
FIDO UAF Authenticator Commands
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html

Previous version:
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html

Editors:
Dr. Rolf Lindemann, Nok Nok Labs, Inc.
John Kemp, FIDO Alliance

Contributors:
Davit Baghdasaryan, Nok Nok Labs, Inc.
Roni Sasson, Discretix
Brad Hill, PayPal, Inc.
Jeff Hodges, PayPal, Inc.
Ka Yang, Nok Nok Labs, Inc.

The English version of this specification is the only normative version. Non-normative
translations may also be available.

Copyright ©
2013-2020
FIDO Alliance
All Rights Reserved.

Abstract

UAF Authenticators may take different forms. Implementations
may range from a secure application running inside
tamper-
resistant hardware to software-only solutions on
consumer devices.

This document defines normative aspects of UAF Authenticators and offers security and implementation
guidelines for
authenticator implementors.

Status of This Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this
document. A list of current FIDO Alliance publications and the
latest revision of this technical report can be found in the FIDO
Alliance specifications index at
https://fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard.
If you wish to make comments regarding this
document, please Contact Us.
All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights,

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/fido-uaf-authnr-cmds-v1.2-id-20180220.html
mailto:rlindemann@noknok.com
https://www.noknok.com/
https://fidoalliance.org/
mailto:davit@noknok.com
https://www.noknok.com/
mailto:Roni.Sasson@discretix.com
http://www.discretix.com/
mailto:bhill@paypal.com
http://www.paypal.com/
mailto:Jeff.Hodges@KingsMountain.com
http://www.paypal.com/
mailto:kyang@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact


including without limitation, patent rights. The FIDO Alliance, Inc. and its Members
and any other contributors to the
Specification are not, and shall not be held, responsible in any manner
for identifying or failing to identify any or all such third
party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND,
INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED
WARRANTY OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members
and is endorsed as a Proposed Standard.
It is a stable
document and may be used as reference material or cited from another
document. FIDO Alliance's role in making the
Recommendation is to draw attention to the
specification and to promote its widespread deployment.

Table of Contents

1. Notation
1.1 Conformance

2. Overview
3. UAF Authenticator

3.1 Types of Authenticators

4. Tags
4.1 Command Tags
4.2 Tags used only in Authenticator Commands
4.3 Tags used in UAF Protocol
4.4 Status Codes

5. Structures
5.1 RawKeyHandle
5.2 Structures to be parsed by FIDO Server

5.2.1 TAG_UAFV1_REG_ASSERTION
5.2.2 TAG_UAFV1_AUTH_ASSERTION

5.3 UserVerificationToken

6. Commands
6.1 GetInfo Command

6.1.1 Command Description
6.1.2 Command Structure
6.1.3 Command Response
6.1.4 Status Codes

6.2 Register Command
6.2.1 Command Structure
6.2.2 Command Response
6.2.3 Status Codes
6.2.4 Command Description

6.3 Sign Command
6.3.1 Command Structure
6.3.2 Command Response
6.3.3 Status Codes
6.3.4 Command Description

6.4 Deregister Command
6.4.1 Command Structure
6.4.2 Command Response



6.4.3 Status Codes
6.4.4 Command Description

6.5 OpenSettings Command
6.5.1 Command Structure
6.5.2 Command Response
6.5.3 Status Codes

7. KeyIDs and key handles
7.1 first-factor Bound Authenticator
7.2 2ndF Bound Authenticator
7.3 first-factor Roaming Authenticator
7.4 2ndF Roaming Authenticator

8. Access Control for Commands
9. Considerations

9.1 Algorithms and Key Sizes
9.2 Indicating the Authenticator Model

10. Relationship to other standards
10.1 TEE
10.2 Secure Elements
10.3 TPM
10.4 Unreliable Transports

A. Security Guidelines
B. Table of Figures
C. References

C.1 Normative references
C.2 Informative references

1. Notation

Type names, attribute names and element names are written as
code.

String literals are enclosed in "", e.g. "UAF-TLV".

In formulas we use "|" to denote byte wise concatenation
operations.

UAF specific terminology used in this document is defined in
[FIDOGlossary].

All diagrams, examples, notes in this specification are non-normative.

Unless otherwise specified all data described in this document must be encoded in
little-endian format.

All TLV structures can be parsed using a "recursive-descent"
parsing approach. In some cases multiple occurrences of a
single tag may be allowed
within a structure, in which case all values must be
preserved.

All fields in TLV structures are mandatory, unless
explicitly mentioned as otherwise.

1.1 Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
and notes in this specification
are non-normative. Everything else in this specification is
normative.

The key words must, must not, required, should, should not, recommended, may,
and optional in this specification are to be
interpreted as described in [RFC2119].



2. Overview

This section is non-normative.

This document specifies low-level functionality which UAF
Authenticators should implement in order to support the UAF
protocol. It has the following goals:

Define normative aspects of UAF Authenticator implementations
Define a set of commands
implementing UAF functionality that may be implemented by different types of authenticators
Define UAFV1TLV assertion scheme-specific structures which will be parsed by a FIDO Server

The overall architecture of the UAF protocol and its various
operations is described in [UAFProtocol]. The following
simplified
architecture diagram illustrates the interactions
and actors this document is concerned with:

Fig. 1 UAF Authenticator Commands

3. UAF Authenticator

This section is non-normative.

The UAF Authenticator is an authentication component that
meets the UAF protocol requirements as described in
[UAFProtocol]. The main functions to be provided by UAF
Authenticators are:

NOTE

The UAF Protocol supports various assertion schemes.
Commands and structures defined in this document assume
that an authenticator supports the UAFV1TLV assertion scheme.
Authenticators implementing a different assertion
scheme do not have to follow requirements specified
in this document.



1. [Mandatory] Verifying the user or the user's presence with the verification
mechanism built into the authenticator. The
verification
technology can vary, from biometric verification to simply
verifying physical presence, or no user verification
at all
(the so-called Silent Authenticator).

2. [Mandatory] Performing the cryptographic operations
defined in [UAFProtocol]
3. [Mandatory] Creating data structures that can be parsed by FIDO Server.
4. [Mandatory] Attesting itself to the FIDO Server if there
is a built-in support for attestation
5. [Optional] Displaying the transaction content to the user
using the transaction confirmation display

Fig. 2 FIDO Authenticator Logical Sub-Components

Some examples of UAF Authenticators:

A fingerprint sensor built into a mobile device
PIN authenticator implemented inside a secure
element
A mobile phone acting as an authenticator to a different
device
A USB token with built-in user presence verification
A voice or face verification technology built into a
device

3.1 Types of Authenticators

There are four types of authenticators defined in this
document. These definitions are not normative (unless otherwise
stated)
and are provided merely for simplifying some of the
descriptions.

NOTE



First-factor Bound Authenticator
These authenticators have an
internal matcher. The matcher is able to verify an
already enrolled user. If there is
more than one user
enrolled - the matcher can also identify a user.
There is a logical binding between this authenticator and the device it is attached to (the binding
is expressed
through a concept called KeyHandleAccessToken). This authenticator cannot be bound with more
than one
device.
These authenticators do not store key handles
in their own internal storage.
They always return the key handle to
the ASM and the latter stores it in its local database.
Authenticators of this type may also work as a second factor.
Examples

A fingerprint sensor built into a laptop, phone or
tablet
Embedded secure element in a mobile device
Voice verification built into a device

Second-factor (2ndF) Bound Authenticator
This type of authenticator is similar to
first-factor bound authenticators, except that it can
operate only as the
second-factor in a multi-factor
authentication
Examples

USB dongle with a built-in capacitive touch
device for verifying user presence
A "Trustlet" application running on the trusted
execution environment of a mobile phone, and
leveraging a
secure keyboard to verify user
presence

First Factor (1stF) Roaming Authenticator
These authenticators are not bound to any device. User can use them with any number of devices.
It is assumed that these authenticators have an
internal matcher. The matcher is able to verify an
already enrolled
user. If there is more than one user
enrolled - the matcher can also identify a user.
It is assumed that these authenticators are
designed to store key handles in their own internal
secure storage and
not expose externally.
These authenticators may also work as a second
factor.
Examples

A Bluetooth LE based hardware token with
built-in fingerprint sensor
PIN protected USB hardware token
A first-factor bound authenticator acting as a
roaming authenticator for a different device on
the user's behalf

Second-factor Roaming Authenticator
These authenticators are not bound to any
device. A user may use them with any number of
devices.

The following is the rationale for considering only these 4 types of authenticators:

Bound authenticators are typically embedded into a
user's computing device and thus can utilize
the host's
storage for their needs. It makes more
sense from an economic perspective to utilize
the host's storage rather
than have embedded
storage. Trusted Execution Environments (TEE), Secure
Elements and Trusted Platform
Modules (TPM) are
typically designed in this manner.
First-factor roaming authenticators must have an internal storage for key handles.
Second-factor roaming authenticators can store
their key handles on an associated server, in
order to avoid the
need for internal storage.
Defining such constraints makes the specification
simpler and clearer for defining the mainstream
use-cases.

Vendors, however, are not limited to these
constraints. For example a bound authenticator which
has internal storage
for storing key handles is
possible. Vendors are free to design and implement
such authenticators as long as their
design follows
the normative requirements described in this document.



These authenticators may have an internal
matcher. The matcher is able to verify an
already enrolled user. If
there is more than one
user enrolled then the matcher can also identify
a particular specific user.
It is assumed that these authenticators do not
store key handles in their own internal storage.
Instead they push
key handles to the FIDO Server
and receive them back during the authentication
operation.
These authenticators can only work as second
factors.
Examples

USB dongle with a built-in capacitive touch
device for verifying user presence
A "Trustlet" application running on the trusted
execution environment of a mobile phone, and
leveraging a
secure keyboard to verify user
presence

Throughout the document there will be special conditions
applying to these types of authenticators.

NORMATIVE

In some deployments, the combination of ASM and a bound
authenticator can act as a roaming authenticator (for
example when an ASM with an embedded authenticator on a
mobile device acts as a roaming authenticator for
another
device). When this happens such an authenticator
must follow the requirements applying to bound
authenticators within
the boundary of the system the
authenticator is bound to, and follow the requirements
that apply to roaming authenticators
in any other system
it connects to externally.

Conforming authenticators must implement at least one
attestation type defined in [UAFRegistry], as well as one
authentication algorithm and one key format listed in [FIDORegistry].

4. Tags

This section is normative.

In this document UAF Authenticators use "Tag-Length-Value"
(TLV) format to communicate with the outside world. All
requests and response data must be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by
appending other TLV tags (custom or predefined).

Refer to [UAFRegistry] for information about predefined
TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g. a UINT32[4] will have
length 16.

Although 2 bytes are allotted for the tag, only
the first 14 bits (values up to 0x3FFF) should be used to
accommodate the
limitations of some hardware platforms.

Arrays are implicit. The description of some structures
indicates where multiple values are permitted, and
in these cases, if
same tag appears more than once, all values are
signifanct and should be treated as an array.

For convenience in decoding TLV-formatted messages,
all composite tags - those with values that must be parsed by
recursive descent - have the 13th bit (0x1000) set.

NOTE

As stated above, the bound authenticator does not store key handles and roaming authenticators
do store them. In the
example above the ASM would store the key handles of the bound authenticator and hence meets these assumptions.



A tag that has the 14th bit (0x2000) set indicates that it is
critical and a receiver must abort processing
the entire message if it
cannot process that tag.

Since UAF Authenticators may have extremely constrained
processing environments, an ASM must follow
a normative
ordering of structures when sending
commands.

It is assumed that ASM and
Server have sufficient resources to handle parsing
tags in any order so structures send from
authenticator may use tags in any order.

4.1 Command Tags

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 Tag for GetInfo command response.

TAG_UAFV1_REGISTER_CMD 0x3402 Tag for Register command.

TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x3403 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 Tag for Sign command response.

TAG_UAFV1_DEREGISTER_CMD 0x3404 Tag for Deregister command.

TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604 Tag for Deregister command response.

TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 Tag for OpenSettings command.

TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606 Tag for OpenSettings command response.

Table 4.1.1: UAF Authenticator Command TLV tags (0x3400 -
0x34FF, 0x3600-0x36FF)

4.2 Tags used only in Authenticator Commands

Name Value Description

TAG_KEYHANDLE 0x2801

Represents key handle.

Refer to [FIDOGlossary] for more information about
key
handle.

TAG_USERNAME_AND_KEYHANDLE 0x3802

Represents an associated Username and key handle.

This is a composite tag that contains a TAG_USERNAME
and TAG_KEYHANDLE
that identify a registration valid oin
the authenticator.

Refer to [FIDOGlossary] for more information about
username.

TAG_USERVERIFY_TOKEN 0x2803

Represents a User Verification Token.

Refer to [FIDOGlossary] for more information about
user
verification tokens.

A full AppID as a UINT8[] encoding of a UTF-8 string.



TAG_APPID 0x2804 Refer to [FIDOGlossary] for more information about
AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 Represents a key handle Access Token.

TAG_USERNAME 0x2806 A Username as a UINT8[] encoding of a UTF-8 string.

TAG_ATTESTATION_TYPE 0x2807 Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 Represents a Status Code.

TAG_AUTHENTICATOR_METADATA 0x2809 Represents a more detailed set of authenticator information.

TAG_ASSERTION_SCHEME 0x280A A UINT8[] containing the UTF8-encoded Assertion Scheme
as defined in
[UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS 0x280B

If an authenticator contains a PNG-capable transaction
confirmation display that
is not implemented by a higher-level
layer, this tag is describing this display.
See
[FIDOMetadataStatement] for additional information on the
format of this field.

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C
A UINT8[] containing the UTF-8-encoded transaction display
content type as defined in
[FIDOMetadataStatement].
("image/png")

TAG_AUTHENTICATOR_INDEX 0x280D Authenticator Index

TAG_API_VERSION 0x280E API Version

TAG_AUTHENTICATOR_ASSERTION 0x280F

The content of this TLV tag is an assertion generated by the
authenticator. Since authenticators
may generate assertions
in different formats - the content format may vary from
authenticator to
authenticator.

TAG_TRANSACTION_CONTENT 0x2810 Represents transaction content sent to the authenticator.

TAG_AUTHENTICATOR_INFO 0x3811 Includes detailed information about authenticator's
capabilities.

TAG_SUPPORTED_EXTENSION_ID 0x2812 Represents extension ID supported by authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN 0x2813

Represents a token for transaction confirmation. It might be
returned by the authenticator to the ASM and given back to
the authenticator at a later stage.
The meaning of it is similar
to TAG_USERVERIFY_TOKEN, except that it is used for the
user's approval of a displayed transaction text.

Table 4.2.1: Non-Command Tags (0x2800 - 0x28FF, 0x3800 - 0x38FF)

4.3 Tags used in UAF Protocol

Name Value Description

TAG_UAFV1_REG_ASSERTION 0x3E01 Authenticator response to Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02 Authenticator response to Sign command.

TAG_UAFV1_KRD 0x3E03 Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04 Data signed by authenticator with the UAuth.priv key



TAG_ATTESTATION_CERT 0x2E05

Each entry contains a single X.509 DER-encoded [ITU-X690-2008]
certificate. Multiple occurrences are allowed and form the
attestation certificate chain.
Multiple occurrences must be ordered.
The attestation certificate itself must occur first.
Each subsequent
occurrence (if exists) must be the issuing certificate of the previous
occurrence.

TAG_SIGNATURE 0x2E06 A cryptographic signature

ATTESTATION_BASIC_FULL 0x3E07 Full Basic Attestation as defined in [UAFProtocol]

ATTESTATION_BASIC_SURROGATE 0x3E08 Surrogate Basic Attestation as defined in [UAFProtocol]

ATTESTATION_ECDAA 0x3E09
Elliptic curve based direct anonymous attestation as defined in
[UAFProtocol].
In this case the signature in TAG_SIGNATURE is a
ECDAA signature as specified in [FIDOEcdaaAlgorithm].

TAG_KEYID 0x2E09 Represents a KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A

Represents a Hash of the Final Challenge.

Refer to [UAFASM] for more information about the Final Challenge
Hash.

TAG_AAID 0x2E0B
Represents an authenticator Attestation ID.

Refer to [UAFProtocol] for more information about
the AAID.

TAG_PUB_KEY 0x2E0C Represents a Public Key.

TAG_COUNTERS 0x2E0D Represents a use counters for the authenticator.

TAG_ASSERTION_INFO 0x2E0E Represents assertion information necessary for message
processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F

Represents a nonce value generated by the authenticator.

The Authenticator Nonce allows the authenticator to enforce the to-
be-signed object being different each time it is generated - even
under attack scenarios in which the caller (e.g. ASM) sends similar
data. Side channels attacks are more difficult to perform if the data
to-be-signed is different each time.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 Represents a hash of transaction content.

TAG_EXTENSION 0x3E11,
0x3E12

This is a composite tag indicating that the content is an extension.

If the tag is 0x3E11 - it's a critical extension and if the recipient
does not
understand the contents of this tag, it must abort
processing of the
entire message.

This tag has two embedded tags - TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more information
about UAF
extensions refer to [UAFProtocol]

NOTE

This tag can be appended to any command and response.



TAG_EXTENSION_ID 0x2E13 Represents extension ID. Content of this tag is a UINT8[] encoding
of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14 Represents extension data. Content of this tag is a UINT8[] byte
array.

Table 4.3.1: Tags used in the UAF Protocol (0x2E00 - 0x2EFF, 0x3E00 - 0x3EFF).
Normatively defined in [UAFRegistry]

4.4 Status Codes

Name Value Description

UAF_CMD_STATUS_OK 0x00 Success.

UAF_CMD_STATUS_ERR_UNKNOWN 0x01 An unknown error.

UAF_CMD_STATUS_ACCESS_DENIED 0x02 Access to this operation is denied.

UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03
User is not enrolled with the
authenticator and the authenticator
cannot automatically trigger enrollment.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT 0x04 Transaction content cannot be
rendered.

UAF_CMD_STATUS_USER_CANCELLED 0x05 User has cancelled the operation. No
retry should be performed.

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 Command not supported.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07 Required attestation not supported.

UAF_CMD_STATUS_PARAMS_INVALID 0x08
The parameters for the command
received by the authenticator are
malformed/invalid.

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY 0x09

The UAuth key which is relevant for
this command disappeared from the
authenticator and cannot be restored.
On some authenticators this error
occurs when the user verification
reference data set was modified (e.g.
new fingerprint template added).

UAF_CMD_STATUS_TIMEOUT 0x0a
The operation in the authenticator took
longer than expected (due to technical
issues) and it was finally aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE 0x0e
The user took too long to follow an
instruction, e.g. didn't swipe the finger
within the accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES 0x0f
Insufficient resources in the
authenticator to perform the requested
task.

Using tag 0x3E11 (as opposed to tag 0x3E12) has the same
meaning as the flag fail_if_unknown in [UAFProtocol].



UAF_CMD_STATUS_USER_LOCKOUT 0x10

The operation failed because the user
is locked out and the authenticator
cannot automatically trigger an action
to change that.
Typically the user
would have to enter an alternative
password (formally: undergo some
other alternative user verification
method) to re-enable the use
of the
main user verification method.

UAF_CMD_STATUS_SYSTEM_INTERRUPTED 0x12 The system interrupted the operation.
Retry might make sense.

Table 4.4.1: UAF Authenticator Status Codes (0x00 - 0xFF)

5. Structures

This section is normative.

5.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the
authenticator. Authenticators may define RawKeyHandle in
different ways and the internal structure is relevant only to
the specific authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Depends on hashing 
algorithm (e.g. 32 bytes)

Depends on key type.
(e.g. 32 bytes)

Username Size
(1 byte) Max 128 bytes

KHAccessToken UAuth.priv Size Username

Table 5.1: RawKeyHandle Structure

First Factor authenticators must store Usernames in the authenticator and they must link the Username to the related key.
This may be achieved by storing
the Username inside the RawKeyHandle.
Second Factor authenticators must not store the
Username.

The ability to support Usernames is a key difference between first-, and
second-factor authenticators.

The RawKeyHandle must be cryptographically wrapped before leaving the
authenticator boundary since it typically contains
sensitive information, e.g. the user authentication private key (UAuth.priv).

NOTE

Any method the user can use to
(re-) enable the main user
verification method is considered
an alternative user verification
method and must be properly
declared as such. For example,
if the user can enter an
alternative
password to re-
enable the use of fingerprints or
to add additional fingers, the
authenticator
obviously supports
fingerprint or password based
user verification.



5.2 Structures to be parsed by FIDO Server

The structures defined in this section are created by UAF Authenticators
and parsed by FIDO Servers.

Authenticators must generate these structures if they implement "UAFV1TLV" assertion scheme.

The nesting structure
must be preserved, but the order of tags within
a composite tag is not normative. FIDO Servers
must be
prepared to handle tags appearing in any
order.

5.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the
authenticator during processing of a Register command. It
is then delivered
to FIDO Server intact, and parsed by the
server. The structure embeds a TAG_UAFV1_KRD tag which
among other data
contains the newly generated UAuth.pub.

If the authenticator wants to append custom
data to TAG_UAFV1_KRD structure (and thus sign with
Attestation Key) - this
data must be included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_KRD.

If the authenticator wants to send additional data to
FIDO Server without signing it - this data must be included
as
TAG_EXTENSION_DATA in a TAG_EXTENSION object inside TAG_UAFV1_REG_ASSERTION and not inside
TAG_UAFV1_KRD.

Currently this document only specifies
ATTESTATION_BASIC_FULL, ATTESTATION_BASIC_SURROGATE and
ATTESTATION_ECDAA. In case if the authenticator is required to perform "Some_Other_Attestation" on
TAG_UAFV1_KRD
- it must use the TLV tag and content defined for
"Some_Other_Attestation" (defined in [FIDORegistry]).

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version

1.2.3.3 UINT8
AuthenticationMode

For Registration this must be 0x01 indicating
that the user has explicitly verified the
action.

1.2.3.4 UINT16
Signature Algorithm and Encoding of the attestation signature.

NOTE

"UAFV1TLV" assertion scheme assumes that the authenticator has
exclusive control over all data included inside
TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.



SignatureAlgAndEncoding Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.3.5 UINT16
PublicKeyAlgAndEncoding

Public Key algorithm and encoding of the newly generated UAuth.pub key.

Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.4.1 UINT16 Length Final Challenge Hash length

1.2.4.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided in the
Command

1.2.5 UINT16 Tag TAG_KEYID

1.2.5.1 UINT16 Length Length of KeyID

1.2.5.2 UINT8[] KeyID (binary value of) KeyID for the key generated by
the Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 UINT16 Length Length of Counters

1.2.6.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has
performed signatures in the past.

1.2.6.3 UINT32 RegCounter

Registration Counter.

Indicates how many times this authenticator has
performed registrations in the
past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 UINT16 Length Length of UAuth.pub

1.2.7.2 UINT8[] PublicKey User authentication public key (UAuth.pub) newly
generated by authenticator

1.3
(choice
1)

UINT16 Tag ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with Basic Attestation Private
Key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content,
including the tag and it's length field, must

be
included during signature computation.

1.3.3 UINT16 Tag

TAG_ATTESTATION_CERT (multiple occurrences possible)

Multiple occurrences must be ordered. The attestation certificate must occur first.
Each subsequent occurrence (if exists) must be the issuing certificate of the



previous occurrence.
The last occurence must be chained to one of the certificates
included in field attestationRootCertificate in the related Metadata Statement
[FIDOMetadataStatement].

1.3.3.1 UINT16 Length Length of Attestation Cert

1.3.3.2 UINT8[] Certificate Single X.509 DER-encoded [ITU-X690-2008] Attestation Certificate or a single
certificate from the attestation certificate chain (see description above).

1.3
(choice
2)

UINT16 Tag ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with newly generated UAuth.priv key over TAG_UAFV1_KRD
content.

The entire TAG_UAFV1_KRD content,
including the tag and it's length field, must

be
included during signature computation.

1.3
(choice
3)

UINT16 Tag ATTESTATION_ECDAA

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature The binary ECDAA signature as specified in [FIDOEcdaaAlgorithm].

5.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an
authenticator during processing of a Sign command. It is
then delivered to
FIDO Server intact and parsed by the
server. The structure embeds a TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom
data to TAG_UAFV1_SIGNED_DATA structure (and thus sign with
Attestation
Key) - this data must be included as an
additional tag inside TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to
FIDO Server without signing it - this data must be included
as an
additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside TAG_UAFV1_SIGNED_DATA.

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION

1.1 UINT16 Length Length of the structure.

1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA

1.2.1 UINT16 Length Length of the structure.

1.2.2 UINT16 Tag TAG_AAID



1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2 UINT16
AuthenticatorVersion Vendor assigned authenticator version.

1.2.3.3 UINT8
AuthenticationMode

Authentication Mode indicating whether user
explicitly verified or not and indicating if
there
is a transaction content or not.

0x01 means that user has been explicitly
verified
0x02 means that transaction content has been
shown on the display and user
confirmed it by
explicitly verifying with authenticator

1.2.3.4 UINT16
SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [FIDORegistry] for information on
supported algorithms and their values.

1.2.4 UINT16 Tag TAG_AUTHENTICATOR_NONCE

1.2.4.1 UINT16 Length Length of authenticator Nonce - must be at least 8
bytes, and NOT longer than 64
bytes.

1.2.4.2 UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by
Authenticator

1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.5.1 UINT16 Length Length of Final Challenge Hash

1.2.5.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided in the
Command

1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

1.2.6.1 UINT16 Length Length of Transaction Content Hash. This length is 0 if AuthenticationMode == 0x01,
i.e. authentication, not transaction confirmation.

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1.2.7.1 UINT16 Length Length of KeyID

1.2.7.2 UINT8[] KeyID (binary value of) KeyID

1.2.8 UINT16 Tag TAG_COUNTERS

1.2.8.1 UINT16 Length Length of Counters

1.2.8.2 UINT32 SignCounter
Signature Counter.

Indicates how many times this authenticator has
performed signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature



1.3.2 UINT8[] Signature

Signature calculated using UAuth.priv over
TAG_UAFV1_SIGNED_DATA structure.

The entire TAG_UAFV1_SIGNED_DATA content,
including the tag and it's length
field, must be
included during signature computation.

5.3 UserVerificationToken

This specification doesn't specify how exactly user verification must be performed inside the authenticator. Verification is
considered to be an authenticator, and vendor, specific operation.

This document provides an example on how the "vendor_specific_UserVerify" command (a command which
verifies the user
using Authenticator's built-in technology) could be securely bound to
UAF Register and Sign commands. This binding is done
through a concept called UserVerificationToken.
Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF
Register/Sign" commands
from each other.

Here is how it is defined:

The ASM invokes the "vendor_specific_UserVerify" command.
The authenticator verifies the user and returns a
UserVerificationToken back.
The ASM invokes UAF.Register/Sign command and passes UserVerificationToken to it.
The authenticator verifies the
validity of UserVerificationToken and
performs the FIDO operation if it is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement this
binding in a very
different way.
For example an authenticator vendor may decide to append a UAF Register request directly to their
"vendor_specific_UserVerify" command and process both as a single command.

If UserVerificationToken binding is implemented, it should either meet one of the
following criteria or implement a
mechanism providing similar, or better security:

UserVerificationToken must allow performing only a single UAF Register or UAF Sign operation.
UserVerificationToken must be time bound, and allow performing multiple UAF operations
within the specified time.

6. Commands

This section is non-normative.

NORMATIVE

UAF Authenticators which are designed to be interoperable with ASMs from different vendors
must implement the
command interface defined in this section. Examples of such authenticators:

Bound Authenticators in which the core authenticator functionality is
developed by one vendor, and the ASM is
developed by another vendor
Roaming Authenticators

NORMATIVE

UAF Authenticators which are tightly integrated with a custom ASM (typically bound authenticators) may
implement a
different command interface.

NOTE

Examples of such different command interface include native key store or key chain APIs. It is important to declare
whether the Uauth keys are restricted to sign valid FIDO UAF assertions only. See [FIDOMetadataStatement] entry



All UAF Authenticator commands and responses are
semantically similar - they are all represented as TLV-encoded
blobs.
The first 2 bytes of each command is the command code.
After receiving a command, the authenticator must parse the
first
TLV tag and figure out which command is being issued.

6.1 GetInfo Command

6.1.1 Command Description

This command returns information about the connected authenticators. It may return 0 or more authenticators. Each
authenticator has an assigned authenticatorIndex which is used in other commands as an
authenticator reference.

6.1.2 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length - must be 0 for this command

6.1.3 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)

1.3.2 UINT8 Version
Authenticator API Version (must be 0x01). This version indicates the types of
commands,
and formatting associated with them, that are supported by the
authenticator.

1.4 UINT16 Tag TAG_AUTHENTICATOR_INFO (multiple occurrences possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.4.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 UINT16 Length Length of AAID

1.4.3.2 UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

"isKeyRestricted".



1.4.4.1 UINT16 Length Length of Authenticator Metadata

1.4.4.2 UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and whether it is first-
, or second-factor only.
The ASM must use this information to understand how
to work with the authenticator.

Predefined values:

0x0001 - Indicates second-factor authenticator (first-factor when the flag
is not set)
0x0002 - Indicates roaming authenticator (bound authenticator when the
flag is not set)
0x0004 - Key handles will be stored inside authenticator and won't be
returned to ASM
0x0008 - Authenticator has a built-in UI for enrollment and verification.
ASM should not show its custom UI
0x0010 - Authenticator has a built-in UI for settings, and supports
OpenSettings command.
0x0020 - Authenticator expects TAG_APPID to be passed as an
argument to commands where it
is defined as an optional argument
0x0040 - At least one user is enrolled in the authenticator.
Authenticators
which don't support the concept of user enrollment
(e.g.
USER_VERIFY_NONE, USER_VERIFY_PRESENCE) must always
have this bit set.
0x0080 - Authenticator supports user verification tokens (UVTs) as
described in this document. See section 5.3 UserVerificationToken.
0x0100 - Authenticator only accepts TAG_TRANSACTION_TEXT_HASH
in Sign command. This
flag may ONLY be set if
TransactionConfirmationDisplay is set to 0x0003 (see section 6.3 Sign
Command).

1.4.4.3 UINT8 MaxKeyHandles
Indicates maximum number of key handles this authenticator can receive and
process in a single command.
This information will be used by the ASM when
invoking SIGN command with multiple key handles.

1.4.4.4 UINT32 UserVerification User Verification method (as defined in
[FIDORegistry])

1.4.4.5 UINT16 KeyProtection Key Protection type (as defined in [FIDORegistry]).

1.4.4.6 UINT16 MatcherProtection Matcher Protection type (as defined in [FIDORegistry]).

1.4.4.7 UINT16
TransactionConfirmationDisplay

Transaction Confirmation type (as defined in [FIDORegistry]).

1.4.4.8 UINT16 AuthenticationAlg Authentication Algorithm (as defined in [FIDORegistry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 UINT16 Length Length of content type.

1.4.5.2 UINT8[] ContentType Transaction Confirmation Display Content Type. See
[FIDOMetadataStatement] for additional information on the format of this field.

NOTE
If Authenticator doesn't support Transaction Confirmation - this value
must be set to 0.



1.4.6 UINT16 Tag TAG_TC_DISPLAY_PNG_CHARACTERISTICS (optional,multiple
occurrences permitted)

1.4.6.1 UINT16 Length Length of display characteristics information.

1.4.6.2 UINT32 Width See [FIDOMetadataStatement] for additional information.

1.4.6.3 UINT32 Height See [FIDOMetadataStatement] for additional information.

1.4.6.4 UINT8 BitDepth See [FIDOMetadataStatement] for additional information.

1.4.6.5 UINT8 ColorType See [FIDOMetadataStatement] for additional information.

1.4.6.6 UINT8 Compression See [FIDOMetadataStatement] for additional information.

1.4.6.7 UINT8 Filter See [FIDOMetadataStatement] for additional information.

1.4.6.8 UINT8 Interlace See [FIDOMetadataStatement] for additional information.

1.4.6.9 UINT8[] PLTE

A PLTE packet descriptor, defined by 3 byte word.

Offset Length Mnemonic Description

0 1 R Red channel value

1 1 G Green channel value

2 1 B Blue channel value

See [FIDOMetadataStatement] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 UINT16 Length Length of Assertion Scheme

1.4.7.2 UINT8[] AssertionScheme Assertion Scheme (as defined in
[UAFRegistry])

1.4.8 UINT16 Tag TAG_ATTESTATION_TYPE (multiple occurrences possible)

1.4.8.1 UINT16 Length Length of AttestationType

1.4.8.2 UINT16 AttestationType Attestation Type values are defined in [UAFRegistry] by the
constants with the
prefix TAG_ATTESTATION.

1.4.9 UINT16 Tag TAG_SUPPORTED_EXTENSION_ID (optional, multiple occurrences possible)

1.4.9.1 UINT16 Length Length of SupportedExtensionID

1.4.9.2 UINT8[] SupportedExtensionID SupportedExtensionID as a UINT8[] encoding of a UTF-8 string

6.1.4 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_PARAMS_INVALID

6.2 Register Command

This command generates a UAF registration assertion.
This assertion can be used to register the authenticator
with a FIDO
Server.



6.2.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Final Challenge Hash Length

1.4.2 UINT8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

1.5.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken

1.8.2 UINT8[] VerificationToken User verification token

6.2.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length



1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINT8[] Assertion Registration Assertion
(see section TAG_UAFV1_REG_ASSERTION).

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Length of key handle

1.4.2 UINT8[] Value (binary value of) key handle

6.2.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

UAF_CMD_STATUS_USER_LOCKOUT

6.2.4 Command Description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then make
sure
Command.TAG_APPID is provided, and show its
content on the display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in such case. Update Command.KHAccessToken with
TAG_APPID:

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing
function
is a cryptographic hash function.

For example: Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If the user is already enrolled with this authenticator (via
biometric enrollment, PIN setup or similar mechanism) -
verify
the user. If the verification has been already
done in a previous command - make sure that
Command.TAG_USERVERIFY_TOKEN is a valid token.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE

NOTE

This method allows us to avoid storing the AppID separately in the RawKeyHandle.



2. If verification fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If user explicitly cancels the operation - return
UAF_CMD_STATUS_USER_CANCELLED

3. If the user is not enrolled with the authenticator then take the
user through the enrollment process. If the enrollment
process cannot be triggered by the authenticator, return UAF_CMD_STATUS_USER_NOT_ENROLLED.

1. If the authenticator can trigger enrollment, but the user doesn't respond to the request to enroll - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE

2. If the authenticator can trigger enrollment, but enrollment fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment operation - return

UAF_CMD_STATUS_USER_CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not - return
UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv)
If the process takes longer than accepted - return
UAF_CMD_STATUS_TIMEOUT

6. Create a RawKeyHandle, for example as follows
1. Add UAuth.priv to RawKeyHandle
2. Add Command.KHAccessToken to RawKeyHandle
3. If a first-factor authenticator, then add
Command.Username to RawKeyHandle

If there are not enough resources in the authenticator to perform this task - return
UAF_CMD_STATUS_INSUFFICIENT_RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key
8. Create TAG_UAFV1_KRD structure

1. If this is a second-factor roaming authenticator - place key handle inside TAG_KEYID.
Otherwise generate a
KeyID and place it inside TAG_KEYID.

2. Copy all the mandatory fields (see section
TAG_UAFV1_REG_ASSERTION)

9. Perform attestation on TAG_UAFV1_KRD based on
provided Command.AttestationType.
10. Create TAG_AUTHENTICATOR_ASSERTION

1. Create TAG_UAFV1_REG_ASSERTION
1. Copy all the mandatory fields (see section
TAG_UAFV1_REG_ASSERTION)
2. If this is a first-factor roaming authenticator - add KeyID and key handle into internal
storage
3. If this is a bound authenticator - return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

11. Return TAG_UAFV1_REGISTER_CMD_RESPONSE
1. Use UAF_CMD_STATUS_OK as status code
2. Add TAG_AUTHENTICATOR_ASSERTION
3. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

NORMATIVE

The authenticator must not process a Register command without verifying the user
(or enrolling the user, if this is the first
time the user has used the authenticator).

The authenticator must generate a unique UAuth key pair each time the Register command is called.

The authenticator should either store key handle in its internal secure storage or cryptographically
wrap it and export it to
the ASM.

For silent authenticators, the key handle must never be
stored on a FIDO Server, otherwise this would enable
tracking of
users without providing the ability for users
to clear key handles from the local device.

If KeyID is not the key handle itself (e.g. such as in case of a second-factor roaming authenticator) - it must be
a unique
and unguessable byte array with a maximum length of 32 bytes.
It must be unique within the scope of the AAID.



In the case of bound authenticators implementing a different command interface, the ASM
could generate a temporary
KeyID and provide it as input to the authenticator in a Register command
and change it to the final KeyID (e.g. derived
from the public key) when the authenticator has completed the Register command execution.

If the authenticator doesn't support SignCounter or RegCounter
it must set these to 0 in TAG_UAFV1_KRD. The RegCounter
must be set to 0 when a factory reset
for the authenticator is performed. The SignCounter must be set to 0 when a factory
reset
for the authenticator is performed.

6.3 Sign Command

This command generates a UAF assertion. This assertion
can be further verified by a FIDO Server which has a prior
registration with this authenticator.

6.3.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8
AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Length of Final Challenge Hash

1.4.2 UINT8[]
FinalChallengeHash (binary value of) Final Challenge Hash provided by ASM
(max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 UINT16 Length Length of Transaction Content

1.5.2 UINT8[]
TransactionContent (binary value of) Transaction Content provided by the ASM

1.5 UINT16 Tag

TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive with
TAG_TRANSACTION_CONTENT).
This TAG is only allowed for authenticators not able
to display the transaction text, i.e. authenticator with tcDisplay=0x0003 (i.e. flags
TRANSACTION_CONFIRMATION_DISPLAY_ANY and
TRANSACTION CONFIRMATION DISPLAY PRIVILEGED SOFTWARE are set).

NOTE

If the KeyID is generated randomly (instead of, for example, being derived from a key handle or the public key) - it
should be
stored inside RawKeyHandle so that it can be accessed by the authenticator while processing the Sign
command.



1.5.1 UINT16 Length Length of Transaction Content Hash

1.5.2 UINT8[]
TransactionContentHash (binary value of) Transaction Content Hash provided by the ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2 UINT8[]
KHAccessToken (binary value of) KHAccessToken provided by ASM
(max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 UINT16 Length Length of the User Verification Token

1.7.2 UINT8[]
VerificationToken User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 UINT8[] KeyHandle (binary value of) key handle

6.3.2 Command Response

TLV
Structure Description

1 UINT16
Tag TAG_UAFV1_SIGN_CMD_RESPONSE

1.1 UINT16
Length Entire Length of Command Response

1.2 UINT16
Tag TAG_STATUS_CODE

1.2.1 UINT16
Length Status Code Length

1.2.2 UINT16
Value Status code returned by authenticator

1.3
(choice
1)

UINT16
Tag

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

This TLV tag can be used to convey multiple (>=1) {Username,
Keyhandle} entries. Each
occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.

If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1 UINT16
Length Length of the structure

1.3.2 UINT16
Tag TAG_USERNAME

1.3.2.1 UINT16
Length Length of Username



1.3.2.2 UINT8[]
Username Username

1.3.3 UINT16
Tag TAG_KEYHANDLE

1.3.3.1 UINT16
Length Length of KeyHandle

1.3.3.2 UINT8[]
KeyHandle (binary value of) key handle

1.3
(choice
2)

UINT16
Tag

TAG_AUTHENTICATOR_ASSERTION (optional)

If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present

1.3.1 UINT16
Length Assertion Length

1.3.2 UINT8[]
Assertion

Authentication assertion generated by the authenticator (see section
TAG_UAFV1_AUTH_ASSERTION).

6.3.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_USER_NOT_ENROLLED

UAF_CMD_STATUS_USER_CANCELLED

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

UAF_CMD_STATUS_PARAMS_INVALID

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

UAF_CMD_STATUS_TIMEOUT

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

UAF_CMD_STATUS_USER_LOCKOUT

6.3.4 Command Description

NOTE

First-factor authenticators should implement this command in two
stages.

1. The first stage will be executed only if
the authenticator finds out that there are multiple
key handles after filtering
with the KHAccessToken. In this
stage, the authenticator must return a list of usernames
along with
corresponding key handles

2. In the second stage, after the user selects a username,
this command will be called with a single key handle and
will return a UAF assertion based on this
key handle

If a second-factor authenticator is presented with
more than one valid key handles, it must exercise only
the first one
and ignore the rest.

The command is implemented in two stages to ensure
that only one assertion can be generated for each command
invocation.



Authenticators must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation
display, and is able to display the AppID - make sure
Command.TAG_APPID is provided, and show it on the
display when verifying the user. Return
UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in such case.

Update Command.KHAccessToken by mixing it with
Command.TAG_APPID. An example of such a mixing
function is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If TransactionContent is not empty
If this is a silent authenticator, then return
UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator doesn't support transaction confirmation (it has set
TransactionConfirmationDisplay to 0 in the
response to a GetInfo Command), then return UAF_CMD_STATUS_ACCESS_DENIED
If the authenticator has a built-in transaction confirmation display and the Authenticator implements displaying
transaction text before user verification, then
show Command.TransactionContent and
Command.TAG_APPID (optional)
on display and wait
for the user to confirm it by passing user verification (see step below):

Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user doesn't respond.
Return UAF_CMD_STATUS_USER_CANCELLED if the user
cancels the transaction.
Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the provided transaction content cannot be
rendered.
Compute hash of TransactionContent

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

3. If the user is already enrolled with the authenticator (such
as biometric enrollment, PIN setup, etc.) then verify the
user.
If the verification has already been done in one of the
previous commands, make sure that
Command.TAG_USERVERIFY_TOKEN is a valid
token.

If the user is locked out (e.g. too many failed attempts to get verified) and
the authenticator cannot automatically trigger
unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

1. If the user doesn't respond to the request to get verified - return
UAF_CMD_STATUS_USER_NOT_RESPONSIVE
2. If verification fails - return
UAF_CMD_STATUS_ACCESS_DENIED
3. If the user explicitly cancels the operation - return
UAF_CMD_STATUS_USER_CANCELLED

4. If the user is not enrolled then return
UAF_CMD_STATUS_USER_NOT_ENROLLED

5. Unwrap all provided key handles from
Command.TAG_KEYHANDLE values using Wrap.sym
1. If this is a first-factor roaming authenticator:

If Command.TAG_KEYHANDLE are provided, then
the items in this list are KeyIDs. Use these
KeyIDs to
locate key handles stored in internal
storage
If no Command.TAG_KEYHANDLE are provided -
unwrap all key handles stored in internal
storage

If no RawKeyHandles are found - return UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

NOTE

This should not occur as the Uauth key must be protected by the authenticator's user verification method. If the
authenticator supports alternative user verification methods (e.g. alternative password and finger print verification
and the alternative password must be provided before enrolling a finger and only the finger print is verified as part
of the Register or Sign operation,
then the authenticator should automatically and implicitly ask the user to enroll
the modality required
in the operation (instead of just returning an error).



6. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken ==
Command.KHAccessToken)

7. If the number of remaining RawKeyHandles is 0, then fail with
UAF_CMD_STATUS_ACCESS_DENIED
8. If number of remaining RawKeyHandles is > 1

1. If this authenticator has a user interface and wants to use it for this purpose:
Ask the user which of the usernames
he wants to use for this operation. Select the related RawKeyHandle and jump to step #8.

2. If this is a second-factor authenticator, then choose the first RawKeyHandle only and jump to step #8.
3. Copy
{Command.KeyHandle, RawKeyHandle.username} for
all remaining RawKeyHandles into

TAG_USERNAME_AND_KEYHANDLE tag.
If this is a first-factor roaming authenticator, then the returned TAG_USERNAME_AND_KEYHANDLEs
must
be ordered by the key handle registration date (the latest-registered key handle must come the latest).

4. Copy TAG_USERNAME_AND_KEYHANDLE into TAG_UAFV1_SIGN_CMD_RESPONSE
and return

9. If number of remaining RawKeyHandles is 1
1. If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot be restored
- return

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.
2. Create TAG_UAFV1_SIGNED_DATA and set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01
3. If TransactionContent is not empty

If the authenticator has a built-in transaction confirmation display and the authenticator implements
displaying transaction text after user verification, then
show Command.TransactionContent and
Command.TAG_APPID (optional) on display and wait
for the user to confirm it:

Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user doesn't respond.
Return UAF_CMD_STATUS_USER_CANCELLED if the user
cancels the transaction.
Return UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the provided transaction content cannot
be rendered.
Compute hash of TransactionContent

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
hash(Command.TransactionContent)
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

4. If TransactionContent is not set, but TransactionContentHash is not empty
If this is a silent authenticator, then return
UAF_CMD_STATUS_ACCESS_DENIED
If the conditions for receiving TransactionContentHash are not satisfied (if the authenticator's
TransactionConfirmationDisplay is NOT set to 0x0003 in the response to a GetInfo Command), then return
UAF_CMD_STATUS_PARAMS_INVALID

Perform the following steps
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH =
Command.TransactionContentHash
Set
TAG_UAFV1_SIGNED_DATA.AuthenticationMode to
0x02

5. Create TAG_UAFV1_AUTH_ASSERTION
Fill in the rest of TAG_UAFV1_SIGNED_DATA fields
Perform the following steps

Increment SignCounter and put into
TAG_UAFV1_SIGNED_DATA
Copy all the mandatory fields (see
section TAG_UAFV1_AUTH_ASSERTION)

NOTE

If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having
unusable (old) private key in the authenticator which (surprisingly) might become active after
deregistering the newly generated one.



If TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 -
set
TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.Length to 0

Sign TAG_UAFV1_SIGNED_DATA with
UAuth.priv
If these steps take longer than expected by the authenticator - return UAF_CMD_STATUS_TIMEOUT.

6. Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of
TAG_AUTHENTICATOR_ASSERTION

7. Copy TAG_AUTHENTICATOR_ASSERTION into
TAG_UAFV1_SIGN_CMD_RESPONSE and return

NORMATIVE

Authenticator must not process Sign command without verifying the user first.

Authenticator must not reveal Username without verifying the user first.

Bound authenticators must not process Sign command without validating KHAccessToken
first.

Bound authenticators implementing a different command interface, may implement
a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App).	See [UAFASM] section "KHAccessToken" for more details.

UAuth.priv keys must never leave Authenticator's security boundary in plaintext form.
UAuth.priv protection boundary is
specified in Metadata.keyProtection field in Metadata
[FIDOMetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display -
it must display provided
transaction content in this display and include the hash of content
inside TAG_UAFV1_SIGNED_DATA structure.

Authenticators supporting Transaction Confirmation Display shall either display the transaction text before user
verification (see step #2) or after it (see step 9.3).
Displaying the transaction text before user verification is preferred.

Silent Authenticators must not operate in first-factor mode in order to follow the
assumptions made in [FIDOSecRef].
However, a native App or web page could "cache" the keyHandle
or a Cookie and hence would be considered a first-
factor that could be combined with
a Silent Authenticator (when doing do).

If Authenticator doesn't support SignCounter, then it must
set it to 0 in TAG_UAFV1_SIGNED_DATA.
The SignCounter
must be set to 0 when a factory reset
for the Authenticator is performed, in order to follow the assumptions made in
[FIDOSecRef].

Some Authenticators might support Transaction Confirmation display
functionality not inside the Authenticator but within
the
boundaries of ASM. Typically these are software based
Transaction Confirmation displays. When processing the Sign
command with a
given transaction such Authenticators should assume that
they do have a builtin Transaction
Confirmation display and should include
the hash of transaction content in the final assertion
without displaying anything
to the user. Also, such
Authenticator's Metadata file must clearly indicate the
type of Transaction Confirmation display.
Typically the flag of Transaction Confirmation
display will be TRANSACTION_CONFIRMATION_DISPLAY_ANY or
TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.
See [FIDORegistry] for flags describing
Transaction Confirmation
Display type.

6.4 Deregister Command

This command deletes a registered UAF credential from
Authenticator.

6.4.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX



1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16 Length Length of KeyID

1.4.2 UINT8[] KeyID (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 UINT16 Length Length of KeyHandle Access Token

1.5.2 UINT8[] KHAccessToken (binary value of) KeyHandle Access Token provided by ASM
(max 32 bytes)

6.4.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.4.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_ACCESS_DENIED

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

6.4.4 Command Description

Authenticator must take the following steps:

If the command structure is invalid (e.g. cannot be parsed correctly), return UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID, then make
sure
Command.TAG_APPID is provided. Return UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID
is not provided in
such case.

Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An example of such mixing
function
is a cryptographic hash function.

Command.KHAccessToken=hash(Command.KHAccessToken | Command.TAG_APPID)

2. If this Authenticator doesn't store key handles internally, then return UAF_CMD_STATUS_CMD_NOT_SUPPORTED



3. If the length of TAG_KEYID is zero (i.e., 0000 Hex), then
if TAG_APPID is provided, then

for each KeyHandle that maps to TAG_APPID do
1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete KeyHandle from

internal storage, otherwise, note an error occured

if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

if TAG_APPID is not provided, then delete all KeyHandles from internal storage where
RawKeyHandle.KHAccessToken == Command.KHAccessToken
Go to step 5

4. If the length of TAG_KEYID is NOT zero, then
Find KeyHandle that matches Command.KeyID
Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken

If not, then return UAF_CMD_STATUS_ACCESS_DENIED

Delete this KeyHandle from internal storage

5. Return UAF_CMD_STATUS_OK

NORMATIVE

Bound authenticators must not process Deregister command without validating KHAccessToken
first.

Bound authenticators implementing a different command interface, may implement
a different method for binding keys to a
specific AppID, if such method provides at least the same security level (i.e. relying the OS/platform to determine the
calling App).	See [UAFASM] section "KHAccessToken" for more details.

Deregister command should not explicitly reveal whether the provided keyID was registered or not.

6.5 OpenSettings Command

This command instructs the Authenticator to open its built-in settings UI (e.g. change PIN, enroll new fingerprint, etc).

The Authenticator must return UAF_CMD_STATUS_CMD_NOT_SUPPORTED if
it doesn't support such functionality.

If the command structure is invalid (e.g. cannot be parsed correctly), the authenticator must return
UAF_CMD_STATUS_PARAMS_INVALID.

6.5.1 Command Structure

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

NOTE

The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

NOTE
This command never returns UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY as this could reveal the keyID registration
status.



1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

6.5.2 Command Response

TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

6.5.3 Status Codes

UAF_CMD_STATUS_OK

UAF_CMD_STATUS_ERR_UNKNOWN

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

UAF_CMD_STATUS_PARAMS_INVALID

7. KeyIDs and key handles

This section is non-normative.

There are 4 types of Authenticators defined in this document and due to their specifics they behave
differently while
processing commands. One of the main differences between them is
how they store and process key handles. This section
tries to clarify it by describing the behavior of
every type of Authenticator during the processing of relevant command.

7.1 first-factor Bound Authenticator

Register
Command

Authenticator doesn't store key handles. Instead KeyHandle is always returned to ASM and stored
in ASM
database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

When there is no user session (no cookies, a clear machine) the Server doesn't provide any KeyID
(since it
doesn't know which KeyIDs to provide). In this scenario the ASM selects all key handles
and passes them to
Authenticator.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

Since Authenticator doesn't store key handles, then there is nothing to delete inside Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.2 2ndF Bound Authenticator



Register
Command

Authenticator might not store key handles. Instead the KeyHandle might be returned to the ASM and stored
in
the ASM database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or the public key).

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used
when there is no
user session (no cookies, a clear machine); unless, for example,
the user identifies their account and the
server is then able to provide a KeyID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
ASM selects
key handles that correspond to provided KeyIDs and pass to Authenticator.

Deregister
Command

If the Authenticator doesn't store key handles, then there is nothing to delete inside it.

The ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

7.3 first-factor Roaming Authenticator

Register
Command

Authenticator stores key handles inside its internal storage. KeyHandle is never returned back to ASM.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

Sign
Command

When there is no user session (no cookies, a clear machine) Server doesn't provide any KeyID
(since it
doesn't know which KeyIDs to provide). In this scenario Authenticator uses all
key handles that correspond to
the provided AppID.

During step-up authentication (when there is a user session) Server provides relevant KeyIDs.
Authenticator
selects key handles that correspond to provided KeyIDs and uses them.

Deregister
Command Authenticator finds the right KeyHandle and deletes it from its storage.

7.4 2ndF Roaming Authenticator

Register
Command

Typically neither the Authenticator nor the ASM store key handles. Instead the KeyHandle is sent to the
Server (in place of
KeyID) and stored in User's record. From Server's perspective it's a KeyID.
In fact the
KeyID is identical to the KeyHandle.

Sign
Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it can't be used
when there is no
user session (no cookies, a clear machine).

During step-up authentication Server provides KeyIDs which are in fact key handles.
Authenticator finds the
right KeyHandle and uses it.

Deregister
Command Since Authenticator and ASM don't store key handles, then there is nothing to delete on client side.

8. Access Control for Commands



This section is normative.

FIDO Authenticators may implement various mechanisms to
guard access to privileged commands.

The following table summarizes the access control
requirements for each command.

All UAF Authenticators must satisfy the access control
requirements defined below.

Authenticator vendors may offer additional security
mechanisms.

Terms used in the table:

NoAuth - no access control
UserVerify - explicit user verification
KHAccessToken - must be known to the caller (or alternative method with similar security level must be used)
KeyHandleList - must be known to the caller
KeyID - must be known to the caller

Command First-factor Bound
Authenticator

2ndF Bound
Authenticator

First-factor Roaming
Authenticator

2ndF Roaming
Authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign
UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken
KeyHandleList

UserVerify
KHAccessToken

UserVerify
KHAccessToken
KeyHandleList

Deregister KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

KHAccessToken
KeyID

Table 1: Access Control for Commands

9. Considerations

This section is non-normative.

9.1 Algorithms and Key Sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

9.2 Indicating the Authenticator Model

Some authenticators (e.g. TPMv2) do not have the ability to include their model identifier (i.e. vendor ID and model name) in
attested messages (i.e. the to-be-signed part
of the registration assertion). The TPM's endorsement key certificate typically
contains that information directly or at least it allows the model to be derived from the endorsement key certificate.

In FIDO, the relying party expects the ability to cryptographically verify the authenticator
model (i.e. AAID).

If the authenticator cannot securely include its model (i.e. AAID) in the registration assertion (i.e. in the KRD object), we
require the ECDAA-Issuers public key (ipkk)
to be dedicated to one single authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement and can be used by the
FIDO server to get a cryptographic proof of the Authenticator model.

10. Relationship to other standards



This section is non-normative.

The existing standard specifications most relevant to UAF
authenticator are [TPM], [TEE] and [SecureElement].

Hardware modules implementing these standards may be
extended to incorporate UAF functionality through their
extensibility mechanisms such as by loading secure applications
(trustlets, applets, etc) into them. Modules which do not
support such extensibility mechanisms cannot be fully leveraged
within UAF framework.

10.1 TEE

In order to support UAF inside TEE a special Trustlet
(trusted application running inside TEE) may be designed
which
implements UAF Authenticator functionality specified in
this document and also implements some kind of user
verification
technology (biometric verification, PIN or
anything else).

An additional ASM must be created which knows how to work
with the Trustlet.

10.2 Secure Elements

In order to support UAF inside Secure Element (SE) a special Applet
(trusted application running inside SE) may be designed
which
implements UAF Authenticator functionality specified in this
document and also implements some kind of user
verification
technology (biometric verification, PIN or similar
mechanisms).

An additional ASM must be created which knows how to work
the Applet.

10.3 TPM

TPMs typically have a built-in attestation capability
however the attestation model supported in TPMs is currently
incompatible with UAF's basic attestation model. The future
enhancements of UAF may include compatible attestation
schemes.

Typically TPMs also have a built-in PIN verification
functionality which may be leveraged for UAF. In order to
support UAF
with an existing TPM module, the vendor should
write an ASM which:

Translates UAF data to TPM data by
calling TPM APIs
Creates assertions using TPMs API
Reports itself as a valid UAF authenticator to FIDO UAF Client

A special
AssertionScheme, designed for TPMs, must be also created (see
[FIDOMetadataStatement]) and published by
FIDO Alliance. When
FIDO Server receives an assertion with this AssertionScheme
it will treat the received data as TPM-
generated data and
will parse/validate it accordingly.

10.4 Unreliable Transports

The command structures described in this document assume
a reliable transport and provide no support at the application-
layer
to detect or correct for issues such as unreliable ordering, duplication, dropping or modification of messages. If the
transport
layer(s) between the ASM and Authenticator are not reliable, the
non-normative private contract between the ASM
and Authenticator may need
to provide a means to detect and correct such errors.

A. Security Guidelines

This section is non-normative.

Category Guidelines

AppIDs and
KeyIDs

Registered AppIDs and KeyIDs must not be returned by
an authenticator in plaintext, without first
performing user verification.

If an attacker gets physical access to a roaming
authenticator, then it should not be easy to read out
AppIDs and KeyIDs.



Attestation
Private Key

Authenticators must protect the attestation private key
as a very sensitive asset. The overall security of
the
authenticator depends on the protection level of this
key.

It is highly recommended to store and operate this
key inside a tamper-resistant hardware module, e.g.
[SecureElement].

It is assumed by registration assertion schemes, that the authenticator has exclusive control over the
data being signed with the attestation key.

FIDO Authenticators must ensure that the attestation
private key:

1. is only used to attest authentication keys
generated and protected by the authenticator,
using the
FIDO-defined data structures,
KeyRegistrationData.

2. is never accessible outside the security boundary of the
authenticator.

Attestation must be implemented in a way such that two
different relying parties cannot link registrations,
authentications or other transactions (see [UAFProtocol]).

Certifications
Vendors should strive to pass common security standard
certifications with authenticators, such as
[FIPS140-2], [CommonCriteria] and similar. Passing
such certifications will positively impact the UAF
implementation of the authenticator.

Cryptographic
(Crypto)
Kernel

The crypto kernel is a module of the authenticator
implementing cryptographic functions (key generation,
signing,
wrapping, etc) necessary for UAF, and having access to
UAuth.priv, Attestation Private Key and
Wrap.sym.

For optimal security, this module should reside
within the same security boundary as the UAuth.priv,
Att.priv and Wrap.sym keys. If it resides within a
different security boundary, then the implementation
must guarantee the same level of security as if they
would reside within the same module.

It is highly recommended to generate, store and
operate this key inside a trusted execution
environment
[TEE].

In situations where physical attacks and side
channel attacks are considered in the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

Software-based authenticators must make sure to use
state of the art code protection and obfuscation
techniques to protect this module, and whitebox
encryption techniques to protect the associated
keys.

Authenticators need good random number generators
using a high quality entropy source, for:

1. generating authentication keys
2. generating signatures
3. computing authenticator-generated challenges

The authenticator's random number generator (RNG)
should be such that it cannot be disabled or
controlled in a way that may cause it to generate
predictable outputs.

If the authenticator doesn't have sufficient entropy for generating strong random numbers, it should fail
safely.

See the section of this table regarding random numbers

It is highly recommended to use authenticated
encryption while wrapping key handles with Wrap.sym.



KeyHandle Algorithms such as AES-GCM and AES-CCM are most
suitable for this operation.

Liveness
Detection /
Presentation
Attack
Detection

The user verification method should include liveness detection [NSTCBiometrics],
i.e. a technique to
ensure that the sample submitted is actually from a (live) user.

In the case of PIN-based matching, this could be implemented using [TEESecureDisplay] in order to
ensure that malware can't emulate PIN entry.

Matcher

By definition, the matcher component is part of the
authenticator. This does not impose any restrictions
on the authenticator implementation, but implementers
need to make sure that there is a proper security
boundary binding the matcher and the other parts of
the authenticator together.

Tampering with the matcher module may have
significant security consequences. It is highly
recommended for this module to reside within the
integrity boundaries of the authenticator, and be
capable of detecting tampering.

It is highly recommended to run this module inside a
trusted execution environment [TEE] or inside a
secure element [SecureElement].

Authenticators which have separated matcher and
CryptoKernel modules should implement mechanisms
which
would allow the CryptoKernel to securely receive assertions
from the matcher module indicating
the user's local
verification status.

Software based Authenticators (if not in trusted
execution environment) must make sure to use state of
the art code protection and obfuscation techniques to
protect this module.

When an Authenticator receives an invalid
UserVerificationToken it should treat this as an attack,
and
invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not
exceeding 10 seconds.

Authenticators must implement anti-hammering protections for
their matchers.

Biometrics based authenticators must protect the
captured biometrics data (such as fingerprints) as
well
as the reference data (templates), and make sure
that the biometric data never leaves the security
boundaries of authenticators.

Matchers must only accept verification reference data
enrolled by the user, i.e. they must not include any
default PINs or default biometric reference data.

Private Keys
(UAuth.priv
and
Attestation
Private
Key)

This document requires (a) the attestation key to be
used for attestation purposes only and (b) the
authentication keys to be used for FIDO authentication
purposes only. The related to-be-signed objects
(i.e.
Key Registration Data and SignData) are designed to
reduce the likelihood of such attacks:

1. They start with a tag marking them as specific
FIDO objects
2. They include an authenticator-generated random
value. As a consequence all to-be-signed objects

are
unique with a very high probability.
3. They have a structure allowing only very few
fields containing uncontrolled values, i.e. values
which

are neither generated nor verified by the
authenticator

The FIDO Authenticator uses its random number
generator to generate authentication key pairs, client
side challenges, and potentially for creating ECDSA
signatures. Weak random numbers will make FIDO
vulnerable to certain attacks. It is important for the
FIDO Authenticator to work with good random
numbers
only.



Random
Numbers

The (pseudo-)random numbers used by authenticators
should successfully pass the randomness test
specified
in [Coron99] and they should follow the guidelines
given in [SP800-90b].

Additionally, authenticators may choose to
incorporate entropy provided by the FIDO Server via
the
ServerChallenge sent in requests (see
[UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing
function should be used, such as those
described in
[RFC4086].

RegCounter

The RegCounter provides an anti-fraud signal to the relying parties. Using the RegCounter,
the relying party
can detect authenticators which have been excessively registered.

If the RegCounter is implemented: ensure that

1. it is increased by any registration
operation and
2. it cannot be manipulated/modified otherwise (e.g. via API calls,
etc.)

A registration counter should be implemented as a global counter, i.e. one covering registrations to all
AppIDs.
This global counter should be increased by 1 upon any registration operation.

Note: The RegCounter value should not be decreased by Deregistration operations.

SignCounter

When an attacker is able to extract a Uauth.priv key from a registered authenticator, this key can be used
independently
from the original authenticator. This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent cloning authenticators. In
some situations the protection measures might not be
sufficient.

If the Authenticator maintains a signature counter
SignCounter, then the FIDO Server would have an
additional method to detect cloned authenticators.

If the SignCounter is implemented: ensure that

1. It is increased by any authentication /
transaction confirmation operation and
2. it cannot be manipulated/modified otherwise (e.g.
API calls, etc.)

Signature counters should be implemented that are dedicated
for each private key in order to preserve
the user's
privacy.

A per-key SignCounter should be increased by 1, whenever the
corresponding UAuth.priv key signs an
assertion.

A per-key SignCounter should be deleted whenever the
corresponding UAuth key is deleted.

If the authenticator is not able to handle
many different signature counters, then a global
signature
counter covering all private keys should be
implemented. A global SignCounter should be
increased by a
random positive integer value whenever any of the UAuth.priv keys is used to sign an assertion.

A transaction confirmation display must ensure that the user is
presented with the provided transaction

NOTE

There are multiple reasons why the SignCounter value could be 0 in a registration response. A
SignCounter value of 0 in an authentication response
indicates that the authenticator doesn't
support the SignCounter concept.



Transaction
Confirmation
Display

content, e.g.
not overlaid by other display elements and clearly
recognizable. See [CLICKJACKING] for
some examples of
threats and potential counter-measures

For more guidelines refer to
[TEESecureDisplay].

UAuth.priv

An authenticator must protect all UAuth.priv keys as
its most sensitive assets. The overall
security of the
authenticator
depends significantly on the protection
level of these keys.

It is highly recommended that this key is generated,
stored and operated inside a trusted execution
environment.

In situations where physical attacks and side
channel attacks are considered within the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

FIDO Authenticators must ensure that UAuth.priv
keys:

1. are specific to the particular account at one
relying party (relying party is identified by an
AppID)
2. are generated based on good random numbers with
sufficient entropy. The challenge provided by

the
FIDO Server during registration and authentication
operations should be mixed into the entropy
pool in
order to provide additional entropy.

3. are never directly revealed, i.e. always remain
in exclusive control of the FIDO Authenticator
4. are only being used for the defined
authentication modes, i.e.

1. authenticating to the application (as
identified by the AppID) they have been
generated for, or
2. confirming transactions to the application (as
identified by AppID) they have been generated

for, or
3. are only being used to create the FIDO
defined data structures, i.e. KRD, SignData.

Username A username must not be returned in plaintext in any
condition other than the conditions described for the
SIGN command. In all other conditions usernames must
be stored within a KeyHandle.

Verification
Reference
Data

The verification reference data, such as fingerprint
templates or the reference value of a PIN, are by
definition part of the authenticator. This does not
impose any particular restrictions on the
authenticator
implementation, but implementers need to
make sure that there is a proper security boundary
binding all
parts of the authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym),
then the authenticator must protect this key as its
most sensitive asset. The overall security of
the authenticator depends on the protection of this
key.

Wrap.sym key strength must be equal or higher than the
strength of secrets stored in a RawKeyHandle.
Refer to
[SP800-57] and [SP800-38F] publications for more
information about choosing the right
wrapping algorithm
and implementing it correctly.

It is highly recommended to generate, store and
operate this key inside a trusted execution
environment.

In situations where physical attacks and side
channel attacks are considered in the threat model, it
is
highly recommended to use a tamper-resistant
hardware module.

If the authenticator uses Wrap.sym, it must ensure
that unwrapping corrupted KeyHandle and
unwrapping data
which has invalid contents (e.g. KeyHandle from invalid
origin) are indistinguishable to
the caller.



B. Table of Figures

Fig. 1 UAF Authenticator Commands
Fig. 2 FIDO Authenticator Logical Sub-Components

C. References

C.1 Normative references

[Coron99]
J. Coron; D. Naccache. An accurate evaluation of Maurer's universal test. February 1999. URL:
http://www.jscoron.fr/publications/universal.pdf

[FIDOEcdaaAlgorithm]
R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. FIDO ECDAA Algorithm. 28 November
2017. Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-
20180227.html

[FIDOGlossary]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hodges. FIDO Technical Glossary. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. FIDO Metadata Statements. Review Draft. URL: https://fidoalliance.org/specs/fido-
v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html

[FIDORegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values. Proposed Standard. URL:
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html

[ITU-X690-2008]
. X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER), (T-REC-X.690-200811). November 2008. URL:
https://www.itu.int/rec/T-REC-X.690-200811-S

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc2119

[SP800-90b]
Meltem Sönmez Turan; Elaine Barker; John Kelsey; Kerry McKay; Mary Baish; Michael Boyle. NIST Special Publication
800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation. January 2018. URL:
https://csrc.nist.gov/publications/detail/sp/800-90b/final

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang. FIDO UAF Protocol Specification
v1.2. Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-
20201020.html

[UAFRegistry]
R. Lindemann; D. Baghdasaryan; B. Hill. FIDO UAF Registry of Predefined Values. Review Draft. URL:
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html

C.2 Informative references

[CLICKJACKING]
D. Lin-Shung Huang; C. Jackson; A. Moshchuk; H. Wang, S. Schlechter. Clickjacking: Attacks and Defenses. July
2012. URL: https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf

[CommonCriteria]
CCRA Members. Common Criteria Publications. Work in Progress. URL: http://www.commoncriteriaportal.org/cc/

[FIDOSecRef]
R. Lindemann; D. Baghdasaryan; B. Hill; J. Hill; D. Biggs. FIDO Security Reference. 27 February 2018. Implementation
Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html

[FIPS140-2]
. FIPS PUB 140-2: Security Requirements for Cryptographic Modules. May 2001. URL:
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[NSTCBiometrics]

http://www.jscoron.fr/publications/universal.pdf
http://www.jscoron.fr/publications/universal.pdf
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://fidoalliance.org/specs/common-specs/fido-registry-v2.1-ps-20191217.html
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
http://www.commoncriteriaportal.org/cc/
http://www.commoncriteriaportal.org/cc/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf


. Biometrics Glossary. 14 September 2006. URL: http://biometrics.gov/Documents/Glossary.pdf
[RFC4086]

D. Eastlake 3rd; J. Schiller; S. Crocker. Randomness Requirements for Security (RFC 4086). June 2005. URL:
http://www.ietf.org/rfc/rfc4086.txt

[SP800-38F]
M. Dworkin. NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for
Key Wrapping. December 2012. URL: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

[SP800-57]
Recommendation for Key Management – Part 1: General (Revision 3). SP800-57. July 2012. U.S. Department of
Commerce/National Institute of Standards and Technology. URL: https://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57_part1_rev3_general.pdf

[SecureElement]
. GlobalPlatform Card Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEE]
. GlobalPlatform Trusted Execution Environment Specifications. URL: https://www.globalplatform.org/specifications.asp

[TEESecureDisplay]
. GlobalPlatform Trusted User Interface API Specifications. URL: https://www.globalplatform.org/specifications.asp

[TPM]
. TPM Main Specification. URL: http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[UAFASM]
D. Baghdasaryan; J. Kemp; R. Lindemann; B. Hill; R. Sasson. FIDO UAF Authenticator-Specific Module API. Review
Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

http://biometrics.gov/Documents/Glossary.pdf
http://biometrics.gov/Documents/Glossary.pdf
http://www.ietf.org/rfc/rfc4086.txt
http://www.ietf.org/rfc/rfc4086.txt
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
https://www.globalplatform.org/specifications.asp
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html

	Local Disk
	FIDO UAF Authenticator Commands


