fco

ALLIANCE

FIDO UAF WebAuthentication Assertion Format
FIDO Alliance Proposed Standard 20 October 2020

This version:
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html

Dr. Rolf Lindemann, Nok Nok L. Inc.
The English version of this specification is the only normative version. Non-normative translations may also be available.

Copyright © 2013-2020 EIDO Alliance All Rights Reserved.

Abstract

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A
list of current FIDO Alliance publications and the latest revision of this technical report can be found in the EIDQ Alliance
specifications index at https.//fidoalliance.org/specifications/.

This document was published by the FIDO Alliance as a Proposed Standard. If you wish to make comments regarding this
document, please Contact Us. All comments are welcome.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including
without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and
shall not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED “AS 1S” AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING,
WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

This document has been reviewed by FIDO Aliance Members and is endorsed as a Proposed Standard. It is a stable document and

may be used as reference material or cited from another document. FIDO Alliance's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment.

Table of Contents

e 1. Notation
o 1.1 Key Words

https://fidoalliance.org/
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-webauthn-v1.2-ps-20201020.html
mailto:rolf@noknok.com
https://www.noknok.com/
https://fidoalliance.org/specifications/translation/
https://fidoalliance.org/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specifications/
https://fidoalliance.org/
https://fidoalliance.org/contact

2. Overview

3. Data Structures for WAV1CBOR
o 3.1 Registration Assertion

o 3.2 Authentication Assertion

4. Processing Rules
o 4.1 Registration Response Processing Rules for ASM

o

4.2 Registration Response Processing Rules for FIDO Server
4.3 Authentication Response Generation Rules for ASM
o 4.4 Authentication Response Processing Rules for FIDO Server

o

5. Mapping CTAP2 error codes to ASM error codes

A. References
o A.1 Normative references

1. Notation

Type names, attribute names and element names are written as code.

String literals are enclosed in *, e.g. “UAF-TLV”.

In formulas we use “|” to denote byte wise concatenation operations.

UAF specific terminology used in this document is defined in [FIDOGlossary].
All diagrams, examples, notes in this specification are non-normative.

1.1 Key Words

"o« LT ” o« » o« » o« » oo« ” o«

The key words “musT”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “sHoULD”, “sHouLD NOT”, “RECOMMENDED”, “MAY”, and “opTIoNAL” in this
document are to be interpreted as described in [RFC2119].

2. Overview

This section is non-normative.

This document defines the assertion format "WAV1CBOR" in order to use Web Authentication assertions through the FIDO UAF
protocol.

3. Data Structures for WAV1CBOR

This section is normative.
3.1 Registration Assertion

The registration assertion for the assertion format "WAV1CBOR" is a TLV encoded object containing the CBOR encoded
authenticatorbata, the name of the attestation format, and the atestation statement itself.

TLV Structure Description

1 UINT16 Tag TAG_WAV1CBOR_REG_ASSERTION

UINT16

11 Length

Length of the structure.

1.2 UINT16 Tag TAG_WAV1CBOR_REG_DATA

UINT16
1.21 Length Length of the structure.
129 UINT8 The binary authenticatorbata structure as specified in section 6.1 in [WebAuthn] with non-empty

tbsData attestedCredentialbata field being present followed by (i.e. binary concatenation) the c1ientpatanash.

1.3 UINT16 Tag TAG_ATTESTATION_FORMAT
1.3.1 UINT16 Length of Attestation Format
Length
UINTS8][]
1.3.2 | Attestation Authenticator Attestation Format, see field "fmt" in section sctn-attestation in [WebAuthn]
Format
1.4 UINT16 Tag TAG_ATTESTATION_STATEMENT
1.4.1 UINT16 Length of Attestation Statement
Length
UINTS] . . i e . L e
1.4.2 | Attestation Authenticator Attestation Statement, see field "stmt" in section sctn-attestation in [WebAuthn]. This field
U Statement contains the signature in sub-field "sig".

3.2 Authentication Assertion

The authentication assertion is a TLV structure containing the CBOR encoded authenticatorbata object, the authenticator model
name (AAGUID), the key identifier and the signature of the authenticatornata object.

Uy Description
Structure P
1 %’;”6 TAG_WAV1CBOR_AUTH_ASSERTION
UINT16
1.1 Length Length of the structure.
12 %ET"; TAG_WAV1CBOR_SIGNED_DATA
UINT16
1.2.1 Length Length of the structure.
UINTS As described in step 11 in section 6.3.3 in [WebAuthn]: The binary authenticatorpata structure as specified in
1.2.2 section 6.1 in [WebAuthn] with empty attestedcredentialpata field being present followed by (i.e. binary
tbsData . , B
concatenatlon) the clientbatanash.
13 | YNTT6 | 1AG_AAGUID
Tag
UINT16
1.3.1 Length Length of AAGUID
1.3.2 | YINTBI | A thenticator Attestation GUID, see section 6.4.1 in [WebAuthn]
7 | AAGUID ’ o
14 | YNT16 1 1AG kEYID
Tag -
UINT16
1.4.1 Length Length of KeylD
UINTS[] . . _— . .
14.2 KeylD (binary value of) Credential ID (see definition of CredentiallD in [WebAuthn])
15 |UINT16 | 1AG SIGNATURE
Tag
UINT16 .
1.51 Length Length of Signature

1.5.2

UINTS[]

Signature Signature calculated using UAuth.priv over tbsData - not including any TAGs nor the KeylD and AAGUID.

4. Processing Rules

This section is normative.

4.1 Registration Response Processing Rules for ASM

See [UAFASM] for details of the ASM API.

Refer to [UAFAuthnrCommands] document for more information about the TAGs and structure mentioned in this paragraph.

1.

Locate authenticator using authenticatorindex. If the authenticator cannot be located, then fail with error code
T]A?i,’%f}}ii:‘%TATI?ESi,A[]TZ{E?\ITI(?ATQRiDISC(INECTED.

. Connect to the Authenticator and call authenticatorcetnfo [FIDOCTAP]. Remember whether the authenticator supports

residentKeys (rx), c1ientrin, User Presence (up), User Verification (uv). Also remember whether the authenticator is a roaming
authenticator (r12t=ralse), or a platform authenticator (o1at=true). If the connection fails, then fail with error code

UAF ASM STATUS AUTHENTICATOR DISCONNECTED.

’

. If crientrin is the requested user verification method (see UVM extension), but step 2 indicated that clientPin is not yet set (i.e.

clientpin present but set to false), then ask user to set (enroll) clientPin.
o If neither the ASM nor the Authenticator can trigger the enroliment process, return var Aswv STATUS USER NOT ENROLLED,
o If enrollment fails, return var asv sSTATUS ACCESS DENTED

. Hash the provided rsurequest.args. finalchallenge using the authenticator-specific hash function and store the result in

FinalChallengeHash.

An authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

. for each extension included in Asvrequest .exts

o If the extension "fido.uaf.rk" is found, set parameter -« to the value of that extension and continue with the next extension.

o If the extension "fido.uaf.ac" is found, set parameter ac to the value of that extension and continue with the next
extension.

o If the extension was not handled before, create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn]) extension
in extensionsceor. If no corresponding WebAuthn/FIDO2 extension is specified, ignore this extension (if fai1 if unknown
is false) or return var asu status ErrROR (if fail if unknown is true).

. Call authenticatorMakeCredential [FIDOCTAP] (either via CTAP or via a platform proprietary API), send the required

information and receive resuit containing the error code of that operation.

NOTE

This interface has the following input parameters (see [FIDOCTAP]):

. clientDataHash (required, byte array).

. rp (required, PublicKeyCredentialRpEntity). Identity of the relying party.

. user (required, PublicKeyCredentialUserEntity).

. pubKeyCredParams (required, CBOR array).

. excludeList (optional, sequence of PublicKeyCredentialDescriptors).

. extensions (optional, CBOR map). Parameters to influence authenticator operation.
. options (optional, sequence of authenticator options, i.e. parameters rx, uv, and up).
. pinAuth (optional, byte array).

© 0o N O OB~ WODN -

. pinProtocol (optional, unsigned integer).
The output parameters are (see [FIDOCTAP]):

1. authData (required, sequence of bytes). The authenticator data object.

2. fmt (required, String). The attestation statement format identifier.
3. attStmt (required, sequence of bytes). The attestation statement.

Use the following values for the respective parameters:
o Set rp.rpidtothe asvrequest . args.appId

o Setuser.1dtothe rido.uafr.userid extension retrieved from ASMRequest.exts; S€l user.displayName to
ASMRequest.args.username. Fail if the fido.uafr.userid extension is missing in ASMRequest.exts.

o Set clientDataHash tO0 FinalChallengeHash
o Set pubkeyCredrarans. type tO "public—key" and pubKeyCredParams.alg to the preferred algorithm, e.g. "ES256".
o Setexcluderist to an empty list
o Set extensions to the CBOR map extensionsCBOR
o Setpinauth and pinrrotocol to the respective values supported by this ASM (to the extent the underlying platform allows
specifying these values).
o Set options to an empty object and add items as follows
1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and vvm.userverificationMethod
includes one or more of the flags user VERTFY FINGERPRINT, USER VERIFY PASSCODE, USER VERIFY VOICEPRINT,

USER VERIFY FACEPRINT, USER VERIFY LOCATION, USER VERIFY EYEPRINT, USER VERIFY PATTERN, O

USER VERIFY HANDPRINT Set options.userVerification {0 true and set options.userPresence tO true.
2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to USER VERIFY CLIENTPIN set options.userverification 0 true and set options.userPresence tO false.
3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationdethod iS
equal to USER_VERIFY PRESENCE set options.userverification tO false and set options.userPresence tO true.

4. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationdethod iS
eequal to user vErRIFY NONE Set options.userVerification to ra1se and set options.userPresence to ralse.

NOTE

If the authenticator uses clientPin but the clientPin was not set (indicated by ctar2 err p1n nOT sET), the ASM should
ask the user for the clientPin and provide it to the authenticator.

7. If resuit is not equal to crar2 ok and retry cannot fix the problem, then map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes and return the resulting error code.

8. Create a 7ac waviceor reG AsserTION Structure:
1. Copy result.AuthData concatenated with the finaichallengerasn into field Tac waviceor sicnep pata
2. Copy result.fmt into field 7ac ATTESTATION FORMAT
3. Copy result.stmt into field Tac ATTESTATTION STATEM

“N'T

9. Create a registerout Object
1. Set registerout.assertionSchene to "WAV1CBOR"
2. Encode the content of Tac wavicsor rEc asserTION in base64url format and set as registerout.assertion.
10. set asMRrResponse.responseData tO Registerout.
11. set asMresponse.statusCode to the correct status code corresponding to the resuit received earlier.
12. set asvresponse.exts to empty
13. Return 2suresponse object

4.2 Registration Response Processing Rules for FIDO Server
Instead of skipping the assertion as described in step 6.8 in section 3.4.6.5 [UAFProtocol], follow these rules:

1. if a.assertionschene == "WAV1CBOR" AND = .assertion.TAG WAVICBOR REG ASSERTION cOntains TAG WAVICBOR SIGNED DATA @S
first element:
1. extract authenticatorbata from TAG WAVICBOR SIGNED DATA.tbsData
2. read claimedaaGuID from authenticatorData.attestedCredentialData.AAGUID.

3. Verlfy that a.assertionscheme matches Metadata (claimedAAGUID) .assertionScheme

4,

11.
12.

13.

14.

15.

. Obtain

= [f it doesn't match - continue with next assertion

Verify that the c1z2imedrzcutp indeed matches the policy specified in the registration request.

NOTE

Depending on the policy (e.g. in the case of AND combinations), it might be required to evaluate other assertions
included in this registrationresponse in order to determine whether this AAGUID matches the policy.

= [f it doesn't match the policy - continue with next assertion
Locate authenticator-specific authentication algorithms from the authenticator metadata [FIDOMetadataStatement]
identified by claimedAAGUID (fle'd authenticat ic:’:?,igs’;).
If fcp is of type FinalChallengeParams [UAFProtocol], then hash registrationresponse. feparans using hashing algorithm
suitable for this authenticator type. Look up the hash algorithm in authenticator metadata, field authenticationaigs. Itis
the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash(RegistrationResponse.fcParams)

If rcp is of type CollectedClientData [UAFProtocol], then hash registrationresponse. feParams using hashing algorithm
SpeCified in fcp.hashalg.
B FCHash = hash(RegistrationResponse.fcParams)
AttestationType for the c1zaimedracuip and make sure that
srTTON contains the most preferred attestation tag specified in field

waviceor REG AsserTION doesn't contain the preferred attestation - it is RecommeNDED to skip this
assertion and continue with next one

. set tbspata to the data contained in a.zassertion. thsbata.
. set authenticatorbata to the CBOR object tnspata starts with. Use the "length” field of the CBOR object to determine its

end.
set clientpatanash to the remaining bytes of the tospata (i.e. the bytes following the CBOR object).
Make sure that c1ientpatanash == rFcHash

= |f comparison fails - continue with next assertion

Extract the up and uv bits from authenticatornata. Verify whether these bits match the uvvi extension sent in the request.
Fail if the verification result is not acceptable.

NOTE

= up=false and uv=false means silent authentication (vszr verTEy NoNE)

= up=true and uv=false means user presence check only (Ustr VERIFY PRESENCE)

= yp=false and uv=true means user verification that doesn't provide user presence check, e.g. client Pin or
some other user verification method not necessarily implemented fully inside the authenticator boundary
(USER_VERIFY CLIENTPIN)

= up=true and uv=true means user verification using a user verification method implemented inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(user vertry crientpin) AND user verTry preEsenc - depending on the authenticator capabilities as
declared in the related Metadata Statement.

If a uvu extension is included in the response, extract this value and compare it verify whether it matches the extension
from the request. Fail if the verification result is not acceptable.
|f a.assertion. TAG_WAV1CBOR REG ASSERTION.TAG ATTESTATION STATEMENT contains ATTESTATION BASIC FULL tag
1. Ifentry attestationrootcertificates for the claimedAAGUID in the metadata [FIDOMetadataStatement] contains
at least one element:
1. Obtain contents of al _aTTESTATION CERT tags from
a.assertion.TAG WAVICBOR REG ASSERTION.ATTESTATION BASIC rULL Object. The occurrences are ordered (see

[UAFAuthnrCommands]) and represent the attestation certificate followed by the related certificate chain.

| {3

2. Obtain all entries of rttestationrootcertificates for the claimedAAGUID in authenticator Metadata, field

AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to the Attestation Root Certificate using
Certificate Path Validation as specified in [RFC5280]

» |f verification fails — continue with next assertion

4. Verify a.assertion.TAG WAVICBOR REG ASSERTION.TAG ATTESTATION STATEMENT.sig USing the attestation
certificate (obtained before).

= [f verification fails — continue with next assertion

2. If vetadata (claimedAAGUID) .AttestationRootCertificates for this claimedAAGUID is empty - continue with next
assertion

3. Mark assertion as positively verified

ATTESTATION BASIC ¢ 2.
1. There is no real attestation for the AAGUID, so we just assume the claimedAAGUID is the real one.

2. If entry AttestationRootCertificates for the claimedAAGUID in the metadata is not empty - continue with next
assertion (as the AAGUID obviously is expecting a different attestation method).

3. Verify that extension "fido.uaf.android.key_attestation" is present and check whether it is positively verified
according to its server processing rules as specified [UAFRegistry].

n [f verification fails — continue with next assertion
4. Mark assertion as positively verified

17. If a.assertion.TAG WAVICBOR REG ASSERTION contains an object of type attesTarion ECDAA
1. If entry ecdaatrustanchors for the claimedAAGUID in the metadata [FIDOMetadataStatement] contains at least one
element:

1. For each of the ccdaaTrustanchors entries, perform the ECDAA Verify operation as specified in
[FIDOEcdaaAlgorithm].

n |f verification fails — continue with next ccdzatrustanchors entry
2. If no ECDAA Verify operation succeeded — continue with next assertion

2. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the claimedAAGUID.

3. If vetadata(claimedanTD) .ecdaaTrustanchors for this claimedAAGUID is empty - continue with next assertion

4. Mark assertion as positively verified and the authenticator indeed is of model as indicated by the claimedAAGUID.
18. If a.assertion.Tac UAFVI REG AsserTION contains another tac arrestaTron tag - verify the attestation by following

appropriate processing rules épplicable to that attestation. Currently this document defines the processing rules for Basic
Attestation and direct anonymous attestation (ECDAA).

19. Extract authenticatorbata.attestedCredentialData. credentialPubKey into PuinCKey,
lentiallD into KeyID, authenticatorData.counter iNto SignCounter,
110 into AAGUID.

20. Set AuthenticatorVersion to O (as it is not included in the message).

uthentic

torData. tedCredentialData.

authenticatorData.attestedCredentialData.

4.3 Authentication Response Generation Rules for ASM
See [UAFASM)] for details of the ASM API.

1. Locate the authenticator using authenticatorindex. If the authenticator cannot be located, then fail with
UAF ASMiST}LTUSiAUTZ{EZ\ITICATORiDISCCI\'NECTED.

2. if this is a bound authenticator, verify ca11<rid against the one stored at registration time and return
uar_nsM sTATUS access penteD if it doesn't match.

3. Hash the provided ruthenticateTn. finalChallenge using the preferred authenticator-specific hash function
(f‘lna;ChallengeHagh).

The authenticator's preferred hash function information must meet the algorithm defined in the
AuthenticatorInfo.authenticationAlgorithm field.

4. Create an empty list key1precords of KeylD, related KeyHandle and related username
5. If authenticateTn.keyIDs iS NOt empty,
1. If this is a bound authenticator, then look up ASM's database with ruthenticatein.appip and Authenticateln.keyiDs and
matching entry into xeyIbrecords
m Return var asm status kev prsappeared PERMANENTLY if the related key disappeared permanently from the

6.

7.

10.

authenticator.
m Return var asu status access penTeD if no entry has been found.
2. If this is a roaming authenticator, then for each entry in authenticatein. keyids add an entry in keyibrecords with
entry.KeyID and ent ry.KeyHandle Set to the respective keyID in AuthenticatelIn. keyIDs. Set entry.userName tO empty
If authenticateln. keyIDs is empty, |00kup all KeyHandles matching this request and add an entry in KeyIDRecords with
entry.KeyID and entry.KeyHandle Set to the respective KeyHandles. Set entry.userName the related userName.

If keyTDRecords containes multiple entries, show the related distinct usernames and ask the user to choose a single username.
Remember the xeyrandie and the related xey 1D to this key.

. If authenticatern. transaction is NOT empty then select the entry » with the content type best matching the authenticator

capabilities.
1. if AuthenticateIn.transaction [n] .contentType == "text/plain“

then create a corresponding txauthsimple extension in extensionsCBOR.
2. if AuthenticatelIn.transaction [n] .contentType 1= "text/plain"

then create a corresponding txauthGeneric extension in extensionsCBOR.

. for each extension included in 2svrequest .exts

create a corresponding WebAuthn/FIDO2 extension (see [WebAuthn]) extension in extensionsceor. If no corrsponding
WebAuthn/FIDO2 extension is specified, ignore this extension.

Call authenticatorGetAssertion (either via CTAP or via a platform proprietary API), send the require information and receive the
expected result containing the error code of that operation.

NOTE

authenticatorGetAssertion has the following input parameters (see [FIDOCTAP]):

. rpld (required, String). Identity of the relying party.

. clientDataHash (required, byte array).

. allowList (optional, sequence of PublicKeyCredentialDescriptors).

. extensions (optional, CBOR map).

. options (optional, sequence of authenticator options, i.e. up for user presence and uv for user verification).
. pinAuth (optional, byte array).

. pinProtocol (optional, unsigned integer).

N O oA WON -~

The output parameters are (see [FIDOCTAP]):

. credential (optional, PublicKeyCredentialDescriptor).
. authData (required, byte array).

. signature (required, byte array).

. user (required, PublicKeyCredentialUserEntity).

a B~ WON =

. numberOfCredentials (optional, integer).

Use the following values for the respective parameters:
o Set rpId to the 2s

MRequest.args.AppID

o Setclientbat

ash t0 Fina ChallengeHash

o SetallowList to the keyHandle remembered earlier

o Set extensions to the CBOR map extensionsCBOR

o Setpinauth and pinprotocol to the respective values supported by this ASM (to the extent the underlying platform allows
specifying these values).

o Set options to an empty object and add items as follows

1. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod
includes one or more of the flags user VERTFY FINGERPRINT, USER VERIFY PASSCODE, Ut

USER VERIFY FACEPRINT, USER VERIFY LOCATION, USER VERIFY EYEPRINT, USER VERIFY PATTERN, OF
USER _VERIFY HANDPRINT set options.uv 1O true and set options.up tO true.

2. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to user VERTIFY CLIENTPIN St options.uv tO true and set options.up to false. Remember to provide the
clientPIN to the authenticator.

3. If extension "UVM" (userVerificationMethod, see [UAFRegistry]) is present and uvm.userverificationMethod IS
equal to user vERIFY PRESENCE S€t options.uv 10 false and set options.up O true.

4. If extension "UVM" (userVerificationMethod, see [UAFRengtry]) is present and uvm.uservVerificationMethod iS
equal to user VERTFY NONE S€t options.uv 1O false and set options.up tO false.

NOTE

If the authenticator uses clientPin but the clientPin was not set (indicated by ctar2 err p1n nOT seT), the ASM should
ask the user for the clientPin and provide it to the authenticator.

11. If resuit is not equal to ctar2 ox and retry cannot fix the problem, then map the CTAP error code to a UAF ASM error code
using the table in section 5. Mapping CTAP2 error codes to ASM error codes and return the resulting error code.

12. If the numberofcredentials in the response is > 1, then follow the rules in section "Client Logic" [FIDOCTAP] to receive and
process the remaining (r‘umber()ﬂ?redenti al 55-1) responses (see authenticatorGetNextAssertion in [F|DOCTAP])

13. Create 1ac wavicsor auTH AsserTION Structure.
1. Copy 22cu1p (if known) into the respective TLV fields. Otherwise set the field to an empty value (zero length).

NOTE

In the case of a platform authenticator, the 2zcutp value can be remembered at registration time. In the case of a
roaming authenticator, it might be possible to call authenticatorcetinfo [FIDOCTAP] which provides the zzcutp in
the response.

2. Copy the remembered xey 10 into the respective TLV field.
3. Copy result.authbata into the value of the Tac waviceor sicnep pata field.
4, Copy result.signature into the value of the Tac stenature field.
14. Create the ruthenticateout object
1. Set authenticateout.assertionschene to "WAV1CBOR"
2. Encode the content of 7ac waviceor auTH asserTiON in baseB4url format and set as authenticateout.assertion
15. set asMrResponse. responseData {0 Authenticateout object.
16. set asMresponse.statusCode to the correct status code corresponding to the resuit received earlier.
17. set rsMresponse.exts 10 empty
18. Return 231

Response ObjeCt

4.4 Authentication Response Processing Rules for FIDO Server

Instead of skipping the assertion according to step 6.5. in section 3.5.7.5 [UAFProtocol], follow these rules:

1. if a.assertionscheme == "WAV1CBOR" AND = .assertion starts with a valid structure as defined in section 3.2 Authentication
Assertion, then
1. set tbspata to the data contained in a.assertion.tbspata.
2. set authenticatorbata to the CBOR object tnspata starts with. Use the "length” field of the CBOR object to determine its
end.
set clientpatanash to the remaining bytes of the tospata (i.e. the bytes following the CBOR object).

read claimedaacuin from a. tion.aacUTD (Note that it might be empty).

read claimedkeyiD from a.assertion.KeyID.

. Locate vautn.pub associated with (c1ained2acutn, claimedrey1d) in the user's record. If c1zainedracuTn is empty, search
for a matching ciaimedrey1p.

10.

11.
12.

13.

14.

15.

16.

17.

= |f such record doesn't exist - continue with next assertion
= |f multiple records match the search criteria - use the first one

if claimednncurp is empty, set it to the ancurp stored along with vauth. pub

. Verlfy that a.zssertionscheme matches Metadata (claimedARGUID) .assertionSchene

= [f it doesn't match - continue with next assertion

. Verify whether the c12imeannrcurop indeed matches the policy of the Authentication Request.

= [f it doesn't meet the policy — continue with next assertion

Check the Signature Counter authenticatorbata.signcounter and make sure it is either not supported by the
authenticator (i.e. the value prowded and the value stored in the user's record are both 0 or the value isKeyRestricted is
set to 'false’ in the related Metadata Statement) or it has been incremented (compared to the value stored in the user's
record)
= [fitis greater than 0, but didn't increment - continue with next assertion (as this is a cloned authenticator or a cloned
authenticator has been used previously).

Locate authenticator specific authentication algorithms from authenticator metadata (field AuthenticationAlgs)

If rcp is of type FinalChallengeParams, then hash ruthenticationResponse.FinalChallengeparans Using the hashing
algorithm suitable for this authenticator type. Look up the hash algorithm in authenhcator Metadata field
authenticationalgs. It is the hash algorithm associated with the first entry related to a constant with prefix ALG_SIGN.

B FCHash = hash(AuthenticationResponse.FinalChallengeParams)
If rcp is of type CollectedClientData [UAFProtocol], then hash authenticationRresponse. feparams Using hashing algorithm
SpeCified in fcp.hashalg.

B FCHash = hash (AuthenticationRespo . fcParams)
Make sure that c1ientpataiash == rFcHash

= |f comparison fails — continue with next assertion

Extract the up and uv bits from authenticatornata. Verify whether these bits match the v extension sent in the request.
Fail if the verification result is not acceptable.

NOTE
= up=false and uv=false means silent authentication (uszr vertry None)
= up=true and uv=false means user presence check only (User VERTFY PRESENCE)
= up=false and uv=true means user verification that doesn't provide user presence, e.g. client Pin or some other

user verification method not necessarily implemented fully inside the authenticator boundary
(USER_VERIFY CLIENTPIN)

= up=true and uv=true means user verification using a user verification method implemented inside the
authenticator boundary (e.g. USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check
(user vertry crienTPIn) AND User veErTFY prESENCE - depending on the authenticator capabilities as
declared in the related Metadata Statement.

If a uvu extension is included in the response, extract this value and compare it verify whether it matches the extension
from the request Fail if the verification result is not acceptable.

If authenticatorpata contains "txAuthSimple" (see section 10.2 [WebAuthn]) or "txAuthGeneric" (see section 10.3
[WebAuthn]) extensmn(s)

NOTE

The transaction/transaction hash included in this 2uthenticationresponse must match the transaction content
SpeCiﬁed in the related authenticationrequest. As FIDO doesn’t mandate any SpeCiﬁC FIDO Server API, the
transaction content could be cached by any relying party software component, e.g. the FIDO Server or the relying
party Web Application.

1. Make sure there is a transaction cached on Relying Party side.
= |f not — continue with next assertion

2. Go over all cached forms of the transaction content (potentially multiple cached PNGs for the same transaction) and
calculate their hashes using hashing algorithm suitable for this authenticator (same hash algorithm as used for

FinalChallenge).

m Foreach cachedrransaction add hash (cachedTransaction) iNtO cachedTransactionHashList

3. Make sure that the transaction ("txAuthSimple") or the transaction hash ("txAuthGeneric") included in the extension

18. Use the vauth.pub key found in step 1.9 and the appropriate authentication algorithm to verify the signature

iS iNn cachedTransactionHashList

= [fit's not in the list — continue with next assertion

a.assertion.Signature Of the to-be-signed object tbsData.
1. If signature verification fails — continue with next assertion

2. Update SignCounter in user's record with authenticatorbata.si gnCounter.

NOTE

The values of c1ainedancurp and claimedkeyd are now confirmed since the public key we looked up using those

values was the correct one.

5. Mapping CTAP2 error codes to ASM error codes

In many cases the status code returned via [FIDOCTAP] needs to be processed and handled by the ASM. If the communication to

the authenticator via [FIDOCTAPI] finally failed with an error, the following error code mapping rules apply:

cgg;z CTAP2 Name ASM Error Name
0x00 CTAP1_ERR_SUCCESS, CTAP2_OK UAF_ASM_STATUS_OK

0x01 CTAP1_ERR_INVALID_COMMAND UAF_ASM_STATUS_ERROR

0x02 CTAP1_ERR_INVALID_PARAMETER UAF_ASM_STATUS_ERROR

0x03 CTAP1_ERR_INVALID_LENGTH UAF_ASM_STATUS_ERROR

0x04 CTAP1_ERR_INVALID_SEQ UAF_ASM_STATUS_ERROR

0x05 CTAP1_ERR_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE
0x06 CTAP1_ERR_CHANNEL_BUSY UAF_ASM_STATUS_ERROR

0x0A CTAP1_ERR_LOCK_REQUIRED UAF_ASM_STATUS_ERROR

0x0B CTAP1_ERR_INVALID_CHANNEL UAF_ASM_STATUS_ERROR

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE | UAF_ASM_STATUS_ERROR

0x12 CTAP2_ERR_INVALID_CBOR UAF_ASM_STATUS_ERROR

0x14 CTAP2_ERR_MISSING_PARAMETER UAF_ASM_STATUS_ERROR

0x15 CTAP2_ERR_LIMIT_EXCEEDED UAF_ASM_STATUS_ERROR

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION | UAF_ASM_STATUS_ERROR

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED UAF_ASM_STATUS_ERROR

0x21 CTAP2_ERR_PROCESSING UAF_ASM_STATUS_ERROR

0x22 CTAP2_ERR_INVALID_CREDENTIAL UAF_ASM_STATUS_ERROR

0x23 CTAP2_ERR_USER_ACTION_PENDING UAF_ASM_STATUS_USER_NOT_RESPONSIVE
0x24 CTAP2_ERR_OPERATION_PENDING UAF_ASM_STATUS_ERROR

0x25 CTAP2_ERR_NO_OPERATIONS UAF_ASM_STATUS_ERROR

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM

UAF_ASM_STATUS_ERROR

0x27 CTAP2_ERR_OPERATION_DENIED

UAF_ASM_STATUS_ACCESS_DENIED

0x28 | CTAP2_ERR_KEY_STORE_FULL

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x2A | CTAP2_ERR_NO_OPERATION_PENDING

UAF_ASM_STATUS_ERROR

0x2B CTAP2_ERR_UNSUPPORTED_OPTION

UAF_ASM_STATUS_ERROR

0x2C CTAP2_ERR_INVALID_OPTION

UAF_ASM_STATUS_ERROR

0x2D CTAP2_ERR_KEEPALIVE_CANCEL

UAF_ASM_STATUS_ERROR

0x2E CTAP2_ERR_NO_CREDENTIALS

UAF_ASM_STATUS_ERROR

0x2F | CTAP2_ERR_USER_ACTION_TIMEOUT

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x30 | CTAP2_ERR_NOT_ALLOWED

UAF_ASM_STATUS_ERROR

0x31 CTAP2_ERR_PIN_INVALID

UAF_ASM_STATUS_ACCESS_DENIED

0x32 | CTAP2_ERR_PIN_BLOCKED

UAF_ASM_STATUS_USER_LOCKOUT

0x33 | CTAP2_ERR_PIN_AUTH_INVALID

UAF_ASM_STATUS_ACCESS_DENIED

0x34 | CTAP2_ERR_PIN_AUTH_BLOCKED

UAF_ASM_STATUS_ USER_LOCKOUT

0x35 | CTAP2_ERR_PIN_NOT_SET

UAF_ASM_STATUS_USER_NOT_ENROLLED

0x36 | CTAP2_ERR_PIN_REQUIRED

UAF_ASM_STATUS_ACCESS_DENIED

0x37 | CTAP2_ERR_PIN_POLICY_VIOLATION

UAF_ASM_STATUS_ACCESS_DENIED

0x38 | CTAP2_ERR_PIN_TOKEN_EXPIRED

UAF_ASM_STATUS_ACCESS_DENIED

0x39 | CTAP2_ERR_REQUEST TOO_LARGE

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

0x3A CTAP2_ERR_ACTION_TIMEOUT

UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x3B | CTAP2_ERR_UP_REQUIRED

UAF_ASM_STATUS_ACCESS_DENIED

Ox7F CTAP1_ERR_OTHER

UAF_ASM_STATUS_ERROR

OxDF CTAP2_ERR_SPEC_LAST

UAF_ASM_STATUS_ERROR

OxEOQ CTAP2_ERR_EXTENSION_FIRST

UAF_ASM_STATUS_ERROR

OxEF CTAP2_ERR_EXTENSION_LAST

UAF_ASM_STATUS_ERROR

0xFO CTAP2_ERR_VENDOR_FIRST

UAF_ASM_STATUS_ERROR

OxFF CTAP2_ERR_VENDOR_LAST

UAF_ASM_STATUS_ERROR

A. References

A.1 Normative references

[FIDOCTAP]

C. Brand; A. Czeskis; J. Ehrensvard; M. Jones; A. Kumar; R. Lindemann; A. Powers; J. Verrept. EIDO 2.0: Client To
Authenticator Protocol. 30 January 2019. URL: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-

protocol-v2.0-ps-20190130.html
[FIDOEcdaaAlgorithm]

R. Lindemann; J. Camenisch; M. Drijvers; A. Edgington; A. Lehmann; R. Urian. EIDO ECDAA Algorithm. 28 November 2017.

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html

Review Draft. URL: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
[FIDOGlossary]
R. Llndemann D. Baghdasaryan B. H|II J. Hodges. FIDO Technical Glossag(Review Draft. URL:

[FIDOMetadataStatement]
B. Hill; D. Baghdasaryan; J. Kemp. EIDO Metadata Statements. Review Draft. URL: https:/fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-metadata-statement-v2.0-id-20180227 .html

[RFC2119]
S. Bradner. Key words for use in RFECs to Indicate Requirement Levels. March 1997. Best Current Practice. URL:
https://tools.ietf.org/html/rfc211
[RFC5280]
D. Cooper; S. Santesson; S. Farrell; S. Boeyen; R. Housley; W. Polk. Internet X.509 Public Key Infrastructure Certificate and
ifi Revi jon Li RL) Profile. May 2008. URL: https://tools.ietf.org/html/rfc5280
[UAFASM]
D. Baghdasaryan J Kemp, R. L|ndemann B. Hill; R. Sasson. E AF Authenticator- ific Module API. Review Draft.
: /i . . -uaf- -api- .

[UAFAuthanommands]
D. Baghdasaryan; J. Kemp; R. Lmdemann R. Sasson B. Hill; J. Hodges K. Yang EIDO UAF Authenticator Comman
Review Draft. URL: https://fidoallia a/sy Jo-ua af-au] ,

[UAFProtocol]
R. Lindemann; D. Baghdasaryan; E. Tiffany; D. Balfanz; B. Hill; J. Hodges; K. Yang AF Pr / ification v1.2.
Review Draft. URL: https://fidoalliance.org/specs/fido-uaf-v1.2- - .
[UAFRegistry]

R. Lmdemann D. Baghdasaryan B. H|II EIDO UAE Reglgtrzg Qdefmed Values. Review Draft. URL:

[WebAuthn]
Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael B. Jones; Akshay Kumar; Angelo Liao; Rolf Lindemann; Emil

Lundberg. Web Authentication: An API for accessing Public Key Credentials Level 1. March 2019. TR. URL:
https://www.w3.org/TR/w! thn

https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-glossary-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-statement-v2.0-id-20180227.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-asm-api-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-authnr-cmds-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-registry-v2.0-id-20180227.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

	Local Disk
	FIDO UAF WebAuthentication Assertion Format

