" is the only
defined and supported assertion scheme. When a new assertion scheme is added to UAF protocol - this section will be extended with



The FIDO Server must follow the steps:

1. Parse the message
1. If protocol version (AuthenticationResponse.header.upv) is not supported – reject the operation
2. If a mandatory field in UAF message is not present or a field doesn't correspond to its type and value - reject the operation

2. Verify that AuthenticationResponse.header.serverData, if used, passes any implementation-specific checks against its validity. See also
section ServerData and KeyHandle.

3. base64url decode AuthenticationResponse.fcParams and convert into an object (fcp)
4. Verify each field in fcp and make sure it's valid:

1. Make sure fcp.appID corresponds to the one stored by the FIDO Server

2. Make sure fcp.facetID is in the list of trusted FacetIDs [FIDOAppIDAndFacets]
3. Make sure ChannelBinding is as expected (see section ChannelBinding dictionary)

4. Make sure fcp.challenge has really been generated by the FIDO Server for this operation and it is not expired
5. Reject the response if any of the above checks fails

5. For each assertion a in AuthenticationResponse.assertions
1. Parse TLV data from a.assertion assuming it is encoded according to the suspected assertion scheme a.assertionScheme and

make sure it contains all mandatory fields (indicated in authenticator Metadata) it is supposed to have and has a valid syntax.
If it doesn't - continue with next assertion

2. Retrieve the AAID from the assertion.

3. Verify that a.assertionScheme matches Metadata(AAID).assertionScheme
If it doesn't match - continue with next assertion

4. Make sure that the AAID indeed matches the policy of the Authentication Request
If it doesn't meet the policy – continue with next assertion

5. if a.assertion contains an object of type TAG_UAFV1_AUTH_ASSERTION, then
1. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains TAG_UAFV1_SIGNED_DATA as first element:

1. Obtain Metadata(AAID).AuthenticatorVersion for this AAID and make sure that it is lower or equal to
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

If Metadata(AAID).AuthenticatorVersion is higher (i.e. the authenticator firmware is outdated), it is recommended
to assume increased authentication risk. See "StatusReport dictionary" and "Metadata TOC object Processing
Rules" in [FIDOMetadataService] for more details on this.

2. Retrieve a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_KEYID as KeyID
3. Locate UAuth.pub public key associated with (AAID, KeyID) in the user's record.

If such record doesn't exist - continue with next assertion
4. Verify the AAID against the AAID stored in the user's record at time of Registration.

If comparison fails – continue with next assertion
5. Locate authenticator specific authentication algorithms from authenticator metadata (field AuthenticationAlgs)
6. Check the Signature Counter a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter and make

sure it is either not supported by the authenticator (i.e. the value provided and the value stored in the user's record are
both 0 or the value isKeyRestricted is set to 'false' in the related Metadata Statement) or it has been incremented
(compared to the value stored in the user's record)

If it is greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a
cloned authenticator has been used previously).

7. Hash AuthenticationResponse.FinalChallengeParams using the hashing algorithm suitable for this authenticator type.
Look up the hash algorithm in authenticator Metadata, field AuthenticationAlgs. It is the hash algorithm associated with
the first entry related to a constant with prefix ALG_SIGN.

FCHash = hash(AuthenticationResponse.FinalChallengeParams)

8. Make sure that a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_FINAL_CHALLENGE_HASH == FCHash
If comparison fails – continue with next assertion

9. If a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_ASSERTION_INFO.authenticationMode == 2

corresponding processing rules.

NOTE

When the appID provided in the request was empty, the FIDO Client must set the appID to the facetID (see
[FIDOAppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

NOTE

There might be legitimate situations in which some methods of channel binding fail (see section 4.3.4 TLS Binding).

NOTE

The AAID in TAG_UAFV1_SIGNED_DATA is contained in
a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.TAG_AAID.

NOTE

The transaction hash included in this AuthenticationResponse must match the transaction content specified in the
related AuthenticationRequest. As FIDO doesn’t mandate any specific FIDO Server API, the transaction content



1. Make sure there is a transaction cached on Relying Party side.
If not – continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction)
and calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for
FinalChallenge).

For each cachedTransaction add hash(cachedTransaction) into cachedTransactionHashList
3. Make sure that a.TransactionHash is in cachedTransactionHashList

If it's not in the list – continue with next assertion
10. Use UAuth.pub key and appropriate authentication algorithm to verify

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE
1. If signature verification fails – continue with next assertion
2. Update SignCounter in user's record with

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIGNED_DATA.SignCounter

2. if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains a different object than TAG_UAFV1_SIGNED_DATA as first element, then follow
the rules specific to that object.

6. if a.assertion doesn't contain an object of type TAG_UAFV1_AUTH_ASSERTION, then skip this assertion (as in this UAF v1 only
TAG_UAFV1_AUTH_ASSERTION is defined).

7. Treat this assertion a as positively verified.
6. Process all positively verified authentication assertions a.

3.6 Deregistration Operation

This operation allows FIDO Server to ask the FIDO Authenticator to delete keys related to the particular relying party.

The FIDO Server may explicitly enumerate the keys to be deleted, or the FIDO server may signal deregistration of all keys on all authenticators
managed by the FIDO UAF Client and relating to a given appID.

3.6.1 Deregistration Request Message

The FIDO UAF Deregistration request message is represented as an array of dictionaries. The array must contain exactly one dictionary. The
request is defined as DeregistrationRequest dictionary.

The example above contains a version 1.1 deregistration request. This request will deregister all keys registered in authenticator with aaid
"ABCD#ABCD" for the given appID.

3.6.2 DeregisterAuthenticator dictionary

WebIDL

dictionary DeregisterAuthenticator {
    required AAID  aaid;
    required KeyID keyID;
};

3.6.2.1 Dictionary DeregisterAuthenticator Members

could be cached by any relying party software component, e.g. the FIDO Server or the relying party Web
Application.

NOTE
There are various deregistration use cases that both FIDO Server and FIDO Client implementations should allow for. Two in particular
are:

1. FIDO Servers should trigger this operation in the event a user removes their account at the relying party.
2. FIDO Clients should ensure that relying party application facets -- e.g., mobile apps, web pages -- have means to initiate a

deregistration operation without having necessarily received a UAF protocol message with an op value of "Dereg". This allows the
relying party app facet to remove a user's keys from authenticators during events such as relying party app removal or installation.

EXAMPLE 12: UAF Deregistration Request
[{
    "header": {
      "op": "Dereg",
      "upv": {
        "major": 1,
        "minor": 1
      },
  "appID": "https://uaf-test-1.noknoktest.com:8443/SampleApp/uaf/facets"
    },
    "authenticators": [
      {
        "aaid": "ABCD#ABCD",
        "keyID": ""
      }
    ]
}]

NOTE

There is no deregistration response object.



aaid of type required AAID
AAID of the authenticator housing the UAuth.priv key to deregister, or an empty string if all keys related to the specified appID are to
be de-registered.

keyID of type required KeyID
The unique KeyID related to UAuth.priv. KeyID is assumed to be unique within the scope of an AAID only. If aaid is not an empty
string, then:

1. keyID may contain a value of type KeyID, or,
2. keyID may be an empty string.

(1) signals deletion of a particular UAuth.priv key mapped to the (AAID, KeyID) tuple. 

(2) signals deletion of all KeyIDs associated with the specified aaid. 

If aaid is an empty string, then keyID must also be an empty string. This signals deregistration of all keys on all authenticators that are
mapped to the specified appID.

3.6.3 DeregistrationRequest dictionary

WebIDL

dictionary DeregistrationRequest {
    required OperationHeader           header;
    required DeregisterAuthenticator[] authenticators;
};

3.6.3.1 Dictionary DeregistrationRequest Members

header of type required OperationHeader
Header.op must be "Dereg".

authenticators of type array of required DeregisterAuthenticator
List of authenticators to be deregistered.

3.6.4 Deregistration Processing Rules

3.6.4.1 Deregistration Request Generation Rules for FIDO Server

The FIDO Server must follow the steps:

1. Create a DeregistrationRequest message m with m.header.upv set to the appropriate version number.
2. If the FIDO Server intends to deregister all keys on all authenticators managed by the FIDO UAF Client for this appID, then:

1. create one and only one DeregisterAuthenticator object o
2. Set o.aaid and o.keyID to be empty string values
3. Append o to m.authenticators, and go to step 5

3. If the FIDO Server intends to deregister all keys on all authenticators with a given AAID managed by the FIDO UAF Client for this appID,
then:

1. create one and only one DeregisterAuthenticator object o
2. Set o.aaid to the intended AAID and set o.keyID to be an empty string.
3. Append o to m.authenticators, and go to step 5

4. Otherwise, if the FIDO Server intends to deregister specific (AAID, KeyID) tuples, then for each tuple to be deregistered:
1. create a DeregisterAuthenticator object o
2. Set o.aaid and o.keyID appropriately
3. Append o to m.authenticators

5. delete related entry (or entries) in FIDO Server's account database
6. Send message to FIDO UAF Client

3.6.4.2 Deregistration Request Processing Rules for FIDO UAF Client

The FIDO UAF Client must follow the steps:

1. Choose the message m with upv set to the appropriate version number.
2. Parse the message

If a mandatory field in DeregistrationRequest message is not present or a field doesn't correspond to its type and value – reject the
operation
Empty string values for o.aaid and o.keyID must occur in the first and only DeregisterAuthenticator object o, otherwise reject the
operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [FIDOAppIDAndFacets].

If the FacetID of the requesting Application is not authorized, reject the operation
4. For each authenticator compatible with the message version DeregistrationRequest.header.upv and having an AAID matching one of

the provided AAIDs (an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs in the DeregistrationRequest or if (b)
the AAID in the DeregistrationRequest is an empty string):

1. Create appropriate ASMRequest for Deregister function and send it to the ASM. If the ASM returns an error, handle that error
appropriately. The status code returned by the ASM [UAFASM] must be mapped to a status code defined in
[UAFAppAPIAndTransport] as specified in section 3.4.6.2.1 Mapping ASM Status Codes to ErrorCode.

3.6.4.3 Deregistration Request Processing Rules for FIDO Authenticator



See [UAFASM] section "Deregister request".

4. Considerations
This section is non-normative.

4.1 Protocol Core Design Considerations

This section describes the important design elements used in the protocol.

4.1.1 Authenticator Metadata

It is assumed that FIDO Server has access to a list of all supported authenticators and their corresponding Metadata. Authenticator metadata
[FIDOMetadataStatement] contains information such as:

Supported Registration and Authentication Schemes
Authentication Factor, Installation type, supported content-types and other supplementary information, etc.

In order to make a decision about which authenticators are appropriate for a specific transaction, FIDO Server looks up the list of authenticator
metadata by AAID and retrieves the required information from it.

NORMATIVE

Each entry in the authenticator metadata repository must be identified with a unique authenticator Attestation ID (AAID).

4.1.2 Authenticator Attestation

Authenticator Attestation is the process of validating authenticator model identity during registration. It allows Relying Parties to
cryptographically verify that the authenticator reported by FIDO UAF Client is really what it claims to be.

Using authenticator Attestation, a relying party "example-rp.com" will be able to verify that the authenticator model of the "example-
Authenticator", reported with AAID "1234#5678", is not malware running on the FIDO User Device but is really a authenticator of model
"1234#5678".

NORMATIVE

FIDO Authenticators should support "Basic Attestation" or "ECDAA" described below. New Attestation mechanisms may be added to the
protocol over time.

NORMATIVE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use the UAuth.priv key in
order to formally generate the same KeyRegistrationData object as attested authenticators. This behavior must be properly declared in the
Authenticator Metadata.

4.1.2.1 Basic Attestation

NORMATIVE

There are two different flavors of Basic Attestation:

Full Basic Attestation
Based on an attestation private key shared among a class of authenticators (e.g. same model).

Surrogate Basic Attestation
Just syntactically a Basic Attestation. The attestation object self-signed, i.e. it is signed using the UAuth.priv key, i.e. the key
corresponding to the UAuth.pub key included in the attestation object. As a consequence it does not provide a cryptographic proof of
the security characteristics. But it is the best thing we can do if the authenticator is not able to have an attestation private key.

4.1.2.1.1 Full Basic Attestation

In this Full Basic Attestation model, a large number of authenticators must share the same Attestation certificate and Attestation Private Key in

NOTE

FIDO Servers must have access to a trust anchor for verifying attestation public keys (i.e. Attestation Certificate trust store) in order to
follow the assumptions made in [FIDOSecRef]. Authenticators must provide its attestation signature during the registration process for
the same reason. The attestation trust anchor is shared with FIDO Servers out of band (as part of the Metadata). This sharing process
shouldt be done according to [FIDOMetadataService].

NOTE

The protection measures of the Authenticator's attestation private key depend on the specific authenticator model's implementation.

NOTE

The FIDO Server must load the appropriate Authenticator Attestation Root Certificate from its trust store based on the AAID provided in
KeyRegistrationData object.



order to provide non-linkability (see Protocol Core Design Considerations). Authenticators can only be identified on a production batch level or
an AAID level by their Attestation Certificate, and not individually. A large number of authenticators sharing the same Attestation Certificate
provides better privacy, but also makes the related private key a more attractive attack target.

Fig. 10 Attestation Certificate Chain

4.1.2.1.2 Surrogate Basic Attestation

NORMATIVE

In this attestation method, the UAuth.priv key must be used to sign the Registration Data object. This behavior must be properly declared in
the Authenticator Metadata.

4.1.2.2 Direct Anonymous Attestation (ECDAA)

The FIDO Basic Attestation scheme uses attestation "group" keys shared across a set of authenticators with identical characteristics in order to
preserve privacy by avoiding the introduction of global correlation handles. If such an attestation key is extracted from one single authenticator,
it is possible to create a "fake" authenticator using the same key and hence indistinguishable from the original authenticators by the relying
party. Removing trust for registering new authenticators with the related key would affect the entire set of authenticators sharing the same
"group" key. Depending on the number of authenticators, this risk might be unacceptable high.

This is especially relevant when the attestation key is primarily protected against malware attacks as opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA [TPMv1-2-Part1]. Translated to FIDO, this
approach would require one Privacy-CA interaction for each Uauth key. This means relatively high load and high availability requirements for
the Privacy-CA. Additionally the Privacy-CA aggregates sensitive information (i.e. knowing the relying parties the user interacts with). This
might make the Privacy-CA an interesting attack target.

Another alternative is the Direct Anonymous Attestation [BriCamChe2004-DAA]. Direct Anonymous Attestation is a cryptographic scheme
combining privacy with security. It uses the Authenticator specific secret once to communicate with a single DAA Issuer (either at
manufacturing time or after being sold before first use) and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.
The (original) DAA scheme has been adopted by the Trusted Computing Group for TPM v1.2 [TPMv1-2-Part1].

ECDAA (see [FIDOEcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves and bilinear pairings [CheLi2013-
ECDAA]. This scheme provides significantly improved performance compared with the original DAA and it is part of the TPMv2 specification
[TPMv2-Part1].

NORMATIVE

The ECDAA attestation algorithm is used as specified in [FIDOEcdaaAlgorithm].

4.1.3 Error Handling

NORMATIVE

FIDO Authenticators must inform the FIDO UAF Client (see FIDO Interoperability Overview) about any error conditions encountered when

NOTE

When using Full Basic Attestation: A given set of authenticators sharing the same manufacturer and essential characteristics must not
be issued a new Attestation Key before at least 100,000 devices are issued the previous shared key.

NOTE

FIDO Authenticators not providing sufficient protection for Attestation keys (non-attested authenticators) must use this attestation
method.

NOTE

FIDO Servers must inform the calling Relying Party Web Application Server (see FIDO Interoperability Overview) about any error
conditions encountered when generating or processing UAF messages through their proprietary API.



processing commands through the Authenticator Specific Module (ASM). See [UAFASM] and [UAFAuthnrCommands] for details.

4.1.4 Assertion Schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs, Fingerprint Sensors, Secure Elements, etc.) and
also future authenticators designed for FIDO. Therefore extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

Cryptographic key provisioning (KeyRegistrationData)
Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an Assertion Scheme.

The UAF protocol allows plugging in new Assertion Schemes. See also UAF Supported Assertion Schemes.

The Registration Assertion defines how and in which format a cryptographic key is exchanged between the authenticator and the FIDO Server.

The Authentication Assertion defines how and in which format the authenticator generates a cryptographic signature.

The generally-supported Assertion Schemes are defined in [UAFRegistry].

4.1.5 Username in Authenticator

FIDO UAF supports authenticators acting as first authentication factor (i.e. replacing username and password). As part of the FIDO UAF
Registration, the Uauth key is registered (linked) to the related user account at the RP. The authenticator stores the username (allowing the
user to select a specific account at the RP in the case he has multiple ones). See [UAFAuthnrCommands], section "Sign Command" for details.

4.1.6 Silent Authenticators

FIDO UAF supports authenticators not requiring any types of user verification or user presence check. Such authenticators are called Silent
Authenticators.

In order to meet user's expectations, such Silent Authenticators need specific properties:

It must be possible for a user to effectively remove a Uauth key maintained by a Silent Authenticator (in order to avoid being tracked) at
the user's discretion (see [UAFAuthnrCommands]). This is not compatible with statelesss implementations storing the Uauth private key
wrapped inside a KeyHandle on the FIDO Server.
TransactionConfirmation is not supported (as it would require user input which is not intended), see [UAFAuthnrCommands].
They might not operate in first factor mode (see [UAFAuthnrCommands]) as this might violate the privacy principles.

The MetadataStatement has to truthfully reflect the Silent Authenticator, i.e. field userVerification needs to be set to USER_VERIFY_NONE.

4.1.7 TLS Protected Communication

We recommend, that the

1. TLS Client verifies and validates the server certificate chain according to [RFC5280], section 6 "Certificate Path Validation". The
certificate revocation status should be checked (e.g. using OCSP [RFC2560] or CRL based validation [RFC5280]) and the TLS server
identity should be checked as well [RFC6125].

2. TLS Client's trusted certificate root store is properly maintained and at least requires the CAs included in the root store to annually pass
Web Trust or ETSI (ETSI TS 101 456, or ETSI TS 102 042) audits for SSL CAs.

See [TR-03116-4] and [SHEFFER-TLS] for more recommendations on how to use TLS.

4.2 Implementation Considerations

4.2.1 Server Challenge and Random Numbers

4.3 Security Considerations

There is no "one size fits all" authentication method. The FIDO goal is to decouple the user verification method from the authentication protocol

NOTE

In order to protect the data communication between FIDO UAF Client and FIDO Server a protected TLS channel must be used by FIDO
UAF Client (or User Agent) and the Relying Party for all protocol elements.

1. The server endpoint of the TLS connection must be at the Relying Party
2. The client endpoint of the TLS connection must be either the FIDO UAF Client or the User Agent / App
3. TLS Client and Server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS v1.2 or higher are not available. The

"anon" and "null" TLS crypto suites are not allowed and must be rejected; insecure crypto-algorithms in TLS (e.g. MD5, RC4,
SHA1) should be avoided [[SP 800-131A]] [RFC7525].

4. TLS Extended Master Secret Extension [RFC7627] and TLS Renegotiation Indication Extension [RFC5746] should be used to
protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see [TLSAUTH].

NOTE

A ServerChallenge needs appropriate random sources in order to be effective (see [RFC4086] for more details). The (pseudo-)random
numbers used for generating the Server Challenge should successfully pass the randomness test specified in [Coron99] and they should
follow the guideline given in [SP800-90b].



and the authentication server, and to support a broad range of user verification methods and a broad range of assurance levels. FIDO
authenticators should be able to leverage capabilities of existing computing hardware, e.g. mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and integrity of the user's equipment involved
and (b) on the authentication method being used to authenticate the user.

When using FIDO, users should have the freedom to use any available equipment and a variety of authentication methods. The relying party
needs reliable information about the security relevant parts of the equipment and the authentication method itself in order to determine whether
the overall risk of an electronic authentication is acceptable in a particular business context. The FIDO Metadata Service
[FIDOMetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security relevant parts of the equipment and the
authentication method itself to the FIDO server.

The overall security is determined by the weakest link. In order to support scalable security in FIDO, the underlying UAF protocol needs to
provide a very high conceptual security level, so that the protocol isn't the weakest link.

Relying Parties define Acceptable Assurance Levels. The FIDO Alliance envisions a broad range of FIDO UAF Clients, FIDO
Authenticators and FIDO Servers to be offered by various vendors. Relying parties should be able to select a FIDO Server providing the
appropriate level of security. They should also be in a position to accept FIDO Authenticators meeting the security needs of the given business
context, to compensate assurance level deficits by adding appropriate implicit authentication measures, and to reject authenticators not
meeting their requirements. FIDO does not mandate a very high assurance level for FIDO Authenticators, instead it provides the basis for
authenticator and user verification method competition.

Authentication vs. Transaction Confirmation. Existing Cloud services are typically based on authentication. The user launches an
application (i.e. User Agent) assumed to be trusted and authenticates to the Cloud service in order to establish an authenticated
communication channel between the application and the Cloud service. After this authentication, the application can perform any actions to the
Cloud service using the authenticated channel. The service provider will attribute all those actions to the user. Essentially the user
authenticates all actions performed by the application in advance until the service connection or authentication times out. This is a very
convenient way as the user doesn't get distracted by manual actions required for the authentication. It is suitable for actions with low risk
consequences.

However, in some situations it is important for the relying party to know that a user really has seen and accepted a particular content before he
authenticates it. This method is typically being used when non-repudiation is required. The resulting requirement for this scenario is called
What You See Is What You Sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The technical difference is, that with
Authentication the user confirms a random challenge, where in the case of Transaction Confirmation the user also confirms a human readable
content, i.e. the contract. From a security point, in the case of authentication the application needs to be trusted as it performs any action once
the authenticated communication channel has been established. In the case of Transaction Confirmation only the transaction confirmation
display component implementing WYSIWYS needs to be trusted, not the entire application.

Distinct Attestable Security Components. For the relying party in order to determine the risk associated with an authentication, it is
important to know details about some components of the user's environment. Web Browsers typically send a "User Agent" string to the web
server. Unfortunately any application could send any string as "User Agent" to the relying party. So this method doesn't provide strong security.
FIDO UAF is based on a concept of cryptographic attestation. With this concept, the component to be attested owns a cryptographic secret and
authenticates its identity with this cryptographic secret. In FIDO UAF the cryptographic secret is called "Authenticator Attestation Key". The
relying party gets access to reference data required for verifying the attestation.

In order to enable the relying party to appropriately determine the risk associated with an authentication, all components performing significant
security functions need to be attestable.

In FIDO UAF significant security functions are implemented in the "FIDO Authenticators". Security functions are:

1. Protecting the attestation key.
2. Generating and protecting the Authentication key(s), typically one per relying party and user account on relying party.
3. Verifying the user.
4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

Some FIDO Authenticators might implement these functions in software running on the FIDO User Device, others might implement these
functions in "hardware", i.e. software running on a hardware segregated from the FIDO User Device. Some FIDO Authenticators might even be
formally evaluated and accredited to some national or international scheme. Each FIDO Authenticator model has an attestation ID (AAID),
uniquely identifying the related security characteristics. Relying parties get access to these security properties of the FIDO Authenticators and
the reference data required for verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication solutions is a weak server side
implementation, affecting the security of authentication of typical users to other relying parties. It is the goal of the FIDO UAF protocol to
decouple the security of different relying parties.

Decoupling User Verification Method from Authentication Protocol. In order to decouple the user verification method from the
authentication protocol, FIDO UAF is based on an extensible set of cryptographic authentication algorithms. The cryptographic secret will be
unlocked after user verification by the Authenticator. This secret is then used for the authenticator-to-relying party authentication. The set of
cryptographic algorithms is chosen according to the capabilities of existing cryptographic hardware and computing devices. It can be extended
in order to support new cryptographic hardware.

Privacy Protection. Different regions in the world have different privacy regulations. The FIDO UAF protocol should be acceptable in all
regions and hence must support the highest level of data protection. As a consequence, FIDO UAF doesn't require transmission of biometric
data to the relying party nor does it require the storage of biometric reference data [ISOBiometrics] at the relying party. Additionally,
cryptographic secrets used for different relying parties shall not allow the parties to link actions to the same user entity. UAF supports this
concept, known as non-linkability. Consequently, the UAF protocol doesn't require a trusted third party to be involved in every transaction.

Relying parties can interactively discover the AAIDs of all enabled FIDO Authenticators on the FIDO User Device using the Discovery interface
[UAFAppAPIAndTransport]. The combination of AAIDs adds to the entropy provided by the client to relying parties. Based on such information,
relying parties can fingerprint clients on the internet (see Browser Uniqueness at eff.org and https://wiki.mozilla.org/Fingerprinting). In order to
minimize the entropy added by FIDO, the user can enable/disable individual authenticators – even when they are embedded in the device (see
[UAFAppAPIAndTransport], section "privacy considerations").

4.3.1 FIDO Authenticator Security

See [UAFAuthnrCommands].

4.3.2 Cryptographic Algorithms



In order to keep key sizes small and to make private key operations fast enough for small devices, it is suggested that implementers prefer
ECDSA [ECDSA-ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is also supported. See
[FIDORegistry] "Authentication Algorithms" and "Public Key Representation Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random value. For effective security, this value
must be chosen randomly and uniformly from a set of modular integers, using a cryptographically secure process. Even slight biases in that
process may be turned into attacks on the signature schemes.

4.3.3 FIDO Client Trust Model

The FIDO environment on a FIDO User Device comprises 4 entities:

User Agents (a native app or a browser)
FIDO UAF Clients (a shared service potentially used by multiple User Agents)
Authenticator Specific Modules (ASMs)
Authenticators

Fig. 11 UAF Client Trust Model

The security and privacy principles that underpin mobile operating systems require certain behaviours from apps. FIDO must uphold those
principles wherever possible. This means that each of these components has to enforce specific trust relationships with the others to avoid the
risk of rogue components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be allowed directly to view or edit each other’s
data (e.g. FIDO UAF credentials).

Given that FIDO UAF Clients are intended to provide a shared service, the principle of siloed app data has been applied to the FIDO UAF
Client, rather than individual apps. This means that if two or more FIDO UAF Clients are present on a device, then each FIDO UAF Client is
unable to access authentication keys created by another FIDO UAF Client. A given FIDO UAF Client may however provide services to multiple
User Agents, so that the same authentication key can authenticate to different facets of the same Relying Party, even if one facet is a 3rd party
browser.

This exclusive access restriction is enforced through the KHAccessToken. When a FIDO UAF Client communicates with an ASM, the ASM
reads the identity of the FIDO UAF Client caller1 and includes that Client ID in the KHAccessToken that it sends to the authenticator.
Subsequent calls to the authenticator must include the same Client ID in the KHAccessToken. Each authentication key is also bound to the
ASM that created it, by means of an ASMToken (a random unique ID for the ASM) that is also included in the KHAccessToken.

Finally, the User Agents that a FIDO UAF Client will recognise are determined by the Relying Party itself. The FIDO UAF Client requests a list
of Trusted Apps from the RP as part of the Registration and Authentication protocols. This prevents User Agents that have not been explicitly
authorized by the Relying Party from using the FIDO credentials.

In this manner, in a compliant FIDO installation, UAF credentials can only be accessed via apps that the relying party explicitly trusts and
through the same client and ASM that performed the original registration.

It should be noted that the specification allows for FIDO UAF Clients to be built directly into User Agents. However, such implementations will

NOTE

If such random values cannot be provided under all possible environmental conditions, then a deterministic version of ECDSA should be
used (see [RFC6979]).



restrict the ability to support multiple facets for relying party applications unless they also expose the UAF Client API for other User Agents to
consume.

4.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify the calling software entity (i.e. the ASM).

The KHAccessToken allows restricting access to the keys generated by the FIDO Authenticator to the intended ASM. It is based on a Trust On
First Use (TOFU) concept.

FIDO Authenticators are capable of binding UAuth.Key with a key provided by the caller (i.e. the ASM). This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally registered them. A malicious App on a
mobile platform won't be able to access keys by bypassing the related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonaID, ASMToken and the CallerID. See [UAFASM] for more details.

4.3.4 TLS Binding

Various channel binding methods have been proposed (e.g. [RFC5929] and [ChannelID]).

UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same AppID as the relying party and they might be able to manipulate the
DNS system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and they might be able to manipulate the DNS
system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique" defined in [RFC5929] might be difficult to
implement.

2. Data centers might use SSL concentrators.
3. Data centers might implement load-balancing for TLS endpoints using different TLS certificates. As a consequence, "tls-server-end-point"

defined in [RFC5929], i.e. the hash of the TLS server certificate might be inappropriate.
4. Unfortunately, hashing of the TLS server certificate (as in "tls-server-end-point") also limits the usefulness of the channel binding in a

particular, but quite common circumstance. If the client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-
middle, your client will see a different certificate than the one the server is using. This is actually quite common on corporate or military
networks with a high security posture that want to inspect all incoming and outgoing traffic. If the FIDO Server just gets a hash value,
there's no way to distinguish this from an attack. If sending the entire certificate is acceptable from a performance perspective, the server
can examine it and determine if it is a certificate for a valid name from a non-standard issuer (likely administratively trusted) or a certificate
for a different name (which almost certainly indicates a forwarding attack).

See ChannelBinding dictionary for more details.

4.3.5 Session Management

FIDO does not define any specific session management methods. However, several FIDO functions rely on a robust session management
being implemented by the relying party's web application:

FIDO Registration
A web application might trigger FIDO Registration after authenticating an existing user via legacy credentials. So the session is used to
maintain the authentication state until the FIDO Registration is completed.

FIDO Authentication
After success FIDO Authentication, the session is used to maintain the authentication state during the operations performed by the user
agent or mobile app.

Best practices should be followed to implement robust session management (e.g. [OWASP2013]).

4.3.6 Personas

FIDO supports unlinkability [AnonTerminology] of accounts at different relying parties by using relying party specific keys.

Sometimes users have multiple accounts at a particular relying party and even want to maintain unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

FIDO does not want to add more complexity to maintaining unlinkability between accounts at a relying party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various personas (e.g. "business", "personal").
This is possible as roaming authenticators typically are small and not excessively expensive.

In the case of bound authenticators, this is different. FIDO recommends the "Persona" concept for this situation.

All relevant data in an authenticator are related to one Persona (e.g. "business" or "personal"). Some administrative interface (not standardized
by FIDO) of the authenticator may allow maintaining and switching Personas.

NORMATIVE

The authenticator must only "know" / "recognize" data (e.g. authentication keys, usernames, KeyIDs, …) related to the Persona being
active at that time.

NOTE

On some platforms, the ASM additionally might need special permissions in order to communicate with the FIDO Authenticator. Some
platforms do not provide means to reliably enforce access control among applications.



With this concept, the User can switch to the "Personal" Persona and register new accounts. After switching back to "Business" Persona, these
accounts will not be recognized by the authenticator (until the User switches back to "Personal" Persona again).

In order to support the persona feature, the FIDO Authenticator-specific Module API [UAFASM] supports the use of a 'PersonaID' to identify
the persona in use by the authenticator. How Personas are managed or communicated with the user is out of scope for FIDO.

4.3.7 ServerData and KeyHandle

Data contained in the field serverData (see Operation Header dictionary) of UAF requests is sent to the FIDO UAF Client and will be echoed
back to the FIDO Server as part of the related UAF response message.

4.3.8 Authenticator Information retrieved through UAF Application API vs. Metadata

Several authenticator properties (e.g. UserVerificationMethods, KeyProtection, TransactionConfirmationDisplay, ...) are available in the
metadata [FIDOMetadataStatement] and through the FIDO UAF Application API. The properties included in the metadata are authoritative and
are provided by a trusted source. When in doubt, decisions should be based on the properties retrieved from the Metadata as opposed to the
data retrieved through the FIDO UAF Application API.

However, the properties retrieved through the FIDO UAF Application API provide a good "hint" what to expect from the Authenticator. Such
"hints" are well suited to drive and optimize the user experience.

4.3.9 Policy Verification

FIDO UAF Response messages do not include all parameters received in the related FIDO UAF request message into the to-be-signed object.
As a consequence, any MITM could modify such entries.

FIDO Server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible FIDO Authenticator. Such a change will
be detected by FIDO Server if the weakest possible FIDO Authenticator does not match the initial policy (see Registration Response
Processing Rules and Authentication Response Processing Rules).

4.3.10 Replay Attack Protection

The FIDO UAF protocol specifies two different methods for replay-attack protection:

1. Secure transport protocol (TLS)
2. Server Challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [TLS].

Additionally, each protocol message contains some random bytes in the ServerChallenge field. The FIDO server should only accept incoming
FIDO UAF messages which contain a valid ServerChallenge value. This is done by verifying that the ServerChallenge value, sent by the client,
was previously generated by the FIDO server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated by the FIDO server may not be unique,
and in such cases, the same ServerChallenge may be presented more than once, making a replay attack harder to detect.

4.3.11 Protection against Cloned Authenticators

FIDO UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security characteristics specified for the model
(identified by the AAID). The security is better when only a single authenticator with that specific UAuth.Key instance exists. Consequently
FIDO UAF specifies some protection measures against cloning of authenticators.

Firstly, if the UAuth private keys are protected by appropriate measures then cloning should be hard as such keys cannot be extracted easily.

Secondly, UAF specifies a Signature Counter (see Authentication Response Processing Rules and [UAFAuthnrCommands]). This counter is
increased by every signature operation. If a cloned authenticator is used, then the subsequent use of the original authenticator would include a
signature counter lower to or equal to the previous (malicious) operation. Such an incident can be detected by the FIDO Server.

4.3.12 Anti-Fraud Signals

There is the potential that some attacker misuses a FIDO Authenticator for committing fraud, more specifically they would:

NOTE

The FIDO Server should not assume any kind of implicit integrity protection of such data nor any implicit session binding. The FIDO
Server must explicitly bind the serverData to an active session.

NOTE

In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary places (e.g. in serverData or in the
KeyHandle). In such situations, the confidentiality and integrity of such sensitive data must be protected. This can be achieved by using
a suitable encryption algorithm, e.g. AES with a suitable cipher mode, e.g. CBC or CTR [CTRMode]. This cipher mode needs to be used
correctly. For CBC, for example, a fresh random IV for each encryption is required. The data might have to be padded first in order to
obtain an integral number of blocks in length. The integrity protection can be achieved by adding a MAC or a digital signature on the
ciphertext, using a different key than for the encryption, e.g. using HMAC [FIPS198-1]. Alternatively, an authenticated encryption
scheme such as AES-GCM [SP800-38D] or AES-CCM [SP800-38C] could be used. Such a scheme provides both integrity and
confidentiality in a single algorithm and using a single key.

NOTE

When protecting serverData, the MAC or digital signature computation should include some data that binds the data to its associated
message, for example by re-including the challenge value in the authenticated serverData.



1. Register the authenticator to some relying party for one account
2. Commit fraud
3. Deregister the Authenticator
4. Register the authenticator to some relying party for another account
5. Commit fraud
6. Deregister the Authenticator
7. and so on...

4.4 Interoperability Considerations

FIDO supports Web Applications, Mobile Applications and Native PC Applications. Such applications are referred to as FIDO enabled
applications.

Fig. 12 FIDO Interoperability Overview

Web applications typically consist of the web application server and the related Web App. The Web App code (e.g. HTML and JavaScript) is
rendered and executed on the client side by the User Agent. The Web App code talks to the User Agent via a set of JavaScript APIs, e.g.
HTML DOM. The FIDO DOM API is defined in [UAFAppAPIAndTransport]. The protocol between the Web App and the Relying Party Web
Application Server is typically proprietary.

Mobile Apps play the role of the User Agent and the Web App (Client). The protocol between the Mobile App and the Relying Party Web
Application Server is typically proprietary.

Native PC Applications play the role of the User Agent, the Web App (Client). Those applications are typically expected to be independent
from any particular Relying Party Web Application Server.

It is recommended for FIDO enabled applications to use the FIDO messages according to the format specified in this document.

It is recommended for FIDO enabled application to use the UAF HTTP Binding defined in [UAFAppAPIAndTransport].

5. UAF Supported Assertion Schemes
This section is normative.

5.1 Assertion Scheme "UAFV1TLV"

This scheme is mandatory to implement for FIDO Servers. This scheme is mandatory to implement for FIDO Authenticators.

This Assertion Scheme allows the authenticator and the FIDO Server to exchange an asymmetric authentication key generated by the

NOTE

Authenticators might support a Registration Counter (RegCounter). The RegCounter will be incremented on each registration and hence
might become exceedingly high in such fraud scenarios. See [UAFAuthnrCommands] for more details.

NOTE

The KeyRegistrationData and SignedData objects [UAFAuthnrCommands] are generated and signed by the FIDO Authenticators and
have to be verified by the FIDO Server. Verification will fail if the values are modified during transport.

The ASM API [UAFASM] specifies the standardized API to access authenticator Specific Modules (ASMs) on Desktop PCs and Mobile
Devices.

The document [UAFAuthnrCommands] does not specify a particular protocol or API. Instead it lists the minimum data set and a specific
message format which needs to be transferred to and from the FIDO Authenticator.



Authenticator.

This assertion scheme is using Tag Length Value (TLV) compact encoding to encode registration and authentication assertions generated by
authenticators. This is the default assertion scheme for UAF protocol.

TAGs and Algorithms are defined in [UAFRegistry].

The authenticator must use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the authentication algorithm specified in the metadata
statement [FIDOMetadataStatement] for each relying party. This key pair should be generated as part of the registration operation.

Conforming FIDO Servers must implement all authentication algorithms and key formats listed in document [FIDORegistry] unless they are
explicitly marked as optional in [FIDORegistry].

Conforming FIDO Servers must implement all attestation types (TAG_ATTESTATION_*) listed in document [UAFRegistry] unless they are explicitly
marked as optional in [UAFRegistry].

Conforming authenticators must implement (at least) one attestation type defined in [UAFRegistry], as well as one authentication algorithm and
one key format listed in [FIDORegistry].

5.1.1 KeyRegistrationData

See [UAFAuthnrCommands], section "TAG_UAFV1_KRD".

5.1.2 SignedData

See [UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

6. Definitions
See [FIDOGlossary].
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