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Abstract

Regime-switching models are well suited to capture the non-linearities in interest rates. This paper

examines the econometric performance of regime switching models for interest rate data from the US,

Germany and the UK. There is strong evidence supporting the presence of regime switches but uni-

variate models are unlikely to yield consistent estimates of the model parameters. Regime-switching

models incorporating international short rate and term spread information forecast better, match sample

moments better, and classify regimes better than univariate models. We show that the regimes in in-

terest rates correspond reasonably well with business cycles, at least in the US. This may explain why

regime-switching models forecast interest rates better than single regime models. Finally, the non-linear

interest rate dynamics implied by regime switching models have potentially important implications for

the macro-economic literature documenting the effects of monetary policy shocks on economic aggre-

gates. Moreover, the implied volatility and drift functions are rich enough to resemble those recently

estimated using non-parametric techniques.



1 Introduction

The stochastic behavior of interest rates varies over time. For example, the behavior of interest rates in

the 1979-1982 period in the U.S. or around the German reunification period seems to indicate a structural

break in the time series. More generally, changes in business cycle conditions and monetary policy may

affect real rates and expected inflation and cause interest rates to behave quite differently in different

time periods. Regime-switching (RS) models constitute an attractive class of models to capture these

changes in the stochastic behavior of interest rates within a stationary model. Many authors have built on

the seminal work of Hamilton (1989) to model short rates by a model where the parameters can change

over time driven by a Markov state variable (assumed to be unobserved to the econometrician).1

Importantly, RS models can accomodate regime-dependent mean reversion in short rates. Mankiw

and Miron (1986) among others have argued that the predictive power of the term spread for future short

rates in the U.S. is very much a function of the monetary policy regime. In particular, they argue that

currently the interest rate smoothing efforts of the Fed make the short rate behave like a random walk and

this behavior is the cause of the rejections of the expectations hypothesis observed with recent US data.

When a regime switching model is fitted to U.S. data however, Bekaert, Hodrick and Marshall (1998)

and Gray (1996) show that such random walk behavior is only true for low interest rates whereas high

interest rates show considerable mean reversion. As part of our analysis we show that regime-switching

models which have regimes with unit root processes remain stationary as long as there is at least one

strictly stationary regime. This property allows regime-switching models to capture the near unit-root

persistence in interest rate data.

Despite their economic appeal, regime-switching models are less attractive than one-regime models

from an econometric estimation perspective. First, it is hard to test for the presence of regimes because

nuisance parameters are present under the null of a single regime model, and with some exceptions there

are virtually no such tests reported in the literature.2 Second, although with the recent work of Gray

(1996) and Hamilton (1994) the likelihood construction has been simplified, estimating regime-switching

models is difficult. Problems encountered include the existence of multiple maxima for the likelihood

making the global hard to find and the unboundedness problem causing the conditional variance in one

regime to approach zero as the other one approaches infinity.3 Finally, often the data do not allow clear

regime-classification, that is, the probability of having observed a regime ex-ante may hover around a

half. These problems may explain why regime-switching models of interest rates have not enjoyed more

success as a building block for term structure models.4

1Hamilton (1988), Lewis (1991), Evans and Lewis (1994), Sola and Driffill (1994), Gray (1996) and Bekaert, Hodrick and

Marshall (1997b) all examine regime switches in interest rates.
2Hansen (1992) provides a computationally intensive test for the number of regimes but as to date it has not been applied in

the literature. Lam (1990) and Cecchetti, Lam and Mark (1993) use Monte Carlo simulation to obtain an empirical likelihood

ratio but in a much simpler framework than what is considered here.
3See Gray (1995) for more details.
4An interesting exception is Naik and Lee (1994) who develop a continuous-time regime switching model for bond and
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In this paper, we provide an in-depth analysis of the econometric properties of regime-switching

models for interest rates in the US, Germany and the UK. We start by showing that single regime models

are resoundingly rejected by the data by applying the test developed by Hansen (1992) to our regime-

switching model. We use two statistical criteria to compare alternative one-regime models of short rates

to regime-switching models both with state-dependent and constant transition probabilities. The first

criterion investigates the fit of the models with the unconditional moments of the data. One attraction of

regime-switching models is that they may accommodate some of the non-linearities recently discovered

in interest rates,5 which may show up in higher order unconditional moments. The dependence of mean

reversion on the level of the interest rate may also induce an autocorrelogram that is difficult to match by

parsimonious ARMA models. The second criterion concerns the forecasting power of the different mod-

els, both for first and second moments.6 Finally, we propose a new metric to compare the performance of

different regime-switching models in identifying the regime over the sample. Our Regime Classification

Measure (RCM) uses the simple fact that the (ex-ante or ex-post) probability of observing one of the

regimes ought to be close to one at all times when regime classification is perfect.

Given the econometric problems mentioned above, it is not a priori clear that regime-switching

models will perform well on the statistical criteria, even when they are the true data-generating process.

Moreover, as stressed by Bekaert, Hodrick and Marshall (1998), the estimation may suffer from a peso

problem, in that the fraction of observations drawn from one particular regime in the sample at hand

may not correspond to the population frequency of that regime. In that case, the estimation will be

biased. For example, it is unlikely that we could get a reliable estimate of the mean reversion at large

interest rates in U.S. data, without including the 1979-1982 period. Furthermore, ARMA models may

generally constitute good approximations to any covariance stationary process and hence may outperform

regime-switching models in small samples, if the parameter estimates of the regime-switching models

are severely biased and inefficient.

To help overcome these problems, we extend the effective sample size through two channels. First,

we investigate multi-country systems of interest rates. It is possible that short rates in the US Granger-

cause rates in other countries (or vice versa) and that Granger-causality may be regime-dependent.

Whereas such relations would immediately affect the forecasting performance, we may also obtain more

efficient estimates if interest rate innovations across countries are correlated. If some parameters are

identical in different countries, further gains in efficiency are to be expected. The model we propose

and estimate allows for correlated interest rate innovations and Granger-causality between rates in some

option pricing.
5There is a growing literature documenting the non-linearities in interest rates. For example, see Conley, Hansen, Luttmer

and Scheinkman (1997), Boudoukh, Richardson, Stanton and Whitelaw (1997), Stanton (1997), Pfann, Schotman and Tschern-

ing (1996) and Aı̈t-Sahalia (1996).
6Gray (1996) examines the out-of-sample forecasting power of a regime-switching model for second moments of the U.S.

short rate on weekly data and Engel (1994) examines the out-of-sample first moment performance of exchange rate regime-

switching models.
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regimes. We compare the performance of several variants of the multivariate regime-switching models

to their single regime vector-autoregressive (VAR) counterparts.

Second, we exploit information in the term structure, by adding term spreads to the model. Under

the null of the Expectations Hypothesis, spreads should forecast future short rates, so the potential for

improved performance is obvious. We again compare the performance of several variants of the mul-

tivariate regime-switching models to their VAR counterparts. The moments criterion here include the

cross-correlations between short rates and spreads. As Pfann, Schotman and Tscherning (1996) show,

the correlation between short rates and long rates changes with the level of the interest rate, suggesting

the correlation may be informative about the regime. To further analyze the non-linearities in the term

structure captured by regime-switching models, we look at impulse responses following Gallant, Rossi

and Tauchen (1993) and plot the drift and volatility functions implied by our model.

Apart from a number of methodological contributions, this article offers some important empirical

results. First, there are several regimes in US, German and UK short rates. Second, RS models, de-

spite being difficult to estimate, forecast well out of sample but do poorly at matching sample moments.

Multivariate RS models perform better than univariate models in terms of regime classification and fore-

casting. Third, our analysis of the non-linearities implied by RS models shows that the impulse responses

of shocks correspond very closely to the impulse responses from linear models when averaged over the

regimes, but shocks conditional on different regimes produce impulse responses which are quite dissimi-

lar. The non-linear conditional drifts and volatilities from RS models are similar to the drift and volatility

functions estimated by a number of non-parametric studies. Finally, the regime classification implied by

RS models is closely related to economic business cycles and the regime ex-ante probabilities are good

short-horizon predictors of the business cycles in the US.

The paper is organized as follows. Section 2 describes the data and establishes a set of stylized facts.

Section 3 outlines the general empirical and econometric framework. It presents a general multivariate

RS model and considers as special cases univariate short rate models, multi-country models of the short

rate and bivariate short rate and term spread models for each country. A stark implication of the frame-

work is that univariate models can generally not be consistently estimated. Section 3 also presents our

diagnostic statistics. Section 4 gives the empirical estimation results and formally tests for the number of

regimes present in the data. Section 5 discusses the performance of the various models. To help interpret

the results we perform a Monte Carlo experiment that examines the performance of single regime and

regime-switching models in small samples when the true data generating process is a regime-switching

model. We consider the quality of regime classification and ask if the regimes are related to the business

cycle. Section 6 explores the non-linear dynamics implied by the term structure RS models. Section 7

concludes.
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2 Data and Stylized Facts

Our empirical work uses monthly observations on 3 month short rates and 5 year long rates of zero

coupon bonds from the US, Germany and Great Britain from January 1972 to August 1996. The data is

an updated set of the Jorion and Mishkin (1991) data series.7 We denote the short rates as and the

spreads as for country . We estimate models based on an in-sample period, with forecasting done

on an out-of-sample period of the last 30 months. This gives an in-sample period of 267 observations.

Table (1) gives the first four central moments of the short rates and spread data on the in-sample

period. The table also shows the autocorrelations for each country, the cross-correlations of short rates

for each pair of countries and correlations of short rates and spreads within each country. We note that

the short rates for Germany and Great Britain do not show excess kurtosis. Short rates are very persistent,

with the UK showing the least persistence. Spreads are also autocorrelated, but less so than short rates.

Turning to international cross-correlations , lagged short rates of the US are more highly correlated

with current German and UK rates than present levels of US short rates. This suggests that lagged US

short rates may Granger-cause movements in short rates in Germany and the UK. The contemporaneous

correlations of short rates across countries are not very high except for the US and UK rates but they

are significantly different from zero and 1. The correlations between spreads and short rates are highly

negative but they remain significantly different from -1. This indicates that the domestic term structure

is not driven by a one factor model.

In Table (2) we attempt to determine whether the behavior of the term structure depends on the busi-

ness cycle.8 The Table divides the interest rate observations into periods of expansions and contractions

and performs tests for the equality of various moments assuming independence across the cycles. As

Zarnowitz (1997) notes, only the US has a business cycle history which is ‘official’, in the sense of being

accepted by governmental authorities, and the dating of the cycles for other countries is less reliable.

This means we must interpret the results for Germany and the UK with caution.

Focusing on the country with the best cycle dating, the US, Table (2) reveals that recessions are char-

acterized by significantly higher interest rates, and somewhat more variable interest rates. The variabil-

ity is, somewhat surprisingly, not significantly different across expansions and recessions. Interest rates

in expansions exhibit higher kurtosis than in recessions and they are significantly less mean-reverting.

Spreads are lower and more variable in recessions but only the mean of the spread is significantly differ-

ent across cycles. In recessions there is significantly more skewness (or a lack of negative skewness) and

spreads are more mean-reverting.

These patterns are not perfectly replicated in Germany and the UK. In these countries autocorrela-

7See Bekaert, Hodrick and Marshall (1998) for further details.
8The dates of NBER business cycle expansions and contractions for the US can be accessed at

http://www.nber.org/cycles.html, dates for Germany and the UK are from the Center for International Business Cycle

Research at Columbia University (CIBCR). We thank Risk Mishkin for providing us with the latter. For details of the

methodology of CIBCR dating see Zarnowitz (1997).
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tions of the short rate and spread are not significantly different across the business cycle. In Germany the

patterns are similar to the US except for mean reversion which is insignificantly higher in expansions.

In the UK, the volatility of both spreads and interest rates is higher in expansions, although the p-values

are not very low. Although the point estimates of mean reversion follow the same pattern as the US, the

differences across cycles are not statistically significant.

Finally, in the US and UK the correlation between the short rate and the spread varies over the

business cycle. The difference in correlations suggests that in expansions the long rate is less sensitive to

short rate shocks than in recessions. To see this, note that:

(1)

where , which is greater than 1 empirically, is the short rate, is the spread, is the

long rate, and is the correlation between and . In expansions is more negative and

correspondingly the correlation between short and long rates is lower.

For the US, the picture that emerges from our results is one where in expansions short rates are more

persistent, the long rate is not as sensitive to short rate shocks and the short rate and spread are more

negatively correlated. In expansions the interest rate persistence may arise from the smoothing efforts

of the monetary authorities. In recessions long rates are more sensitive to short rate shocks despite the

lower persistence of short rates. Here, shocks to the short rate are more likely to move the whole term

structure. In Germany and the UK, the correlations of the short rate and spread are also not significantly

different, but the UK has a low p-value with the same pattern as the US.

Overall, Table (2) implies the following points about the behavior of interest rates across the business

cycle. First, the moments of interest rates vary from recessions to expansions; in particular the mean is

higher in recessions. Second, the spread is informative about the regime, with the spread increasing

during expansions and correlations between the spread and short rate changing across the business cycle.

Third, mean reversion in the US is significantly different across economic regimes. These patterns can

potentially be accomodated in models which contain a regime variable.

3 The Empirical and Econometric Framework

3.1 A General Multivariate Regime Switching Model

We describe a general multivariate regime switching (RS) model of short rates and spreads. Let

, and . We assume the standard filtration is generated

using only these present and lagged variables. Our most general model for a regime switching VAR of

lags is:

(2)
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where we have Markov transition probabilities for states at every time period , denoted by and

IID . To write in companion form let :

(3)

where we redefine the state space so that the new state variable takes on one of the values

representing the possible combinations for , is a regime-switching VAR( ) in

equation (2), is a x vector, is the companion form given the state ,

and is a x vector. By redefining the state space this way, in equation (3) depends

only on the current regime .9

The Markov transition probabilities for states may be functions of lagged endogenous

variables. For example, we can specify probabilities logistically as:10

(4)

Let and denote the parameters of the likelihood by . Then we can write

the conditional likelihood as:

(5)

Extending Gray (1996)’s methodology to multivariate conditional distributions we have:

(6)

(7)

The ex-ante probability can be written as:

(8)

where the first term in the sum is the transition probability which can be state-dependent, and the second

term may be decomposed by Bayes’ Rule as:

(9)

9A similar re-parameterization was proposed in Gray (1995).
10The specification of time-varying transition probabilities as a logistic form was first introduced by Diebold, Lee and Wein-

bach (1994) and is now standard. For example, see Gray (1996), and Bekaert, Hodrick and Marshall (1998).
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We start the algorithm using equation (9) with , the stable probabilities of the system at

which are given by:

(10)

where is the th cofactor of the matrix , and is the x transition matrix of

the system at which can depend on our conditional information set . In the special case of

constant transition probabilities we start at the stable probabilities of the transition matrix which

solve .

3.2 Special Cases

Since the regime-variable is unobserved to the econometrician and must be factored out of the likelihood

function, it is relevant to ask under what conditions we can obtain inefficient but consistent estimates

when ignoring some variables.11 Let represent variables which do not enter into our estimation and

represent variables which do, so . Then using conditioning arguments we can write:

(11)

(12)

(13)

To be able to take out of the sum we need to assume that the excluded

variables do not depend on the state:

(14)

We parameterize the model so that and , where and affect

the conditional distribution of the excluded variables and the included variables respectively. We also

assume that the ex-ante probability of being in a state depends only on :

(15)

Then the likelihood can be written as:

(16)

11See Gray (1995) and Bekaert and Gray (1998) for similar arguments.
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Maximizing the second sum in equation (16) then yields consistent but inefficient estimates relative to

full information maximum likelihood.

Estimation of the full system is infeasible, given the dimension of . We must focus on models of

subsets of the variables. Our choice here is partially based on previous literature and partially on eco-

nomic reasoning. We believe that regimes in either real rates or expected inflation or business cycles are

the source for potential regimes in nominal interest rates.12 To obtain parsimony in modeling, we assume

the existence of a two state Markov regime variable in every country driving the entire term structure.

These country specific regime variables are assumed independent across countries. It is conceivable that

there is a “world business cycle”13 driving interest rates in many countries simultaneously and in some

models we consider we will allow for interdependence of various forms across countries. Neverthe-

less, it should be noted that the correlation between spreads and short rates within a country is typically

of a higher magnitude than the correlation of short rates and spreads across countries (See Table (1))

providing empirical motivation for this assumption. Although the two regime specification may seem

restrictive, it is the most the data can bear without extreme computational problems in estimation, and it

should suffice to capture the main empirical non-linearities shown in Section 2. Moreover, most of the

past regime-switching literature has focused on two-state models.14

Since most of the RS literature also focuses exclusively on univariate interest rate models,15 we

start by analysing univariate short rate models for the US, Germany and UK. To consistently estimate

univariate short rate RS models there must be no further information about the regime contained in the

short rates or term spreads from other countries. If regimes capture business cycle effects, the different

correlations in the US across cycles in Table (2) violate the assumptions needed to produce consistent

estimation.

Incorporating the extra information from international and term structure data allows us to weaken

the implicit assumptions but this makes estimation much more complex. In a second set of models, we

add information from the short rates from other countries. In our multi-country model (below), defining

the regime variable becomes more involved as it will embed all possible combinations of the country-

specific regime variables for the three countries.

Finally, we consider models in which term spreads are added to the short rate and their dynamics

remain driven by one country-specific regime variable. Note that we model the term spread empirically

without imposing theoretical restrictions from a pricing model as in Naik and Lee (1994). Such re-

strictions would probably facilitate the identification of the model parameters, but at the same time may

overly constrain the model structure. It is unlikely that they capture the regime-dependent patterns in

correlation and volatility we observe in the data as sucessfully as unconstrained models. Moreover, the

resulting model is likely analytically intractable and very hard to estimate.

12Garcia and Perron (1996) and Evans and Lewis (1995) consider Markov regimes in inflation and real interest rates.
13See for example, Lumsdaine and Prassad (1997).
14Garcia and Perron (1996) and Bekaert, Hodrick and Marshall (1998) estimate three state RS models.
15Exceptions include Sola and Driffill (1994) and Evans (1995).
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In most term structure models, the term spread is an exact function of a number of factors that also

drive the short rate. However, the evidence from a growing literature looking at the response of the term

structure to various shocks,16 suggests that the spread contains additional independent information which

may help in the classification of regimes. For example, Eichenbaum, Evans and Marshall (1996) show

that monetary policy shocks have large effects on the short rate but leave the long rate unaffected, hence

shrinking the spread. However, shocks from real economic activity affect the whole term structure and

correspond to a level effect increasing the interest rate but leaving the spread largely unaffected. Estrella

and Mishkin (1995) find that the spread is useful in predicting future activity, and the spread contains

predictive information which is not captured by other monetary policy variables. A reduced-form model

where the spread and short rate have correlated innovations and different feedback rules, in which spreads

help predict future regimes, may be a good representation of such a world.

We can only combine spreads and short rates in a multi-country model under severe constraints on

the parameters, but we do attempt to estimate such a model. We assume independence of the states

across countries and employ a cross sectional estimation. Viewing each country as an independent draw

of the data generating process means we can take advantage of the increased sample size in order to draw

inference from our regime switching model.

Table (3) presents a summary of the models estimated, their abbreviations used throughout the paper

and the number of parameters in parentheses. We now outline each of these models briefly.

3.2.1 Univariate Models

We consider univariate regime-switching AR(1) processes because when fitting one-regime ARMA( , )

models in Section 4 we find that the best model is an ARMA(1,0) using both AIC and BIC criteria.17

Consequently we adopt an AR(1) conditional mean specification for our univariate RS models. For

country these are special cases of the following general model considered in Gray (1997):

(17)

or equivalently:

(18)

(19)

16These empirical papers typically investigate Impulse Responses estimated from Vector Autoregressions. Often the focus

is on the effect of monetary shocks. In addition to the papers referred to in the text, see Evans and Marshall (1997) and

Eichenbaum and Evans (1995).
17Our estimation uses conditional maximum likelihood, conditioning on the initial data points and setting the initial lagged

errors to zero. Akaike’s Information Criterion (AIC), and the Bayesian Information Criterion (BIC), also called the Schwarz

Criterion are outlined in Judge et al. (1980) and Lütkepohl (1993).
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where , is the conditional drift and is the conditional volatility, and the

errors IID . The conditional volatility is specified as:

(20)

where (21)

(22)

The regime variable is either 1 or 2, and has transition probabilities

(23)

We will denote constant transition probabilities as and for respectively. Denoting

, we can evaluate and as:

(24)

(25)

where subscripts indicate the state .

The special cases we consider involve setting (RS AR(1)), (RS

GARCH(1,1)), (RS CIR). The last model is the RS equivalent of the discretized

square root model of Cox, Ingersoll and Ross (1985).18

In practice, many RS models yield regimes with unit-root or near unit-root processes, and other

regimes are more mean-reverting. It is important to ensure that such a process retains covariance station-

arity:

Proposition 3.2.1 Consider a univariate -state Markov regime-switching model, with constant transi-

tion probability matrix . The Markov chain is ergodic and the stable probabilities satisfy . We

arbitrarily order the regimes so that the first regimes follow unit root processes, , and the other

regimes follow stationary processes. The variance conditional on each regime is assumed to be

constant. The stable probabilities corresponding to the unit root and stationary processes can be written

as . Then if contains a strictly positive element the overall process is (covariance)

stationary.

18In continuous time the CIR model has the form: . The discretization used here is standard

(For example see Chan, Karolyi, Longstaff and Sanders (1992) and Pearson and Sun (1994)). We note that the discretized model

allows short rates to be negative with probability 1, and this is inconsistent with the square root of the short rate appearing in

the conditional volatility. However, the discretization is satisfactory for purposes of econometric estimation. As interest rates

fall the upward drift tends to dominate and this property makes it hard for interest rates to go negative. In continuous time,

negative interest rates are ruled out by parameter restrictions. (See Cox, Ingersoll and Ross (1985).)
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Proof: See Appendix.

Intuitively, to obtain stationarity we need the unconditional autocorrelation to be strictly less than

one. Although some regimes have unit roots, the presence of at least one stationary regime ensures

that the unconditional autocorrelation is less than one as long as the probability of transitioning into the

stationary regime is greater than zero.

3.2.2 Multi-Country Models

To motivate our RS multi-country models for , we first consider one-regime VAR’s.

Using AIC and BIC criteria the optimal lag length is 1. Hence we consider the following general multi-

country RS model:

(26)

with IID .

We assume that there are two states per country with constant probabilities, so for country the

transition matrix is . For computational tractability, and to keep the number of param-

eters as parsimonious as possible, we do not consider state-dependent transition probabilities in the

multi-country model. To estimate we effectively enlarge the state-space. The algorithm given here is a

multivariate generalization of Gray (1996).

The Markov transition process within each country is assumed to be unaffected by the regimes in

another country. Formally, for countries , with denoting the past history of states for country

, :

(27)

Intuitively this means that the regime for one country is unaffected by the regime in another country. We

may justify this by interpreting the regimes as arising from country specific factors. This independence

assumption can only be relaxed at considerable computational cost and proliferation of parameters. With

2 states for 3 countries, it is possible to enlarge the state space to states, where the states are

defined as :

US GER UK
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2

11



We can then calculate an 8x8 transition matrix, where for example, .

Let . Then we can write equation (26) as:

(28)

with the states now redefined as . From hereon subscript ’s refer to the values each specific

country’s state comprises in the overall state . For example, for : .

Given the number of parameters, estimation of the full equivalent RS VAR is infeasible. To gain

efficiency we test whether some parameters are identical in the one-regime VAR. We test for Granger-

causality on each country’s short rates and test if parameters of the data generating process are constant

across countries. We find just-significant evidence of Granger-causality of short rates of Germany and

the UK by the US, but not vice versa. We also find that we cannot reject the hypothesis that is constant

across countries and we also impose this on our formulation. The tests are further detailed in Section 4.

Tests of Granger-causality lead us to consider two formulations of , a diagonal formulation where

and a Granger-causality formulation where . We will refer

to these as and respectively.

To impose further structure on the error terms, we model the errors as:

(29)

where are drawn from a IID distribution and the conditional volatility of country

, , is specified either as a constant, or as a square root process, .

In this specification the errors from the US also shock the interest rates of Germany and the UK, but

not vice versa. Another interpretation along the lines of a world business cycle is that there are “world”

shocks which drive the dominant US economy while Germany and the UK are also subject to these

shocks as well as “country-specific” shocks. The extent to which these countries are exposed to the

world shock depends on the state of the domestic economy. Given the dominance of the US in the world

economy such a structure seems reasonable and below we test its statistical significance. The conditional

covariance matrix, conditional on the state is given by:

(30)

This specification is possible because the errors inherit a multivariate normal distribution from the

normality of the errors . Note that German and UK shocks are conditionally correlated to the extent

only that they correlate with the US shock.
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We can now write a distribution for conditional on both the state and :

(31)

where the conditional mean is given by:

(32)

It is possible to obtain probability inferences for a particular country by summing together the rele-

vant joint probabilities. For example if we want the ex-ante probability we can just sum

over the probabilities where . In this case, we would sum over states .

3.2.3 Term Spread Models

Empirical one-regime VAR models of of , the short rate and spread for country lead

us to consider a one lag RS model:

(33)

where . We use 2 states, with constant transition probabilities, and also logistic state-

dependent transition probabilities where:

(34)

We estimate the Cholesky decomposition of . Joint estimations of the models over all 3

countries using a cross-sectional approach following Bekaert, Hodrick and Marshall (1998) are also

performed.

3.3 Model Diagnostics

To evaluate the models we consider criteria measuring the fit of the unconditional moments implied by

the models to the sample estimates of the unconditional moments, out-of-sample forecast errors and the

quality of the regime classification. These will be discussed in turn.

3.3.1 Unconditional Moment Comparisons

We compute the unconditional population moments of our various models using analytical expressions

for one-regime VAR models and univariate one-regime GARCH and CIR processes, but using a simu-

lation for the RS models. Because of the high persistence of the series, sample sizes of one million are

needed to pin down the unconditional moments to the second decimal place.

To enable comparison across several models, we introduce the point statistic:

(35)
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where are sample estimates of unconditional moments, are the unconditional moments from the

estimated model, and is the covariance matrix of the sample estimates of the unconditional moments.

can be obtained from a GMM estimation of the unconditional moments, and for the purposes of

this paper, we use a Newey-West (1987) estimate with 6 lags. The point statistic assigns weights to the

deviations between the unconditional moments implied by various models and the sample unconditional

moments, which are inversely proportional to the error by which the sample moments are estimated.

We test for the first four central moments, the autocorrelogram and cross-correlations. In the first

case will contain the mean, variance, skewness and kurtosis; for the autocorrelogram the first 10

autocorrelations; and for cross-correlations lags from -3 to +3. We also introduce a related statistic ,

which uses as a weighting matrix the diagonal of . Strong correlations between the estimated moments

sometimes imply that the model minimizing does not minimize .

3.3.2 Forecast Comparisons

For RS multivariate VAR models with states, we can calculate forecasts:

(36)

(37)

where is the ex-ante probability and is the covariance matrix of in state . The

ex-ante probability can be determined recursively using equation (9).

Our forecast methodology is to estimate only using the in-sample period and forecast without updat-

ing the parameters on the out-of-sample period. We use two point statistics for comparison of uncondi-

tional forecast errors, the root mean squared error RMSE, and mean absolute deviation MAD. For a time

series , these are defined as:

RMSE (38)

MAD (39)

where hatted values denote conditional forecast values. The RMSE criterion is based on Granger’s (1969)

result that conditional expectation is the optimal predictor under the mean squared error criterion if the

underlying process is Gaussian. The MAD uses a linear penalty rather than a quadratic one. In our

application we let for univariate and multi-country models, looking at first and second moments

. In term-spread models we also consider and the cross-moment .
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3.3.3 Regime Classification

Previous specification tests for regime-switching models have focused on properties of residuals,19 but

here we propose a summary point statistic which captures the quality of regime classification. Define the

regime classification measure, RCM, statistic for two states as:

(40)

where is the ex-ante regime probability .20 The constant serves to normalize the

statistic to be between 0 and 100 for two states. Although the state variable is unobserved, RS models

can produce probability inferences about being in a particular regime through ex-ante probabilities. Weak

regime inference would imply that the RS model cannot successfully distinguish between regimes from

the behavior of the data and may indicate misspecification. An ideal regime switching model would

classify regimes sharply so would be close to one or zero; inferior models would have hover close to

a half. Good regime classification is associated with low RCM statistic values: a value of 0 gives perfect

regime classification and a value of 100 implies that no information about the regimes is revealed.

Note that the statistic easily generalizes to multiple regimes. A general definition of the statistic for

regimes is:

(41)

where .

4 Empirical Results

In this section we summarize the results and conduct tests for the number of regimes.21

4.1 Are there Regimes in the Data?

4.1.1 Tests for the Number of Regimes

Since most of the RS literature focuses on univariate models and because of computational burdens, we

conduct tests for the number of regimes on univariate short rate models. In testing RS models, the usual

hypothesis tests (likelihood ratio, Wald, Lagrange multiplier) are not valid because they do not have the

usual standard asymptotic distribution. This results from the presence of nuisance parameters under

the null.22 For instance, in testing a one regime versus a two regime AR(1) specification, if we consider

19See Hamilton (1996) and Gray (1996).
20Alternatively we could use the smoothed probability over the entire sample, .
21The parameter estimates for all the estimated RS models are available from the authors as an Appendix upon request.
22Various methods have been developed to deal with nuisance parameters in specific situations, such as those by Davies

(1977, 1987), Gallant (1977) and Hansen (1996). Some of these are applied by Garcia and Perron (1996).
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the null hypothesis then is unidentified under the null given that we start the

process in the first regime, i.e. . The nuisance parameters cause the likelihood function

to be flat with respect to these parameters under the null and the Hessian (information matrix) to depend

on the unidentified nuisance parameters. To test for the number of regimes, we use a test developed by

Hansen (1992), which is much cited in the literature but rarely implemented because of its computational

complexity. In addition we use Monte Carlo simulation to get a distribution of the empirical likelihood

ratio statistic.

Hansen uses empirical process theory to bound the asymptotic distribution of a suitably standardized

likelihood ratio statistic which is applicable when the assumptions of standard theory are violated. To

formulate the test, let where we wish to test the null hypothesis , and is the vector

of nuisance parameters unidentified under the null and let be the parameters identified under both the

null and the alternative hypothesis. To deal with the parameters , we concentrate them out of the sample

likelihood function . Let

(42)

We define, as in Hansen (1992):

(43)

(44)

(45)

(46)

Hansen shows that is bounded by an asymptotic distribution

, where the distribution is defined by:

(47)

Under the null hypothesis . Hansen assumes an empirical Central Limit Theorm holds

so that , a Gaussian process with a known covariance function. The distribution

can be produced by simulation. The supremum itself is taken over all possible values of . This makes

the test extremely computationally intensive. In practice, the supremum must be taken over a finite grid.

Most of the estimation time is spent concentrating out the likelihood function at every grid point.

In addition to Hansen’s test, we employ Monte Carlo simulation to simulate a simple AR(1) model

with parameters equal to the estimated parameters of each country and estimate the RS AR(1) model on

each of these samples. Without the nuisance parameters , the likelihood ratio

would have a distribution with degrees of freedom equal to the number of restrictions in .
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However, in the presence of nuisance parameters this will not be . The empirical distribution of the

likelihood function can then be used to calculate the empirical p-value of the likelihood ratio statistic

under the null hypothesis of no switching. Estimation of the RS model for every simulated sample also

makes this computationally intensive.

4.1.2 Empirical Results for Tests of the Number of Regimes

We test the null of one regime against the alternative

, with IID , with two states. The Markov transition probabilities for

remaining in state 1 (2) are denoted by P (Q). The null hypothesis is then equivalently expressed as

against . The algorithm we use starts the estimation in the stable probabilities

of the system, , so under the null we start in the first regime. Under the null, all

parameters associated with the second regime are unidentified. For a regime switching AR(1) process in

the notation of the last section we have , and .

Our estimation procedure proceeds over a (coarse) finite grid as there is considerable computation

time in concentrating out over the grid. We considered two grids for , these being:

grid 1 grid 2 (48)

Grid 1 has 576 points, and grid 2 has 2016 points. Table (4) reports the estimates and the

p-values using calculated by 1000 simulations following Hansen (1992). The Table shows

results that look suspiciously too good. Hansen’s test unequivocally rejects the null of one regime for all

countries with p-values of zero. To check the test under the null and alternative, we simulated a simple

AR(1) and one RS AR(1) process both with the same sample size as the data sets for the US, Germany

and UK. We would hope that under the AR(1) simulation, Hansen’s test will fail to reject, and that under

the RS simulation the test will reject outright. This is indeed the case, with the AR(1) producing a p-

value of 0.9670 for grid 1 and 0.5880 for grid 2. The RS simulation results in outright rejections for both

grids.

To our knowledge this is the first application of Hansen’s test other than the original study, which

focused on Hamilton’s (1989) work on GDP. Our application is far more onerous, involving a non-

linear autoregressive specification, with switching variances. Despite the coarse grid, the test performs

extremely well and resoundingly rejects the null of one regime.

The empirical likelihood ratio test also overwhelmingly endorses regime switching. The likelihood

ratio test statistics for US, Germany and UK are 215.21, 173.55 and 153.37 respectively. Figure (1)

shows a plot of 1000 simulations for each country, superimposed over a and distribution. With-
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out nuisance parameters we should have a asymptotic distribution. With four additional nuisance

parameters we also compare the empirical distributions against a . The solid lines in Figure (1) are

the distributions, with the top solid line being the . The empirical likelihood ratio is clearly not

distributed but is fairly similar to a . All countries have a similar empirical likelihood ratio distribution

and the null is rejected with a zero p-value according to the empirical distribution.

4.2 Estimation Results of RS Models

Estimation of regime switching models in finite samples is plagued with the presence of multiple local

maxima. To ensure that a global was found several starting values were used, and to check for the

stability of the global, each of the global parameters were randomly shocked by to check if the

same maximum was reached. Some models considered here failed to converge.

The two state regime switching models all produce one regime with a unit root and lower condi-

tional volatility and a second regime which is stationary with higher conditional volatility. This type of

estimation is found in univariate, multi-country and term spread models. Economically the first regime

corresponds to “normal” periods where monetary policy smoothing makes interest rates behave like a

random walk. When extraordinary shocks occur, interest rates are driven up, volatility becomes higher

and interest rates become more mean-reverting.

In general, models with time-varying transition probabilities have many insignificant coefficients in

the probability terms which suggests over-parameterization. Previous studies with time-varying proba-

bilities such as Gray (1996) and Bekaert, Hodrick and Marshall (1998) have also documented this. In

some of our cases the null hypothesis of constant probabilities cannot be statistically rejected. Never-

theless, the general pattern that emerges is the majority of cases is as expected: higher short rates (and

spreads) increase the probability of switching to the high volatility regime.

To highlight the features of specific models we discuss univariate, multi-country and term spread RS

models in turn.

4.2.1 RS Univariate Models

In univariate models we may interpret the first regime to be a random walk with a lower mean, and lower

conditional volatility and the second regime has a higher mean, higher conditional volatility and higher

mean reversion.23 The theoretical result we presented in Proposition 3.2.1 shows that despite the unit

root these models are stationary.

The RS AR(1) with state-dependent probabilities for the US failed to converge. For the UK and

Germany, state dependence helps ensure overall stationarity since higher interest rates eventually lead

to a switch from the non-stationary first regime into the high mean reversion regime. For the UK, a

likelihood ratio test fails to reject that transition probabilities are constant, suggesting the system is

23These results confirm those previously documented by Gray (1996) and Bekaert, Hodrick and Marshall (1998).
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over-parameterized. The poor performance of state-dependent probabilities is repeated in the CIR for-

mulations which fail to reject the restricted model of constant probabilities except for the US.

The RS GARCH model failed to converge for the UK and many of the parameters of the GARCH

process for the US and Germany are insignificant. These models are likely to be over-parameterized.

4.2.2 RS Multi-Country Models

The one-regime VAR dynamics are characterized by a companion matrix with large diagonal elements

representing the strong persistence in short rates and small, mostly insignificant off-diagonal coeffi-

cients.24 We conduct several Wald tests on the system. These are presented in Table (5). The Table

shows that a joint test for no country Granger-causing another just fails to reject (p-value = 0.0528),

prompting the diagonal formulation for the companion matrix in the RS model. Nevertheless, there

is some evidence that US rates Granger-cause German and UK rates (p-value = 0.0029). Consequently,

this motivates the Granger-causality companion matrix of the US Granger-causing Germany and the

UK in the RS model.

These results are partially consistent with the findings of Eichenbaum and Evans (1995). They show

that a US monetary policy shock has a persistent effect, not only on the US interest rate but also on a

number of foreign interest rates. Our results suggest that the US interest rate moves before foreign rates

do. Of course, the US rate may also predict movements in the world business cycle before foreign rates

do. It is striking, for example, that Granger-causality is strongest for the UK whereas Eichenbaum and

Evans find that the UK rate is the only one not significantly affected by US monetary policy shocks. Of

course, the US and the UK economies are very much linked and real shocks probably drive our results

in this case.

We also estimate the one-regime equivalents of our RS multi-country model using the companion

matrices and with our special covariance structure for the error shocks in equation (30). The

Granger-causality model cannot be rejected from the unrestricted VAR using a likelihood ratio test

(p-value = 0.9567). The diagonal model with also cannot be rejected, but the significance level is

borderline (p-value = 0.0506). In the diagonal model we cannot reject the hypothesis that autocorrelations

are the same across countries. In both one-regime formulations the coefficient on US shocks affecting

the conditional volatility of Germany and UK ( for country ), is insignificant for Germany but

significant for the UK.

Estimation of the RS Granger-causality model is very tricky. For parsimony we initially constrained

each country to have the same , , and and (RSG1 and RSD1). The models with Gaussian

errors were hard to estimate with unboundedness problems while the square root error models converged

more easily. Consequently only the Granger-causality square root model RSG1 was successfully es-

timated. Constraining to be the same across countries imposes the restriction that the conditional

volatility for Germany and the UK is higher than than the conditional volatility for the US. We relax this

24Estimations of all VAR’s use a GMM estimation with 6 Newey-West lags following Bekaert and Hodrick (1992).
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formulation in RSG2 and find it makes little qualitative difference.

The estimations show that Granger-causality is important only for the UK in the second mean-

reverting high variance regime. Granger-causality of Germany is insignificant in both regimes. Looking

at the impact of US shocks on the error terms of Germany and the UK, the Granger-causality model

RSG2 has significant shock terms for Germany and the UK in the first random walk regime. The di-

agonal model, however, shows US shocks affecting only UK shocks in the first regime. These results

point to no Granger causality in the first “normal” random walk regime, but in this regime US shocks

propogate into Germany and the UK. In the second regime US short rates Granger-cause the short rates

of the UK.

4.2.3 RS Term Spread Models

The one-regime benchmark is an unconstrained bivariate VAR of short rates and spreads for each country.

The AIC and BIC criteria select 2 lags for the US, and 1 for Germany and the UK. Using the lag lengths

of 1 and 2, we perform Granger Tests for causality of the short rate by the spread and vice versa. The

results are reported in Table (6). Generally, the evidence for Granger causality is quite strong for the

second-order VAR’s and for the UK and Germany. For the US, the p-value for the hypothesis that

spreads predict short rates is 0.0613 for the first-order VAR but only 0.1794 for the second-order VAR.

Short rates do not Granger-cause spreads in the first order system and weakly predict spreads in the

second-order systems. This is consistent with the evidence in Eichenbaum, Evans and Marshall (1996)

who find that shocks to the short end of the yield curve have no impact on the long end. We note that the

second-order VAR seems over-parameterized by its poor performance in out-of-sample forecasts and its

poor matching of unconditional moments, shown in Section 5. Consequently, for RS multivariate models

of the term spread we only consider first-order systems.

Let us now consider Granger-causality in the RS term spread VAR. For the US and Germany one

regime produces a significant term, so the spread Granger causes the short rate in only one

regime (the higher variance regime for the US but the lower variance one for Germany). The evidence

for the UK is less clear as the coefficient is just insignificant in one regime but very insignificant in

the other. Similarly the short rates Granger-cause spreads only in one regime but these may not be the

same regimes where spreads Granger-cause short rates. In the US these are in opposite regimes, but for

Germany these regimes are the same. In the joint estimation where we assume independence and the

same parameters across countries, short rates and spreads Granger-cause each other in the same regime

(the lower conditional variance regime).

The correlation between short rates and spreads differs markedly across regimes. The high variance

less persistent regime has more negative correlation than the low variance regime. Wald tests for equality

across the regimes reject with zero p-value for all countries. Short rates and spreads seem less correlated

in the first regime, which corresponds to “normal” periods. However, note that from Table (2) that the

correlation between the short rate and spread is more negative in expansions, which is the opposite to
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what the regime switching models imply. Nevertheless, the high mean, high variance second regime

does correspond to economic recessions. We examine this further in Section 5.6. The implications for

the behavior of short rate shocks to the spread conditional on the regime are explored in Section 6.

In our time-varying probability formulations the transition probabilities depend on both the short

rate and spread. The US model failed to converge25 , so we report a model with transition probabilities

dependent only on the spread. Many of the probability coefficients are insignificant for all countries.

Only the joint estimation has significant coefficients on both short rates and spreads and even here only

in one regime. However, likelihood ratio tests for constant probabilities versus time varying probabilities

reject for all countries. The addition of state-dependent transition probabilities does not change the

results on Granger-causality and conditional correlations of the short rate and spread.

Figure (2) shows the in-sample regime classification for the RS VAR time-varying probability model

for the US, Germany and UK. The solid line in the top plots are smoothed probabilities

using information over the full sample of size and the broken line represents ex-ante probabilities

.26 Note that the regime-classification for the UK is poor, especially for the ex-ante

probabilities, and there is a high frequency of switching between regimes.27

5 Performance Measures

We analyze the moments and forecast performance for the univariate, multi-country and term spread

models separately in Sections 5.1 to 5.3. We also specifically look at improvements when moving from

univariate RS models to RS models incorporating international and term-spread information in Sec-

tion 5.4. Section 5.5 summarizes the evidence and makes use of a Monte Carlo experiment to help

interpret the results. Section 5.6 analyzes regime classification and examines whether the regimes are

correlated with business cycle indicators. The results are reported in Tables (7) through (15). To interpret

the tables the reader should refer to the nomenclature scheme in Table (3).

5.1 Univariate Performance

H-statistics for univariate models are presented in Table (7). The dismal performance of models RS1-3

for the US is partly caused by numerical problems: although theoretically stationary, the unit root in one

of the regimes produces some stationarity problems in simulation.28 For the US, the one-regime models

seem to work better in matching unconditional moments than the RS models. By far the best model

25The same estimation problems that plague the univariate US RS time-varying probability model are shared with the RS

VAR time-varying probability model.
26Ex-ante probabilities are calculated directly from the estimation algorithms of Hamilton (1989, 1994) or Gray (1996).

Algorithms for smoothed probabilities are given by Gray (1995) and Kim (1993). Gray’s is a forward looking algorithm, Kim’s

is a backward looking algorithm but the two are equivalent.
27However, there was one local maximum that did yield better behaved ex-ante probability behavior.
28The same problem is also observed when simulating from an AR(1) process with the autocorrelation very close to one: this

model is also theoretically stationary but numerically behaves like a random walk.
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however is the one-regime square root process. For Germany, RS2 and RS3 do poorly because they

produce large values for kurtosis. The best fits for the moments for Germany are for the one-regime and

RS CIR models. For the UK, the AR(1) RS processes seem to work best with the square root processes

performing more poorly. RS models with state-dependent probabilities (RS2, RS5) and GARCH (RS3)

fare far less well than their constant probability counterparts.

Forecast performance for univariate models is also presented in Table (7). For the RS AR(1) models

the state-dependence of the probabilities produces superior forecasts, even though many of the estimated

coefficients are insignificant and the performance in matching the sample moments is poor. However this

result is not shared by the RS CIR model, with only the UK’s state dependent formulation performing

better. Overall, with the exception of the UK, the GARCH models produce the best results. For the

UK, the superior performance of the RS2 model, using either the RMSE or MAD criterion and for both

first and second moments, is remarkable given that regime classification in the UK is rather poor. (See

Figure (2)). Relative to their one-regime counterparts, RS models generally perform better. For all

countries the RS AR(1) models forecast better than a simple AR(1) and the RS CIR models forecast

better than the simple CIR. The one-regime GARCH model is the exception, but this may be due to

over-parameterization in the RS counterpart.

5.2 Multi-Country Performance

Table (8) reports H-statistics and forecasts for each country from the multi-country models. Looking first

at one-regime models, diagonal models match central moments better than the unconstrained VAR(1),

which is indicative of the over-parameterization of the unconstrained VAR(1). The Granger-causality

models do not perform as well as the diagonal specification.

Turning to comparisons of the RS multi-country models, with the exception of the UK, the RS

diagonal model performs better than its one-regime diagonal counterpart. This is quite an achievement

considering that this model constrains each country to have the same parameters. The RS Granger-

causality models perform more poorly than the RS diagonal models for the US and UK but not for

Germany. There is little difference in relaxing across countries in the RS Granger-causality models.

Looking at forecasts, the diagonal one-regime models out-perform the unrestricted VAR on mean

forecasts and do worse for second moment forecasts only for the US, again showing over-parameterization

of the unconstrained VAR. The multi-country RS diagonal model outperforms the one-regime model

which is an excellent result, as we have constrained the interest rate data generating process to be the

same across all countries, and shows the importance of regime shifts in forecasting.

Granger-causality seems to aid in forecasting both in one-regime and RS frameworks. The regime-

switching Granger models do particularly well for the US and the UK.
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5.3 Term Spread Performance

Table (9) reports the H and H* statistics for the bivariate system. The results are mixed. For one-regime

models, the more parsimonious VAR(1) definitely does better at matching autocorrelations than VAR(2),

with comparable results for the central moments. In matching central moments, the state-dependent

probability models fare better for the US and Germany than their constant probability counterparts,

but for the UK this result is reversed. One-regime VAR’s clearly outperform RS VAR’s for central

moments. The evidence is less clear for auto and cross-correlations. However, in general one-regime

models produce more satisfactory fits to sample unconditional moments.

Table (10) shows forecast performance. For forecasting the first and second moments, the more

parsimonious VAR(1) outperforms the VAR(2) for all countries, suggesting that the VAR(2) is over-

parameterized. The RS models outperform the VAR’s for forecasting the short rate, and with the ex-

ception of the UK, also for forecasting the spread. Looking at forecasts of second moments, Germany’s

state-dependent RS model does better than its constant probability counterpart; for the UK the state-

dependent RS model also does better except for the cross-moments. For the US, the constant probability

RS model clearly out-performs both one-regime VAR specifications.

5.4 Regime Switching Performance

We wish to specifically examine how incorporating extra information improves the fit of unconditional

moments and forecasting of RS models. We concentrate on the H-statistics and the RMSE.

First we look at matching moments. By looking at Tables (7) and (8) we can compare the multi-

country RS models with the univariate RS models. We see a dramatic improvement when incorporating

multi-country information for the US but not for Germany or the UK. Comparing the univariate RS

models in Table (7) with the bivariate RS term spread models in Table (9) we see the extra information

allows a better match of moments only for the US, and for autocorrelations only for the UK. Overall,

using the extra information from other countries or the term spread unequivocally helps the US obtain

a better fit to unconditional moments, but it definitely does not help for Germany. The evidence for the

UK is mixed.

Focusing now on forecasts of RS models with the RMSE criterion, the multi-country approach gen-

erally yields better forecasts than the univariate models. The RMSE statistics in Table (10) show that

with the exception of univariate RS forecasts of the second moment of the short rate being better for the

US, evidence favors the bivariate RS models. Generally forecasts are improved by taking a multi-country

or term-spread approach.

5.5 Summary and Interpretation of Moments and Forecast Performance

In general we find that in matching sample moments one-regime models tend to perform better, despite

the presence of regime-switching in the data. However, in forecasting out of sample, regime-switching
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models do better. Focusing on short rates, Table (11) reports the best models with the lowest H and

RMSE statistics. There is no clear-cut “best” model. However, it appears that while single regime

models may give lower H-statistics (for example in the case of the US), RS models forecast much better

for all countries. Moreover, the best RS forecasting models incorporate information from other countries

or the spread. Interestingly, RS models with state-dependent probabilities tend to forecast better than

their constant probability counterparts even if they perform very poorly at matching sample moments.

How do we interpret these results? As indicated before, the RS models considered here need ex-

tremely large simulations to pin down their unconditional moments with any precision. This means that

the small sample behavior of RS models may be poor. Despite the intuitive economic approach of RS

models and the clear endorsement of RS models by the data, it may be that more parsimonious one-

regime models produce better estimates of the sample unconditional moments than RS models in small

samples. Here we run a small experiment to specifically investigate this conjecture.

Consider the following RS VAR population model of the short rate and spread, :

where , with Markov state-dependent logistic

transition probabilities depending on the lagged . We use the parameters from the joint estimation as

the population model.

Taking this model we find population moments by simulation, and then simulate a small sample of

size . We now consider several approximations to the true model and compare their unconditional

moment estimates over the in-sample of size and their forecasts over the out-sample of size . We

take and to be the size of our in-sample and out-sample data sets considered in the estimation and

forecasts of models in this paper, 267 and 30 respectively. The models we consider are an AR(1) and

a RS AR(1) on the short rates with constant probabilities, a VAR(1) and a RS VAR(1) on the bivariate

short rate and spread with constant transition probabilities. We denote these as AR, RS AR, VAR, RS

VAR respectively.

Unfortunately we cannot include the true model because of the problems we encountered in finding

satisfactory estimates of the RS VAR with time-varying probabilities in small samples. The many con-

vergence failures that occured even when starting from the true parameters are in itself proof of the poor

small sample behavior RS model estimation may face.

To compare the unconditional moment estimators, we calculate H-statistics with the mean, standard

deviation, skewness and kurtosis, and then record which of the four models gives the best (lowest) statis-

tic value.29 To compare unconditional forecasts, we record which model gives the lowest RMSE statistic.

We repeated this for 1000 samples. Our results are listed in Table (12). The table gives the percentage

times each model best fit the population moments or produced the best forecasts. For example, for the

simulations performed, in 15.9% of cases the AR(1) model gave the best fit to the population moments

as measured by the H-statistic even though the true model was a RS VAR(1) with state-dependent prob-

29This is extremely computationally intensive and to shorten the computation time we only used sample sizes of 200,000 to

estimate moments. Some experimentation showed that this should be sufficient for purposes of comparison.
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abilities.

Table (12) shows that the one-regime models are good approximations in small samples to the true

RS models, and that despite the true data generating process being regime-switching, parsimonious one-

regime models may perform better at matching moments and forecasting. It is notable that RS models

perform quite poorly in matching unconditional moments, but in forecasting the RS models perform

better. These results parallel our findings for the actual RS models estimated on real data.

We also examine the empirical distribution of the moments produced by the models in small samples.

Table (13) reports the population values of the unconditional moments for the short rates and spreads and

the mean values of the empirical distribution of the moments produced by the models estimated from the

small sample. The table shows that the RS models tend to over-estimate the mean and under-estimate

the variance of the short rate, but the population values lie within 95% confidence intervals of the small

sample model moments.

5.6 Regime Classification and Regime Interpretation

To examine how well the various RS models classify the regimes, we present RCM statistics in Ta-

ble (14). In univariate RS models the CIR specification produces the cleanest regime classification. For

univariate models, moving from constant to state-dependent transition probabilities produces very little

improvement. Multi-country estimation produces sharper regime classification for the UK and Germany

at the expense of the US. Including term structure information leads to better regime classification for

all countries. The results show that using more information produces better regime classification, as

expected, and including the term spread uniformly decreases the RCM statistics for all countries. Our

multi-country model produces less reliable classification for the US but regime-classification improves

dramatically for Germany and the UK when the US is included.

The UK models classify regimes poorly, with the transition probabilities and being very close

to a half. In a regime switching model, if the model reduces to a simple switching model.

In fact, using a likelihood ratio test, we are unable to reject this hypothesis for the univariate regime-

switching AR(1) (p-value = 0.1202). For a pictorial representation of poor regime classification, see the

UK plot in Figure (2). The high frequency of switching can be seen by the wildly fluctuating smoothed

probabilities and the poor classification of ex-ante probabilities. This poor performance is reflected in

the RCM value for the UK being very close to 100.

Are the regimes correlated with the business cycle? Table (15) attempts to answer this question. The

table first presents correlations between various lags of the ex-ante probabilities and a recession

indicator for the business cycles of each country.30 The ex-ante probabilities are generated from the

term structure RS model with time-varying probabilities (RSM2).31 We report the correlations between

30Note the ex-ante probability is in the information set at time .
31We use this model because it is the model with the lowest RCM statistic for the US and Germany in Table (14). Other RS

models produce similar results, with those of the univariate RS models actually doing better than the results reported here.
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the second regime with mean-reverting higher volatility and the economic downturns. The table shows

that this regime is associated with economic recessions, while the “normal” unit root regime with lower

volatility represents economic expansions. The US and Germany have significant correlations, while the

correlations of the UK are insignificant.

The business cycle association of the regimes is not surprising for the US. Figure (2) shows that

the ex-ante probabilities during the 1979-1982 period of monetary targeting are near zero, placing this

period in the second regime. During this period high variable interest rates were accompanied by a large

recession. Germany also experienced a similar episode around the same time (1980:03 to 1983:07), and

also went through an earlier recession accompanied by high interest rates in the early 1970’s (1973:09 to

1975:05). The recession brought on from re-unification, beginning in mid-1991, also saw rising interest

rates but the regimes do not capture this period as sucessfully. The poor performance of the UK is not

surprising given the poor regime classification of the UK model.

The last four columns of Table (15) report coefficients from a Probit regression with the recession

indicator being the dependent variable, and current and lagged ex-ante probabilities being the indepen-

dent variable. The Probit regressions yield significant coefficients for the US and Germany. We also

list the percentage of correctly forecasted recessions in-sample from the Probit regressions. For the US,

the ex-ante probabilities successfully predict 84% of recessions one-month ahead, with the success ra-

tio slightly increasing as we try to predict further into the future. The success ratio is around 60% for

Germany and, not surprisingly, only 50% for the UK.

Recent studies have found that the term structure can successfully predict real economic activity.32

Estrella and Mishkin (1995) find that the spread is useful in predicting future economic activity, and

Table (15) confirms their finding showing that the magnitude of correlations between recessions and the

spread increases with the lag, and the Probit forecasts increase their accuracy forecasting longer future

horizons. This happens across all three countries. Looking specifically at the US, the ex-ante regime

probabilities have better forecast ratios for one and two month ahead predictions than the spread. While

the forecast ratios increase with horizon for the spread, the forecast ratiosof the the ex-ante probabilities

remain essentially flat. This evidence indicates that for the US the ex-ante regime probabilities are

better contemporaneous indicators of the business cycle than the spread, and the spread is a forward

looking indicator which improves its forecasting ability at longer horizons. For the other countries, the

spread better predicts recession than our regime probabilities at all horizons. Given that both the regime

classification and the dating the actual business cycles is less precise for these countries, this is not

surprising.

32For example see Estrella and Mishkin (1995) and Harvey (1988).
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6 Implied Short Rate and Spread Dynamics

In this section we study the short rate and spread dynamics implied by our RS term spread models

along two dimensions. First, we examine impulse response (IR) functions of the bivariate RS VAR and

compare these to the IR’s implied by a linear one-regime VAR. Following Gallant, Rossi and Tauchen

(1993) we use the key idea of IR analysis to trace the effects of a small shock through the system. We

first briefly review IR’s in one-regime VAR’s and then extend the analysis to our non-linear RS VAR

models.

Our results here may provide useful input for the rapidly growing literature on the effects of economic

and policy shocks on financial variables in general and the term structure in particular.33 Such analysis

is typically constructed in a linear VAR setting. By contrasting IR’s from a linear model to IR’s from a

non-linear framework, we may gain insights on the distortions a linear framework may introduce. The

effect of short rate shocks on spreads is of independent interest since short rates are typically found to

exhibit large contemporaneous effects with respect to monetary policy and other shocks.

Second, we investigate the “drift” and “volatility” functions implied by our models. There is a

voluminous literature in finance on the dynamic properties of short rates and the term structure in the

US. We contribute to this literature by examining the non-linearities implied by an alternative RS model

and by studying the term structure in other countries as well.

6.1 Impulse Responses

6.1.1 Impulse Responses in Linear VAR’s

Consider the following linear VAR: . For simplicity, we take to

have two elements so . The basic idea of an IR is to trace a shock through the system

relative to a baseline. The effect of the shock one-period ahead and the baseline are given by:

(49)

(50)

So the first impulse response from a shock is:

(51)

Analogously the th impulse response .

If we consider a shock of one standard deviation of to as and the covariance

matrix of the system is diagonal, then represents the responses of the variables to a stan-

dardized shock from . However, when is not diagonal, then does not represent the typical shocks

to the system because it ignores the contemporary covariances in . To treat this problem

the literature orthogonalizes the shocks so where . An alternative approach in

33For example see Eichenbaum and Evans (1995), Eichenbaum, Evans and Marshall (1995).
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the spirit of Gallant, Rossi and Tauchen (1993) is to find a “typical” value of given . We set the

shock to at and then set as . As is assumed to be drawn from a

bivariate normal , we can use the conditional normal distribution to obtain:

(52)

So the shock can be interpreted as a shock of one standard deviation to with

adjusted to be its predicted value given the movement in .

6.1.2 Impulse Responses in RS VAR’s

We can generalize the approach of the previous section to trace out the effect of a shock in a RS VAR:

. Assume there are two regimes so and the

constant transition probability matrix is given by . The columns of are denoted and

. Suppose that the probabilities of being in each regime at time are given by . Then the

first period effect of a shock relative to the baseline response is:

(53)

(54)

(55)

For the impulse responses from the RS VAR with constant transition probabilities, there exist analyt-

ical formulae.34 Let

(56)

(57)

(58)

where is a vector of one’s. The impulse responses are then given by: .

We can take the probabilities of being in each regime at time to be to start in regime 1,

to start in regime 2 or to be the stable probabilities of the system. A shock will also take into account

the contemporaneous correlation of and conditional on the regime. The conditional covariance

in regime 1 is so we can use to represent a shock of 1 standard deviation to

conditional on regime 1, adjusting to take into account the contemporaneous movement in in

regime 1.

34For RS VAR’s with time-varying probabilities there are no corresponding analytical formulae. These must be obtained by

simulation: we did not do these because of the computational requirements.
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6.1.3 Empirical Results

Figure (3) presents the impulse responses from shocks of one standard deviation. Solid lines represent

the IR from the one-regime VAR and non-solid lines the IR’s from the regime-switching model.35 The

numbers on the horizontal axis are months. A first remarkable fact about the figure is the similarity of

the dynamics across countries. It is also remarkable that the impulse responses starting from the stable

probabilities of the regime-switching model mimic almost exactly the impulse responses from the linear

VAR models. However, the effects of a shock conditional on a regime are quite different.

Let us first consider the effects from a one standard deviation shock to short rates, in the first column

in Figure (3). The standard deviation is small in regime 1, the unit root regime, and has little initial effect.

The standard deviation is larger in regime 2, the stationary regime, and has a much greater initial effect.

In both cases short rates are very persistent but the shocks conditional on regime 2 dissipate to approach

the shocks conditional on regime 1 and the stable probabilities. Only in Germany is this convergence not

complete after 30 months. The positive shock to short rates is associated with a negative shock to the

spread. In regime 1, shocks generate very little effect, but in regime 2, where volatility is much higher

and spreads are much more negatively correlated with short rates, the term spread narrows considerably

more.

In the second column in Figure (3) we see the effects of conditional shocks to the spread. The

effects are similar to what we had before. Nevertheless, spreads are generally less persistent than short

rates so that the shocks die out sooner. Germany’s shocks are the slowest to die out, reflecting the high

persistence of its spreads and short rates. A typical positive shock to the spread immediately reduces the

short rate in our framework due to the negative contemporaneous correlation structure for the shocks. In

the first “normal” regime, shocks to the spreads have very little effect on short rates and the response line

is almost flat. In the second regime, higher volatility and a more negative contemporaneous correlation

drives the short rate much further down as the spread is shocked upwards. The short rate is pulled back

up much faster because of higher mean-reversion in the second regime.

A similar picture emerges from graphs where we look at unit shocks (Figure (4)) rather than one

standard deviation shocks. To give an example, consider a 100 basis point (bp) increase in the short rate

(induced by monetary policy, say). The effect on the short rate dies out slowly to a level of about 40

bp over 30 months in a linear VAR. However, in the high variance regime it reaches 40 bp after barely

10 months. These IR’s dramatically illustrate the potential importance of regimes in policy analysis -

suppose that the short rate shocks correspond to monetary policy shocks. Clearly, the IR dynamics seem

very much dependent on the regime the economy is in at the time of the shock.

35We use a VAR length of 2 for the US, and 1 for Germany and the UK, which is the optimal lag by AIC and BIC criteria

(see Section 4.2.3).
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6.2 The Drift and Volatility Functions

There is now a large literature documenting empirical non-linearities in interest rates. Aı̈t-Sahalia (1996)

parametrically specifies the drift and volatility functions for US 7-day Eurodollar spot rate changes using

non-linear functions. Aı̈t-Sahalia finds a highly non-linear drift with strong mean-reversion at very low

and high interest rates but the drift is essentially zero in the middle region. The volatility function

assumes a J-shape so the spot rate is more volatile outside the middle region, with the highest volatility

occurring at very high interest rates. Conley et al (1997)’s drift estimations on overnight Fed funds rate

changes look very similar to Aı̈t-Sahalia’s plots, but without the strong mean reversion at high interest

rates. In their formulation, stationarity at high interest rates is induced by increasing volatility. Stanton

(1997)’s non-parametrically estimated drift on daily 3 month T-bill rate changes is zero until high interest

rates where the drift becomes very negative. Stanton’s non-parametrically estimated volatility looks very

similar to Aı̈t-Sahalia’s, with volatility increasing at higher levels of interest rates.

These findings suggest that interest rates exhibit strong non-linear drifts, with the drift being zero

over much of the support of the data, but strongly mean-reverting at low or high interest rates. The

volatility of interest rates generally increases with the level of the interest rate with the lowest volatility

appearing in the middle of the support.

In this section we specifically look at the drift and volatility functions implied by the RS models. To

obtain more information about interest rates at very high and very low levels, we pool the information

from the US, Germany and UK to estimate a joint RS process. This was done for a univariate constant

transition probability RS model, and bivariate term spread RS models with constant and time-varying

probabilities.36 Section 6.2.1 reviews the definitions of drift and volatilities for linear models, Section

6.2.2 outlines how the drift and volatilities for RS models are obtained, and Section 6.2.3 presents the

empirical results.

6.2.1 Linear Drift and Volatilities

The conditional drift and volatility functions for a multivariate linear process ,

with IID N(0,I) are given by:

drift (59)

vol diag (60)

For univariate processes , we may plot the drift and volatility against . For a simple mean-reverting

process of short rates rates , the drift will be a downward sloping line, showing positive drift at

low levels of and negative drift at high levels. In this way interest rates are pulled back toward their

long-term mean at low and high levels. For a CIR model the volatility is which is increasing

with the interest rate level.
36A joint estimation of a univariate RS model with time-varying probabilities was attempted but failed to converge.
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Suppose in our bivariate VAR with constant conditional covariance , we wish to obtain

the drift of . The conditional mean of is given by:

(61)

where subscripts indicate the appropriate element in the parameter matrix . To obtain we

need to integrate out :

(62)

Since the system is jointly normal, we can use the conditional distribution to evaluate

. The system is unconditionally normally distributed with mean and variance where

and vec vec . Then the conditional mean is given by:

(63)

Hence we can obtain the drift of from the bivariate system .

6.2.2 Drifts and Volatilities from RS VAR’s

For a RS VAR of , , we can obtain drifts and volatilities

of by integrating out . To obtain the drift of we need to integrate out both and . This can be

done numerically by the following procedure for both constant and time-varying transition probabilities.

First, simulate out the system . Record the drift and volatility of for every observation, where

drift and vol diag and subscripts indicate the state . Divide interest

rates into bins of width 25 basis points, and then within each bin calculate the average drift and the

average conditional volatility. We use the mid-points of the bins to plot an appropriate drift and volatility

function. From the simulation we record the regime realizations to enable us to estimate .

Large simulations (upwards of 500,000) are necessary to obtain smooth plots for our bin size.

6.2.3 Empirical Results

We only report the drift and volatility functions from the joint processes, as these give us the most

information possible, especially at very low and high interest rates.37

Figure (5) presents the estimated drifts from the joint RS models. The top panel shows the drift

function for the short rate from a bivariate RS term-spread VAR with constant transition probabilities.

The dashed lines correspond to the drift functions conditional on each regime and are linear. The first

regime is a near-unit root regime (almost zero drift) and the second regime is strongly mean-reverting

37Plots of the drifts and volatilities from individual countries exhibit similar patterns. The conditional volatilities from the

UK, however, are much flatter than the plots given here. This is due to the simple-switching nature of the UK RS process. The

conditional volatility can only vary as much as the expected state at each interest rate level varies. With a simple switching

process the expected state is always a half.
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(downward sloping line). The drift function for the RS process is a weighted average of the linear drift

functions in each regime, with the weights determined by the different amounts of time spent in each

regime at different interest rate levels. The drift from this model retains a fairly linear shape.

Moving to the bottom plot in Figure (5), we see the drift functions for the RS VAR with constant

and time-varying probabilities and the univariate RS model with constant transition probabilities. The

univariate RS model with constant probabilities looks very similar to the bivariate RS model with con-

stant probabilities. However, the drift in the model with state-depndent transition probabilities closely

resembles the drift presented in Stanton (1997), with a very flat drift close to zero until the middle of the

support and then turning negative at higher interest rates. Stanton’s drift starts turning negative around

14%, while our drift starts turning negative around 10%. The shape is also similar to Aı̈t-Sahalia (1996),

but Aı̈t-Sahalia’s drift starts turning negative at 18%. The difference in the ranges can be attributed to

using different data sets, but the important observation is that the state-dependent probability model can

reproduce the shape of the non-parametric estimations.

The kinked shape from the state-dependent probability model results from a much faster transition

into the stronger mean-reverting regime at higher interest rates and so at higher interest rates more time

is spent in the second regime. This places more weight on the drift of the second regime at higher interest

rates than in the RS models with constant transition probabilities. Similarly, at lower interest rates the

transition from the unit root regime is slower. Note that at very low interest rates the drift increases

slightly.

Figure (6) presents plots of the conditional volatility functions of the short rate. The top plot shows

the volatility from the constant probability bivariate RS model. The conditional volatility varies only

because the expected state varies with the level of the short rate. (In each regime the conditional volatil-

ity is constant.) The plot shows that at very high short rates the process is likely to be in the second

higher conditional volatility regime. The bottom plot of Figure (6) shows the conditional volatility of the

short rate for the three joint RS models. The constant probability univariate and bivariate models yield

similar shapes for conditional volatility and bear a strong resemblance to Aı̈t-Sahalia (1996)’s J-shaped

estimations. The volatility implied by the bivariate RS model with time-varying probabilities loses much

of its upturn at lower interest rates but then increases rapidly with rising interest rates. It looks very much

like Stanton (1997)’s non-parametric estimation. The main source driving the volatility increase is the

increasing probability of remaining in the high variance regime, which decreases at very high interest

rates. Overall, the volatilities are increasing in the level of the interest rate, with some upturn at lower

interest rates.

The bivariate RS models allow us to look at the drifts and volatilities for spreads. We present these

in Figure (7). The top plot shows that the drift function of the spread is very linear and the addition

of time-varying probabilities does not change the shape of the drift function. The middle plot shows

how the conditional volatility of the spread varies with the expected state corresponding to each spread

level. The conditional volatility is lowest for “normal” levels of the spread between 0 and 1. The
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conditional volatility of the spread for both the constant and time-varying bivariate RS model is shown

in the bottom plot of Figure (7). The addition of state-dependent transition probabilities now makes the

spread volatility less symmetric, as the probability of staying in the higher variance regime now increases

with higher spreads. Whereas before, both unusually high and low spreads are associated with the high

variance regime, state dependence makes it more likely to remain in the low variance regime when the

spread increases.

7 Conclusions

This paper demonstrates theoretically and empirically that univariate regime-switching models can cap-

ture the non-linear mean reversion observed in interest rates in an economically appealing and stationary

model. Moreover, there is overwhelming evidence for multiple regimes in the data generating process of

short rates.

Given the well-known econometric problems estimating regime-switching models in small samples,

we compare their econometric performance relative to their one-regime counterparts. First, the moments

implied by regime-switching models do not fit the sample moments as well as simpler models do because

of the difficulties in estimating regime-switching models in small samples. A Monte Carlo experiment

confirms this happens even when the regime-switching model is the true data generating process. Second,

regime-switching models tend to forecast better than one-regime models.

To improve the econometric performance of regime-switching models it is important to incorporate

additional information. In fact, we show that univariate regime-switching models will typically yield

inconsistent estimates as soon as the omitted variables contain information on the regime. We compare

the performance of univariate versus multi-country and term spread approaches. In particular, US short

rates improve both the regime classification and the statistical performance for German and UK short

rates (but not vice versa). Furthermore, inclusion of term spread information leads to dramatic supe-

rior performance in regime inference and general improvements over univariate models in forecasting.

However, the inclusion of extra information did not always improve the fit of the unconditional moments.

The regimes correspond well with business cycle expansions and contractions. For the US using

Probit regressions, the ex-ante probabilities of regimes forecast future recessions better than the term

spread for short horizons (less than 2 months ahead), while the spread shows increasing accuracy for

longer horizons (6 months ahead).

The behavior of the term structure varies dramatically with the regime. For example, correlations be-

tween short rates and spreads are significantly different across regimes. We examine the non-linearities

implied by regime-switching models by looking at their impulse responses and their drift and volatility

functions. When averaged over each state, the impulse responses correspond almost exactly to the im-

pulse responses implied by linear Vector Autoregressions. However, conditional on a regime, impulse

responses behave very differently. As the impulse responses are so dissimilar in each regime this has

implications for the policy analysis of shocks.
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The drift and volatility functions of regime-switching models correspond closely to the empirical

drift and volatilities estimated in recent literature using non-parametric techniques. In particular, regime-

switching models with time-varying probabilities can produce highly non-linear drifts with unit root

behavior for most of the support of the data, with strong mean-reversion at high interest rates. The con-

ditional volatilities from regime-switching models also match the empirical estimations in the literature.

Hence a simple parametric model is sufficient to match the rich non-linear dynamics of short rates.

Some interesting extensions would be to further improve regime classification by imposing theoreti-

cal restrictions from a term structure model. Attempting to trace the macro-economic or policy sources

of the shocks driving the impulse responses is another promising area for further research. This paper

has also shown the importance of endogenizing regime switches in future economic models.
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Appendix A: Proof of Proposition 3.2.1

We set up the following model:

(A-1)

with IID , and . The state and is independent of

so when we have a random walk, and when the regime is mean-reverting. Without loss of

generality we may consider only these two regimes since we may group all unit root regimes into regime

0, and we need only consider an AR(1) process for regime 1 as an example of a stationary process.

Longer AR(p) processes can be handled similarly in the manner presented here, and MA(q) components

can be treated by expanding the state space in a suitable manner to remove the state-dependence of the

MA terms.

We denote the Markov transition probabilities as . We only require that the prob-

ability of entering the stationary regime is non-zero ( ) and the probability of staying in the

stationary regime is non-zero (ie ).

We can recursively substitute to get:

(A-2)

where the product term is understood to give 1 when the index is negative.

For a stochastic process defined by to be (covariance) stationary a sufficient

condition is that uniformly:

(A-3)

(A-4)

See Nerlove, Grether and Carvalho (1995).

We want the second term in equation (A-2) to converge to zero in mean square so we can ignore this

term in the limit, i.e. we would like:

(A-5)

We need the following Lemmas:

Lemma 1 If the sum of the absolute values of the elements of every row of a square matrix is less than
1, then all the eigenvalues have modulus less than 1.
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Proof: See Theorem 11.7.2 of Prasolov (1991).

Lemma 2 If P is a real square matrix with eigenvalues which have all modulus less than 1, then:

1.

2. exists.

Proof: See Theorem A.9.1 of Lütkepohl (1993).

We introduce the following notation:

vector of 1’s (A-6)

the stable probabilities of P (A-7)

The stable probabilities satisfy . We assume a unique solution to this exists, or equivalently,

we assume that the Markov chain is ergodic.

We also define:

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

where a bar represents the action of the “constant term”, and a hat represents the action of the “mean

reversion term” on the probability weights.

Using induction it is easy to show that:

(A-16)
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And so using Lemma 1 and 2 on , , so the second term in equation (A-2) converges to zero

in mean square.

Taking the first term in equation (A-2) we can show that the conditions for (covariance) stationarity

are met. Using Lemmas 1 and 2 applied now to we have:

(A-17)

The second condition (A-4) is a little trickier:

(A-18)

We see that for a simple switching model with independent across time, the second term disappears

and the first term in the sum can be factored out by independence, which clearly converges to zero as

. However, for a regime-switching model with Markov dependence, we have to bound both the

first and second terms. First observe that:

(A-19)

applying Lemmas 1 and 2 on .

Now taking the sum to in the second term in equation (A-18) we can expand this out as:

(A-20)
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We can sum each column of the triangular array by applying Lemmas 1 and 2 to :

(A-21)

Where the penultimate equality results from applying lemmas 1 and 2 to . Hence it is clear that when

divided by the second term in equation (A-18) converges to zero as .

We obtain similar expressions for the third term in equation (A-2):

(A-22)

We use the same trick as above to show the second condition (A-4) is satisfied:

(A-23)

The first term in equation (A-23) we can write as:

(A-24)

where we define . The second term in equation (A-23) is zero by the independent

sampling across time of the error terms.

Hence the process in equation (A-2) is composed of two (covariance) stationary terms and so

the sum of these is also stationary, thus completing the proof.

We note that strict stationarity will also follow because of the strict stationarity of and .
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Table 1: Sample Moments

Panel A: Sample Central Moments
Parameter US GER UK

short rate spread short rate spread short rate spread
mean 7.3381 1.2198 6.9045 0.4984 10.5605 0.0643

(0.4449) (0.2028) (0.4197) (0.2719) (0.4268) (0.2491)
variance 8.3103 2.0366 7.1111 3.1241 8.2388 2.7458

(1.9390) (0.3833) (1.3380) (0.6714) (1.4354) (0.5292)
skewness 0.8172 -0.7281 0.6806 -0.5410 -0.1521 -0.2596

(0.2167) (0.2782) (0.2515) (0.3227) (0.1797) (0.2404)
kurtosis 3.6102 3.5921 2.6987 3.3732 2.5406 2.8086

(0.6718) (0.7179) (0.4405) (0.5768) (0.3264) (0.4071)
Panel B: Sample Autocorrelations

Lag US GER UK
short rate spread short rate spread short rate spread

1 0.9706 0.8669 0.9845 0.9657 0.9565 0.9322
(0.0181) (0.0292) (0.0216) (0.0265) (0.0237) (0.0238)

2 0.9295 0.7663 0.9583 0.9207 0.8948 0.8776
(0.0347) (0.0497) (0.0436) (0.0507) (0.0450) (0.0425)

3 0.8931 0.6958 0.9253 0.8715 0.8271 0.8234
(0.0513) (0.0689) (0.0638) (0.0711) (0.0637) (0.0596)

4 0.8551 0.6221 0.8858 0.8127 0.7627 0.7692
(0.0653) (0.0820) (0.0812) (0.0868) (0.0784) (0.0753)

5 0.8256 0.5873 0.8428 0.7502 0.7006 0.7200
(0.0778) (0.0836) (0.0957) (0.0999) (0.0895) (0.0895)

6 0.7975 0.5501 0.7943 0.6839 0.6392 0.6689
(0.0857) (0.0866) (0.1071) (0.1097) (0.0970) (0.1016)

7 0.7771 0.5113 0.7423 0.6167 0.5771 0.6119
(0.0916) (0.0828) (0.1166) (0.1186) (0.1015) (0.1139)

8 0.7642 0.5083 0.6888 0.5490 0.5118 0.5553
(0.0973) (0.0732) (0.1246) (0.1267) (0.1034) (0.1205)

9 0.7425 0.4739 0.6363 0.4824 0.4526 0.5164
(0.0983) (0.0742) (0.1319) (0.1348) (0.1044) (0.1245)

10 0.7163 0.4611 0.5858 0.4217 0.3951 0.4711
(0.0992) (0.0802) (0.1381) (0.1427) (0.1036) (0.1291)

Panel C: Sample Cross Correlations
Short rates of countries Short rates/Spreads

Lag US/DEM US/UK DEM/UK US GER UK
-3 0.4197 0.6470 0.3279 -0.3655 -0.7929 -0.6524

(0.1334) (0.0777) (0.1007) (0.1130) (0.0563) (0.0727)
-2 0.4205 0.6549 0.3523 -0.4213 -0.8326 -0.7016

(0.1322) (0.0725) (0.0964) (0.1091) (0.0435) (0.0607)
-1 0.4120 0.6521 0.3696 -0.4907 -0.8656 -0.7375

(0.1315) (0.0686) (0.0939) (0.1038) (0.0317) (0.0521)
0 0.3953 0.6454 0.3808 -0.5920 -0.8804 -0.7637

(0.1310) (0.0678) (0.0933) (0.0976) (0.0284) (0.0459)
1 0.3756 0.6139 0.3782 -0.5952 -0.8634 -0.7057

(0.1325) (0.0698) (0.0945) (0.0982) (0.0335) (0.0539)
2 0.3542 0.5758 0.3717 -0.5715 -0.8389 -0.6608

(0.1335) (0.0754) (0.0974) (0.1013) (0.0406) (0.0629)
3 0.3294 0.5485 0.3650 -0.5522 -0.8097 -0.6210

(0.1328) (0.0828) (0.1008) (0.1080) (0.0477) (0.0718)

Sample period 1972:01 to 1993:02 (in-sample period). Standard errors are in parentheses and are
estimated using Generalized Method of Moments with 6 Newey-West lags. The standard errors are
calculated setting up moment conditions for each country separately for each of the central mo-
ments and auto-correlations in Panels A and B. In Panel C, the cross-correlations are the estimates

of
cov

var var
for , where each pair of countries is now used to

construct the moment conditions.
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Table 3: Summary of Models Estimated

Univariate Models of short rates

One-regime Two-regime equivalents
const probs time-dep probs

AR(1) RS1 RS2
(3) (8) (10)

GARCH(1,1) RS3
(5) (12)

CIR RS4 RS5
(3) (8) (10)

Multi-Country Models of short rates

Model Description
VAR1u unconstrained VAR(1)

(18)
G1 one-regime Granger-causality model, Gaussian errors
(13)

RSG1 RS Granger-causality with the same , , , , across countries,
(16) square root errors

RSG2 RS Granger-causality with the same , , , across countries,
(20) but different , square root errors
D1 one-regime diagonal model, Gaussian errors
(11)

RSD1 RS diagonal model with the same , , , , across countries,
(12) Gaussian errors

Multivariate Models of the Term Spread

One-regime Two-regime equivalents
const probs time-dep probs

VAR(1) RSM1 RSM2
(9) (20) (24)

VAR(2)
(13)

RSM2 for the US has state-dependent probabilities depending only on the spread, and
contains 22 parameters. The full model failed to converge.



Table 4: statistics for RS AR(1) model

Grid 1 Results
distn

min max mean median stdev p-value
US 7.7534 0.3665 4.5122 1.8606 1.7920 0.6219 0.0000

GER 4.4794 0.2976 4.1095 1.6177 1.5553 0.6146 0.0000
UK 4.4902 0.6444 4.4995 1.9027 1.8570 0.5990 0.0010

AR(1) 1.0213 0.6487 4.8505 1.9771 1.8880 0.6116 0.9670
RS 5.9467 0.5537 4.5376 1.8743 1.8492 0.5782 0.0000

Grid 2 Results
distn

min max mean median stdev p-value
US 7.9284 0.3386 4.5492 2.0491 2.0055 0.6321 0.0000

GER 5.8593 0.4622 3.8087 1.8876 1.8401 0.6199 0.0000
UK 6.9021 0.4544 4.3885 2.0577 2.0031 0.6286 0.0000

AR(1) 2.0561 0.9541 5.4106 2.2614 2.1858 0.6125 0.5880
RS 7.0000 0.6197 4.7178 2.0737 2.0069 0.5911 0.0000

is Hansen (1992)’s supremum test statistic for one versus two regimes. To obtain the
statistic, the supremum is taken over a finite grid: grid 1 contains 576 points, and grid 2 contains
2016 points. In Hansen’s test is bounded by an asymptotic distribution

which is produced by 1000 simulations. The remaining columns give the distribution of the
bounding distribution, with empirical p-values in the last column. The AR(1) row gives the results
after simulating a single AR(1) process with parameters . The RS
row gives the results after simulating a single RS AR(1) process with parameters

. For both
simulations we used .

Table 5: Granger Tests in the Multi-Country VAR Model

Granger-causality p-value
no country Granger-causes another all off-diagonal elements = 0 12.4435 0.0528
US Granger-causes Germany and UK 11.6562 0.0029
Germany and UK Granger-cause US 0.6206 0.7332
Germany and UK Granger-cause each other 0.7885 0.6742

With we estimate . The Wald tests are performed using a Generalized
Methods of Moments estimation of the parameters with 6 Newey-West lags. The notation refers to the
element in row , column .



Table 6: Granger Tests in the Term Spread VAR Model

Spreads Granger-cause short rates Short rates Granger-cause spreads
lags=1 lags=2 lags=1 lags=2

value pval value pval value pval value pval
US 3.5026 0.0613 3.4868 0.1794 0.0227 0.8802 5.0037 0.0819

GER 1.1257 0.2887 15.4510 0.0004 0.3804 0.5374 21.7171 0.0000
UK 2.2611 0.1327 15.7548 0.0004 0.5111 0.4747 13.1207 0.0014

We estimate a VAR(p) , of short rates and spreads with the number
of lags. We conduct a joint test of , the entry in row 1 column 2 of , to test if the spread
Granger-causes the short rate. We test to test if the short-rate Granger-causes the spread. The Wald tests are
performed using a Generalized Methods of Moments estimation of the parameters with 6 Newey-West lags.
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Table 8: Multi-Country: Unconditional Moments and Forecasts

US
VAR1u D1 RSD1 G1 RSG1 RSG2

Central moments H 30.83 21.73 13.38* 30.31 28.66 32.66
H* 15.25 15.76 11.10* 15.26 17.26 22.64

Autocorrelogram H 3.43 3.34* 8.06 3.87 9.77 11.70
H* 0.97 0.25* 13.44 1.29 19.84 27.34

Forecasts MAD 0.1619 0.1499 0.1378 0.1483 0.1160* 0.1174
RMSE 0.2002 0.1891 0.1841 0.1888 0.1625* 0.1626

Forecasts MAD 1.5550 1.7159 1.2139 1.3992 0.9949* 1.0388
RMSE 1.8065 2.0771 1.4980 1.6453 1.1930* 1.2146

GER
VAR1u D1 RSD1 G1 RSG1 RSG2

Central moments H 174.98 166.62 54.91 207.78 26.09* 26.47
H* 7.90* 7.98 15.50 8.20 10.09 11.09

Autocorrelogram H 6.12* 6.91 7.19 6.99 7.96 9.12
H* 12.43* 13.82 13.21 15.10 16.55 21.84

Forecasts MAD 0.1580 0.1500 0.1429 0.1327* 0.1451 0.1466
RMSE 0.1959 0.1899 0.1868 0.1704* 0.2035 0.2062

Forecasts MAD 1.6591 1.4557 1.2822 1.4632 1.1957 1.2436*
RMSE 1.8537 1.8164 1.5706 1.6303 1.5206* 1.5899

UK
VAR1u D1 RSD1 G1 RSG1 RSG2

Central moments H 6.40 6.06* 64.62 7.94 146.54 287.66
H* 2.76 2.80 55.29 2.71* 81.77 123.56

Autocorrelogram H 10.08 9.63* 26.13 11.67 31.97 34.04
H* 21.90 20.69* 81.71 26.34 106.81 113.68

Forecasts MAD 0.2747 0.2410 0.1429 0.2668 0.1124* 0.1142
RMSE 0.3116 0.2762 0.2017 0.3055 0.1766* 0.1833

Forecasts MAD 2.2897 3.3541 1.6389 2.1274 1.2960 1.2872*
RMSE 2.0020 3.8040 2.1859 1.8801 1.8465* 1.8554

VAR1u refers to the unconstrained VAR of lag length 1.
D1 is the one-regime model with different AR(1) processes for each country.
RSD1 is the RS diagonal model with the , , , , across countries.
G1 is the one-regime Granger-causality model for UK and Germany from the US.
RSG1 is the RS Granger-causality model with the same , , , , across countries.
Asterixed values are the lowest statistic values.



Table 9: Term Spread Models: Unconditional Moments

US

VAR1 VAR2 RSM1 RSM2
Central Moments H 31.51 29.99* 193.20 141.95

H* 15.26* 15.27* 97.05 54.83
H 10.09 10.07* 119.70 30.96
H* 7.62* 7.62 86.30 21.77

Autocorrelations H 2.46* 890.48 4.32 5.13
H* 0.84* 17.35 1.33 12.11
H 21.70 5724.77 16.82 10.58*
H* 43.26 68.67 69.27 14.52*

Crosscorrelation H 86.99 444.51 12.73 2.05*
H* 16.24 8.82 31.29 0.19*

Germany

VAR1 VAR2 RSM1 RSM2
Central Moments H 232.01 157.55* 374.27 268.22

H* 8.24 8.08* 20.11 11.40
H 6.43 6.03* 38.98 18.69
H* 3.29* 3.69 10.04 5.97

Autocorrelations H 7.41 2941.41 6.65 6.04*
H* 15.28 23.09 13.90 10.63*
H 8.50* 316.92 15.57 14.66
H* 17.39* 34.19 51.67 47.65

Crosscorrelation H 6.96* 142.92 17.30 10.80
H* 8.89 7.71 10.91 4.21*

UK

VAR1 VAR2 RSM1 RSM2
Central Moments H 4.84* 4.93 23.51 32.49

H* 3.03 3.00* 4.33 5.60
H 2.25 2.17* 9.80 11.09
H* 1.42 1.40* 7.63 9.15

Autocorrelations H 8.04* 50.26 8.69 8.98
H* 16.26* 60.28 19.00 21.69
H 2.82* 119.41 2.99 3.09
H* 0.38* 21.27 2.00 2.42

Crosscorrelation H 7.87* 199.73 17.00 11.36
H* 11.44 10.93 9.34 2.09*

The variables and refer to the short rate and spread, respectively.
VAR1 refers to a VAR model of lag length 1, VAR2 to a VAR model of lag
length 2, RSM1 to a bivariate regime switching model with constant probabili-
ties, RSM2 to the state-dependent probability model. RSM2 for the US contains
state-dependent probabilities depending only on the spread, as the full model
failed to converge.
Asterixed values are the lowest statistic values.



Ta
bl

e
10

:
Te

rm
St

ru
ct

ur
e:

Fi
rs

ta
nd

Se
co

nd
m

om
en

tf
or

ec
as

ts

U
S

V
A

R
1

V
A

R
2

R
SM

1
R

SM
2

M
A

D
0.

18
85

0.
21

17
0.

19
18

0.
21

86
0.

15
31

*
0.

20
70

*
0.

15
88

0.
20

72
R

M
SE

0.
23

12
0.

27
60

0.
24

90
0.

27
35

0.
19

48
*

0.
26

53
*

0.
20

25
0.

26
50

M
A

D
2.

11
83

0.
71

41
1.

26
72

2.
12

67
0.

74
22

1.
21

22
1.

59
07

*
0.

62
67

*
1.

10
44

*
1.

65
29

0.
62

80
1.

09
64

R
M

SE
2.

52
26

0.
91

81
1.

53
09

2.
65

21
0.

95
34

1.
48

35
1.

99
41

*
0.

82
92

*
1.

13
91

*
2.

07
55

0.
82

87
1.

38
70

G
er

m
an

y
V

A
R

1
V

A
R

2
R

SM
1

R
SM

2

M
A

D
0.

13
59

0.
21

91
0.

17
96

0.
23

95
0.

11
97

0.
22

14
0.

10
74

*
0.

21
86

*
R

M
SE

0.
17

65
0.

27
96

0.
22

19
0.

28
26

0.
16

17
0.

28
21

0.
14

71
*

0.
27

55
*

M
A

D
1.

34
64

0.
70

84
*

0.
98

82
*

1.
65

68
0.

80
16

1.
00

49
1.

13
33

0.
71

68
1.

02
43

0.
97

72
*

0.
72

25
1.

00
92

R
M

SE
1.

71
09

0.
87

57
*

1.
32

73
2.

12
78

0.
92

41
1.

29
57

1.
54

95
0.

89
09

1.
33

46
1.

35
31

*
0.

89
62

1.
29

37
*

U
K

V
A

R
1

V
A

R
2

R
SM

1
R

SM
2

M
A

D
0.

21
72

0.
24

55
*

0.
26

07
0.

26
03

0.
22

11
0.

24
91

0.
17

68
*

0.
25

90
R

M
SE

0.
25

29
0.

30
31

0.
31

12
0.

33
84

0.
21

80
*

0.
30

78
0.

24
14

0.
31

21

M
A

D
3.

07
29

1.
09

89
*

1.
29

95
*

3.
58

70
1.

19
21

1.
32

97
3.

10
16

1.
11

68
1.

31
97

2.
44

71
*

1.
13

70
1.

38
64

R
M

SE
3.

49
81

1.
49

91
*

1.
52

92
*

4.
10

74
1.

62
90

1.
60

97
3.

58
14

1.
53

43
1.

54
16

3.
17

86
*

1.
54

23
1.

57
46

T
he

va
ri

ab
le

s
an

d
re

fe
r

to
th

e
sh

or
tr

at
e

an
d

sp
re

ad
,r

es
pe

ct
iv

el
y.

V
A

R
1

re
fe

rs
to

a
V

A
R

m
od

el
of

la
g

le
ng

th
1,

V
A

R
2

to
a

V
A

R
m

od
el

of
la

g
le

ng
th

2,
R

SM
1

to
a

bi
va

ri
at

e
re

gi
m

e
sw

itc
hi

ng
m

od
el

w
ith

co
ns

ta
nt

pr
ob

ab
ili

tie
s,

R
SM

2
to

th
e

st
at

e-
de

pe
nd

en
tp

ro
ba

bi
lit

y
m

od
el

.
R

SM
2

fo
r

th
e

U
S

co
nt

ai
ns

st
at

e-
de

pe
nd

en
tp

ro
ba

bi
lit

ie
s

de
pe

nd
in

g
on

ly
on

th
e

sp
re

ad
,

as
th

e
fu

ll
m

od
el

fa
ile

d
to

co
nv

er
ge

.
A

st
er

ix
ed

va
lu

es
ar

e
lo

w
es

ts
ta

tis
tic

va
lu

es
.



Table 11: Overall Moments and Forecast Comparisons for short rates

Best H-statistics
US Ger UK

Central moments CIR RS5 RS1
Autocorrelogram VAR1 RS3 VAR2

Best RMSE-statistics
US Ger UK

RSG1 RSM2 RSG1
RSG1 RSM2 RSG1

See Table (3) for nomenclature of the models estimated.

Table 12: Small Sample Experiment: % Time Models do Best

Unconditional Moments Forecasts
AR RS AR VAR RS VAR AR RS AR VAR RS VAR

central 15.9% 59.9% 14.8% 9.4% 30.6% 16.3% 24.5% 28.6%
43.4% 3.3% 43.7% 9.6% 29.4% 18.0% 20.5% 32.1%

central 90.1% 9.9% 45.8% 54.2%
36.3% 63.7% 46.1% 53.9%
88.9% 11.1% cross 44.2% 55.8%

We simulate data of length 297 from the joint estimation from Table (A-10) of a bivariate system of the short rate and spread .
We then estimate an AR(1), a regime-switching AR(1), a VAR, and a regime-switching VAR, denoted AR, RS AR, VAR and RS
VAR respectively. We record which model gives the lowest H and RMSE statistics. The table lists the percentage times of which
model performed the best in small the small sample. We conducted 1000 simulations.
For unconditional moments “ central” refers to the H-statistic for the mean, variance, skewness and kurtosis of over the
in-sample period of 267, refers to the H-statistic for the first 10 autocorrelations of the , while refers to the
cross-correlations from lags -3 to +3 of the and .
The forecasts use RMSE over an out-sample size of 30.



Table 13: Small Sample Distribution of Moments

Short Rates
Population AR RSAR VAR RSVAR

Mean 7.3289 7.3905 8.5011 7.4066 8.8526
(1.3454) (1.4462) (1.3802) (1.7742)

Variance 11.2885 10.9206 7.8944 11.0027 8.9975
(3.8646) (2.2026) (4.3127) (2.6317)

Skewness 0.5750 0.2032 0.1185
(0.1700) (0.3087)

Kurtosis 3.0639 3.1360 3.2287
(0.3263) (3.3094)

Spreads
Population AR RSAR VAR RSVAR

Mean 0.8642 0.8509 0.3410
(0.3903) (0.4304)

Variance 1.5460 1.4306 1.0500
(0.5161) (0.2705)

Skewness -0.1815 -0.0790
(0.2812)

Kurtosis 3.0084 3.2709
(1.8155)

These are the means, with standard errors in parentheses, of the moments of the estimated
models in a small sample of 267, in the experiment of Table (12). The skewness and
kurtosis for the AR and VAR models was not recorded because these are theoretically 0
and 3 respectively.

Table 14: RCM Statistics

US Ger UK
RS1 28.15 55.29 96.14
RS2 - 51.84 95.12
RS3 37.44 75.30 -
RS4 29.61 46.87 96.56
RS5 23.29 46.13 94.21

RSD1 40.73 30.41 49.75
RSG1 51.21 41.28 52.54
RSG2 50.90 44.07 51.04
RSM1 24.73 44.38 96.12
RSM2 22.19 26.34 86.28

See Table (3) for nomenclature of the models estimated.
Blanks in the table mean the RS model could not be estimated. RSM2
for the US contains state-dependent probabilities depending only on
the spread, rather than both the short rate and the spread, as the full
mode failed to converge.



Table 15: Markov Regimes and Business Cycles

US
Correlations Probit Forecasting

mths ahead rec rec %forecast %forecast
1 0.4264 -0.3047 1.6203 83.8 -0.2811 80.8

(0.1153) (0.1104) (0.2569) (0.0605)
2 0.4618 -0.3989 1.7537 84.2 -0.3847 82.3

(0.1149) (0.1028) (0.2603) (0.0645)
4 0.4840 -0.5096 1.8428 84.4 -0.5611 86.7

(0.1123) (0.0851) (0.2640) (0.0760)
6 0.4122 -0.5296 1.5569 85.1 -0.5750 87.0

(0.1126) (0.0820) (0.2584) (0.0745)
Germany

Correlations Probit Forecasting
mths ahead rec rec %forecast %forecast

1 0.1892 -0.5276 0.5789 60.2 -0.4903 75.2
(0.1109) (0.0719) (0.1879) (0.0601)

2 0.2162 -0.5830 0.6632 61.5 -0.6073 75.8
(0.1107) (0.0615) (0.1890) (0.0696)

4 0.2472 -0.6590 0.7615 63.9 -0.8474 77.9
(0.1101) (0.0508) (0.1908) (0.0927)

6 0.2392 -0.6811 0.7366 63.6 -0.9400 81.6
(0.1106) (0.0483) (0.1915) (0.1024)

UK
Correlations Probit Forecasting

mths ahead rec rec %forecast %forecast
1 0.0911 -0.3439 0.6856 54.1 -0.2821 67.3

(0.1066) (0.0999) (0.4590) (0.0506)
2 0.0779 -0.3828 0.5864 53.6 -0.3218 69.4

(0.1067) (0.0962) (0.4601) (0.0522)
4 0.0098 -0.4508 0.0740 51.3 -0.4018 74.1

(0.1077) (0.0899) (0.4646) (0.0564)
6 -0.0230 -0.4680 -0.1756 49.0 -0.4274 72.4

(0.1063) (0.0837) (0.4710) (0.0584)

Recessions are coded as a 1, expansions as 0, and are obtained from NBER and the Center for International Business
Cycle Research at Columbia University (CIBCR). The symbol represents the ex-ante probabilities of
the first regime from the term spread RS model with time-varying transition probabilities (RSM2). (Note that is in the
information set at time .) The first regime corresponds to the unit root regime with lower conditional volatility, so

is the probability of being in the second higher conditional volatility mean-reverting regime. The first two columns
give the correlation of the recession indicator (rec) with the ex-ante probability of the second regime and the spread .
Standard errors are calculated using GMM with 3 Newey-West lags. The last four columns show results from fitting
the Probit model rec , where is the normal cumulative distribution function, is the
coefficient corresponding to the variable , and we let be current and lagged values of and .
Lags are in months. The %forecast column is the percentage of correctly forecasted (in-sample) values from the Probit
regression.
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We use 1000 simulations of AR(1) processes estimated from each country, and record the empirical
likelihood ratio statistic from estimating a one-regime AR(1) model to a RS AR(1) model. The top
solid line is a distribution, the bottom solid line is a .

Figure 1: Empirical Distribution of the Likelihood Ratio Test
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The top panels in each plot give the ex-ante probabilities (dotted line) and smoothed
probabilities (solid line). The bottom panels show the short rate and spread.

Figure 2: VAR RS model: time-varying probs
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The left hand column traces out the effects of a shock of one standard deviation conditional on the
regime of short rates, with the shock adjusted to take into account the contemporaneous correlation of
spreads. The right hand column does the same when the shock originates from the spread. The solid
lines in each figure represent the linear one-regime VAR, the non-solid lines are from the regime-
switching VAR. The horizontal axis is in months.

Figure 3: Impulse Responses from shocks of 1 standard deviation
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The left hand column traces out the effects of a unit shock conditional on the regime of short rates,
with the shock adjusted to take into account the contemporaneous correlation of spreads. The right
hand column does the same when the shock originates from the spread. The solid lines in each figure
represent the linear one-regime VAR, the non-solid lines are from the regime-switching VAR. The
horizontal axis is in months.

Figure 4: Impulse Responses from unit shocks
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Estimated drifts of the short rate implied by the RS models. The top plot gives the drift of the short
rate from the bivariate term spread RS VAR with constant transition probabilities, after integrating
out the spread and the state . The dashed lines represent the the drifts conditional on each state.
The second plot gives the drifts of the short rate from 3 RS models: the RS VAR with constant
transition probabilities, the RS VAR with time-varying transition probabilities, and the univariate RS
short rate model with constant transition probabilities. All RS models are estimated jointly over the
US, Germany and UK.

Figure 5: Drift functions of RS models
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Estimated volatilities of the short rate implied by the RS models. The top plot gives the conditional
volatility of the short rate from the bivariate term spread RS VAR with constant transition probabil-
ities, after integrating out the spread and the state . The top panel gives the conditional volatility
itself while the bottome panel shows the expected state associated with each level of the short rate.
The second plot gives the conditional volatilities of the short rate from 3 RS models: the RS VAR
with constant transition probabilities, the RS VAR with time-varying transition probabilities, and the
univariate RS short rate model with constant transition probabilities. All RS models are estimated
jointly over the US, Germany and UK.

Figure 6: Conditional Volatility of RS models
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the expected state from the bivariate term spread RS VAR with constant transition probabilities. The
bottom plot shows the conditional volatiltiy of the spread for both RS models.

Figure 7: Conditional Drift and Volatility of the Term Spread



Appendix: Tables of Estimated Models

Table A-1: Univariate RS AR(1) model: Constant Transition Probabilities

United States Germany Gt Britain Joint
Param Std error pvalue Param Std error pvalue Param Std error pvalue Param Std error pvalue
0.0284 0.0228 0.2135 -0.0089 0.0464 0.8475 -0.0786 0.0721 0.2760 0.0567 0.0311 0.0680
0.6887 0.5934 0.2457 0.3990 0.2398 0.0961 1.3380 0.4677 0.0042 0.7541 0.2338 0.0013
0.0000 0.0000 0.9999 0.0007 0.0053 0.8859 0.0023 0.0047 0.6259 0.0120 0.0005 0.0000
0.0739 0.0383 0.0537 0.0452 0.0193 0.0190 0.1127 0.0297 0.0002 0.0702 0.0059 0.0000
0.3002 0.0180 0.0000 0.1681 0.0130 0.0000 0.2101 0.0189 0.0000 0.2382 0.0137 0.0000
1.2725 0.1215 0.0000 0.7178 0.0585 0.0000 1.1567 0.0836 0.0000 1.0528 0.0525 0.0000

P 0.9757 0.0680 0.0000 0.9198 0.0305 0.0000 0.6272 0.0606 0.0000 0.8960 0.0239 0.0000
Q 0.9199 0.0548 0.0000 0.8584 0.0560 0.0000 0.5410 0.0779 0.0000 0.8142 0.0436 0.0000

A likelihood test for P+Q=1 for the UK gives a value of 2.4152, with p-value 0.1202.

Estimated model:

IID

Table A-2: Univariate RS models: Time-varying Transition Probabilities

Germany UK
Parameter Est Std error pvalue Est Std error pvalue

-0.0078 0.0157 0.6175 -0.0707 0.0716 0.3236
0.3851 0.2407 0.1096 1.3385 0.4636 0.0039
0.0000 0.0003 1.0000 0.0032 0.0283 0.9098
0.0438 0.0585 0.4540 0.1122 0.0718 0.1179
0.1647 0.0128 0.0000 0.2091 0.0185 0.0000
0.7123 0.0607 0.0000 1.1545 0.0836 0.0000
2.7918 1.2205 0.0222 1.8502 0.9368 0.0483

-0.0804 0.1885 0.6698 -0.1357 0.0932 0.1452
-1.0862 1.8266 0.5521 1.3594 1.2152 0.2633
0.3726 0.2845 0.1904 -0.1189 0.1120 0.2885

LR test =6.12, pvalue = 0.0468 =2.55, pvalue = 0.2800

LR refers to a likelihood ratio test for , .

US model and joint estimation failed to converge.

Estimated model:
IID



Table A-3: Univariate RS GARCH(1,1) model

US GER
Parameter Est Std error pvalue Est Std error pvalue

0.0323 0.4066 0.9366 0.0200 0.0174 0.2503
0.6927 0.5548 0.2119 0.3668 0.1179 0.0019
0.0032 0.0781 0.9672 0.0000 0.0000 1.0000
0.0700 0.0470 0.1365 0.0814 0.0175 0.0000
0.0503 0.0160 0.0016 0.0120 0.0033 0.0003
0.5123 1.7291 0.7670 0.0714 0.0332 0.0317
0.0284 0.4464 0.9500 0.8470 0.2125 0.0001
0.0393 0.2756 0.8865 0.8371 0.2840 0.0032
0.2112 0.3000 0.4814 0.0000 0.0000 1.0000
0.8213 1.5084 0.5861 0.0050 0.0893 0.9551

P 0.9731 0.0326 0.0000 0.9051 0.0400 0.0000
Q 0.9296 0.0377 0.0000 0.9063 0.0582 0.0000

UK model failed to converge.

Estimated model:
, IID

,

Table A-4: Univariate RS CIR - constant probs

US GER UK
Parameter Est Std error pvalue Est Std error pvalue Est Std error pvalue

0.0471 0.0670 0.4817 0.0701 0.0446 0.1157 -0.0145 0.0663 0.8273
0.5273 0.5076 0.2990 0.2883 0.2223 0.1947 1.2283 0.4378 0.0050
0.0044 0.0008 0.0000 0.0182 0.0010 0.0000 0.0086 0.0006 0.0000
0.0564 0.0120 0.0000 0.0235 0.0046 0.0000 0.1023 0.0135 0.0000
0.1239 0.0076 0.0000 0.0800 0.0055 0.0000 0.0679 0.0059 0.0000
0.3785 0.0372 0.0000 0.2608 0.0238 0.0000 0.3764 0.0277 0.0000

P 0.9806 0.0120 0.0000 0.9509 0.0273 0.0000 0.6362 0.0591 0.0000
Q 0.9338 0.0366 0.0000 0.8922 0.0645 0.0000 0.5170 0.0709 0.0000

A Wald test for P+Q=1 for the UK gives a value of 2.7541, with p-value 0.0970.

Estimated model:

IID
,



Table A-5: Univariate RS CIR - time varying probs
US GER UK

Parameter Est Std error p value Est Std error p value Est Std error p value
0.0330 0.0219 0.1311 0.0706 0.0449 0.1163 -0.0152 0.0616 0.8054
0.4183 0.5942 0.4814 0.3010 0.2188 0.1688 1.2448 0.4379 0.0045
0.0000 0.0000 0.0000 0.0183 0.0199 0.3595 0.0088 0.0205 0.6694
0.0497 0.1205 0.6799 0.0262 0.0714 0.7143 0.1037 0.0746 0.1646
0.1225 0.0081 0.0000 -0.0783 0.0063 0.0000 -0.0680 0.0057 0.0000
0.3894 0.0441 0.0000 0.2559 0.0215 0.0000 0.3763 0.0277 0.0000
6.4688 3.1058 0.0373 1.4738 1.4260 0.3014 1.6577 0.9211 0.0719

-0.4288 0.3620 0.2362 0.2398 0.2614 0.3589 -0.1078 0.0885 0.2231
-7.5211 5.1933 0.1476 -0.0445 1.5631 0.9773 1.9314 1.2441 0.1206
1.1684 0.7200 0.1046 0.3056 0.2105 0.1466 -0.1806 0.1143 0.1141

pvalue pvalue pvalue
Wald Test 4.47 0.1068 0.46 0.7948 3.08 0.2147
LR Test 14.30 0.0008 2.03 0.3627 3.16 0.2061

Wald and likelihood ratio (LR) test refer to .

Estimated model: IID



Table A-6: Multi-country one-regime restricted models

Granger causality: G1

Parameter Estimate Std p value
0.2162 0.1161 0.0626

-0.0067 0.0906 0.9410
0.4202 0.1878 0.0253
0.9706 0.0147 0.0000
0.9735 0.0114 0.0000
0.9114 0.0223 0.0000
0.0261 0.0106 0.0138
0.0706 0.0222 0.0015
0.0066 0.0279 0.8139
0.1062 0.0488 0.0295
0.6893 0.0299 0.0000
0.4557 0.0198 0.0000
0.7917 0.0343 0.0000

Likelihood ratio test of this model vs unrestricted VAR with p-value = 0.9567.

Likelihood ratio test of gives with p-value = 0.0414.

Estimated model: where . Covariance is ho-

moskedastic given by the one-regime equivalent of eqn (30).

Diagonal Model: D1

Parameter Estimate Std p value
0.2563 0.1177 0.0294
0.1082 0.0786 0.1685
0.4595 0.1909 0.0161
0.9652 0.0149 0.0000
0.9846 0.0106 0.0000
0.9568 0.0174 0.0000
0.0089 0.0286 0.7557
0.1119 0.0502 0.0258
0.6895 0.0299 0.0000
0.4608 0.0120 0.0000
0.8064 0.0350 0.0000

Likelihood ratio test of this model vs unrestricted VAR with p-value = 0.0506.

Likelihood ratio test of gives with p-value = 0.3295.

Estimated model: diag . Covariance is homoskedastic given by the one-regime
equivalent of eqn (30).



Table A-7: Multicountry RS Models

Granger-causality model: RSG1
(Restrict , , , , across countries)

Parameter Estimate Std error pvalue
0.0110 0.0346 0.7500
0.4851 0.1470 0.0010
0.9956 0.0056 0.0000
0.9336 0.0187 0.0000
0.0022 0.0037 0.5498
0.0046 0.0131 0.7247

-0.0022 0.0048 0.6483
0.0455 0.0179 0.0112

-0.0105 0.0066 0.1103
0.0221 0.0330 0.5038
0.0210 0.0063 0.0009
0.0387 0.0629 0.5387

-0.0483 0.0047 0.0000
0.3210 0.0173 0.0000
3.7133 0.3602 0.0000
1.8963 0.1541 0.0000

Estimated model: where .

Covariance is homoskedastic given by eqn (30) with the same across countries.

Probabilities are in logit form, so the actual transition probability for

and .

Diagonal model: RSD1
(Restrict , , , , across countries)

Parameter Estimate Std error pvalue
0.0617 0.0250 0.0136
0.6255 0.2401 0.0092
0.9909 0.0031 0.0000
0.9349 0.0240 0.0000
0.0048 0.0179 0.7888
0.0307 0.0754 0.6842
0.0562 0.0274 0.0400
0.1450 0.1469 0.3236
0.1655 0.0096 0.0000
1.0990 0.0532 0.0000
3.9549 0.3599 0.0000
1.8607 0.1480 0.0000

Model: Each country has the process with the covariance given by
eqn (30) with the same across countries.
Probabilities are in logit form, so the actual transition probability for

and .



Table A-8: Multicountry RS Models

Granger-causality model: RSG2
(Restrict , , , across countries)

Parameter Estimate Std error p-value
0.0026 0.0190 0.8923
0.4747 0.1508 0.0016
0.9967 0.0028 0.0000
0.9365 0.0171 0.0000
0.0021 0.0019 0.2830
0.0035 0.0129 0.7879

-0.0017 0.0024 0.4919
0.0414 0.0189 0.0288

-0.0154 0.0034 0.0000
0.0197 0.0266 0.4608
0.0252 0.0040 0.0000
0.0378 0.0428 0.3773
0.0586 0.0034 0.0000
0.3069 0.0185 0.0000
0.0455 0.0025 0.0000
0.2583 0.0193 0.0000
0.0369 0.0026 0.0000
0.3712 0.0257 0.0000
3.9463 0.7485 0.0000
1.9252 0.2347 0.0000

Estimated model: where .

Covariance is homoskedastic given by eqn (30).
Probabilities are in logit form, so the actual transition probability for

and .
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