)

Introduction to

@spesnova

SRE at Mercari, Inc. / Kubernetes Tokyo Community Organizer

tokyo

1. Basics
2. Features

3. Keys

Tested with kustomize v1.0.3

What i1s kustomize?

kustomize is a command line tool

kustomize is a CLI for managing
k8s style object with declarative way

Let’s learn a basic usage!

Basics / Hello World

Example Requirements

3 environments (dev, stg, prod)
1 deployment resource
different replicas by environments

File Structure

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

File Structure

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

File Structure

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

File Structure

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

Base

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

Base

hello-world/base/deployment.yaml
apiVersion: apps/v]
kind: Deployment
metadata:
name: hello-world
SPecC:
replicas: 1
selector:
matchLabels:
app: hello-world
template: ..

Base

hello-world/base/kustomization.yaml

resources:
- deployment.yaml

Staging

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

Staging

hello-world/staging/replica_count.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-world

Spec:
replicas: 3

Staging

hello-world/staging/kustomization.yami
bases:

-../../base

patches:
- replica_count.yaml

$ kustomize build

$ kustomize build -h
Print current configuration per contents of kustomization.yaml

Usage:
kustomize build [path] [flags]

Print staging configuration

$ kustomize build hello-world/overlays/staging/

Print staging configuration

apiVersion: apps/v]
kind: Deployment
metadata:
name: hello-world
SpPec:
replicas: 3
selector:
matchLabels:
app: hello-world
template: ..

template-free customization

overlay customization

base deployment (replicas 1)

staging deployment (replicas: 3)

overlayed staging deployment (replicas 3)

Production

hello-world/
base

deployment.yaml
kustomization.yaml
overlays

production
replica_count.yaml
kustomization.yaml
staging
replica_count.yaml
kustomization.yaml

Production

hello-world/production/replica_count.yaml
apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-world

SPEC:
replicas: 7

Production

hello-world/production/kustomization.yaml
bases:

-../../base

patches:
- replica_count.yaml

Print production configuration

$ kustomize build hello-world/overlays/production/

Print production configuration

apiVersion: apps/v]
kind: Deployment
metadata:
name: hello-world
SPec:
replicas: 7
selector:
matchLabels:
app: hello-world
template: ..

Apply printed configuration

$ kustomize build [PATH] | kubectl apply -f -

Basics / Motivation

Declarative specification
'S the recommended way

It’s difficult to use only current kubecitl
to follow declarative way...

Another Tools are required

Helm
Ksonnet
Kapitan
Forge
Ktmpl
etc...

Drawbacks of those tools

1. I have to learn new tools...
2. | have to learn new DSL... (complicated!)
3. | have to teach new concepts to teams...

Features

Features / Name Prefix

Name Prefix

overlays/production/kustomization.yaml
namePrefix: prod-

bases:

- ../../base
patches:
- replica_count.yaml

Name Prefix

$ kustomize build hello-world/overlays/production/

Name Prefix

apiVersion: apps/v]
kind: Deployment
metadata:

name: prod-hello-world
SpPec:

replicas: 7

selector:

matchLabels:
app: hello-world
template: ..

Features / Common Labels

Common Labels

base/kustomization.yaml
commonLabels:

owner: spesnova

resources:
- deployment.yaml

Common Labels

$ kustomize build hello-world/overlays/production/

Common Labels

apiVersion: apps/v
kind: Deployment
metadata:
name: hello-world
labels:
OWner: spesnova
SPEC:
replicas: 7
selector:
matchLabels:
app: hello-world
template: ..

Features / Common Annotattion

Common Annotations

base/kustomization.yaml
commonAnnotations:

description: This is Hello World App

resources:
- deployment.yaml

Common Annotations

$ kustomize build hello-world/overlays/production/

Common Annotations

apiVersion: apps/v]
kind: Deployment
metadata:
name: hello-world
annotations:
description: This is Hello World App
SpPec:
replicas: 7
selector:
matchLabels:
app: hello-world
template: ---

Features / ConfigMap Generator

ConfigMap Generator

base/kustomization.yaml
resources:
- deployment.yaml

configMapGenerator:
- name: hello-config
files:
- hello.config

ConfigMap Generator

hello.config

name=hello-world
region=tokyo

ConfigMap Generator

$ kustomize build hello-world/overlays/production/

ConfigMap Generator

apivVersion: v
data:
hello.config: |
name=hello-world
region=tokyo
kind: ConfigMap
metadata:
creationTimestamp: null
name: hello-config-4g5t58m8t5
apiVersion: apps/v]
kind: Deployment

Hash suffix

apivVersion: v
data:
hello.config: |
name=hello-world
region=tokyo
kind: ConfigMap
metadata:
creationTimestamp: null
name: hello-config-4g5t58m8t5
apiVersion: apps/v]
kind: Deployment

Hash suffix

hello.config

name=hello-world
region=london

Hash suffix

apivVersion: v
data:
hello.config: |
name=hello-world
region=tokyo
kind: ConfigMap
metadata:
creationTimestamp: null
name: hello-config-bdmmkghm2Z2m
apiVersion: apps/v]
kind: Deployment

Features / Secrets Generator (skip)

Features / Diff

S kustomize diff

$ kustomize diff hello-world/overlays/production/

S kustomize diff

@@ -3,7 +3,7 @@
metadata:

name: hello-world
Spec:

+ replicas: 7/
selector:
matchLabels:
app: hello-world

Features / Substitute (skip)

Workflows / Bespoke config

Bespoke config

BESPOKE CONFIG WORKFLOW
kustomize

on tag . . apply

AR

| | — |
\1/ /1ldap (3\ |
TN /base -~ -, —/ ' : .
(ji) /overlays - overlays refer to x
/dev 0 CHE base via -
/staging --' .- relative paths

: T -
\\f/’ qIlops or user
<

$ vi foo.yaml

Workflows / Off-the-shelf config

Off-the-shelf config

OFF-THE-SHELF CONFIG WORKFLOW

DO
(relative paths, URIs, tags)

INnters
kustomize
5

clone apply

upstream htoned . o
COﬂflg /overlays il
/dev ~

| EEN
/staging (:4)) gIitops or user
/prod = .

$ vi foo.yaml

Keys / Overlay vs Template

Drawbacks of Templating

1. Can only override parameterized config
2. DSL is too complicated for human
3. Most tools can not read DSL

Example

1. I'm using official Redis Helm chart
2. | want to add annotation

3. Annotations are not defined in the chart...
4. ...Fork?

With kustomize

You can override any part of config with kustomize

Keys / Single source of truth

Before kustomize

1. There is a config file “hello.config”
2. Copy contents of the file

3. Paste it into configMap

4. ... | have 2 config sources...

ConfigMap Generator

base/kustomization.yaml
resources:
- deployment.yaml

configMapGenerator:
- name: hello-config
files:
- hello.config

ConfigMap Generator

hello.config

name=hello-world
region=tokyo

ConfigMap Generator

$ kustomize build hello-world/overlays/production/

ConfigMap Generator

apivVersion: v
data:
hello.config: |
name=hello-world
region=tokyo
kind: ConfigMap
metadata:
creationTimestamp: null
name: hello-config-4g5t58m8t5
apiVersion: apps/v]
kind: Deployment

After kustomize

1. There is a config file “hello.config”

2. Run “kustomize build”

3. kustomize generates configMap

4. The config source is only “hello.config”

Keys / Rolling ConfigMap Update

Updating existing configMap

1. Update contents of existing configMap
2. Deployment itself is not changed...
3. Deployment still reads old configMap...

Hash suffix

apivVersion: v
data:
hello.config: |
name=hello-world
region=tokyo
kind: ConfigMap
metadata:
creationTimestamp: null
name: hello-config-4g5t58m8t5
apiVersion: apps/v]
kind: Deployment

Rolling ConfigMap Update

1. Update contents of configMap

2. kustomize prints new configMap

3. Update configMap name in deployment
4. Deployment reads new configMap

Keys / Teaching native k8s APIs

kustomize exposes and teaches native k8s APIs,
rather than hiding them.

https://github.com/kubernetes-sigs/kustomize/blob/master/docs/glossary.md

Using Native Kubernetes API

Same as kubernetes manifest

Using Native Kubernetes API

1. Lower learning cost
2. Deeper understanding about Kubernetes

Keys / Rollback

Rollback

$ git checkout XXXXXX

$ kustomize build [PATH] | kubectl apply -f -

Rollback

kustomize rollback is very good for GitOps.

However, | also like heroku style rollback such as “helm
status”, “helm history”, “helm rollback”.

Helm provides us logical group of k8s resources as
“application”. kustomize doesn't.

Related issue

Kubernetes Application proposal KEP
https.//github.com/kubernetes/community/pull/1629

Keys / might be moved to kubectl

Kustomize was Initially developed as its own cli, however once it
has matured, it should be published as a subcommand of
kubectl or as a statically linked plugin.

https://github.com/kubernetes/community/blob/master/keps/sig-cli/0008-kustomize.md#implementation-detailsnotesconstraints-optional

Keys / See design doc!

It's awesome!

https.//github.com/kubernetes/community/blob/master/contributors/
design-proposals/architecture/declarative-application-
management.md

https://github.com/kubernetes/community/blob/master/keps/sig-cli/0008-kustomize.md#implementation-detailsnotesconstraints-optional

It's awesome!

It kustomize looks easy to use for you,
| think it comes from good design!

Questions

Can | delete labels with overlay??

As far as | know, you can not for now

