
1

Elasticsearch Deep Dive
June 13, 2019

about.gitlab.com

https://about.gitlab.com

2

Content

1. What is Elasticsearch? Why do we want it?

2. Differences between DB search and ES search

3. Why isn’t it used on GitLab.com

4. Initial setup

5. Elasticsearch schema and analyzers

6. Interaction with Rails models

7. How search works

8. gitlab-elasticsearch-indexer

3

What is Elasticsearch? Why do we want it?

● Search and analytics engine built on Apache Lucene
○ Open-source
○ RESTful
○ Distributed

● most popular search engine
○ log analytics
○ full-text search

4

What is Elasticsearch? Why do we want it?

● Accepts JSON documents using the API or ingestion tools such as Logstash.

● Automatically stores the original document

● Adds a searchable reference to the document in the cluster’s index.

● Permits you to search and retrieve the document using the Elasticsearch API

○ Can also use Kibana to visualize your data and build interactive dashboards.

5

What is Elasticsearch? Why do we want it?

● High performance

○ The distributed nature of Elasticsearch enables it to process large volumes of data in parallel,

quickly finding the best matches for your queries.

● Near real-time operations

○ Elasticsearch operations such as reading or writing data usually take less than a second to

complete. This lets you use Elasticsearch for near real-time use cases such as application

monitoring and anomaly detection.

6

Differences between DB search and ES search

● Main difference: Allows for

global blob (Code) and commit

search

○ DB only allows project-level

searches

● Note: Filtered search does not

currently use Elasticsearch

7

Why isn’t it used on GitLab.com?

● Enabling it for all projects would result in a 66% storage increase

○ Analysis available here:

https://gitlab.com/gitlab-com/gl-infra/infrastructure/issues/1597#note_38908523

● Administration support is lacking

○ Work is ongoing: https://gitlab.com/groups/gitlab-org/-/epics/428

● No way to do zero-downtime deploys - requires a rails restart at a minimum (for now)

○ Problem is equivalent to DB migrations, but no good tooling around it

● Good news: an MVC is going live very soon as we’ve completed enough work

(https://gitlab.com/groups/gitlab-org/-/epics/853) to allow us to enable it for a subset of

groups/projects

https://gitlab.com/gitlab-com/gl-infra/infrastructure/issues/1597#note_38908523
https://gitlab.com/groups/gitlab-org/-/epics/428
https://gitlab.com/groups/gitlab-org/-/epics/853

8

Initial setup

● Installing Elasticsearch

○ Requirements available in our documentation

● Initial indexing of content

○ Done via rake tasks

■ Soon to be added to the admin console

○ `gitlab:elastic:index`

■ Runs all indexing operations in the foreground, except repo indexing

■ Suitable for all but extremely large instances, which must run each indexing operation separately in

order to avoid overloading sidekiq

● Enabling indexing and search via Elasticsearch

https://docs.gitlab.com/ee/integration/elasticsearch.html#version-requirements
https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/11408

9

Initial setup

10

Initial setup

11

Schema and Analyzers

● All objects have the same document-type and live in the same index

○ Permits us to have parent-child relationships

○ We depend on these relationships for permission checks

○ Requires us to implement our own separate type checks

○ All types share all fields, which means we have lots of sparse fields

■ ES 6.0 has great storage improvements for sparse fields which means we don’t get a big storage penalty

● We should probably move to one index per type, but:

○ We lose the ability to filter by project attributes OR

○ We are forced to denormalize project data into every class type, ballooning storage usage

https://www.elastic.co/blog/minimize-index-storage-size-elasticsearch-6-0

12

Schema and Analyzers

● Analyzers are where the search magic happens

○ Prepare the data for better searching

○ Each analyzer increases storage needs

○ They’re composed of tokenizers and filters

● For models by default we use the standard tokenizer with three filters

○ Standard: doesn’t really do anything

○ Lowercase: normalizes text to lowercase

○ My_stemmer: a custom stemmer filter that uses light_english stemmer

● Models also have a `my_ngram_analyzer` which creates 2- and 3-grams for Projects’

`name_with_namespace`

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-standard-tokenizer.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/analysis-standard-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stemmer-tokenfilter.html

13

Schema and Analyzers

● Repositories and Commits have more

interesting analyzers

● We do a lot of tokenizing with `asciifolding`

and `lowercase` filters

● Code analyzer is special

○ `edgeNGram` filter that creates grams between

2 and 40 characters wide

○ Custom `code` filter with lots of regex patterns

■ Extracts digits, class names, terms inside quotes,

separates terms on periods, and separates path

terms

○ Custom `sha_analyzer` which tokenizes using

ngrams between 5 and 40 characters

https://gitlab.com/gitlab-org/gitlab-ee/blob/master/ee/lib/elasticsearch/git/model.rb#L26
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/ee/lib/elasticsearch/git/model.rb#L26
https://gitlab.com/gitlab-org/gitlab-ee/issues/10693

14

Interaction with Rails models

● We use a customized elasticsearch-rails gem to link up our models with ES
● ApplicationSearch module is the entry-point that defines callbacks and shared

methods
○ Each class defines their own `*Search` module (for example, `ProjectsSearch`)
○ These classes define base elasticsearch query structure and special indexing concerns

● ApplicationSearch defines basic security concerns like filtering by projects the current
user has access to

● Elasticsearch::Git::Repository defines Blob, WikiBlob, and Commit interactions
○ Need a separate module because repos are not in the database
○ We only index the default branch, otherwise costs would skyrocket
○ We have two indexers: a rails script (due to be removed!) and gitlab-elasticsearch-indexer

https://gitlab.com/gitlab-org/gitlab-ee/tree/master/ee/lib/gem_extensions
https://gitlab.com/gitlab-org/gitlab-ee/issues/6481
https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer

15

gitlab-elasticsearch-indexer

● https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer
● Written in Go
● Replacement for bin/elastic_repo_indexer, slated for 12.1
● Greatly improved speed (3-10x!) and resource usage

○ Better memory handling, but still memory hungry
○ Much better I/O (our bottleneck when reading repository data) and encoding detection
○ Allows us to hide from the sidekiq OOM killer

● Used only for blobs (which includes wiki blobs) and commits
● Talks to Gitaly, gets a diff between last_commit as found in IndexStatus and the current

SHA
○ Add new blobs, reindexes changed blobs, and deletes removed blobs to the ES index
○ Indexes commits as well!

■ Assumes that commits are only ever added (oops):
https://gitlab.com/gitlab-org/gitlab-ee/issues/10937

https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer
https://gitlab.com/gitlab-org/gitlab-ee/issues/6481
https://gitlab.com/gitlab-org/gitlab-ee/issues/10937

16

Interaction with Rails models

● ApplicationSearch defines callbacks for incremental indexing when models get
updated

○ Insert, Update, and Destroy all trigger ES updates via ElasticIndexerWorker

● Repositories get updated via GitPush worker hooks
○ ElasticCommitIndexerWorker calls Gitlab::Elastic::Indexer
○ Gitlab::Elastic::Indexer decides whether to call rails script or gitlab-elasticsearch-indexer

■ Can trigger partial updates (FROM and TO SHAs)
○ The last commit that was indexed is kept in the DB in the IndexStatus model

17

How search works

● An elasticsearch query is a JSON structure that can

contain multiple filters

● We implement permissions as bool filters on the original

Elasticsearch query

○ We can filter for projects a user has access

○ Filter for projects with features enabled (ex. public issue

tracker)

● Highlighting is given to us by Elasticsearch

○ “Highlight” field in query with fields to highlight

○ Response contains a “highlight” element for each search

hit with highlighted fragments

{
 "query": {
 "bool" : {
 "must" : {
 "term" : { "user" : "kimchy" }
 },
 "filter": {
 "term" : { "tag" : "tech" }
 },
 "must_not" : {
 "range" : {
 "age" : { "gte" : 10, "lte" : 20 }
 }
 },
 "should" : [
 { "term" : { "tag" : "wow" } },
 { "term" : { "tag" : "elasticsearch" } }
]
 }
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html

18

How search works

● We expose Elasticsearch’s simple_query_string

○ Allows users to use exclusion operators

○ Exact search matches

○ Complex, but powerful

● We also enhance it with our own syntax search filters

○ Defined using Gitlab::Search::Query

○ Relevant usages in lib/gitlab/file_finder.rb and ee/lib/elasticsearch/git/repository.rb

○ Allow users to filter by path, filename, or extension

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl-simple-query-string-query.html
https://docs.gitlab.com/ee/user/search/advanced_search_syntax.html#syntax-search-filters
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/lib/gitlab/search/query.rb

19

Questions?
Check the Google Doc at

https://docs.google.com/document/d/1cwo5n3XY
aTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/ed

it?pli=1#

https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#
https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#
https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#

