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What is Elasticsearch? Why do we want it?

● Search and analytics engine built on Apache Lucene
○ Open-source
○ RESTful
○ Distributed

● most popular search engine
○ log analytics
○ full-text search
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What is Elasticsearch? Why do we want it?

● Accepts JSON documents using the API or ingestion tools such as Logstash.

● Automatically stores the original document

● Adds a searchable reference to the document in the cluster’s index.

● Permits you to search and retrieve the document using the Elasticsearch API

○ Can also use Kibana to visualize your data and build interactive dashboards.
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What is Elasticsearch? Why do we want it?

● High performance

○  The distributed nature of Elasticsearch enables it to process large volumes of data in parallel, 

quickly finding the best matches for your queries.

● Near real-time operations

○ Elasticsearch operations such as reading or writing data usually take less than a second to 

complete. This lets you use Elasticsearch for near real-time use cases such as application 

monitoring and anomaly detection.
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Differences between DB search and ES search

● Main difference: Allows for 

global blob (Code) and commit 

search

○ DB only allows project-level 

searches

● Note: Filtered search does not 

currently use Elasticsearch
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Why isn’t it used on GitLab.com?

● Enabling it for all projects would result in a 66% storage increase

○ Analysis available here: 

https://gitlab.com/gitlab-com/gl-infra/infrastructure/issues/1597#note_38908523 

● Administration support is lacking

○ Work is ongoing: https://gitlab.com/groups/gitlab-org/-/epics/428 

● No way to do zero-downtime deploys - requires a rails restart at a minimum (for now)

○ Problem is equivalent to DB migrations, but no good tooling around it

● Good news: an MVC is going live very soon as we’ve completed enough work 

(https://gitlab.com/groups/gitlab-org/-/epics/853) to allow us to enable it for a subset of 

groups/projects

https://gitlab.com/gitlab-com/gl-infra/infrastructure/issues/1597#note_38908523
https://gitlab.com/groups/gitlab-org/-/epics/428
https://gitlab.com/groups/gitlab-org/-/epics/853
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Initial setup

● Installing Elasticsearch

○ Requirements available in our documentation

● Initial indexing of content

○ Done via rake tasks

■ Soon to be added to the admin console

○ `gitlab:elastic:index`

■ Runs all indexing operations in the foreground, except repo indexing

■ Suitable for all but extremely large instances, which  must run each indexing operation separately in 

order to avoid overloading sidekiq

● Enabling indexing and search via Elasticsearch

https://docs.gitlab.com/ee/integration/elasticsearch.html#version-requirements
https://gitlab.com/gitlab-org/gitlab-ee/merge_requests/11408
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Initial setup
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Initial setup
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Schema and Analyzers

● All objects have the same document-type and live in the same index

○ Permits us to have parent-child relationships

○ We depend on these relationships for permission checks

○ Requires us to implement our own separate type checks

○ All types share all fields, which means we have lots of sparse fields

■ ES 6.0 has great storage improvements for sparse fields which means we don’t get a big storage penalty

● We should probably move to one index per type, but:

○ We lose the ability to filter by project attributes OR

○ We are forced to denormalize project data into every class type, ballooning storage usage

https://www.elastic.co/blog/minimize-index-storage-size-elasticsearch-6-0
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Schema and Analyzers

● Analyzers are where the search magic happens

○ Prepare the data for better searching

○ Each analyzer increases storage needs

○ They’re composed of tokenizers and filters

● For models by default we use the standard tokenizer with three filters

○ Standard: doesn’t really do anything

○ Lowercase: normalizes text to lowercase

○ My_stemmer: a custom stemmer filter that uses light_english stemmer

● Models also have a `my_ngram_analyzer` which creates 2- and 3-grams for Projects’ 

`name_with_namespace`

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/analysis-standard-tokenizer.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.7/analysis-standard-tokenfilter.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stemmer-tokenfilter.html
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Schema and Analyzers

● Repositories and Commits have more 

interesting analyzers

● We do a lot of tokenizing with `asciifolding` 

and `lowercase` filters

● Code analyzer is special

○ `edgeNGram` filter that creates grams between 

2 and 40 characters wide

○ Custom `code` filter with lots of regex patterns

■ Extracts digits, class names, terms inside quotes, 

separates terms on periods, and separates path 

terms

○ Custom `sha_analyzer` which tokenizes using 

ngrams between 5 and 40 characters

https://gitlab.com/gitlab-org/gitlab-ee/blob/master/ee/lib/elasticsearch/git/model.rb#L26
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/ee/lib/elasticsearch/git/model.rb#L26
https://gitlab.com/gitlab-org/gitlab-ee/issues/10693
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Interaction with Rails models

● We use a customized elasticsearch-rails gem to link up our models with ES
● ApplicationSearch module is the entry-point that defines callbacks and shared 

methods
○ Each class defines their own `*Search` module (for example, `ProjectsSearch`)
○ These classes define base elasticsearch query structure and special indexing concerns

● ApplicationSearch defines basic security concerns like filtering by projects the current 
user has access to

● Elasticsearch::Git::Repository defines Blob, WikiBlob, and Commit interactions
○ Need a separate module because repos are not in the database
○ We only index the default branch, otherwise costs would skyrocket
○ We have two indexers: a rails script (due to be removed!) and gitlab-elasticsearch-indexer

https://gitlab.com/gitlab-org/gitlab-ee/tree/master/ee/lib/gem_extensions
https://gitlab.com/gitlab-org/gitlab-ee/issues/6481
https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer
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gitlab-elasticsearch-indexer

● https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer 
● Written in Go
● Replacement for bin/elastic_repo_indexer, slated for 12.1
● Greatly improved speed (3-10x!) and resource usage

○ Better memory handling, but still memory hungry
○ Much better I/O (our bottleneck when reading repository data) and encoding detection
○ Allows us to hide from the sidekiq OOM killer

● Used only for blobs (which includes wiki blobs) and commits
● Talks to Gitaly, gets a diff between last_commit as found in IndexStatus and the current 

SHA
○ Add new blobs, reindexes changed blobs, and deletes removed blobs  to the ES index
○ Indexes commits as well!

■ Assumes that commits are only ever added (oops): 
https://gitlab.com/gitlab-org/gitlab-ee/issues/10937 

https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer
https://gitlab.com/gitlab-org/gitlab-ee/issues/6481
https://gitlab.com/gitlab-org/gitlab-ee/issues/10937
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Interaction with Rails models

● ApplicationSearch defines callbacks for incremental indexing when models get 
updated

○ Insert, Update, and Destroy all trigger ES updates via ElasticIndexerWorker

● Repositories get updated via GitPush worker hooks
○ ElasticCommitIndexerWorker calls Gitlab::Elastic::Indexer
○ Gitlab::Elastic::Indexer decides whether to call rails script or gitlab-elasticsearch-indexer

■ Can trigger partial updates (FROM and TO SHAs)
○ The last commit that was indexed is kept in the DB in the IndexStatus model
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How search works

● An elasticsearch query is a JSON structure that can 

contain multiple filters

● We implement permissions as bool filters on the original 

Elasticsearch query

○ We can filter for projects a user has access

○ Filter for projects with features enabled (ex. public issue 

tracker)

● Highlighting is given to us by Elasticsearch

○ “Highlight” field in query with fields to highlight

○ Response contains a “highlight” element for each search 

hit with highlighted fragments

{
  "query": {
    "bool" : {
      "must" : {
        "term" : { "user" : "kimchy" }
      },
      "filter": {
        "term" : { "tag" : "tech" }
      },
      "must_not" : {
        "range" : {
          "age" : { "gte" : 10, "lte" : 20 }
        }
      },
      "should" : [
        { "term" : { "tag" : "wow" } },
        { "term" : { "tag" : "elasticsearch" } }
      ]
    }
  }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-highlighting.html
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How search works

● We expose Elasticsearch’s simple_query_string

○ Allows users to use exclusion operators

○ Exact search matches

○ Complex, but powerful

● We also enhance it with our own syntax search filters

○ Defined using Gitlab::Search::Query

○ Relevant usages in lib/gitlab/file_finder.rb and ee/lib/elasticsearch/git/repository.rb

○ Allow users to filter by path, filename, or extension

https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl-simple-query-string-query.html
https://docs.gitlab.com/ee/user/search/advanced_search_syntax.html#syntax-search-filters
https://gitlab.com/gitlab-org/gitlab-ee/blob/master/lib/gitlab/search/query.rb
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Questions?
Check the Google Doc at 

https://docs.google.com/document/d/1cwo5n3XY
aTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/ed

it?pli=1# 

https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#
https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#
https://docs.google.com/document/d/1cwo5n3XYaTDAJ48sMZJ8bHQVJ0RD5dlsdf28L96OZQw/edit?pli=1#

