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Abstract

Regime-switching models are well suited to capture the non-linearities in interest rates. This paper
examines the econometric performance of regime switching models for interest rate data from the US,
Germany and the UK. There is strong evidence supporting the presence of regime switches but uni-
variate models are unlikely to yield consistent estimates of the model parameters. Regime-switching
models incorporating international short rate and term spread information forecast better, match sample
moments better, and classify regimes better than univariate models. We show that the regimes in in-
terest rates correspond reasonably well with business cycles, at least in the US. This may explain why
regime-switching models forecast interest rates better than single regime models. Finally, the non-linear
interest rate dynamics implied by regime switching models have potentially important implications for
the macro-economic literature documenting the effects of monetary policy shocks on economic aggre-
gates. Moreover, the implied volatility and drift functions are rich enough to resemble those recently
estimated using non-parametric techniques.



1 Introduction

The stochastic behavior of interest rates varies over time. For example, the behavior of interest ratesin
the 1979-1982 period in the U.S. or around the German reunification period seemsto indicate astructural
break in the time series. More generally, changes in business cycle conditions and monetary policy may
affect real rates and expected inflation and cause interest rates to behave quite differently in different
time periods. Regime-switching (RS) models constitute an attractive class of models to capture these
changesin the stochastic behavior of interest rates within astationary model. Many authors have built on
the semina work of Hamilton (1989) to model short rates by a model where the parameters can change
over time driven by aMarkov state variable (assumed to be unobserved to the econometrician).

Importantly, RS models can accomodate regime-dependent mean reversion in short rates. Mankiw
and Miron (1986) among others have argued that the predictive power of the term spread for future short
rates in the U.S. is very much a function of the monetary policy regime. In particular, they argue that
currently theinterest rate smoothing efforts of the Fed make the short rate behave like arandom walk and
this behavior is the cause of the rejections of the expectations hypothesis observed with recent US data.
When a regime switching model is fitted to U.S. data however, Bekaert, Hodrick and Marshall (1998)
and Gray (1996) show that such random walk behavior is only true for low interest rates whereas high
interest rates show considerable mean reversion. As part of our analysis we show that regime-switching
models which have regimes with unit root processes remain stationary as long as there is at least one
strictly stationary regime. This property allows regime-switching models to capture the near unit-root
persistence in interest rate data.

Despite their economic appeal, regime-switching models are less attractive than one-regime models
from an econometric estimation perspective. First, it is hard to test for the presence of regimes because
nuisance parameters are present under the null of asingle regime model, and with some exceptions there
are virtually no such tests reported in the literature.? Second, athough with the recent work of Gray
(1996) and Hamilton (1994) the likelihood construction has been simplified, estimating regime-switching
models is difficult. Problems encountered include the existence of multiple maxima for the likelihood
making the global hard to find and the unboundedness problem causing the conditional variance in one
regime to approach zero as the other one approaches infinity.® Finally, often the data do not allow clear
regime-classification, that is, the probability of having observed a regime ex-ante may hover around a
half. These problems may explain why regime-switching models of interest rates have not enjoyed more
success as a building block for term structure models.*

THamilton (1988), Lewis (1991), Evans and Lewis (1994), Solaand Driffill (1994), Gray (1996) and Bekaert, Hodrick and

Marshall (1997b) all examine regime switchesin interest rates.
2Hansen (1992) provides a computationally intensive test for the number of regimes but asto date it has not been applied in

the literature. Lam (1990) and Cecchetti, Lam and Mark (1993) use Monte Carlo simulation to obtain an empirical likelihood

ratio but in amuch simpler framework than what is considered here.
3See Gray (1995) for more details.
4An interesting exception is Naik and Lee (1994) who develop a continuous-time regime switching model for bond and



In this paper, we provide an in-depth analysis of the econometric properties of regime-switching
modelsfor interest ratesin the US, Germany and the UK. We start by showing that single regime models
are resoundingly rejected by the data by applying the test developed by Hansen (1992) to our regime-
switching model. We use two statistical criteriato compare alternative one-regime models of short rates
to regime-switching models both with state-dependent and constant transition probabilities. The first
criterion investigates the fit of the models with the unconditional moments of the data. One attraction of
regime-switching models is that they may accommodate some of the non-linearities recently discovered
in interest rates,® which may show up in higher order unconditional moments. The dependence of mean
reversion on the level of theinterest rate may also induce an autocorrelogram that is difficult to match by
parsimonious ARMA models. The second criterion concerns the forecasting power of the different mod-
els, both for first and second moments.® Finally, we propose anew metric to compare the performance of
different regime-switching modelsin identifying the regime over the sample. Our Regime Classification
Measure (RCM) uses the simple fact that the (ex-ante or ex-post) probability of observing one of the
regimes ought to be close to one at all times when regime classification is perfect.

Given the econometric problems mentioned above, it is not a priori clear that regime-switching
models will perform well on the statistical criteria, even when they are the true data-generating process.
Moreover, as stressed by Bekaert, Hodrick and Marshall (1998), the estimation may suffer from a peso
problem, in that the fraction of observations drawn from one particular regime in the sample at hand
may not correspond to the population frequency of that regime. In that case, the estimation will be
biased. For example, it is unlikely that we could get a reliable estimate of the mean reversion at large
interest rates in U.S. data, without including the 1979-1982 period. Furthermore, ARMA models may
generally constitute good approximationsto any covariance stationary process and hence may outperform
regime-switching models in small samples, if the parameter estimates of the regime-switching models
are severely biased and inefficient.

To help overcome these problems, we extend the effective sample size through two channels. First,
we investigate multi-country systems of interest rates. It is possible that short ratesin the US Granger-
cause rates in other countries (or vice versa) and that Granger-causality may be regime-dependent.
Whereas such relations would immediately affect the forecasting performance, we may a so obtain more
efficient estimates if interest rate innovations across countries are correlated. |If some parameters are
identical in different countries, further gains in efficiency are to be expected. The model we propose
and estimate allows for correlated interest rate innovations and Granger-causality between rates in some

option pricing.

SThere is a growing literature documenting the non-linearities in interest rates. For example, see Conley, Hansen, Luttmer
and Scheinkman (1997), Boudoukh, Richardson, Stanton and Whitelaw (1997), Stanton (1997), Pfann, Schotman and Tschern-
ing (1996) and Ait-Sahalia (1996).

6Gray (1996) examines the out-of-sample forecasting power of a regime-switching model for second moments of the U.S.
short rate on weekly data and Engel (1994) examines the out-of-sample first moment performance of exchange rate regime-
switching models.



regimes. We compare the performance of several variants of the multivariate regime-switching models
to their single regime vector-autoregressive (VAR) counterparts.

Second, we exploit information in the term structure, by adding term spreads to the model. Under
the null of the Expectations Hypothesis, spreads should forecast future short rates, so the potential for
improved performance is obvious. We again compare the performance of several variants of the mul-
tivariate regime-switching models to their VAR counterparts. The moments criterion here include the
cross-correlations between short rates and spreads. As Pfann, Schotman and Tscherning (1996) show,
the correlation between short rates and long rates changes with the level of the interest rate, suggesting
the correlation may be informative about the regime. To further analyze the non-linearities in the term
structure captured by regime-switching models, we look at impulse responses following Gallant, Rossi
and Tauchen (1993) and plot the drift and volatility functions implied by our model.

Apart from a number of methodological contributions, this article offers some important empirical
results. First, there are several regimes in US, German and UK short rates. Second, RS models, de-
spite being difficult to estimate, forecast well out of sample but do poorly at matching sample moments.
Multivariate RS models perform better than univariate modelsin terms of regime classification and fore-
casting. Third, our analysis of the non-linearitiesimplied by RS model s shows that the impul se responses
of shocks correspond very closely to the impul se responses from linear models when averaged over the
regimes, but shocks conditional on different regimes produce impul se responses which are quite dissimi-
lar. The non-linear conditional drifts and volatilitiesfrom RS models are similar to the drift and volatility
functions estimated by a number of non-parametric studies. Finally, the regime classification implied by
RS modelsis closely related to economic business cycles and the regime ex-ante probabilities are good
short-horizon predictors of the business cyclesin the US.

The paper is organized as follows. Section 2 describes the data and establishes a set of stylized facts.
Section 3 outlines the general empirical and econometric framework. It presents a general multivariate
RS model and considers as special cases univariate short rate models, multi-country models of the short
rate and bivariate short rate and term spread models for each country. A stark implication of the frame-
work is that univariate models can generally not be consistently estimated. Section 3 aso presents our
diagnostic statistics. Section 4 gives the empirical estimation results and formally tests for the number of
regimes present in the data. Section 5 discusses the performance of the various models. To help interpret
the results we perform a Monte Carlo experiment that examines the performance of single regime and
regime-switching models in small samples when the true data generating process is a regime-switching
model. We consider the quality of regime classification and ask if the regimes are related to the business
cycle. Section 6 explores the non-linear dynamics implied by the term structure RS models. Section 7
concludes.



2 Dataand Stylized Facts

Our empirical work uses monthly observations on 3 month short rates and 5 year long rates of zero
coupon bonds from the US, Germany and Great Britain from January 1972 to August 1996. The datais
an updated set of the Jorion and Mishkin (1991) data series.” We denote the short rates as " and the
spreads as z;" for country m. We estimate models based on an in-sample period, with forecasting done
on an out-of -sample period of the last 30 months. This gives an in-sample period of 267 observations.

Table (1) gives the first four central moments of the short rates and spread data on the in-sample
period. The table also shows the autocorrelations for each country, the cross-correlations of short rates
for each pair of countries and correlations of short rates and spreads within each country. We note that
the short ratesfor Germany and Great Britain do not show excesskurtosis. Short rates are very persistent,
with the UK showing the least persistence. Spreads are also autocorrelated, but |ess so than short rates.

Turning to international cross-correlations, lagged short rates of the US are more highly correlated
with current German and UK rates than present levels of US short rates. This suggests that lagged US
short rates may Granger-cause movements in short rates in Germany and the UK. The contemporaneous
correlations of short rates across countries are not very high except for the US and UK rates but they
are significantly different from zero and 1. The correlations between spreads and short rates are highly
negative but they remain significantly different from -1. This indicates that the domestic term structure
is not driven by a one factor model.

In Table (2) we attempt to determine whether the behavior of the term structure depends on the busi-
ness cycle. The Table divides the interest rate observations into periods of expansions and contractions
and performs x? tests for the equality of various moments assuming independence across the cycles. As
Zarnowitz (1997) notes, only the US has a business cycle history which is‘ official’, in the sense of being
accepted by governmental authorities, and the dating of the cycles for other countries is less reliable.
This means we must interpret the results for Germany and the UK with caution.

Focusing on the country with the best cycle dating, the US, Table (2) reveals that recessions are char-
acterized by significantly higher interest rates, and somewhat more variable interest rates. The variahil-
ity is, somewhat surprisingly, not significantly different across expansions and recessions. Interest rates
in expansions exhibit higher kurtosis than in recessions and they are significantly less mean-reverting.
Spreads are lower and more variable in recessions but only the mean of the spread is significantly differ-
ent across cycles. In recessions there is significantly more skewness (or alack of negative skewness) and
spreads are more mean-reverting.

These patterns are not perfectly replicated in Germany and the UK. In these countries autocorrela

"See Bekaert, Hodrick and Marshall (1998) for further details.
8The dates of NBER business cycle expansions and contractions for the US can be accessed at

http://www.nber.org/cycles.html, dates for Germany and the UK are from the Center for International Business Cycle
Research at Columbia University (CIBCR). We thank Risk Mishkin for providing us with the latter. For details of the
methodology of CIBCR dating see Zarnowitz (1997).



tions of the short rate and spread are not significantly different across the business cycle. In Germany the
patterns are similar to the US except for mean reversion which is insignificantly higher in expansions.
In the UK, the volatility of both spreads and interest ratesis higher in expansions, although the p-values
are not very low. Although the point estimates of mean reversion follow the same pattern asthe US, the
differences across cycles are not statistically significant.

Finaly, in the US and UK the correlation between the short rate and the spread varies over the
business cycle. The difference in correlations suggests that in expansions the long rate isless sensitive to
short rate shocks than in recessions. To see this, note that:

plrh ) = 22T 4y @

wherew = o(ry) /o (r}), which is greater than 1 empirically, r, isthe short rate, z; isthe spread, r! isthe
long rate, and p(z, y) is the correlation between z and y. In expansions p(z;, ;) iS more negative and
correspondingly the correlation between short and long ratesis lower.

For the US, the picture that emerges from our results is one where in expansions short rates are more
persistent, the long rate is not as sensitive to short rate shocks and the short rate and spread are more
negatively correlated. In expansions the interest rate persistence may arise from the smoothing efforts
of the monetary authorities. In recessions long rates are more sensitive to short rate shocks despite the
lower persistence of short rates. Here, shocks to the short rate are more likely to move the whole term
structure. In Germany and the UK, the correlations of the short rate and spread are also not significantly
different, but the UK has alow p-value with the same pattern as the US.

Overall, Table (2) impliesthe following points about the behavior of interest rates across the business
cycle. First, the moments of interest rates vary from recessions to expansions; in particular the mean is
higher in recessions. Second, the spread is informative about the regime, with the spread increasing
during expansions and correl ations between the spread and short rate changing across the business cycle.
Third, mean reversion in the US is significantly different across economic regimes. These patterns can
potentially be accomodated in models which contain a regime variable.

3 TheEmpirical and Econometric Framework

3.1 A General Multivariate Regime Switching Model

We describe a general multivariate regime switching (RS) model of short rates and spreads. Let r; =
(rs pd€T pBRY 2y = (225 20T 2F) and y; = (r} 2})". We assume the standard filtration is generated
using only these present and lagged variables. Our most general model for aregime switching VAR of n
lagsis:

1
yi = plsy) + Au(sp)yir + - + An(sin)bi—n + B (s7)er )



where we have Markov transition probabilitiesfor k states at every time period ¢, denoted by s} and e; ~
11D N (0, I). Towritein companion formlet y; = (7' yi 1 - Yipiq)"

g = (se) + Alse)yes + Sp (s0)ue 3

where we redefine the state space so that the new state variable s; takes on one of the K = k™ values
representing the £ possible combinations for s}, sy _,...,s;_,, y; IS aregime-switching VAR(n) in
equation (2), v(s;) = (u(s¢)0...0)" isa6nxl vector, A(s;) isthe companion form given the state s;,
andu; = (¢, 0...0)" isa6nxl vector. By redefining the state space this way, y; in equation (3) depends
only on the current regime s;.°

The Markov transition probabilitiesfor i = 1,. .., K states may be functions of lagged endogenous
variables. For example, we can specify probabilities logistically as:'®

7
eWini 05 jyt—1

(st = ils—1 = j, Ly—1) = 4

1+ i +6; ;-1

Let gr = (vryr 4 --- Y1 )" and denote the parameters of the likelihood by 6. Then we can write
the conditional likelihood as:

T

F@r;0) = [ [ £ wilTi-10) (5)

t=1

Extending Gray (1996)’s methodology to multivariate conditional distributions we have:

T
f@r;0) = [ f Wil Te-1; 6 (6)
=1

T
=11 (Zf Yl Ti—1, 50 = 3 0)p(ss = i|Ti—y; )) @)

t=1 \i=1

The ex-ante probability p(s; = i|Z;—1;80) can bewritten as:

K
plss = 4T 1;0) =Y _plss = ilsy 1 =4, Ty 1;0)p(si-1 = §|Ty 13 6) ®
j=1
where thefirst term in the sum is the transition probability which can be state-dependent, and the second
term may be decomposed by Bayes Ruleas:

f(yi—1,8t-1 = j|Ti—2;0)
f(ys-1|Ts—2;0)
_ falsir = 5, Ti—230)p(st—1 = 1 Ti—2;6)
S fWi1]sie1 = m, Ty—o; 0)p(s1—1 = m|T—o;0)

®A similar re-parameterization was proposed in Gray (1995).
0T he specification of time-varying transition probabilities as alogistic form was first introduced by Diebold, Lee and Wein-

bach (1994) and is now standard. For example, see Gray (1996), and Bekaert, Hodrick and Marshall (1998).
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We start the algorithm using equation (9) with p(s; = i|Zy), the stable probabilities of the system at
t = 1 which are given by:

=K < (10)
K

Zj:l ij

where Xj; is the 4™ cofactor of the matrix X = I — P;, and P; is the KxK transition matrix of

the system at ¢t = 1 which can depend on our conditiona information set Z,. In the special case of

constant transition probabilities we start at the stable probabilities 7 of the transition matrix P which

solvenP = 7.

3.2 Special Cases

Since the regime-variable is unobserved to the econometrician and must be factored out of the likelihood
function, it is relevant to ask under what conditions we can obtain inefficient but consistent estimates
when ignoring some variables.'' Let Z; represent variables which do not enter into our estimation and
X represent variables which do, so y; = (Z] X})'. Then using conditioning arguments we can write:

T
F@r;0) = T f(wilTi-136 (11)
t;l
=11 (Zf (yelse = i, Te—150)p(s = z‘|:ft_1;0)) (12)
t=1 \:1=1
T

=11 (Z F(Ze| Xy, 8¢ =4, Le 15 0) f (Xelse = 1, Lp—1;0)p(s¢ = il Ze—1; 9)) (13)

t=1 \=1

To be able to take f(Z;| Xy, s = i,Z;—1;0) out of the sum we need to assume that the excluded
variables do not depend on the state:

F(Z4| Xy, 88 = i, Ty_150) = f(Z4]| X4, Ty—150) (14

We parameterize the model so that 6 = (67, 60'y)’ and {02} N {0x} = ¢, where 6 and Ox affect
the conditional distribution of the excluded variables and the included variables respectively. We also
assume that the ex-ante probability of being in a state depends only on 6x:

p(st = i|Zy—1;0) = p(sy = i|T4—1;0x) (15)

Then the likelihood can be written as:

L(r;0 Zlnf Zy| X4, Ti—1;07) —I—Zln (Zf Xilsy =i, Ty_1;0x)p(ss = ¢|It_1;0x)>

t=1 =1
(16)

15ee Gray (1995) and Bekaert and Gray (1998) for similar arguments.



Maximizing the second sum in equation (16) then yields consistent but inefficient estimates relative to
full information maximum likelihood.

Estimation of the full system is infeasible, given the dimension of 8. We must focus on models of
subsets of the variables. Our choice here is partially based on previous literature and partially on eco-
nomic reasoning. We believe that regimesin either real rates or expected inflation or business cycles are
the source for potential regimes in nominal interest rates.’2 To obtain parsimony in modeling, we assume
the existence of a two state Markov regime variable in every country driving the entire term structure.
These country specific regime variables are assumed independent across countries. It is conceivable that
there is a “world business cycle’ 3 driving interest rates in many countries simultaneously and in some
models we consider we will alow for interdependence of various forms across countries. Neverthe-
less, it should be noted that the correlation between spreads and short rates within a country is typically
of a higher magnitude than the correlation of short rates and spreads across countries (See Table (1))
providing empirical motivation for this assumption. Although the two regime specification may seem
restrictive, it is the most the data can bear without extreme computational problemsin estimation, and it
should suffice to capture the main empirical non-linearities shown in Section 2. Moreover, most of the
past regime-switching literature has focused on two-state models.*#

Since most of the RS literature also focuses exclusively on univariate interest rate models,'®> we
start by analysing univariate short rate models for the US, Germany and UK. To consistently estimate
univariate short rate RS models there must be no further information about the regime contained in the
short rates or term spreads from other countries. If regimes capture business cycle effects, the different
correlations in the US across cycles in Table (2) violate the assumptions needed to produce consistent
estimation.

Incorporating the extra information from international and term structure data allows us to weaken
the implicit assumptions but this makes estimation much more complex. In a second set of models, we
add information from the short rates from other countries. In our multi-country model (below), defining
the regime variable s; becomes moreinvolved asit will embed all possible combinations of the country-
specific regime variables for the three countries.

Finaly, we consider models in which term spreads are added to the short rate and their dynamics
remain driven by one country-specific regime variable. Note that we model the term spread empirically
without imposing theoretical restrictions from a pricing model as in Naik and Lee (1994). Such re-
strictions would probably facilitate the identification of the model parameters, but at the same time may
overly constrain the modd structure. It is unlikely that they capture the regime-dependent patterns in
correlation and volatility we observe in the data as sucessfully as unconstrained models. Moreover, the
resulting model islikely analytically intractable and very hard to estimate.

2Garciaand Perron (1996) and Evans and Lewis (1995) consider Markov regimes in inflation and real interest rates.
135ee for example, Lumsdaine and Prassad (1997).

“Garciaand Perron (1996) and Bekaert, Hodrick and Marshall (1998) estimate three state RS models.
5Exceptionsinclude Sola and Driffill (1994) and Evans (1995).



In most term structure models, the term spread is an exact function of a number of factors that also
drive the short rate. However, the evidence from a growing literature looking at the response of the term
structure to various shocks,1® suggests that the spread contains additional independent information which
may help in the classification of regimes. For example, Eichenbaum, Evans and Marshall (1996) show
that monetary policy shocks have large effects on the short rate but |eave the long rate unaffected, hence
shrinking the spread. However, shocks from real economic activity affect the whole term structure and
correspond to alevel effect increasing the interest rate but leaving the spread largely unaffected. Estrella
and Mishkin (1995) find that the spread is useful in predicting future activity, and the spread contains
predictive information which is not captured by other monetary policy variables. A reduced-form model
where the spread and short rate have correlated innovations and different feedback rules, in which spreads
help predict future regimes, may be a good representation of such aworld.

We can only combine spreads and short rates in a multi-country model under severe constraints on
the parameters, but we do attempt to estimate such a model. We assume independence of the states
across countries and employ a cross sectional estimation. Viewing each country as an independent draw
of the datagenerating process means we can take advantage of the increased sample sizein order to draw
inference from our regime switching model.

Table (3) presents asummary of the models estimated, their abbreviations used throughout the paper
and the number of parametersin parentheses. We now outline each of these models briefly.

3.2.1 Univariate Models

We consider univariate regime-switching AR(1) processes because when fitting one-regime ARMA(p,q)
models in Section 4 we find that the best model is an ARMA(1,0) using both AIC and BIC criteria.’
Consequently we adopt an AR(1) conditional mean specification for our univariate RS models. For
country m these are special cases of the following general model considered in Gray (1997):

it = u(sy) + p(se)risy +h™ (s)e (17)

or equivalently:
Ar™ = p(se) — B(se)rizy + h™ (se)er (18)
= f(st,mi21) + W™ (st)es (19)

1These empirical papers typically investigate Impulse Responses estimated from Vector Autoregressions. Often the focus
is on the effect of monetary shocks. In addition to the papers referred to in the text, see Evans and Marshall (1997) and

Eichenbaum and Evans (1995).
0ur estimation uses conditional maximum likelihood, conditioning on the initial data points and setting the initial lagged

errors to zero. Akaike's Information Criterion (AlC), and the Bayesian Information Criterion (BIC), aso called the Schwarz
Criterion are outlined in Judge et al. (1980) and L {itkepohl (1993).



where 8 = 1 — p, f(s¢, ") is the conditional drift and h™(s;) is the conditional volatility, and the
errorse; ~ 11D N(0,1). The conditional volatility is specified as:

(h"(s1))* = ao(se) + a1 (se)ui_y +bi(se) (A1) + bolse) (riZy)? (20)
where  (h}")* = By ()] = (Bya[r}™)” (21)
uy = ’l";n - Et_l[’)"%n] (22)

Theregime variable s; iseither 1 or 2, and has transition probabilities

% 0T,

p(St = j|5t—1 = ]) = m, J = 1,2 (23)

We will denote constant transition probabilities as P and  for ; = 1,2 respectively. Denoting p; ; =
p(sy = j|Z;_1), we can evaluate E;_1[r] and E;_1[(r*)?] as:

2
By [r"] = Zpt,j(ﬂj + piTi1) (24)
=1
2
B a[(rf)?] =Y p1g (15 + piri2a)” + (B2 1)) (29)
7j=1

where subscripts indicate the state s; = j.

The special cases we consider involve setting a1 = b1 = by = 0 (RS AR(2)), b = 0 (RS
GARCH(1,1)), ap = a1 = by = 0 (RS CIR). The last model is the RS equivalent of the discretized
square root model of Cox, Ingersoll and Ross (1985).18

In practice, many RS models yield regimes with unit-root or near unit-root processes, and other
regimes are more mean-reverting. It isimportant to ensure that such a process retains covariance station-
arity:

Proposition 3.2.1 Consider a univariate n-state Markov regime-switching model, with constant transi-
tion probability matrix P. The Markov chain is ergodic and the stable probabilities satisfy m = Px. We
arbitrarily order the regimes so that the first &k regimes follow unit root processes, k < n, and the other
n — k regimes follow stationary processes. The variance conditional on each regime is assumed to be
constant. The stable probabilities corresponding to the unit root and stationary processes can be written
asw = (m, m _,.)". Thenif m,_ contains a strictly positive element the overall processis (covariance)
stationary.

811 continuous time the CIR model has the form: dr; = O(k — r)dt + ar%dBt. The discretization used here is standard
(For example see Chan, Karolyi, Longstaff and Sanders (1992) and Pearson and Sun (1994)). We note that the discretized model
allows short rates to be negative with probability 1, and this is inconsistent with the square root of the short rate appearing in
the conditional volatility. However, the discretization is satisfactory for purposes of econometric estimation. Asinterest rates
fall the upward drift tends to dominate and this property makes it hard for interest rates to go negative. In continuous time,
negative interest rates are ruled out by parameter restrictions. (See Cox, Ingersoll and Ross (1985).)

10



Proof: See Appendix.

Intuitively, to obtain stationarity we need the unconditional autocorrelation to be strictly less than
one. Although some regimes have unit roots, the presence of at least one stationary regime ensures
that the unconditional autocorrelation is less than one as long as the probability of transitioning into the
stationary regime is greater than zero.

3.2.2 Multi-Country Models

To motivate our RS multi-country models for r, = (r* 7" r#¥)!, wefirst consider one-regime VAR's.
Using AIC and BIC criteriathe optimal lag length is 1. Hence we consider the following general multi-

country RS mode!:
i ol (s} = i) e e
er k
rder | = | aser(s g" 9) | FA(GsE =i, 87 =g, 58" =k) [ 27 [+ | £ (26)
rik otk (spk = ) ik ) ek

with e, = (€25 €/ e2k)' ~ 11D N (0, B(s¥* = 4,57 = j, 5%k = k)).

We assume that there are two states per country with constant probahilities, so for country m the
transition matrix is (1 gm o ) For computational tractability, and to keep the number of param-
eters as parsimonious as possible, we do not consider state-dependent transition probabilities in the
multi-country model. To estimate we effectively enlarge the state-space. The agorithm given hereisa
multivariate generalization of Gray (1996).

The Markov transition process within each country is assumed to be unaffected by the regimesin
another country. Formally, for countries A, i, v, with §# denoting the past history of states for country

p, St = {sl s 1. )
p(st17, St SY) = p(s1SE) = p(st'Is) 1) (27)

Intuitively this means that the regime for one country is unaffected by the regime in another country. We
may justify this by interpreting the regimes as arising from country specific factors. This independence
assumption can only be relaxed at considerable computational cost and proliferation of parameters. With
2 states for 3 countries, it is possible to enlarge the state space to 23 = 8 states, where the states are
definedass; = 1,...,8:

s¢ | US GER UK
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2
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We can then calculate an 8x8 transition matrix, where for example, p(s; = 1|s;—1 = 1) = Ppus pger puk,
Letry = (ry* r{ r¥k)’. Then we can write equation (26) as:

re = a(s) + A(sg)ri—1 + € (28)
with the states now redefined as s; = 1, ..., 8. From hereon subscript ¢’s refer to the values each specific
af® at?(spe=2)
country’s state comprisesin the overall state i. For example, for sy = 4: | oi" | = | a#*"(s{*"=2) ) .
uk uk(quk
oy a¥t(spr=1)

Given the number of parameters, estimation of the full equivalent RS VAR is infeasible. To gain
efficiency we test whether some parameters are identical in the one-regime VAR. We test for Granger-
causality on each country’s short rates and test if parameters of the data generating process are constant
across countries. We find just-significant evidence of Granger-causality of short rates of Germany and
the UK by the US, but not vice versa. We also find that we cannot reject the hypothesisthat p; is constant
across countries and we also impose this on our formulation. The tests are further detailed in Section 4.
Tests of Granger-causality lead us to consider two formulations of A;, a diagonal formulation where

A; = <p6 p?o” g ) and a Granger-causality formulation where A; = (cp" p?o" 8 ) We will refer
0 0 ppk cuko0 puk
tothese as A} and A? respectively.
To impose further structure on the error terms, we model the errors as.
62‘;” hgfl,iu%
ey | = [ Pheui (29)
63:”; h?ﬂ,i“i’ + 7k uf

where (uj u? u})" aredrawn fromallD N (0, 1(3)) distribution and the conditional volatility of country
m, hi" , ;. is specified either asaconstant, b} | ; = of" or as asquare root process, hi” | ; = o"\ /%,
In this specification the errors from the US also shock the interest rates of Germany and the UK, but
not vice versa. Another interpretation along the lines of aworld business cycle is that there are “world”
shocks which drive the dominant US economy while Germany and the UK are also subject to these
shocks as well as “country-specific” shocks. The extent to which these countries are exposed to the
world shock depends on the state of the domestic economy. Given the dominance of the USin the world
economy such a structure seems reasonable and below we test its statistical significance. The conditional
covariance matrix, conditional on the state s; = 4 is given by:

( 35151,1)2 %gerh?fu ’qukh?fu
Tip = Blae| T =il = | 9] (W75 + (1)) gt (30)
VERES S (hky )% 4 ()

This specification is possible because the errors €f; inherit a multivariate normal distribution from the
normality of the errors uf;. Note that German and UK shocks are conditionally correlated to the extent
only that they correlate with the US shock.
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We can now write adistribution for r, conditional on both the state s; = 7 and Z;_1:
. _3 _1 1 _
flrilse =4, Z—1) = (2m) 72 %i¢|"2 exp <—§(Tt — pig)' S (e — Mi,t)) (31)
where the conditional mean is given by:
pit = a(sy =1) + A(sy = i)ri—1 (32

It is possible to obtain probability inferences for a particular country by summing together the rele-
vant joint probabilities. For exampleif we want the ex-ante probability p(s}* = 1|Z;_1) we can just sum
over the probabilities p(s¢|Z;—1) where s} = 1. In this case, we would sum over states s; = 1, 3,5, 7.

3.2.3 Term Spread Models

Empirical one-regime VAR models of of 4 = (r{" z{™)’, the short rate and spread for country m lead
usto consider aone lag RS model:

yi = p(se) + A(s)yiny +w (33

whereu; ~ N(0,X(s;)). We use 2 states, with constant transition probabilities, and also logistic state-
dependent transition probabilities where:

B exp(a; + b;r™ +cjz"y)
1+ exp(a; + biri%y + cjz"y)

p(s¢ = jlst—1 = J) i=12. (34)

We estimate the Cholesky decomposition R(s;) of 3(s;). Joint estimations of the models over all 3
countries using a cross-sectional approach following Bekaert, Hodrick and Marshall (1998) are also
performed.

3.3 Modd Diagnostics

To evaluate the models we consider criteria measuring the fit of the unconditional moments implied by
the models to the sampl e estimates of the unconditional moments, out-of-sample forecast errors and the
quality of the regime classification. These will be discussed in turn.

3.3.1 Unconditional Moment Comparisons

We compute the unconditional population moments of our various models using analytical expressions
for one-regime VAR models and univariate one-regime GARCH and CIR processes, but using a simu-
lation for the RS models. Because of the high persistence of the series, sample sizes of one million are
needed to pin down the unconditional moments to the second decimal place.

To enable comparison across several models, we introduce the point statistic:

H = (h*—h)S; (h* —h) (35)
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where h are sample estimates of unconditional moments, =* are the unconditional moments from the
estimated model, and X2, isthe covariance matrix of the sample estimates of the unconditional moments.
¥, can be obtained from a GMM estimation of the unconditional moments, and for the purposes of
this paper, we use a Newey-West (1987) estimate with 6 lags. The point statistic assigns weights to the
deviations between the unconditional moments implied by various models and the sample unconditional
moments, which are inversely proportional to the error by which the sample moments are estimated.

We test for the first four central moments, the autocorrelogram and cross-correlations. In the first
case h will contain the mean, variance, skewness and kurtosis; for the autocorrelogram the first 10
autocorrelations; and for cross-correlations lags from -3 to +3. We also introduce a related statistic H*,
which uses as aweighting matrix the diagonal of 33;,. Strong correlations between the estimated moments
sometimes imply that the model minimizing H does not minimize H*.

3.3.2 Forecast Comparisons

For RS multivariate VAR models y; = v(s;) + A(st)yi—1 + us with K states, we can calculate forecasts:

K

Bra(y) =Y pir(vi + Aig1) (36)
=1
K

Bra(yeyr) = Y pir(vivf + vty 1 AL + Ay V! + A1y 1 Af + Tir) (37)

i=1
where p;; isthe ex-ante probability p(s; = i|Z;—1) and £; ; is the covariance matrix of u; in state . The
ex-ante probability can be determined recursively using equation (9).

Our forecast methodology isto estimate only using the in-sample period and forecast without updat-
ing the parameters on the out-of-sample period. We use two point statistics for comparison of uncondi-

tional forecast errors, the root mean squared error RM SE, and mean absolute deviation MAD. For atime
series ¢y, these are defined as:

1 ~k
RMSE = \/f > (gF— o )? (38)
1 ~k
MAD = = > |df — v | (39)
where hatted val ues denote conditional forecast values. The RM SE criterion isbased on Granger’'s (1969)
result that conditional expectation is the optimal predictor under the mean squared error criterion if the
underlying process is Gaussian. The MAD uses a linear penalty rather than a quadratic one. In our

application we let ¢, = r; for univariate and multi-country models, looking at first and second moments
k =1, 2. Interm-spread models we also consider ¢; = z; and the cross-moment ¢; = r¢2¢.
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3.3.3 Regime Classification

Previous specification tests for regime-switching models have focused on properties of residuals,’® but
here we propose a summary point statistic which captures the quality of regime classification. Define the
regime classification measure, RCM, statistic for two states as:

T
1
RCM = 400 * - ; pe(1 —py) (40)

where p; is the ex-ante regime probability p(s; = 1|Z; 1).>> The constant serves to normalize the
statistic to be between 0 and 100 for two states. Although the state variable s; is unobserved, RS models
can produce probability inferences about being in aparticular regime through ex-ante probabilities. Weak
regime inference would imply that the RS model cannot successfully distinguish between regimes from
the behavior of the data and may indicate misspecification. An ideal regime switching model would
classify regimes sharply so p; would be close to one or zero; inferior models would have p; hover closeto
ahalf. Good regime classification is associated with low RCM statistic values: avalue of O gives perfect
regime classification and a value of 100 implies that no information about the regimesis revealed.

Note that the statistic easily generalizes to multiple regimes. A general definition of the statistic for
K regimesis:

1 T K
RCM(K) = 100K2T > (H pi,t> (41)

t=1 \¢=1

Wherepi,t = p(St = ’[:|It,1).

4 Empirical Results

In this section we summarize the results and conduct tests for the number of regimes.?

4.1 Arethere Regimesin the Data?
411 Testsfor the Number of Regimes

Since most of the RS literature focuses on univariate models and because of computational burdens, we
conduct tests for the number of regimes on univariate short rate models. In testing RS models, the usual
hypothesis tests (likelihood ratio, Wald, Lagrange multiplier) are not valid because they do not have the
usual standard x? asymptotic distribution. This results from the presence of nuisance parameters under
the null.22 For instance, in testing a one regime versus a two regime AR(1) specification, if we consider

19See Hamilton (1996) and Gray (1996).

2 lternatively we could use the smoothed probability over the entire sample, p(s; = 1|Zr).

2The parameter estimates for all the estimated RS models are available from the authors as an Appendix upon request.
2\/arious methods have been developed to deal with nuisance parameters in specific situations, such as those by Davies

(1977, 1987), Gallant (1977) and Hansen (1996). Some of these are applied by Garcia and Perron (1996).
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the null hypothesis P = 1 then v = (2, p2, 02, Q) isunidentified under the null given that we start the
processin the first regime, i.e. p(sp = 1) = 1. The nuisance parameters -y cause the likelihood function
to be flat with respect to these parameters under the null and the Hessian (information matrix) to depend
on the unidentified nuisance parameters. To test for the number of regimes, we use atest developed by
Hansen (1992), which ismuch cited in the literature but rarely implemented because of its computational
complexity. In addition we use Monte Carlo simulation to get a distribution of the empirical likelihood
ratio statistic.

Hansen uses empirical process theory to bound the asymptotic distribution of a suitably standardized
likelihood ratio statistic which is applicable when the assumptions of standard theory are violated. To
formulate the test, let « = (' +')’ where we wish to test the null hypothesis 3 = 0, and vy is the vector
of nuisance parameters unidentified under the null and let # be the parameters identified under both the
null and the alternative hypothesis. To deal with the parameters 8, we concentrate them out of the sample
likelihood function Lr(3,v,6) = >_1;. Let

~

6(c) = arg max L (o, 6) (42)
We define, asin Hansen (1992):

LRy (@) = Lr(e, 6(a) = L7(0,7,6(0,7)) (43)

(e 0(e) = I, 6(a)) — 1(0,7,0(0,7)) — 7 LR (a) (44)

Vrr(a) = ; gt 0(a))? (45)

LR = sup \L/% (46)

Hansen shows that p(LR}. > ) is bounded by an asymptotic distribution p(sup, Q% > z) —
p(sup, @* > z), where the distribution Q7. is defined by:
_ LR7(a) — E[LRr ()]

t = 47
Qr Vo) (47)

Under the null hypothesis E(LRr(a)) < 0. Hansen assumes an empirical Central Limit Theorm holds
so that Q% () = Q*(«), aGaussian process with a known covariance function. The distribution Q* ()
can be produced by simulation. The supremum itself is taken over al possible values of «. This makes
the test extremely computationally intensive. In practice, the supremum must be taken over afinite grid.
Most of the estimation time is spent concentrating out the likelihood function at every grid point.

In addition to Hansen'’s test, we employ Monte Carlo simulation to simulate a simple AR(1) model
with parameters equal to the estimated parameters of each country and estimate the RS AR(1) model on
each of these samples. Without the nuisance parameters -y, the likelihood ratio 2(L(3, v, 8) — L(0,, 6))
would have a x? distribution with degrees of freedom equal to the number of restrictionsin 3 = 0.
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However, in the presence of nuisance parameters this will not be x2. The empirical distribution of the
likelihood function can then be used to calculate the empirical p-value of the likelihood ratio statistic
under the null hypothesis of no switching. Estimation of the RS modd for every simulated sample also
makes this computationally intensive.

4.1.2 Empirical Resultsfor Tests of the Number of Regimes

We test the null Hy : 74 = pu + pry_1 + o€ of one regime against the alternative Hy : r, = p(s;) +
p(st)ri—1 + o(s¢)er, with ¢, ~ 11D N(0,1), with two states. The Markov transition probabilities for
remaining in state 1 (2) are denoted by P (Q). The null hypothesis is then equivalently expressed as
Hy: P=1against Hy : P < 1. The algorithm we use starts the estimation in the stable probabilities
of the system, p(s; = 1) = %, so under the null we start in the first regime. Under the null, all
parameters associated with the second regime are unidentified. For a regime switching AR(1) processin
the notation of the last sectionwehave 8 = P — 1, v = (u2, p2,02,Q) and 0 = (u1, p1,01).

Our estimation procedure proceeds over a (coarse) finite grid as there is considerable computation

time in concentrating out 6 over the grid. We considered two gridsfor o« = (', 8')’, these being:

( 4

P =0.2, 04, 0.6, 0.8 P =02, 04, 0.6, 0.8
p2 = 0.0, 0.5, 1.0, 1.5 p2 = 0.0, 0.3, 0.6, 0.9, 1.2, 1.5

gridl= ¢ p, =0.97, 0.98, 0.99 grid2= ¢ p, = 0.97, 0.98, 0.99 (48)
o2 =02, 0.8, 1.2 o2 =0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4
(@ =0.,20.4, 0.6, 0.8 (Q =02, 0.4, 0.6, 0.8

Grid 1 has 576 points, and grid 2 has 2016 points. Table (4) reports the LR, estimates and the
p-values using sup, Q7 calculated by 1000 simulations following Hansen (1992). The Table shows
results that look suspiciously too good. Hansen's test unequivocally rejects the null of one regime for all
countries with p-values of zero. To check the test under the null and alternative, we simulated a simple
AR(1) and one RS AR(1) process both with the same sample size as the data sets for the US, Germany
and UK. We would hope that under the AR(1) simulation, Hansen’s test will fail to reject, and that under
the RS simulation the test will reject outright. This is indeed the case, with the AR(1) producing a p-
value of 0.9670 for grid 1 and 0.5880 for grid 2. The RS simulation resultsin outright rejections for both
grids.

To our knowledge this is the first application of Hansen's test other than the original study, which
focused on Hamilton's (1989) work on GDP. Our application is far more onerous, involving a non-
linear autoregressive specification, with switching variances. Despite the coarse grid, the test performs
extremely well and resoundingly rejects the null of one regime.

The empirical likelihood ratio test also overwhelmingly endorses regime switching. The likelihood
ratio test statistics for US, Germany and UK are 215.21, 173.55 and 153.37 respectively. Figure (1)
shows a plot of 1000 simulations for each country, superimposed over a x? and x2 distribution. With-
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out nuisance parameters we should have a x? asymptotic distribution. With four additional nuisance
parameters we also compare the empirical distributions against a x2. The solid lines in Figure (1) are
the x? distributions, with the top solid line being the x2. The empirical likelihood ratio is clearly not x?
distributed but isfairly similar to a 2. All countries have asimilar empirical likelihood ratio distribution
and the null is rejected with a zero p-value according to the empirical distribution.

4.2 Estimation Resultsof RS Models

Estimation of regime switching models in finite samples is plagued with the presence of multiple local
maxima. To ensure that a global was found several starting values were used, and to check for the
stability of the global, each of the global parameters were randomly shocked by +10% to check if the
same maximum was reached. Some models considered here failed to converge.

The two state regime switching models all produce one regime with a unit root and lower condi-
tional volatility and a second regime which is stationary with higher conditional volatility. This type of
estimation is found in univariate, multi-country and term spread models. Economically the first regime
corresponds to “normal” periods where monetary policy smoothing makes interest rates behave like a
random walk. When extraordinary shocks occur, interest rates are driven up, volatility becomes higher
and interest rates become more mean-reverting.

In general, models with time-varying transition probabilities have many insignificant coefficientsin
the probability terms which suggests over-parameterization. Previous studies with time-varying proba-
bilities such as Gray (1996) and Bekaert, Hodrick and Marshall (1998) have also documented this. In
some of our cases the null hypothesis of constant probabilities cannot be statistically rejected. Never-
theless, the general pattern that emerges is the majority of cases is as expected: higher short rates (and
spreads) increase the probability of switching to the high volatility regime.

To highlight the features of specific models we discuss univariate, multi-country and term spread RS
modelsin turn.

421 RSUnivariate Models

In univariate models we may interpret the first regime to be arandom walk with alower mean, and lower
conditional volatility and the second regime has a higher mean, higher conditional volatility and higher
mean reversion.?®> The theoretical result we presented in Proposition 3.2.1 shows that despite the unit
root these models are stationary.

The RS AR(1) with state-dependent probabilities for the US failed to converge. For the UK and
Germany, state dependence helps ensure overall stationarity since higher interest rates eventually lead
to a switch from the non-stationary first regime into the high mean reversion regime. For the UK, a
likelihood ratio test fails to reject that transition probabilities are constant, suggesting the system is

2These results confirm those previously documented by Gray (1996) and Bekaert, Hodrick and Marshall (1998).
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over-parameterized. The poor performance of state-dependent probabilities is repeated in the CIR for-
mulations which fail to reject the restricted model of constant probabilities except for the US.

The RS GARCH model failed to converge for the UK and many of the parameters of the GARCH
process for the US and Germany are insignificant. These models are likely to be over-parameterized.

4.2.2 RSMulti-Country Models

The one-regime VAR dynamics are characterized by acompanion matrix A with large diagonal elements
representing the strong persistence in short rates and small, mostly insignificant off-diagonal coeffi-
cients?* We conduct several Wald tests on the system. These are presented in Table (5). The Table
shows that a joint test for no country Granger-causing another just fails to reject (p-value = 0.0528),
prompting the diagonal formulation A} for the companion matrix in the RS model. Nevertheless, there
is some evidence that US rates Granger-cause German and UK rates (p-value = 0.0029). Consequently,
this motivates the Granger-causality companion matrix AZ? of the US Granger-causing Germany and the
UK in the RS mode!.

These results are partially consistent with the findings of Eichenbaum and Evans (1995). They show
that a US monetary policy shock has a persistent effect, not only on the US interest rate but also on a
number of foreign interest rates. Our results suggest that the US interest rate moves before foreign rates
do. Of course, the US rate may also predict movementsin the world business cycle before foreign rates
do. It isstriking, for example, that Granger-causality is strongest for the UK whereas Eichenbaum and
Evans find that the UK rate is the only one not significantly affected by US monetary policy shocks. Of
course, the US and the UK economies are very much linked and real shocks probably drive our results
in this case.

We also estimate the one-regime equivalents of our RS multi-country model using the companion
matrices A' and A% with our special covariance structure for the error shocks in equation (30). The
Granger-causality model A' cannot be rejected from the unrestricted VAR using a likelihood ratio test
(p-value = 0.9567). The diagonal model with A% also cannot be rejected, but the significance level is
borderline (p-value = 0.0506). Inthe diagonal model we cannot reject the hypothesisthat autocorrelations
are the same across countries. In both one-regime formulations the coefficient on US shocks affecting
the conditional volatility of Germany and UK (y™ for country m), is insignificant for Germany but
significant for the UK.

Estimation of the RS Granger-causality modedl is very tricky. For parsimony we initially constrained
each country to have the same «, p;, o; and P and (Q (RSG1 and RSD1). The models with Gaussian
errors were hard to estimate with unboundedness problems while the square root error model s converged
more easily. Consequently only the Granger-causality sguare root model RSG1 was successfully es-
timated. Constraining o; to be the same across countries imposes the restriction that the conditional
volatility for Germany and the UK is higher than than the conditional volatility for the US. Werelax this

XEstimations of all VAR'suseaGMM estimation with 6 Newey-West lags following Bekaert and Hodrick (1992).
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formulation in RSG2 and find it makes little qualitative difference.

The estimations show that Granger-causality is important only for the UK in the second mean-
reverting high variance regime. Granger-causality of Germany isinsignificant in both regimes. Looking
at the impact of US shocks on the error terms of Germany and the UK, the Granger-causality model
RSG2 has significant shock terms for Germany and the UK in the first random walk regime. The di-
agona model, however, shows US shocks affecting only UK shocks in the first regime. These results
point to no Granger causality in the first “normal” random walk regime, but in this regime US shocks
propogate into Germany and the UK. In the second regime US short rates Granger-cause the short rates
of the UK.

423 RSTerm Spread Models

The one-regime benchmark is an unconstrained bivariate VAR of short rates and spreadsfor each country.
The AIC and BIC criteriaselect 2 lags for the US, and 1 for Germany and the UK. Using the lag lengths
of 1 and 2, we perform Granger Tests for causality of the short rate by the spread and vice versa. The
results are reported in Table (6). Generally, the evidence for Granger causality is quite strong for the
second-order VAR's and for the UK and Germany. For the US, the p-value for the hypothesis that
spreads predict short rates is 0.0613 for the first-order VAR but only 0.1794 for the second-order VAR.
Short rates do not Granger-cause spreads in the first order system and weakly predict spreads in the
second-order systems. Thisis consistent with the evidence in Eichenbaum, Evans and Marshall (1996)
who find that shocks to the short end of the yield curve have no impact on the long end. We note that the
second-order VAR seems over-parameterized by its poor performance in out-of-sample forecasts and its
poor matching of unconditional moments, shown in Section 5. Consequently, for RS multivariate models
of the term spread we only consider first-order systems.

Let us now consider Granger-causality in the RS term spread VAR. For the US and Germany one
regime produces a significant A;[1, 2] term, so the spread Granger causes the short rate in only one
regime (the higher variance regime for the US but the lower variance one for Germany). The evidence
for the UK is less clear as the coefficient is just insignificant in one regime but very insignificant in
the other. Similarly the short rates Granger-cause spreads only in one regime but these may not be the
same regimes where spreads Granger-cause short rates. In the US these are in opposite regimes, but for
Germany these regimes are the same. In the joint estimation where we assume independence and the
same parameters across countries, short rates and spreads Granger-cause each other in the same regime
(the lower conditional variance regime).

The correlation between short rates and spreads differs markedly across regimes. The high variance
less persistent regime has more negative correlation than the low variance regime. Wald testsfor equality
across the regimes reject with zero p-value for all countries. Short rates and spreads seem less correlated
in the first regime, which corresponds to “normal” periods. However, note that from Table (2) that the
correlation between the short rate and spread is more negative in expansions, which is the opposite to
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what the regime switching models imply. Nevertheless, the high mean, high variance second regime
does correspond to economic recessions. We examine this further in Section 5.6. The implications for
the behavior of short rate shocks to the spread conditional on the regime are explored in Section 6.

In our time-varying probability formulations the transition probabilities depend on both the short
rate and spread. The US model failed to converge?®, so we report a model with transition probabilities
dependent only on the spread. Many of the probability coefficients are insignificant for all countries.
Only the joint estimation has significant coefficients on both short rates and spreads and even here only
in one regime. However, likelihood ratio testsfor constant probabilities versustime varying probabilities
reject for all countries. The addition of state-dependent transition probabilities does not change the
results on Granger-causality and conditional correlations of the short rate and spread.

Figure (2) shows the in-sampl e regime classification for the RS VAR time-varying probability model
for the US, Germany and UK. The solid line in the top plots are smoothed probabilities p(s; = 1|Zr)
using information over the full sample of size T' and the broken line represents ex-ante probabilities
p(sy = 1|T;_1).%® Note that the regime-classification for the UK is poor, especially for the ex-ante
probabilities, and there is a high frequency of switching between regimes.?’

5 Performance M easures

We analyze the moments and forecast performance for the univariate, multi-country and term spread
models separately in Sections 5.1 to 5.3. We also specifically look at improvements when moving from
univariate RS models to RS models incorporating international and term-spread information in Sec-
tion 5.4. Section 5.5 summarizes the evidence and makes use of a Monte Carlo experiment to help
interpret the results. Section 5.6 analyzes regime classification and examines whether the regimes are
correlated with business cycleindicators. Theresults are reported in Tables (7) through (15). Tointerpret
the tables the reader should refer to the nomenclature scheme in Table (3).

5.1 Univariate Performance

H-statistics for univariate models are presented in Table (7). The dismal performance of models RS1-3
for the USis partly caused by numerical problems:. although theoretically stationary, the unit root in one
of the regimes produces some stationarity problemsin simulation.? For the US, the one-regime models
seem to work better in matching unconditional moments than the RS models. By far the best model

SThe same estimation problems that plague the univariate US RS time-varying probability model are shared with the RS

VAR time-varying probability model.
ZEx-ante probabilities are calculated directly from the estimation algorithms of Hamilton (1989, 1994) or Gray (1996).

Algorithms for smoothed probabilities are given by Gray (1995) and Kim (1993). Gray’sis aforward looking algorithm, Kim's

is abackward looking algorithm but the two are equivalent.
2"However, there was one local maximum that did yield better behaved ex-ante probability behavior.
2The same problem is al so observed when simulating from an AR(1) process with the autocorrel ation very closeto one: this

model is also theoretically stationary but numerically behaves like arandom walk.
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however is the one-regime square root process. For Germany, RS2 and RS3 do poorly because they
produce large values for kurtosis. The best fits for the moments for Germany are for the one-regime and
RS CIR models. For the UK, the AR(1) RS processes seem to work best with the square root processes
performing more poorly. RS models with state-dependent probabilities (RS2, RS5) and GARCH (RS3)
fare far less well than their constant probability counterparts.

Forecast performance for univariate modelsis aso presented in Table (7). For the RS AR(1) models
the state-dependence of the probabilities produces superior forecasts, even though many of the estimated
coefficients are insignificant and the performance in matching the sample momentsis poor. However this
result is not shared by the RS CIR model, with only the UK’s state dependent formulation performing
better. Overal, with the exception of the UK, the GARCH models produce the best results. For the
UK, the superior performance of the RS2 model, using either the RMSE or MAD criterion and for both
first and second moments, is remarkable given that regime classification in the UK is rather poor. (See
Figure (2)). Relative to their one-regime counterparts, RS models generally perform better. For all
countries the RS AR(1) models forecast better than a simple AR(1) and the RS CIR models forecast
better than the simple CIR. The one-regime GARCH model is the exception, but this may be due to
over-parameterization in the RS counterpart.

5.2 Multi-Country Performance

Table (8) reports H-statistics and forecasts for each country from the multi-country models. Looking first
at one-regime models, diagonal models match central moments better than the unconstrained VAR(1),
which is indicative of the over-parameterization of the unconstrained VAR(1). The Granger-causality
models do not perform as well as the diagonal specification.

Turning to comparisons of the RS multi-country models, with the exception of the UK, the RS
diagonal model performs better than its one-regime diagonal counterpart. Thisis quite an achievement
considering that this model constrains each country to have the same parameters. The RS Granger-
causality models perform more poorly than the RS diagonal models for the US and UK but not for
Germany. Thereislittle difference in relaxing o; across countriesin the RS Granger-causality models.

Looking at forecasts, the diagonal one-regime models out-perform the unrestricted VAR on mean
forecasts and do worsefor second moment forecasts only for the US, again showing over-parameterization
of the unconstrained VAR. The multi-country RS diagonal model outperforms the one-regime model
which is an excellent result, as we have constrained the interest rate data generating process to be the
same across al countries, and shows the importance of regime shiftsin forecasting.

Granger-causality seems to aid in forecasting both in one-regime and RS frameworks. The regime-
switching Granger models do particularly well for the US and the UK.
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5.3 Term Spread Performance

Table (9) reportsthe H and H* statistics for the bivariate system. The results are mixed. For one-regime
models, the more parsimonious VAR(1) definitely does better at matching autocorrelations than VAR(2),
with comparable results for the central moments. In matching central moments, the state-dependent
probability models fare better for the US and Germany than their constant probability counterparts,
but for the UK this result is reversed. One-regime VAR's clearly outperform RS VAR's for central
moments. The evidence is less clear for auto and cross-correlations. However, in general one-regime
models produce more satisfactory fits to sample unconditional moments.

Table (10) shows forecast performance. For forecasting the first and second moments, the more
parsimonious VAR(1) outperforms the VAR(2) for al countries, suggesting that the VAR(2) is over-
parameterized. The RS models outperform the VAR's for forecasting the short rate, and with the ex-
ception of the UK, also for forecasting the spread. Looking at forecasts of second moments, Germany’s
state-dependent RS model does better than its constant probability counterpart; for the UK the state-
dependent RS model also does better except for the cross-moments. For the US, the constant probahility
RS modé clearly out-performs both one-regime VAR specifications.

5.4 Regime Switching Performance

We wish to specifically examine how incorporating extra information improves the fit of unconditional
moments and forecasting of RS models. We concentrate on the H-statistics and the RM SE.

First we look at matching moments. By looking at Tables (7) and (8) we can compare the multi-
country RS models with the univariate RS models. We see a dramatic improvement when incorporating
multi-country information for the US but not for Germany or the UK. Comparing the univariate RS
models in Table (7) with the bivariate RS term spread models in Table (9) we see the extra information
alows a better match of moments only for the US, and for autocorrelations only for the UK. Overall,
using the extra information from other countries or the term spread unequivocally helps the US obtain
a better fit to unconditional moments, but it definitely does not help for Germany. The evidence for the
UK is mixed.

Focusing now on forecasts of RS models with the RM SE criterion, the multi-country approach gen-
eraly yields better forecasts than the univariate models. The RMSE statistics in Table (10) show that
with the exception of univariate RS forecasts of the second moment of the short rate being better for the
US, evidence favorsthe bivariate RS models. Generally forecasts areimproved by taking a multi-country
or term-spread approach.

55 Summary and Interpretation of Moments and Forecast Performance

In general we find that in matching sample moments one-regime models tend to perform better, despite
the presence of regime-switching in the data. However, in forecasting out of sample, regime-switching
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models do better. Focusing on short rates, Table (11) reports the best models with the lowest H and
RMSE dtatistics. There is no clear-cut “best” model. However, it appears that while single regime
models may give lower H-statistics (for example in the case of the US), RS models forecast much better
for all countries. Moreover, the best RS forecasting models incorporate information from other countries
or the spread. Interestingly, RS models with state-dependent probabilities tend to forecast better than
their constant probability counterparts even if they perform very poorly at matching sample moments.

How do we interpret these results? As indicated before, the RS models considered here need ex-
tremely large simulations to pin down their unconditional moments with any precision. This means that
the small sample behavior of RS models may be poor. Despite the intuitive economic approach of RS
models and the clear endorsement of RS models by the data, it may be that more parsimonious one-
regime models produce better estimates of the sample unconditional moments than RS models in small
samples. Here we run a small experiment to specifically investigate this conjecture.

Consider the following RS VAR population model of the short rate and spread, y; = (1 2)": y: =
p(st) + A(st)yr—1 + ur where uy ~ N(0,%(st)), s¢+ = 1,2 with Markov state-dependent logistic
transition probabilities depending on the lagged v;. We use the parameters from the joint estimation as
the population model.

Taking this model we find population moments by simulation, and then simulate a small sample of
sizeT + N. We now consider several approximations to the true model and compare their unconditional
moment estimates over the in-sample of size T' and their forecasts over the out-sample of size N. We
take T' and N to be the size of our in-sample and out-sample data sets considered in the estimation and
forecasts of models in this paper, 267 and 30 respectively. The models we consider are an AR(1) and
a RS AR(1) on the short rates with constant probabilities, a VAR(1) and a RS VAR(1) on the bivariate
short rate and spread with constant transition probabilities. We denote these as AR, RS AR, VAR, RS
VAR respectively.

Unfortunately we cannot include the true model because of the problems we encountered in finding
satisfactory estimates of the RS VAR with time-varying probabilities in small samples. The many con-
vergence failures that occured even when starting from the true parameters are in itself proof of the poor
small sample behavior RS model estimation may face.

To compare the unconditional moment estimators, we cal culate H-statistics with the mean, standard
deviation, skewness and kurtosis, and then record which of the four models gives the best (lowest) statis-
tic value.?® To compare unconditional forecasts, we record which model gives the lowest RM SE statistic.
We repeated this for 1000 samples. Our results are listed in Table (12). The table gives the percentage
times each model best fit the population moments or produced the best forecasts. For example, for the
simulations performed, in 15.9% of cases the AR(1) model gave the best fit to the population moments
as measured by the H-statistic even though the true model was a RS VAR(1) with state-dependent prob-

BThisis extremely computationally intensive and to shorten the computation time we only used sample sizes of 200,000 to
estimate moments. Some experimentation showed that this should be sufficient for purposes of comparison.
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abilities.

Table (12) shows that the one-regime models are good approximations in small samples to the true
RS models, and that despite the true data generating process being regime-switching, parsimonious one-
regime models may perform better at matching moments and forecasting. It is notable that RS models
perform quite poorly in matching unconditional moments, but in forecasting the RS models perform
better. These results parallel our findings for the actual RS models estimated on real data.

We also examine the empirical distribution of the moments produced by the modelsin small samples.
Table (13) reports the population val ues of the unconditional moments for the short rates and spreads and
the mean values of the empirical distribution of the moments produced by the models estimated from the
small sample. The table shows that the RS models tend to over-estimate the mean and under-estimate
the variance of the short rate, but the population values lie within 95% confidence intervals of the small
sample model moments.

5.6 Regime Classification and Regime I nterpretation

To examine how well the various RS models classify the regimes, we present RCM statistics in Ter
ble (14). In univariate RS models the CIR specification produces the cleanest regime classification. For
univariate models, moving from constant to state-dependent transition probabilities produces very little
improvement. Multi-country estimation produces sharper regime classification for the UK and Germany
at the expense of the US. Including term structure information leads to better regime classification for
al countries. The results show that using more information produces better regime classification, as
expected, and including the term spread uniformly decreases the RCM statistics for al countries. Our
multi-country model produces less reliable classification for the US but regime-classification improves
dramatically for Germany and the UK when the USisincluded.

The UK models classify regimes poorly, with the transition probabilities P and (Q being very close
to ahalf. In aregime switching model, if P 4+ Q = 1 the model reduces to a simple switching model.
In fact, using a likelihood ratio test, we are unable to reject this hypothesis for the univariate regime-
switching AR(1) (p-value = 0.1202). For a pictorial representation of poor regime classification, see the
UK plot in Figure (2). The high frequency of switching can be seen by the wildly fluctuating smoothed
probabilities and the poor classification of ex-ante probabilities. This poor performance is reflected in
the RCM value for the UK being very close to 100.

Arethe regimes correlated with the business cycle? Table (15) attempts to answer this question. The
tablefirst presents correl ations between various lags j of the ex-ante probabilities p; ;1 and arecession
indicator for the business cycles of each country.®® The ex-ante probabilities are generated from the
term structure RS model with time-varying probabilities (RSM2).31 We report the correlations between

Note the ex-ante probability p; = p(s; = 1|Z;—1) isintheinformation set at time ¢ — 1.
1\We use this model because it is the model with the lowest RCM statistic for the US and Germany in Table (14). Other RS
models produce similar results, with those of the univariate RS models actually doing better than the results reported here.
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the second regime with mean-reverting higher volatility and the economic downturns. The table shows
that this regime is associated with economic recessions, while the “normal” unit root regime with lower
volatility represents economic expansions. The US and Germany have significant correlations, while the
correlations of the UK are insignificant.

The business cycle association of the regimes is not surprising for the US. Figure (2) shows that
the ex-ante probabilities during the 1979-1982 period of monetary targeting are near zero, placing this
period in the second regime. During this period high variable interest rates were accompanied by alarge
recession. Germany also experienced a similar episode around the same time (1980:03 to 1983:07), and
also went through an earlier recession accompanied by high interest ratesin the early 1970's (1973:09 to
1975:05). The recession brought on from re-unification, beginning in mid-1991, also saw rising interest
rates but the regimes do not capture this period as sucessfully. The poor performance of the UK is not
surprising given the poor regime classification of the UK modél.

The last four columns of Table (15) report coefficients from a Probit regression with the recession
indicator being the dependent variable, and current and lagged ex-ante probabilities being the indepen-
dent variable. The Probit regressions yield significant coefficients for the US and Germany. We also
list the percentage of correctly forecasted recessions in-sample from the Probit regressions. For the US,
the ex-ante probabilities successfully predict 84% of recessions one-month ahead, with the success ra-
tio dlightly increasing as we try to predict further into the future. The success ratio is around 60% for
Germany and, not surprisingly, only 50% for the UK.

Recent studies have found that the term structure can successfully predict real economic activity.32
Estrella and Mishkin (1995) find that the spread is useful in predicting future economic activity, and
Table (15) confirms their finding showing that the magnitude of correlations between recessions and the
spread increases with the lag, and the Probit forecasts increase their accuracy forecasting longer future
horizons. This happens across all three countries. Looking specifically at the US, the ex-ante regime
probabilities have better forecast ratios for one and two month ahead predictions than the spread. While
the forecast ratios increase with horizon for the spread, the forecast ratiosof the the ex-ante probabilities
remain essentially flat. This evidence indicates that for the US the ex-ante regime probabilities are
better contemporaneous indicators of the business cycle than the spread, and the spread is a forward
looking indicator which improves its forecasting ability at longer horizons. For the other countries, the
spread better predicts recession than our regime probabilities at al horizons. Given that both the regime
classification and the dating the actual business cycles is less precise for these countries, this is not
surprising.

%2For example see Estrella and Mishkin (1995) and Harvey (1988).
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6 Implied Short Rate and Spread Dynamics

In this section we study the short rate and spread dynamics implied by our RS term spread models
along two dimensions. First, we examine impulse response (IR) functions of the bivariate RS VAR and
compare these to the IR's implied by a linear one-regime VAR. Following Gallant, Rossi and Tauchen
(1993) we use the key idea of IR analysis to trace the effects of a small shock through the system. We
first briefly review IR’s in one-regime VAR’s and then extend the analysis to our non-linear RS VAR
models.

Our results here may provide useful input for therapidly growing literature on the effects of economic
and policy shocks on financial variables in general and the term structure in particular.3® Such analysis
istypically constructed in alinear VAR setting. By contrasting IR’s from a linear model to IR's from a
non-linear framework, we may gain insights on the distortions a linear framework may introduce. The
effect of short rate shocks on spreads is of independent interest since short rates are typically found to
exhibit large contemporaneous effects with respect to monetary policy and other shocks.

Second, we investigate the “drift” and “volatility” functions implied by our models. There is a
voluminous literature in finance on the dynamic properties of short rates and the term structure in the
US. We contribute to this literature by examining the non-linearitiesimplied by an aternative RS model
and by studying the term structure in other countries as well.

6.1 Impulse Responses
6.1.1 Impulse Responsesin Linear VAR's

Consider the following linear VAR: 4y, = v + Ay;—1 + €, € ~ N(0,X). For simplicity, we take y; to
have two elements so 1y = (y§1) y§2))’. The basic idea of an IR isto trace a shock § through the system
relative to a baseline. The effect of the shock one-period ahead and the baseline are given by:

Et(yt—kl‘yt = (5) =90+ A5 (49)
Ey(ye41]lye = 0) = v (50)

So the first impulse response from ashock 4 is:
IRy = Ey(yi1|yr = 6) — Ex(yes1|ye = 0) = AS (51)

Analogously the jth impulse response IR; = Al

If we consider ashock of one standard deviation of /o717 to y§1> asd = (y/o11 0)' and the covariance
matrix X of the system is diagonal, then {IR; }]O-‘;l represents the responses of the variables to a stan-
dardized shock from ygl). However, when X is not diagonal, then ¢ does not represent the typical shocks
to the system because it ignores the contemporary covariancesin ¥ = (51! g12). To treat this problem
the literature orthogonalizes the shocks so ﬁ%j = AR where RR' = ¥. An alternative approach in

33For example see Eichenbaum and Evans (1995), Eichenbaum, Evans and Marshall (1995).
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the spirit of Gallant, Rossi and Tauchen (1993) isto find a“typical” value of y§2> given yt(l). We set the
shock to y§” at \/o11 and then set yt(g) asE(y§2)|y§1) = /o11). Asy, isassumed to be drawn from a
bivariate normal N (0, ¥), we can use the conditional normal distribution to obtain:

E (2),,(1) _ _ 912 E (1,2 _ _ 912 52
(yt |yt \/011) \/0_11 (yt |yt \/022) \/0_22 (52)

So the shock 6 = (/11 %)’ can be interpreted as a shock of one standard deviation to yt(l) with y§2)
adjusted to be its predicted value given the movement in "),

6.1.2 Impulse Responsesin RSVAR'’s

We can generalize the approach of the previous section to trace out the effect of a shock in a RS VAR:
yr = v(sy) + A(sg)ys—1 + €, € ~ N(0,%(s;)). Assume there are two regimes so s; = 1,2 and the
constant transition probability matrix is given by P = (5% 791 ). The columns of P are denoted p_ and
p.,1. Suppose that the probabilities of being in each regime at time ¢t are given by = = (7, 72)’. Thenthe
first period effect of a shock § relative to the baseline response is:

Ey(yiy1|yr = 6) = (mv1 + mave) + (w1 A1 + m2A2)d (53)
Ey(yi41|y: = 0) = miv1 + mave (54)
IR, = (7T1A1 + 7T2A2)(5 (55)

For the impul se responses from the RS VAR with constant transition probabilities, there exist analyt-
ical formulae3* Let

II=7nQ Iy = (7T1I 7T2I)I (56)
PooAo ‘ po1 A1

P=(po®A4 | pa®A)= < > (57)
( ‘ ) P10Ao ‘ p11d1

I=1Q I = (I I)I (58)

where 1 isavector of one’s. The impulse responses are then given by: IR; = II'P/I 4.

We can take the probabilities of beingin eachregime 7 at timet tobe (10)’ tostartinregime 1, (0 1)’
to start in regime 2 or to be the stable probabilities of the system. A shock § will aso take into account
the contemporaneous correlation of y§1> and y§2) conditional on the regime. The conditional covariance

inregimelis¥; sowecanused = (/G111 ;{%)’ to represent a shock of 1 standard deviation to ygl)

conditional on regime 1, adjusting yt(2) to take into account the contemporaneous movement in yﬁl) in
regime 1.

%For RS VAR's with time-varying probabilities there are no corresponding analytical formulae. These must be obtained by
simulation: we did not do these because of the computational requirements.
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6.1.3 Empirical Results

Figure (3) presents the impulse responses from shocks of one standard deviation. Solid lines represent
the IR from the one-regime VAR and non-solid lines the IR’s from the regime-switching model.>® The
numbers on the horizontal axis are months. A first remarkable fact about the figure is the similarity of
the dynamics across countries. It is also remarkable that the impul se responses starting from the stable
probabilities of the regime-switching model mimic almost exactly the impulse responses from the linear
VAR models. However, the effects of a shock conditional on aregime are quite different.

Let usfirst consider the effects from a one standard deviation shock to short rates, in the first column
in Figure (3). The standard deviationissmall in regime 1, the unit root regime, and haslittleinitial effect.
The standard deviation is larger in regime 2, the stationary regime, and has a much greater initial effect.
In both cases short rates are very persistent but the shocks conditional on regime 2 dissipate to approach
the shocks conditional on regime 1 and the stable probabilities. Only in Germany isthis convergence not
complete after 30 months. The positive shock to short rates is associated with a negative shock to the
spread. In regime 1, shocks generate very little effect, but in regime 2, where volatility is much higher
and spreads are much more negatively correlated with short rates, the term spread narrows considerably
more.

In the second column in Figure (3) we see the effects of conditional shocks to the spread. The
effects are similar to what we had before. Nevertheless, spreads are generally less persistent than short
rates so that the shocks die out sooner. Germany’s shocks are the slowest to die out, reflecting the high
persistence of its spreads and short rates. A typical positive shock to the spread immediately reduces the
short rate in our framework due to the negative contemporaneous correlation structure for the shocks. In
thefirst “normal” regime, shocks to the spreads have very little effect on short rates and the response line
isamost flat. In the second regime, higher volatility and a more negative contemporaneous correlation
drives the short rate much further down as the spread is shocked upwards. The short rate is pulled back
up much faster because of higher mean-reversion in the second regime.

A similar picture emerges from graphs where we look at unit shocks (Figure (4)) rather than one
standard deviation shocks. To give an example, consider a 100 basis point (bp) increase in the short rate
(induced by monetary policy, say). The effect on the short rate dies out slowly to a level of about 40
bp over 30 monthsin alinear VAR. However, in the high variance regime it reaches 40 bp after barely
10 months. These IR’s dramaticaly illustrate the potential importance of regimes in policy analysis -
suppose that the short rate shocks correspond to monetary policy shocks. Clearly, the IR dynamics seem
very much dependent on the regime the economy isin at the time of the shock.

SWe use a VAR length of 2 for the US, and 1 for Germany and the UK, which is the optimal lag by AIC and BIC criteria
(see Section 4.2.3).
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6.2 TheDrift and Volatility Functions

Thereisnow alarge literature documenting empirical non-linearitiesin interest rates. Ait-Sahalia (1996)
parametrically specifiesthe drift and volatility functions for US 7-day Eurodollar spot rate changes using
non-linear functions. Ait-Sahalia finds a highly non-linear drift with strong mean-reversion at very low
and high interest rates but the drift is essentially zero in the middle region. The volatility function
assumes a J-shape so the spot rate is more volatile outside the middle region, with the highest volatility
occurring at very high interest rates. Conley et a (1997)’s drift estimations on overnight Fed funds rate
changes look very similar to Ait-Sahalia's plots, but without the strong mean reversion at high interest
rates. In their formulation, stationarity at high interest rates is induced by increasing volatility. Stanton
(1997)’s non-parametrically estimated drift on daily 3 month T-bill rate changesis zero until high interest
rates where the drift becomes very negative. Stanton’s non-parametrically estimated volatility looks very
similar to Ait-Sahalia’s, with volatility increasing at higher levels of interest rates.

These findings suggest that interest rates exhibit strong non-linear drifts, with the drift being zero
over much of the support of the data, but strongly mean-reverting at low or high interest rates. The
volatility of interest rates generally increases with the level of the interest rate with the lowest volatility
appearing in the middle of the support.

In this section we specifically look at the drift and volatility functionsimplied by the RS models. To
obtain more information about interest rates at very high and very low levels, we pool the information
from the US, Germany and UK to estimate a joint RS process. This was done for a univariate constant
transition probability RS model, and bivariate term spread RS models with constant and time-varying
probabilities36 Section 6.2.1 reviews the definitions of drift and volatilities for linear models, Section
6.2.2 outlines how the drift and volatilities for RS models are abtained, and Section 6.2.3 presents the
empirical results.

6.2.1 Linear Drift and Volatilities

1
The conditional drift and volatility functions for amultivariate linear processy; = v + Ay;—1 + 3/ €,
with e; ~ 11D N(O,I) are given by:

drift = Et—l(Ayt) =v— (I — A)yt—l (59)

1
vol = diagx} (60)
For univariate processes y;, we may plot the drift and volatility against iy, 1. For asimple mean-reverting
process of short rates rates y; = r4, the drift will be a downward sloping line, showing positive drift at
low levels of r;_1 and negative drift at high levels. In thisway interest rates are pulled back toward their

long-term mean at low and high levels. For a CIR model the volatility is o,/r:—1 which is increasing
with the interest rate level.

%A joint estimation of a univariate RS model with time-varying probabilities was attempted but failed to converge.
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Supposein our bivariate VAR y; = (74 2;)" with constant conditional covariance X2, we wish to obtain
the drift of .. The conditional mean of r; is given by:

E;_1(ry) = p1 + A1ire—1 + Aoz (61)

where subscripts indicate the appropriate element in the parameter matrix A. To obtain E(r¢|ri—1) we
need to integrate out z;_1:

E(re|ri—1) = p1 + Anir—1 + Ao E(z—1|ri—1) (62)

Since the system y; = (r;2;)’ is jointly normal, we can use the conditional distribution to evaluate
E(z_1|rs_1). The system y; is unconditionally normally distributed with mean /i and variance ¥ where
fi= (I —A) 'pandvecs = (1 — A® A) 'vecX. Thenthe conditional mean E(z|r;) is given by:

- by -
E(ze|re) = fio + =2 (ry — jin) (63)
390

Hence we can obtain the drift of r, from the bivariate system E(Ar¢|ri_1) = E(r¢|ri—1) — re—1.

6.2.2 Driftsand Volatilitiesfrom RSVAR's

For aRSVAR Of 4 = (ry 2:)', y¢ = p(se) + A(se)ye—1 -+ S(s¢) 2 €, we can obtain drifts and volatilities
of y; by integrating out s;. To obtain the drift of r; we need to integrate out both s; and z;. This can be
done numerically by the following procedure for both constant and time-varying transition probabilities.

First, simulate out the system y;. Record the drift and volatility of y; for every observation, where
drift = v; — (I — A;)y;—1 and vol = diagEi% and subscripts indicate the state s; = 4. Divide interest
rates into bins of width 25 basis points, and then within each bin calculate the average drift and the
average conditional volatility. We use the mid-points of the binsto plot an appropriate drift and volatility
function. From the simulation we record the regime realizations to enable us to estimate E(s;|ri—1).
Large simulations (upwards of 500,000) are necessary to obtain smooth plots for our bin size.

6.2.3 Empirical Results

We only report the drift and volatility functions from the joint processes, as these give us the most
information possible, especially at very low and high interest rates.3”

Figure (5) presents the estimated drifts from the joint RS models. The top panel shows the drift
function for the short rate from a bivariate RS term-spread VAR with constant transition probabilities.
The dashed lines correspond to the drift functions conditional on each regime and are linear. The first
regime is a near-unit root regime (almost zero drift) and the second regime is strongly mean-reverting

$"Plots of the drifts and volatilities from individual countries exhibit similar patterns. The conditional volatilities from the
UK, however, are much flatter than the plots given here. Thisis due to the simple-switching nature of the UK RS process. The
conditional volatility can only vary as much as the expected state at each interest rate level varies. With a simple switching
process the expected state is always a half.
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(downward sloping ling). The drift function for the RS process is a weighted average of the linear drift
functions in each regime, with the weights determined by the different amounts of time spent in each
regime at different interest rate levels. The drift from this model retains afairly linear shape.

Moving to the bottom plot in Figure (5), we see the drift functions for the RS VAR with constant
and time-varying probabilities and the univariate RS model with constant transition probabilities. The
univariate RS model with constant probabilities looks very similar to the bivariate RS model with con-
stant probabilities. However, the drift in the model with state-depndent transition probabilities closely
resembl es the drift presented in Stanton (1997), with avery flat drift close to zero until the middle of the
support and then turning negative at higher interest rates. Stanton’s drift starts turning negative around
14%, while our drift starts turning negative around 10%. The shape is also similar to Ait-Sahalia (1996),
but Ait-Sahalid's drift starts turning negative at 18%. The difference in the ranges can be attributed to
using different data sets, but the important observation is that the state-dependent probability model can
reproduce the shape of the non-parametric estimations.

The kinked shape from the state-dependent probability model results from a much faster transition
into the stronger mean-reverting regime at higher interest rates and so at higher interest rates more time
is spent in the second regime. This places more weight on the drift of the second regime at higher interest
rates than in the RS models with constant transition probabilities. Similarly, at lower interest rates the
transition from the unit root regime is slower. Note that at very low interest rates the drift increases
dlightly.

Figure (6) presents plots of the conditional volatility functions of the short rate. The top plot shows
the volatility from the constant probability bivariate RS model. The conditional volatility varies only
because the expected state varies with the level of the short rate. (In each regime the conditional volatil-
ity is constant.) The plot shows that at very high short rates the process is likely to be in the second
higher conditional volatility regime. The bottom plot of Figure (6) shows the conditional volatility of the
short rate for the three joint RS models. The constant probability univariate and bivariate models yield
similar shapes for conditional volatility and bear a strong resemblance to Ait-Sahalia (1996)’'s J-shaped
estimations. The volatility implied by the bivariate RS model with time-varying probabilities |oses much
of its upturn at lower interest rates but then increases rapidly with rising interest rates. It looks very much
like Stanton (1997)’s non-parametric estimation. The main source driving the volatility increase is the
increasing probability of remaining in the high variance regime, which decreases at very high interest
rates. Overall, the volatilities are increasing in the level of the interest rate, with some upturn at lower
interest rates.

The bivariate RS models alow usto look at the drifts and volatilities for spreads. We present these
in Figure (7). The top plot shows that the drift function of the spread is very linear and the addition
of time-varying probabilities does not change the shape of the drift function. The middle plot shows
how the conditional volatility of the spread varies with the expected state corresponding to each spread
level. The conditional volatility is lowest for “normal” levels of the spread between 0 and 1. The
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conditional volatility of the spread for both the constant and time-varying bivariate RS model is shown
in the bottom plot of Figure (7). The addition of state-dependent transition probabilities now makes the
spread volatility less symmetric, asthe probability of staying in the higher variance regime now increases
with higher spreads. Whereas before, both unusually high and low spreads are associated with the high
variance regime, state dependence makes it more likely to remain in the low variance regime when the
spread increases.

7 Conclusions

This paper demonstrates theoretically and empirically that univariate regime-switching models can cap-
ture the non-linear mean reversion observed in interest ratesin an economically appealing and stationary
model. Moreover, there is overwhel ming evidence for multiple regimesin the data generating process of
short rates.

Given the well-known econometric problems estimating regime-switching models in small samples,
we compare their econometric performance relative to their one-regime counterparts. First, the moments
implied by regime-switching models do not fit the sample moments aswell as simpler models do because
of the difficulties in estimating regime-switching models in small samples. A Monte Carlo experiment
confirmsthis happens even when the regime-switching model isthe true data generating process. Second,
regime-switching models tend to forecast better than one-regime models.

To improve the econometric performance of regime-switching modelsit is important to incorporate
additional information. In fact, we show that univariate regime-switching models will typicaly yield
inconsistent estimates as soon as the omitted variables contain information on the regime. We compare
the performance of univariate versus multi-country and term spread approaches. In particular, US short
rates improve both the regime classification and the statistical performance for German and UK short
rates (but not vice versa). Furthermore, inclusion of term spread information leads to dramatic supe-
rior performance in regime inference and general improvements over univariate models in forecasting.
However, theinclusion of extrainformation did not alwaysimprove thefit of the unconditional moments.

The regimes correspond well with business cycle expansions and contractions. For the US using
Probit regressions, the ex-ante probabilities of regimes forecast future recessions better than the term
spread for short horizons (less than 2 months ahead), while the spread shows increasing accuracy for
longer horizons (6 months ahead).

The behavior of the term structure varies dramatically with the regime. For example, correlations be-
tween short rates and spreads are significantly different across regimes. We examine the non-linearities
implied by regime-switching models by looking at their impulse responses and their drift and volatility
functions. When averaged over each state, the impulse responses correspond almost exactly to the im-
pulse responses implied by linear Vector Autoregressions. However, conditional on a regime, impulse
responses behave very differently. As the impulse responses are so dissimilar in each regime this has
implications for the policy analysis of shocks.
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The drift and volatility functions of regime-switching models correspond closely to the empirical
drift and volatilities estimated in recent literature using non-parametric techniques. In particular, regime-
switching models with time-varying probabilities can produce highly non-linear drifts with unit root
behavior for most of the support of the data, with strong mean-reversion at high interest rates. The con-
ditional volatilities from regime-switching models also match the empirical estimations in the literature.
Hence a simple parametric model is sufficient to match the rich non-linear dynamics of short rates.

Some interesting extensions would be to further improve regime classification by imposing theoreti-
cal restrictions from a term structure model. Attempting to trace the macro-economic or policy sources
of the shocks driving the impulse responses is another promising area for further research. This paper
has a so shown the importance of endogenizing regime switches in future economic models.
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Appendix A: Proof of Proposition 3.2.1

We set up the following modd!:
ye=ptuvsi+(1—PBs)y1+e (A-1)

with e, ~ 11D N(0,07 + as;), 07 +a > 0and0 < 3 < 1. Thestate s; = 0, 1 and is independent of ¢;
so when s; = 0 we have arandom walk, and when s; = 1 the regime is mean-reverting. Without loss of
generality we may consider only these two regimes since we may group all unit root regimes into regime
0, and we need only consider an AR(1) process for regime 1 as an example of a stationary process.
Longer AR(p) processes can be handled similarly in the manner presented here, and MA(g) components
can be treated by expanding the state space in a suitable manner to remove the state-dependence of the

MA terms.

We denote the Markov transition probabilities as P = (p 00 Pot

P10 P11
ability of entering the stationary regime is non-zero (po; > 0) and the probability of staying in the

) . We only require that the prob-

stationary regime is non-zero (ie p11 > 0).
We can recursively substitute to get:

¢ /-1
y=. ([H(l — Bst—i)

j=0 \ Li=0

(H + I/St_]')> + [H(l — ﬁst—i)

1=0

t j—1
v+, ([H(l - ﬁsm)] 6t—j>
=0 \ Li=0

(A-2)

where the product term is understood to give 1 when the index is negative.
For a stochastic process {z;} defined by z; = Z;?’;O &:—; to be (covariance) stationary a sufficient
condition is that uniformly:

t
Jim ZO E(&—j) = B() (A-3)
=

2
t
o1
e (Ses) - =

See Nerlove, Grether and Carvalho (1995).
We want the second term in equation (A-2) to converge to zero in mean sguare so we can ignore this
termin the limit, i.e. we would like:

t—1 2
E [H(l - ﬁst_i)] =0 (A-5)

— 00
i=0
We need the following Lemmas:

Lemma 1 If the sum of the absolute values of the elements of every row of a square matrix is less than
1, then all the eigenval ues have modulus less than 1.
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Proof: See Theorem 11.7.2 of Prasolov (1991).

Lemma 2 If P isareal square matrix with eigenvalues which have all modulus less than 1, then:
1. PI — 0

j—o0
2. Y520 PI = (I - P) ! eists,
Proof: See Theorem A.9.1 of L itkepohl (1993).
We introduce the following notation:
1= (11)", vector of I's (A-6)
7 = (mom ), the stable probabilities of P (A-7)

The stable probabilities 7 satisfy Pr = w. We assume a unique solution to this exists, or equivalently,
we assume that the Markov chain is ergodic.

We also define:

p_ [Pw po1 (1 — 5)) (A-8)
pio pu(l—p)

B [Poo po1 (1 — 5)2> (A-9)
b1o pll(l - 5)2

p_ [Poor por(p+t V)) (A-10)
piop pup+v)

5 Poor® porlp+ V)2> (A-11)
prop® pui(p+v)?

5 _ (Poon polu+v)(1 - ﬂ)) (A-12)
pop pu(p+v)(1—p)

~ B)m

= \a —72’)%) -

A oM ) (A-15)
mi(p +v)(1 - B)

where a bar represents the action of the “constant term”, and a hat represents the action of the “mean
reversion term” on the probability weights.
Using induction it is easy to show that:

t—1

2
H(l—ﬁs”)] = (7)(P) 11 (A-16)

=0

E
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And so using Lemma1 and 2 on P (f’)t — 0, so the second term in equation (A-2) converges to zero
in mean square.

Taking the first term in equation (A-2) we can show that the conditions for (covariance) stationarity
are met. Using Lemmas 1 and 2 applied now to P we have:

t j—1
M E { [ = Bsi—a) | (u+ l/stj)} —#(I+P+P*+...+P)P1
§=0 i=0 (A-17)
;aﬁu—ﬂ”Ple@)
The second condition (A-4) isalittle trickier:
. ¢ i-1 2
e > [H(l — Bst—i) | (1 +vsi—j)
j=0 Li=0
1 j—1 2
=3 ZE{ [ (1= Bst—i) | (0 + VSt—j)} (A-18)
§=0 i=0
g L1 k k-1 j—1
to Y E { [T = Bse-i)| (1 +vses) [H(l — Bst—i) | (1 + V3t—j)}
k=0 j=0 =0 i=0

We see that for a simple switching model with s; independent across time, the second term disappears
and the first term in the sum can be factored out by independence, which clearly converges to zero as
t — oo. However, for a regime-switching model with Markov dependence, we have to bound both the
first and second terms. First observe that:

t j—1 2
1 1. 2 2 =
;2. E { [T -850 (u+ ust_»} = SH(I+ P+ PP
=0 i=0
\ Ao (A-19)

< %ﬁ([ - P)y'p1
— 0
t—00

applying Lemmas 1 and 2 on P
Now taking the sumto ¢t = oo in the second term in equation (A-18) we can expand this out as:

oo k k—1 -1
M E { [H(l — Bsi—i) | (u+vsig) lH(1 — Bsi—i) | (u+ ,,st_].)}
k=035=0 i=0 i—0
= (m)P1
#)'PP1+ (%) PP1 (A-20)
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We can sum each column of the triangular array by applying Lemmas 1 and 2 to P

— (R)(I - P)"'P1+ (3)P(I — P) 'P1+ (A)PP(I — P)"'P1+ (3)(P)2P(I — P) 'P1+...
= (RY(I - B)PL+ (&) [T+ P+ (P)? +...| BT - P)P1
= (7)(I— P)"*P1+ (%)(I - Py~ P(I - )P
= [@) + @' - P) 1P| (1 - P) P
(A-21)

Where the penultimate equality results from applying lemmas 1 and 2 to P Henceit is clear that when
divided by ¢ the second term in equation (A-18) converges to zero ast — oo.
We obtain similar expressions for the third term in equation (A-2):

e -

We use the same trick as above to show the second condition (A-4) is satisfied:

el -] -t

7=0 Li=0

et_j} =0 (A-22)

2

9 t—1 k k—1 j—1
+3 Z ZE { H(l - /Bsti)] €t—k [H(l — Bst) th}
k=0 =0 =0 =0
(A-23)
Thefirst term in equation (A-23) we can write as.
1< = i : :
- ZE { H (1— ﬂst_i)] et_j} = ;fr([ +P+...+PYHPY
7=0 =0
. A= (A-24)
< %ﬁ([ - PPV
— 0
t—o0

2
where we define V' = ( 201 ) The second term in equation (A-23) is zero by the independent
o]+«
sampling across time of the error terms.
Hence the process {y;} in equation (A-2) is composed of two (covariance) stationary terms and so

the sum of these is also stationary, thus completing the proof.
We note that strict stationarity will also follow because of the strict stationarity of e; and s;.
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Table 1. Sample Moments

Panel A: Sample Central Moments
Parameter us GER UK
shortrate  spread  shortrate  spread  shortrate  spread
mean 7.3381 1.2198 6.9045 0.4984 105605  0.0643
(0.4449) (0.2028) (0.4197) (0.2719) (0.4268) (0.2491)
variance 8.3103 2.0366 7.1111 3.1241 8.2388 2.7458
(1.9390) (0.3833) (1.3380) (0.6714) (1.4354) (0.5292)
skewness  0.8172 -0.7281 0.6806 -0.5410 -0.1521  -0.2596
(0.2167) (0.2782) (0.2515) (0.3227) (0.1797) (0.2404)
kurtosis 3.6102 3.5921 2.6987 3.3732 2.5406 2.8086
(0.6718) (0.7179) (0.4405) (0.5768) (0.3264) (0.4071)
Panel B: Sample Autocorrelations

Lag usS GER UK
shortrate  spread  shortrate  spread  shortrate  spread
1 0.9706 0.8669 0.9845 0.9657 0.9565 0.9322
(0.0181) (0.0292) (0.0216) (0.0265) (0.0237)  (0.0238)
2 0.9295 0.7663 0.9583 0.9207 0.8948 0.8776
(0.0347) (0.0497) (0.0436) (0.0507) (0.0450)  (0.0425)
3 0.8931 0.6958 0.9253 0.8715 0.8271 0.8234
(0.0513) (0.0689) (0.0638) (0.0711) (0.0637) (0.0596)
4 0.8551 0.6221 0.8858 0.8127 0.7627 0.7692
(0.0653) (0.0820) (0.0812) (0.0868) (0.0784) (0.0753)
5 0.8256 0.5873 0.8428 0.7502 0.7006 0.7200
(0.0778)  (0.0836) (0.0957) (0.0999) (0.0895)  (0.0895)
6 0.7975 0.5501 0.7943 0.6839 0.6392 0.6689
(0.0857) (0.0866) (0.1071) (0.1097) (0.0970) (0.1016)
7 0.7771 0.5113 0.7423 0.6167 0.5771 0.6119
(0.0916) (0.0828) (0.1166) (0.1186) (0.1015)  (0.1139)
8 0.7642 0.5083 0.6888 0.5490 0.5118 0.5553
(0.0973) (0.0732) (0.1246) (0.1267) (0.1034)  (0.1205)
9 0.7425 0.4739 0.6363 0.4824 0.4526 0.5164
(0.0983) (0.0742) (0.1319) (0.1348) (0.1044) (0.1245)
10 0.7163 0.4611 0.5858 0.4217 0.3951 0.4711

(0.0992) (0.0802) (0.1381) (0.1427) (0.1036) (0.1291)
Panel C: Sample Cross Correlations

Short rates of countries Short rates/Spreads
Lag USDEM USUK DEM/UK us GER UK
-3 0.4197 0.6470 0.3279 -0.3655 -0.7929 -0.6524
(0.1334) (0.0777) (0.1007) (0.1130) (0.0563) (0.0727)
-2 0.4205 0.6549 0.3523 -0.4213  -0.8326  -0.7016
(0.1322) (0.0725) (0.0964) (0.1091) (0.0435)  (0.0607)
-1 0.4120 0.6521 0.3696 -0.4907 -0.8656  -0.7375
(0.1315) (0.0686) (0.0939) (0.1038) (0.0317) (0.0521)
0 0.3953 0.6454 0.3808 -0.5920 -0.8804 -0.7637
(0.1310) (0.0678) (0.0933) (0.0976) (0.0284) (0.0459)
1 0.3756 0.6139 0.3782 -0.5952  -0.8634  -0.7057
(0.1325)  (0.0698) (0.0945) (0.0982) (0.0335) (0.0539)
2 0.3542 0.5758 0.3717 -0.5715 -0.8389  -0.6608
(0.1335) (0.0754) (0.0974) (0.1013) (0.0406) (0.0629)
3 0.3294 0.5485 0.3650 -0.5522 -0.8097 -0.6210

(0.1328) (0.0828) (0.1008) (0.1080) (0.0477) (0.0718)

Sample period 1972:01 to 1993:02 (in-sample period). Standard errors are in parentheses and are
estimated using Generalized Method of Moments with 6 Newey-West lags. The standard errors are
calculated setting up moment conditions for each country separately for each of the central mo-
ments and auto—ggrrelations in Panels A and B. In Panel C, the cross-correlations are the estimates

oovlrigy i) for j = —3,—2,...,+2, 43, where each pair of countries is now used to

of ——tledgrle )
va(rE)Jvarie)

construct the moment conditions.
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Table 3: Summary of Models Estimated

Univariate Models of short rates
One-regime Two-regime equivalents
const probs  time-dep probs

AR(1) RS1 RS2

©) (8) (10)
GARCH(1,1) RS3
©) (12)

CIR R34 RS5

(©) ) (10)

Multi-Country Models of short rates

Model Description

VAR1u unconstrained VAR(1)

(18)
Gl one-regime Granger-causality model, Gaussian errors
(13)

RSG1 RS Granger-causdlity with the same a;, p;, o;, P, () across countries,
(16) sguare root errors

RSG2 RS Granger-causality with the same a;, p;, P, @ across countries,
(20) but different o;, square root errors
D1 one-regime diagonal model, Gaussian errors
(11)

RSD1 RSdiagona model with the same «;, p;, o;, P, () across countries,
(12 Gaussian errors

Multivariate Models of the Term Spread

One-regime Two-regime equivalents
const probs  time-dep probs

VAR(D) RSM1 RSM2
© (20) (24)
VAR(2)
(13)

RSM2 for the US has state-dependent probabilities depending only on the spread, and
contains 22 parameters. The full model failed to converge.



Table 4: LR}, statistics for RS AR(1) model

Grid 1 Results

sup,, Q% distn
LR min max mean median stdev  p-vaue
US 7.7534 03665 4.5122 1.8606 1.7920 0.6219 0.0000
GER 44794 0.2976 4.1095 16177 15553 0.6146 0.0000
UK 44902 0.6444 44995 1.9027 1.8570 05990 0.0010
AR(1) 10213 0.6487 4.8505 1.9771 1.8880 0.6116 0.9670
RS 59467 0.5537 45376 1.8743 1.8492 05782 0.0000

Grid 2 Results

sup,, Q% distn
LR} min max mean median stdev  p-value
US 79284 0.3386 45492 20491 20055 0.6321 0.0000
GER 5.8593 04622 3.8087 1.8876 1.8401 0.6199 0.0000
UK 69021 04544 43885 20577 20031 0.6286 0.0000
AR(1) 20561 0.9541 54106 22614 21858 0.6125 0.5880
RS 7.0000 06197 4.7178 20737 20069 0.5911 0.0000

LR is Hansen (1992)'s supremum test stetistic for one versus two regimes. To obtain the LR},
statistic, the supremum is taken over a finite grid: grid 1 contains 576 points, and grid 2 contains
2016 points. In Hansen's test p(LR7 > z) is bounded by an asymptotic distribution p(sup Q7 >
x) which is produced by 1000 simulations. The remaining columns give the distribution of the
bounding distribution, with empirical p-values in the last column. The AR(1) row gives the results
after simulating asingle AR(1) process with parameters (p = 0.98, u = 0.20, o = 0.46). The RS
row gives the results after smulating a single RS AR(1) process with parameters (u1 = 0.02, p2 =
0.30, 81 = 0.0025, B2 = 0.0100, o1 = 0.25, o2 = 0.80, P = 0.9526, Q = 0.8808). For both
simulations we used ro = 6.00.

Table 5: Granger Testsin the Multi-Country VAR Model

Granger-causality Ali,j]=0 x32 p-vaue
no country Granger-causes another all off-diagonal lements=0 12.4435 0.0528
US Granger-causes Germany and UK A2,1] = A[3,1] =0 11.6562 0.0029
Germany and UK Granger-cause US A[l,2] = A[1,3] =0 0.6206  0.7332
Germany and UK Granger-cause each other A[2,3] = A[3,2] =0 0.7885 0.6742

Withr; = (r¥® ri¢" r2*) weestimater; = v+ Ar;—1 +u;. The Wald tests are performed using a Generalized
Methods of Moments estimation of the parameters with 6 Newey-West lags. The notation A[z, j] refers to the
element in row 4, column j.



Table 6: Granger Testsin the Term Spread VAR Model

Spreads Granger-cause short rates Short rates Granger-cause spreads
lags=1 lags=2 lags=1 lags=2
x?vaue pva x2value pva | x2value pva x2value pva
US 35026 00613 34868 0.1794 | 0.0227 0.8802 5.0037 0.0819
GER 11257 0.2887 154510 0.0004 | 0.3804 05374 21.7171 0.0000
UK 22611 01327 157548 0.0004 | 05111 04747 13.1207 0.0014

We estimate a VAR(P) 4+ = v + A1ys—1 + - -+ + Apyi—p, Of 41 = (r+ z:)" short rates and spreads with p the number
of lags. We conduct a joint test of A;[1,2] = 0, the entry in row 1 column 2 of A;, ¢ = 1,2 to test if the spread
Granger-causes the short rate. We test AEQ, 1] = 0 to test if the short-rate Granger-causes the spread. The Wald tests are
performed using a Generalized Methods of Moments estimation of the parameters with 6 Newey-West lags.
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Table 8: Multi-Country: Unconditional Moments and Forecasts

us

VARLuU D1 RSD1 Gl RSG1 RSG2

Central moments H 3083 2173  13.38* 30.31 28.66 32.66
H* 1525 1576  11.10* 15.26 17.26 22.64

Autocorrelogram H 343 3.34* 8.06 3.87 9.77 11.70
H* 0.97 0.25* 13.44 1.29 19.84 27.34
Forecastsr, MAD 01619 0.1499 0.1378 01483 0.1160* 0.1174
RMSE 02002 0.1891 0.1841 0.1888 0.1625¢* 0.1626
Forecastsr; MAD 15550 1.7159 12139 1.3992 0.9949*  1.0388
RMSE 18065 20771 14980 1.6453 1.1930* 1.2146

GER

VARLu D1 RSD1 Gl RSG1 RSG2

Central moments H 17498 166.62 5491 20778  26.09* 26.47

H*  7.90* 7.98 15.50 8.20 10.09 11.09

Autocorrelogram H 6.12* 6.91 7.19 6.99 7.96 9.12

H* 1243 1382 1321 15.10 16.55 21.84

Forecastsr: MAD 01580 0.1500 0.1429 0.1327* 0.1451  0.1466
RMSE 01959 0.1899 0.1868 0.1704* 0.2035  0.2062
Forecastsr; MAD  1.6591 14557 12822 14632 11957 1.2436*
RMSE 1.8537 18164 15706 1.6303 1.5206* 1.5899

UK

VARLu D1 RSD1 Gl RSG1 RSG2

Central moments H 6.40 6.06* 64.62 7.94 14654  287.66
H* 2.76 2.80 55.29 2.71* 81.77 123.56

Autocorrelogram H 10.08 9.63* 26.13 11.67 31.97 34.04
H* 2190 2069 8171 26.34 106.81  113.68

Forecastsr,  MAD 02747 02410 0.1429 0.2668 0.1124* 0.1142
RMSE 03116 0.2762 0.2017 0.3055 0.1766* 0.1833
Forecastsr; MAD 22897 3.3541 16389 21274 12960 1.2872*
RMSE 20020 3.8040 21859 1.8801 1.8465* 1.8554

VAR1u refers to the unconstrained VAR of lag length 1.

D1 isthe one-regime model with different AR(1) processes for each country.
RSD1 isthe RS diagonal model with the a;, p;, o3, P, Q across countries.

Gl isthe one-regime Granger-causality model for UK and Germany from the US.
RSG1 isthe RS Granger-causality model with the same o, p;, o3, P, @ across countries.
Asterixed values are the lowest statistic values.



Table 9: Term Spread Models: Unconditional Moments

us

VAR1L VAR2 RSM1 RSM2

Central Moments r;, H 3151 29.99* 19320 141.95
H* 15.26* 15.27* 97.05 54.83

z H 10.09 10.07* 119.70 30.96

H*  7.62% 7.62 86.30 2177

Autocorrelations  r; H 2.46* 890.48 4.32 5.13
H*  0.84* 17.35 1.33 12.11

zz H 21.70 572477 16.82 10.58*

H*  43.26 68.67 69.27 14.52*

Crosscorrelation  r;2z; H 86.99 44451 1273 2.05*
H* 16.24 8.82 3129 0.19*

Germany

VAR1L VAR2 RSM1 RSM2

Central Moments r; H 232.01 15755 374.27 268.22
H* 8.24 8.08* 2011  11.40

2z H 6.43 6.03* 3898 18.69

H*  3.29* 3.69 10.04 5.97

Autocorrelations  r; H 741 294141 6.65 6.04*
H*  15.28 23.09 1390 10.63*

z H 8.50* 316.92 1557 14.66

H*  17.39* 34.19 51.67 47.65

Crosscorrelation  r;2; H 6.96* 14292 1730 10.80
H* 8.89 7.71 1091 4.21*

UK

VAR1 VAR2 RSM1 RSM2

Centrd Moments r; H 4.84* 4,93 2351 32.49
H* 3.03 3.00* 4.33 5.60

z H 2.25 2.17* 9.80 11.09

H* 1.42 1.40* 7.63 9.15

Autocorrelations  r; H 8.04* 50.26 8.69 8.98
H*  16.26* 60.28 19.00 21.69

z H 2.82* 119.41 2.99 3.09

H*  0.38* 21.27 2.00 242

Crosscorrelation 12, H 7.87* 199.73 17.00 11.36
H* 11.44 10.93 9.34 2.09*

The variables r; and z; refer to the short rate and spread, respectively.

VARL1 refers to a VAR model of lag length 1, VAR2 to a VAR model of lag
length 2, RSM1 to a bivariate regime switching model with constant probabili-
ties, RSM2 to the state-dependent probability model. RSM2 for the US contains
state-dependent probabilities depending only on the spread, as the full model
failed to converge.

Asterixed values are the lowest statistic values.
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Table 11: Overall Moments and Forecast Comparisons for short rates

Best H-statistics
us Ger UK
Central moments CIR RS5 RSl
Autocorrelogram VAR1L  RS3  VAR2

Best RM SE-statistics

US Ger UK
7. RSGL RSM2 RSGL
r2 RSG1 RSM2 RSG1

See Table (3) for nomenclature of the models estimated.

Table 12: Small Sample Experiment: % Time Models do Best

Unconditional Moments Forecasts
AR RSAR VAR RSVAR AR RSAR VAR RSVAR
ry central 15.9% 59.9% 14.8% 9.4% | 1y 306% 16.3% 245% 28.6%
p(re) 43.4% 3.3% 43.7% 9.6% | r? 294% 18.0% 20.5% 32.1%

2 central 90.1% 9.9% 2t 45.8% 54.2%
p(z) 36.3% 63.7% | 2?2 46.1% 53.9%
p(re, 2¢) 88.9% 11.1% | cross 44.2% 55.8%

We simulate data of length 297 from the joint estimation from Table (A-10) of a bivariate system of the short rate v, and spread z:.
We then estimate an AR(1), a regime-switching AR(1), a VAR, and a regime-switching VAR, denoted AR, RS AR, VAR and RS
VAR respectively. We record which model gives the lowest H and RM SE statistics. The table lists the percentage times of which
model performed the best in small the small sample. We conducted 1000 simulations.

For unconditional moments “r; central” refers to the H-statistic for the mean, variance, skewness and kurtosis of r; over the
in-sample period of 267, p(r:) refers to the H-statistic for the first 10 autocorrelations of the r;, while p(r:, z:) refers to the
cross-correlations from lags -3 to +3 of the r; and z;.

The forecasts use RM SE over an out-sample size of 30.



Table 13: Small Sample Distribution of Moments

Short Rates
Population AR RSAR VAR RSVAR
Mean 7.3289 7.3905 8.5011 7.4066 8.8526

(1.3454) (1.4462) (1.3802) (1.7742)
Variance ~ 11.2885  10.9206 7.8944  11.0027  8.9975
(3.8646) (2.2026) (4.3127) (2.6317)

Skewness 0.5750 0.2032 0.1185
(0.1700) (0.3087)
Kurtosis 3.0639 3.1360 3.2287
(0.3263) (3.3094)

Spreads
Population AR RSAR VAR RSVAR
Mean 0.8642 0.8509 0.3410
(0.3903) (0.4304)
Variance 1.5460 1.4306 1.0500
(0.5161) (0.2705)
Skewness  -0.1815 -0.0790
(0.2812)
Kurtosis 3.0084 3.2709
(1.8155)

These are the means, with standard errorsin parentheses, of the moments of the estimated
models in a small sample of 267, in the experiment of Table (12). The skewness and
kurtosis for the AR and VAR models was not recorded because these are theoretically 0
and 3 respectively.

Table 14: RCM Statistics

us Ger UK
RS1 2815 5529 096.14
RS2 - 51.84 9512
RS3 3744 7530 -
RS4 2961 46.87 96.56
RS5 2329 4613 9421
RSD1 40.73 3041 49.75
RSG1 5121 4128 5254
RSG2 50.90 44.07 51.04
RSM1 2473 4438 96.12
RSM2 2219 2634 86.28

See Table (3) for nomenclature of the models estimated.

Blanks in the table mean the RS model could not be estimated. RSM2
for the US contains state-dependent probabilities depending only on
the spread, rather than both the short rate and the spread, as the full
mode failed to converge.



Table 15: Markov Regimes and Business Cycles

us
Correlations Probit Forecasting
mthsahead j  p(1 — pr—j1,1€C)  p(zi—j,r€c)  B(1—pe—jy1) Nforecast [B(z—;) Yforecast
1 0.4264 -0.3047 1.6203 83.8 -0.2811 80.8
(0.1153) (0.1104) (0.2569) (0.0605)
2 0.4618 -0.3989 1.7537 84.2 -0.3847 82.3
(0.1149) (0.1028) (0.2603) (0.0645)
4 0.4840 -0.5096 1.8428 84.4 -0.5611 86.7
(0.1123) (0.0851) (0.2640) (0.0760)
6 0.4122 -0.5296 1.5569 85.1 -0.5750 87.0
(0.1126) (0.0820) (0.2584) (0.0745)
Germany
Correlations Probit Forecasting
mthsahead j  p(1 — ps—jy1,r€C)  p(ze—j,rec) Bl —pi_jp1) forecast [(z—;) Yforecast
1 0.1892 -0.5276 0.5789 60.2 -0.4903 75.2
(0.1109) (0.0719) (0.1879) (0.0601)
2 0.2162 -0.5830 0.6632 61.5 -0.6073 75.8
(0.1107) (0.0615) (0.1890) (0.0696)
4 0.2472 -0.6590 0.7615 63.9 -0.8474 779
(0.1101) (0.0508) (0.1908) (0.0927)
6 0.2392 -0.6811 0.7366 63.6 -0.9400 81.6
(0.1106) (0.0483) (0.1915) (0.1024)
UK
Correlations Probit Forecasting
mthsahead j  p(1 — pr—j1,1€C)  p(ze—j,rec)  B(1—pe—jy1) Nforecast [B(z—;) Yforecast
1 0.0911 -0.3439 0.6856 54.1 -0.2821 67.3
(0.1066) (0.0999) (0.4590) (0.0506)
2 0.0779 -0.3828 0.5864 53.6 -0.3218 69.4
(0.1067) (0.0962) (0.4601) (0.0522)
4 0.0098 -0.4508 0.0740 51.3 -0.4018 74.1
(0.1077) (0.0899) (0.4646) (0.0564)
6 -0.0230 -0.4680 -0.1756 49.0 -0.4274 724
(0.1063) (0.0837) (0.4710) (0.0584)

Recessions are coded as a 1, expansions as 0, and are obtained from NBER and the Center for International Business
Cycle Research at Columbia University (CIBCR). The symbol p; represents the ex-ante probabilities p(s; = 1|Z;—1) of
the first regime from the term spread RS model with time-varying transition probabilities (RSM2). (Note that p; isin the
information set at timet — 1.) The first regime corresponds to the unit root regime with lower conditional volatility, so
1— p; isthe probability of being in the second higher conditional volatility mean-reverting regime. Thefirst two columns
give the correlation of the recession indicator (rec) with the ex-ante probability of the second regime and the spread z;.
Standard errors are calculated using GMM with 3 Newey-West lags. The last four columns show results from fitting
the Probit model p(rec; = 1) = F(a + B(.)a:—;), where F'(.) is the normal cumulative distribution function, g is the
coefficient corresponding to the variable a;—;, and we let a;_; be current and lagged values of 1 — p;—; and 2z;—;_1.
Lags are in months. The %forecast column is the percentage of correctly forecasted (in-sample) values from the Probit
regression.
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r+ from the bivariate term spread RS VAR with constant transition probabilities, after integrating
out the spread z; and the state s;. The dashed lines represent the the drifts conditional on each state.
The second plot gives the drifts of the short rate from 3 RS models: the RS VAR with constant
transition probabilities, the RS VAR with time-varying transition probabilities, and the univariate RS
short rate model with constant transition probabilities. All RS models are estimated jointly over the
US, Germany and UK.

Figure 5: Drift functions of RS models
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r+ from the bivariate term spread RS VAR with constant transition probabil -
ities, after integrating out the spread z; and the state s;. The top panel gives the conditional volatility
itself while the bottome panel shows the expected state associated with each level of the short rate.
The second plot gives the conditional volatilities of the short rate from 3 RS models: the RS VAR
with constant transition probabilities, the RS VAR with time-varying transition probabilities, and the
univariate RS short rate model with constant transition probabilities. All RS models are estimated
jointly over the US, Germany and UK.

Figure 6: Conditional Volatility of RS models
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out the spread r; and the state s:. The middle plot shows the the conditional volatility along with
the expected state from the bivariate term spread RS VAR with constant transition probabilities. The
bottom plot shows the conditional volatiltiy of the spread for both RS models.

Figure 7. Conditional Drift and Volatility of the Term Spread



Appendix: Tables of Estimated Models

Table A-1: Univariate RS AR(1) model: Constant Transition Probabilities

United States Germany Gt Britain Joint

Param Stderror pvalue Param Stderror  pvaue Param Stderror pvalue | Param Stderror  pvalue

p1 00284 0.0228 02135 | -0.0089 0.0464 0.8475 | -0.0786 0.0721  0.2760 | 0.0567 0.0311  0.0680
p2 06887 05934 02457 | 0.3990 0.2398 0.0961 | 1.3380 0.4677 0.0042 | 0.7541 0.2338 0.0013
B 00000 0.0000 09999 | 0.0007 0.0053 0.8859 | 0.0023 0.0047 0.6259 | 0.0120 0.0005 0.0000
B2 00739 0.0383 0.0537 | 00452 0.0193 0.0190 | 0.1127 0.0297 0.0002 | 0.0702 0.0059  0.0000
o1 03002 0.0180 0.0000 | 0.1681 0.0130 0.0000 | 02101 0.0189 0.0000 | 0.2382 0.0137  0.0000
o 12725 01215 0.0000 | 0.7178 0.0585 0.0000 | 1.1567 0.0836 0.0000 | 1.0528 0.0525 0.0000
P 09757 00680 0.0000 | 09198 0.0305 0.0000 | 0.6272 0.0606 0.0000 | 0.8960 0.0239  0.0000

Q 09199 0.0548 0.0000 | 0.8584 0.0560 0.0000 | 05410 0.0779 0.0000 | 0.8142 0.0436  0.0000

A likelihood test for P+Q=1 for the UK gives a x? value of 2.4152, with p-value 0.1202.

Estimated model:
Ary = p(st) — B(st)re-1 + o(ss)es
et ~1IDN(0,1)

P = p(st = 1|8t_1 = 1)
Q=p(st =2s-1 =2)

Table A-2: Univariate RS models. Time-varying Transition Probabilities

Germany UK
Parameter Est Stderor pvalue Est Stderor pvalue
1 -0.0078 0.0157 0.6175 | -0.0707 0.0716 0.3236
o 0.3851 0.2407 0.1096 | 1.3385 0.4636 0.0039
51 0.0000 0.0003 1.0000 | 0.0032 0.0283 0.9098
B2 0.0438 0.0585 04540 | 01122 0.0718 0.1179
o1 0.1647 0.0128 0.0000 | 0.2091 0.0185 0.0000
09 0.7123 0.0607 0.0000 | 1.1545 0.0836 0.0000
ay 27918 12205 0.0222 | 1.8502 0.9368 0.0483
b1 -0.0804 0.1885 0.6698 | -0.1357 0.0932 0.1452
as -1.0862 18266 05521 | 1.3594 1.2152 0.2633
by 03726 0.2845 0.1904 | -0.1189 0.1120 0.2885
LR test x2=6.12, pvalue = 0.0468 x2=2.55, pvalue = 0.2800

LR refersto alikelihood ratio test for by, b2 = 0.

US model and joint estimation failed to converge.

p(s: =1i|s

Estimated model:
Ary = [J,(St) — ﬂ(st)""tfl + G(st)€t7

e®itbiTi—1

t—1 :1/) =

1+eai+l’i7't—1 !

e ~ 1IDN(0,1)

i=1,2.



Table A-3: Univariate RS GARCH(1,1) model

us GER
Parameter Est Std error  pvalue Est Std error  pvalue
I 0.0323 04066 0.9366 | 0.0200 0.0174 0.2503
1o 0.6927 05548 0.2119 | 0.3668 0.1179  0.0019
Joit 0.0032 0.0781 0.9672 | 0.0000 0.0000  1.0000
B 0.0700 0.0470 0.1365 | 0.0814 0.0175 0.0000
ao1 0.0503 0.0160 0.0016 | 0.0120 0.0033  0.0003
ao2 05123 17291 0.7670 | 0.0714 0.0332 0.0317
a 0.0284 04464 0.9500 | 0.8470 0.2125 0.0001
a11 0.0393 0.2756 0.8865 | 0.8371 0.2840 0.0032
bo1 0.2112 0.3000 0.4814 | 0.0000 0.0000  1.0000
b11 0.8213 15084 0.5861 | 0.0050 0.0893  0.9551
P 09731 0.0326 0.0000 | 0.9051 0.0400 0.0000
Q 09296 0.0377 0.0000 | 0.9063 0.0582  0.0000
UK model failed to converge.
Estimated model:
AT‘t = N(St) —ﬂ(St)T‘t—l + \/ ht(st)ut, Ut ~ ||DN(0, 1)
he(st) = ao(st) + ar(se)ei—1 + bi(st)hi—1
he = Be-a[ri] — (Be-lri])?
€ =7T¢ — Ey_1[ry]
P :p(st = 1|St_1 = 1), Q :p(st = 2|St_1 = 2)
Table A-4: Univariate RS CIR - constant probs
us GER UK
Parameter Est Stderor pvalue Est Stderor pvalue Est Stderor pvalue
1 0.0471 00670 04817 | 0.0701 0.0446 0.1157 | -0.0145 0.0663 0.8273
Lo 05273 05076 0.2990 | 0.2883 0.2223 0.1947 | 1.2283 0.4378 0.0050
Joit 0.0044 0.0008 0.0000 | 0.0182 0.0010 0.0000 | 0.0086 0.0006 0.0000
B2 0.0564 0.0120 0.0000 | 0.0235 0.0046 0.0000 | 0.1023 0.0135 0.0000
o1 0.1239 0.0076 0.0000 | 0.0800 0.0055 0.0000 | 0.0679 0.0059 0.0000
02 03785 0.0372 0.0000 | 0.2608 0.0238 0.0000 | 0.3764 0.0277 0.0000
P 09806 0.0120 0.0000 | 0.9509 0.0273 0.0000 | 0.6362 0.0591 0.0000
Q 09338 0.0366 0.0000 | 0.8922 0.0645 0.0000 | 0.5170 0.0709 0.0000

A Wald test for P+Q=1 for the UK gives a x* value of 2.7541, with p-value 0.0970.

Estimated model: .
Ary = p(st) = B(se)re-1 +o(se)ri e
er ~ IIDN(0, 1)
P=p(st=1s;-1=1),Q =p(st =2s:-1 =2)



Table A-5: Univariate RS CIR - time varying probs

us GER UK
Parameter Est Stderror pvaue Est Stderror pvaue Est Stderror pvaue
I 0.0330 0.0219 0.1311 | 0.0706 0.0449 0.1163 | -0.0152 0.0616  0.8054
2 04183 05942 04814 | 0.3010 0.2188 0.1688 | 1.2448 0.4379  0.0045
e 0.0000 0.0000 0.0000 | 0.0183 0.0199 0.3595 | 0.0088 0.0205 0.6694
B2 0.0497 01205 0.6799 | 0.0262 0.0714 0.7143 | 0.1037 0.0746  0.1646
o1 0.1225 0.0081  0.0000 | -0.0783 0.0063 0.0000 | -0.0680 0.0057  0.0000
o2 0.3894 0.0441 0.0000 | 0.2559 0.0215 0.0000 | 0.3763 0.0277  0.0000
a1 6.4688 3.1058 0.0373 | 1.4738 14260 03014 | 16577 09211 0.0719
b1 -04288 03620 0.2362 | 0.2398 0.2614 0.3589 | -0.1078 0.0885 0.2231
as -7.5211 51933  0.1476 | -0.0445 15631 09773 | 19314 12441  0.1206
b2 11684 0.7200 0.1046 | 0.3056 0.2105 0.1466 | -0.1806  0.1143  0.1141
x?2 pvalue x? pvaue x? pvalue
Wald Test 4.47 0.1068 046 0.7948 3.08 0.2147
LR Test 14.30 0.0008 203 0.3627 3.16 0.2061

Weld and likelihood ratio (LR) test refer tolbl, by = 0.
Estimated model: Ary = u(s:) — B(s¢)re—1 + O'(St)’l"fflet e ~1IDN(0,1)

p(se =ilse-1 =) =

editbiTe—1
14e%itbiTe—17

i=1,2.



Table A-6: Multi-country one-regime restricted models
Granger causality: G1

Parameter Estimate Std p value

s 02162 0.1161 0.0626
Qger -0.0067 0.0906 0.9410
Cuk 04202 0.1878 0.0253
Pus 0.9706 0.0147 0.0000
Per 09735 0.0114 0.0000
Puk 09114 0.0223 0.0000
Coer 00261 0.0106 0.0138
Cuk 00706 0.0222 0.0015
Yger 0.0066 0.0279 0.8139
Vuk 0.1062 0.0488 0.0295
Ous 0.6893 0.0299 0.0000
ger 04557 0.0198 0.0000
Tuk 07917 0.0343 0.0000

Likelihood ratio test of this model vs unrestricted VAR x? = 1.0708 with p-value = 0.9567.
Likelihood ratio test of pys = pger = pur = p gives x> = 6.3702 with p-vaue = 0.0414.

Pus 0 0
Estimated moddl: r; = o + Ari—1 + e Wwhere A = | (ger  Pger 0 |. Covariance is ho-
Cuk 0 Puk

moskedastic given by the one-regime equivalent of egn (30).

Diagonal Model: D1

Parameter Estimate Std p value

Qs 02563 0.1177 0.0294
Oger 0.1082 0.0786 0.1685
Qyk 04595 0.1909 0.0161
Pus 0.9652 0.0149 0.0000
Pger 0.9846 0.0106 0.0000
Puk 0.9568 0.0174 0.0000
Yger 0.0089 0.0286 0.7557
Yuk 0.1119 0.0502 0.0258
Ous 0.6895 0.0299 0.0000
Oger 04608 0.0120 0.0000
Ouk 0.8064 0.0350 0.0000

Likelihood ratio test of this model vs unrestricted VAR x? = 16.8828 with p-value = 0.0506.
Likelihood rétio test of pus = pger = puk = p gives X2 = 2.2204 with p-value = 0.3295.

Estimated model: R: = a+diag(p) R:—1+¢€:. Covarianceis homoskedastic given by the one-regime
equivalent of eqn (30).



Table A-7: Multicountry RS Models

Granger-causality model: RSG1
(Restrict o, p;, 04, P, Q across countries)

Parameter Estimate Std error pvalue

a1 0.0110 0.0346  0.7500
%) 04851 0.1470 0.0010
1 0.9956 0.0056  0.0000
P2 09336 0.0187 0.0000
C11 0.0022 0.0037 0.5498
C12 0.0046 0.0131 0.7247
Co1 -0.0022 0.0048 0.6483
G20 0.0455 0.0179 0.0112
e -0.0105 0.0066 0.1103
¥ 0.0221 0.0330 0.5038
yuk 0.0210 0.0063 0.0009
yuk 0.0387 0.0629 0.5387
o1 -0.0483 0.0047  0.0000
P 03210 0.0173  0.0000
P 3.7133 0.3602  0.0000
Q 1.8963 0.1541  0.0000

p(st*®) 0 0
Estimated model: 7, = a(s:) + A(s¢)ri—1 + € where A = (Cl(sf”) p(sI) 0 .

Ca(st") 0 p(st*)
Covariance is homoskedastic given by egn (30) with the same o; across countries.
Probabilities are in logit form, so the actual transition probability for p(s; = 1|si—1 = 1) =

Q
andp(s; =2|st-1 =2) = £ 5 .

e
14eP

Diagonal model: RSD1
(Restrict oy, p;, 04, P, @ across countries)

Parameter Estimate Std error  pvaue

a1 0.0617 0.0250 0.0136
%) 0.6255 0.2401  0.0092
1 0.9909 0.0031  0.0000
P2 0.9349 0.0240  0.0000
e 0.0048 0.0179 0.7888
3" 0.0307 0.0754 0.6842
ik 0.0562 0.0274  0.0400
yuk 0.1450 0.1469  0.3236
o1 0.1655 0.0096  0.0000
lop) 1.0990 0.0532  0.0000
P 3.9549 0.3599  0.0000
Q 1.8607 0.1480  0.0000

Model: Each country i hasthe processr; = a(s:) — p(s:)ri_1 + €& with the covariance given by

egn (30) with the same o; across countries.

Probabilities are in logit form, so the actual transition probability for p(s; = 1|s¢—1 = 1) =
)

1@

_e
14eP

andp(St = 2|St_1 = 2) =



Table A-8: Multicountry RS Models

Granger-causality model: RSG2
(Restrict o, p;, P, @ across countries)
Parameter Estimate Std error p-vaue

a1 0.0026 0.0190 0.8923
1% 04747 0.1508 0.0016
p1 0.9967 0.0028  0.0000
P2 09365 0.0171  0.0000
C11 0.0021 0.0019 0.2830
C12 0.0035 0.0129 0.7879
Co1 -0.0017 0.0024  0.4919
Co2 0.0414 0.0189 0.0288
e -0.0154 0.0034  0.0000
7" 0.0197 0.0266  0.4608
yuk 0.0252 0.0040 0.0000
yuk 0.0378 0.0428 0.3773
011 0.0586 0.0034  0.0000
012 03069 0.0185  0.0000
021 0.0455 0.0025 0.0000
022 0.2583 0.0193  0.0000
031 0.0369 0.0026  0.0000
032 0.3712 0.0257  0.0000
P 39463 0.7485  0.0000
Q 19252 0.2347  0.0000

p(st*®) 0 0
Estimated model: 7: = a(s¢) + A(se)ri—1 + € where A = | (1(sI°")  p(si") 0 .
Ca(st") 0 p(st")
Covariance is homoskedastic given by egn (30).
Probabilities are in logit form, so the actual transition probability for p(s; = 1|s;—1 = 1) =
@
T1e@ -

_e
1+eP

andp(s; = 2|se—1 =2) =
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