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INTRODUCTION

This thesis investigates the question if and how practical public-key cryptosystems can
be proven post-quantum secure. In the post-quantum scenario, we consider attackers
with quantum capabilities that interact with classical networks. As many practical
cryptosystems were originally proven secure in idealised models that do not reflect
quantum capabilities, we will revisit their design rationale and show that a proof of
security is feasible, even in a model that does capture these additional capabilities. We
begin with a short introduction to the concept of provable security in general, focusing

in particular on the setting of post-quantum security.

Public-key cryptography and provable security

Cryptography is the science of designing schemes “to work with a communication system
in the presence of adversaries, for the purpose of defeating the adversaries’ intention”
[Riv]. This rather broad definition encompasses many goals, amongst which some of
the most important ones are the design of systems that provide communication secrecy,
as well as authentication and integrity of communicated messages. The importance
to achieve these goals is immediate, as the processing and communication of data has
become more and more ubiquitous. Until the late 70’s, however, all designs were given
in an “ad-hoc” fashion, meaning that they were conjectured to meet their goal because
it was not known how to execute a practical attack, and it was believed that nobody
would come up with such in due time. This intuition sometimes was falsified later,
with one notable example being Bleichenbacher’s attack [Ble98], leading to devastating
consequences. Furthermore, it wasn’t always made explicit what exactly the design
even was conjectured to achieve, as the security goals were often stated only informally.
For more advanced security goals like, e.g., authenticated key exchange or multiparty
computation, there exists a plethora of different scenarios that could be considered,

depending on context. Simply stating that a design is secure might hence be misleading.
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PROVABLE SECURITY. First introduced in [GM82] in the context of public-key encryp-
tion, provable security is a methodological approach that consists of three components:
First, a formal definition of the goal that is to be achieved, second, a construction,
and third, a rigorous proof that under some underlying hardness assumption, the
construction indeed meets the defined goal. In the context of public-key encryption,
common examples for problems that are conjectured to be hard are prime factorisation

and computing discrete logarithms in certain groups.

In more detail, the proof shows that for any adversary, successfully attacking the
scheme according to the given definition, there also exists a solver (which is usually
called a reduction) that can exploit this adversary to efficiently solve the underlying
problem. A security proof hence reduces the (potentially rather complex) task of
cryptanalising a particular scheme to the task of studying the underlying hardness
assumption. Today, the paradigm of provable security is widely accepted as standard

to justify a design rationale, see, e.g., [KL14].

THE IMPORTANCE OF TIGHT SECURITY PROOFS. While on a high level, a security
reduction might be understood as a proof by contradiction, it is crucial to quantify how
tightly a hypothetical attacker can be related to the reduction, both in terms of success
probability and running time. Say we consider a hypothetical attacker A, we constructed
a reduction B and we showed that A’s success probability in attacking the scheme can
be upper bounded in terms of B’s success probability in solving a (presumably hard)
problem P. The reduction is called tight (see, e.g., [BR96, BBM00, BR09)]) if B does
not run significantly longer than A itself, and it is shown that B succeeds in solving P
whenever A succeeds in attacking the scheme. In this case, the reduction allows us to
argue that the scheme is as secure as the problem is hard, and we can simply choose
parameters for which the underlying problem is conjectured to be so. On the other hand,
we call a reduction non-tight if the reduction B does run significantly longer than the
attacker A itself, or if the proven upper bound for A’s success probability is significantly
larger than B’s success probability. To make up for this gap, the parameters of the
underlying problem then have to be scaled up to render it harder. Since this scaling up
in turn would lead to less efficient schemes, it is by far more desirable to give a tight
reduction whenever possible. There also exist definitions that take into consideration
the amount of memory that has to be used, see, e.g., [ACFK17, BJL17, WMHT18§],

this thesis, however, will only be considered with the definition given above.

ACTIVELY SECURE PUBLIC-KEY ENCRYPTION. The security definition given in [GM8&2]
was superseded by the definition of Indistinguishability under Chosen Plaintext Attacks
(IND-CPA security, [GM84]). While the two definitions are equivalent, the notion of
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IND-CPA security is easier to work with. Intuitively, IND-CPA security formalises
that an adversary, given the public key, cannot tell apart encryptions of plaintexts
of their choosing. The definition is given in terms of a security game, in which the
adversary receives a public key and must choose two messages. The game then provides
the adversary with an encryption of one of these messages, and the adversary wins
the game if it can tell which message was encrypted. A scheme is said to possess
IND-CPA security if no adversary can win both with high probability and in reasonable
time. This definition was expanded further to the notion of Indistinguishability under
Chosen Ciphertext Attacks (IND-CCA security, [NY90, RS92]). The respective security
game differs from the IND-CPA game by additionally providing the adversary with a
decryption oracle that decrypts ciphertexts of the adversary’s choosing. While it might
not be clear at a first glance how a real-world adversary interacting with the scheme
could enforce the system to provide such an oracle, IND-CCA-like attacks indeed have
occured in practice (e.g., Bleichenbacher’s attack [Ble98, BFKT12]): Intuitively, the
additional attack surface stems from the fact that the scheme’s functionality is “plugged
in” into a more complex primitive (e.g., a protocol to exchange secret key material over
an insecure channel). As Bleichenbacher’s attack has shown, the notion of IND-CPA

security is not sufficient to show that this plugging-in can be done, securely.

Today, the notion of IND-CCA security is hence widely accepted as the standard
security notion for public-key encryption schemes, however, it is usually much more
difficult to prove than IND-CPA security. In order to simplify the construction of
IND-CCA secure schemes, several transformations have been suggested that turn a
public-key encryption scheme with weaker security properties into an IND-CCA one,

generically, with the most efficient constructions being in the random oracle model.

The Random Oracle Model (ROM)

The random oracle model is a proof heuristic in which unkeyed public hash functions
are replaced with an idealisation: The hash function is replaced with a perfectly random
function to which the attacker has oracle access. Since its introduction [BR93], the
ROM has allowed cryptographers to prove practical cryptosystems secure for which
proofs in the standard model have been elusive, with notable examples in the realm of
encryption being OAEP [BR95], REACT [OP01], GEM [CHJ"02], DHIES [ABRO1] and
the Fujisako-Okamoto (FO) transform [FO99, FO13]. In the realm of signatures, some
notable examples are the Fiat-Shamir transform [PS96b], PSS [BR96] and Okamoto-

13



Schnorr blind signatures [PS96a]. Indeed, REACT, GEM, FO and the Fiat-Shamir
transform will be important subject of this thesis, as in the random oracle, they achieve
the desired level of security from weaker properties, albeit not necessarily with a tight
reduction. In the next section, however, we will see that their original proofs were unfit
to argue that these constructions are also post-quantum secure. In order to already
hint at how these proofs might fail when quantum attackers have to be considered, we
will now quickly recap some of the most important properties of the ROM.

In general, the ROM allows for proofs that are conceptually simpler and often tighter
than proofs in the standard model, with an important reason being that due to its

oracle nature, the ROM enjoys the following two convenient properties:

PREIMAGE AWARENESS. Since a random oracle O has to be accessed by an oracle
query in order to learn the value O(z) of a particular preimage z, a security reduction
can keep track of the preimages that the attacker was interested in. A common proof
strategy is to argue that the hypothetical attacker could not possibly succeed unless it
queries the oracle on a particular preimage, and that this preimage then can be used
by the reduction to solve the underlying problem. Since preimage awareness allows a
reduction to extract a solution from the attacker, this property is also sometimes called

extractability.

PROGRAMMABILITY. Since random oracle values are undetermined until the attacker
poses a query, the underlying function can be changed on all unqueried values during the
security proof. As a consequence, a reduction can determine oracle answers according
to its own needs, e.g., by embedding its own problem instance in one of its responses.
As long as the answers are uniform and consistent with the rest of the attacker’s view,
this change will not be noticed.

While there exist pathological examples of ROM uninstantiability [CGH98, BFM15],
meaning that there exist constructions that are provably secure in the ROM, but
insecure when instantiated with any concrete hash function, the schemes we encounter
in practice do not show the behavior of those schemes. Indeed, we do not know of any
attacks against schemes that were proven secure in the random oracle model. Hence, the
security of a cryptographic scheme in the ROM is still believed to be a good indicator

for its security in the real world.

Post-quantum security

Opposed to the computers that are in use as of today, the internal workings of quantum

computers are based on the laws of quantum mechanics, and work with quantum states.
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As a simplified intuition, we can envision a quantum bitstring as a collection of several
classical bitstrings, all waiting to happen with a certain probability. The bitstring is
then said to be a superposition of the constituting classical bitstrings. Together with
the fact that classical information can be obtained from a quantum state by performing
measurements, we observe that quantum states enjoy fascinating features: Unlike their
classical counterparts, two quantum states can become entangled, meaning that classical
information resulting from a measurement of either one is perfectly correlated to the

classical information that would be obtained from the other one.

Entanglement is one of the reasons why quantum computers are considered more
powerful than classical computing devices. As the first (theoretical) example for
quantum supremacy, Shor [Sho94] proved in 1994 that a sufficiently scaled quantum
computer can factor large integers efficiently. In subsequent works, it was further shown
that quantum computers have a significant advantage when it comes to searching on
an unstructured database [Gro96] or solving the discrete logarithm problem [Wat01].
For a classical computer, these problems are considered infeasible (for large enough
instances), which is why they were used to define the core of many real-world public-key

cryptosystems.

The realisation of a suffiently scalable quantum computer hence could pose a threat
to most of the I'T infrastructure that is in use today. This threat is often viewed as quite
immediate for two reasons: First, even information that was transmitted today will
not remain private once a suffiently scalable quantum computer is built, as an attacker
can record and store publicly exchanged data with the purpose to exploit it later.
Second, migration to quantum-secure infrastructures will take a lot of time due to, e.g.,
standardisation and legacy issues. As a reaction, the National Institute of Standards
and Technology (NIST) posed a call for proposals in 2017 with the goal to standardise
new public-key primitives [NIS17] with security against quantum adversaries. Given
that these new standards, once they are established, are supposed to be put into action
as fast as possible, the primitives are not required to consist of quantum algorithms, but
rather to consist of classical algorithms that are resistant against quantum attackers
interacting with a classical network. This scenario is called post-quantum cryptography.
One can also envision a world in which even the network itself is quantum, which is the
scenario of quantum cryptography. The scenario of quantum cryptography, however,

will not be considered in this thesis.

Clearly, the first important step in the transition towards a quantum-secure future
is the search for problems that remain infeasible even for a computer with quantum
capabilities, in order to replace the problems which are known to be “broken”. Promising

candidates are certain problems over lattices and codes: As we do not know of any
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quantum attacks that succeed significantly faster than known classical attacks, it
is conjectured that these problems are sufficiently secure replacements. Similarly
important, we can base desired primitives upon these problems in a way such that the
penalty in terms of efficiency is not too large.

Unfortunately, there still exist further obstacles on the way to find new, post-quantum
secure primitives: One might believe that by replacing the “broken” computational
hardness assumptions with a hardness assumption that is conjectured to be hard, even
for a quantum computer, it might be straightforward to maintain the rest of the design

rationale. We identify two main issues with this belief:

e Many design rationales themselves are proven secure in a way that does not
necessarily translate to the setting of post-quantum security. As we will discuss in
more detail below, an important example in which we have to revisit the overall

proof heuristic is the random oracle model.

e The proofs for the rationale sometimes make implicit assumptions which were met
by the “broken” assumptions, and that do not hold true for the new, presumably
“quantum-hard” assumptions. An important example will be discussed after our
discussion of the random oracle model. While such a gap might be easy to
understand once it is identified, these kinds of “translation issues” can become
increasingly hard to spot when dealing with increasingly advanced primitives, as
their security proofs do not always make explicit the additional assumptions they

rely upon.

Ignoring these difficulties can turn a security “proof” meaningless, as its prerequisites
then might no longer be met, or the proven statement does not even capture the security

scenario in consideration.

The quantum random oracle model

In the scenario of post-quantum security, a quantum adversary interacts with a non-
quantum network. As a consequence, all “online” primitives (like encryption executed
by honest users or signing) will remain to be considered as classically accessible. All
“offline” primitives, however, can be computed by the adversary on its own, and hence,
in superposition. With the introduction of quantum adversaries, and the advent of
post-quantum cryptography, the ROM hence had to be generalised: Recall that the

random oracle model replaces hash functions with a truly random idealisation that the
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attacker has oracle access to. Given that hash functions are public, the ROM does
not capture a quantum attacker’s capabilities to compute their code in superposition.
To account for these stronger capabilities, the quantum-accessible ROM (QROM) was
introduced in [BDF*11].

While successfully fixing the definitional gap, the QROM does come with its own
challenges: In general, the ROM allowed for proofs that are conceptually simpler and
often tighter than standard model security proofs, as it enjoyed several convenient
properties we already mentioned. In the quantum random oracle model, however, things
become slightly more involved, as neither preimage awareness nor reprogrammability
carry over in an obvious manner for oracles that are quantum-accessible. Intuitively,
one can envision the preimage in question to be hidden within the superposition. It
hence is not clear how to extract a preimage without performing a measurement, and
thereby derailing the attacker’s behaviour. Similarly, it is not immediately clear whether
reprogramming does not cause a change in the attacker’s view, as the reprogramming
position might already have been contained in a former query to the random oracle.

Given that these properties usually are the reason why random oracle proofs are
conceptually simpler than proofs in the standard model, it comes as no surprise that
proofs in the quantum random oracle model fail to meet their classical counterparts with
respect to simplicity. More importantly, while there do exist quantum generalisations
that can be used to execute a similar reasoning in many important cases, they usually
come with a large penalty in terms of the reduction’s tightness. As a consequence,
deploying these generalisations to prove security leads to less efficient schemes, as the
parameters of the underlying problem have to be scaled up, accordingly. This is the
reason why there exists a lot of interest in the question whether a) the generalisations
can be improved with regards to tightness, and/or b) whether proofs can be found
that manage to circumvent these difficulties altogether, without introducing additional

requirements.

The NIST standardisation process and generic constructions

At the time that NIST posed its call for proposals, it was well understood how to base
passively secure encryption schemes on code- or lattice-based problems.! All 17 proposals

for public-key encryption that made it to the second round of the standardisation process

1This is not meant to say that the underlying lattice problems themselves do not have to be
subjected to further cryptanalysis. However, conditioned on the assumption that they do withstand
cryptanalysis, the resulting schemes can be considered secure when appropriate parameters are chosen.
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follow the strategy to construct such a passively secure scheme, and then to apply some
variant of the FO transformation. Only four [BCL*19, BCLv16, ABDT18, JACT19]
out of those 17 proposals, however, were designed in a way such that decryption of a
faithfully encrypted plaintext m never fails to yield m. All other code- and lattice-based
proposals fail to decrypt for particularly unfavourable combinations of key, message,
and encryption randomness.

Apart from being in the (non-quantum) ROM, the original proof for FO implicitly
relies on perfect correctness (which was satisfied by Diffie-Hellman- and RSA-based
decryption algorithms), this property hence indeed is an example for implicit assumptions
that limit the applicability of a proof to new constructions. While one might assume
that non-perfect correctness should be a non-issue due to the small probability of
decryption failures in practice, it turns out that even the possibility of such failure
opens up an attack avenue that was nonexistent in formerly deployed standards.

Furthermore, the proof for FO was non-tight, leading to bigger parameters. While
REACT and GEM came with a tight security reduction, they require the underlying
encryption scheme to fulfill a stronger security notion that is not naturally met by
lattice-based encryption schemes.

Another important construction in the context of the NIST standardisation process
is the Fiat-Shamir transform, which is used to design signature schemes. Of the nine
proposals for signature schemes that made it to the second round, four [DKLT18,
ZCD™19, CHR™16, ABB'20] deploy variants of Fiat-Shamir. The original proof
strategy for these variants, however, exploits the reprogrammability of the involved

random oracle.

Main Results of this Thesis

We conclude this chapter by summarising the main results presented in this thesis.

GENERIC TRANSFORMATIONS TO ACHIEVE ACTIVELY SECURE PUBLIC-KEY ENCRYPTION.
In Chapter 2, we are interested in three central questions: Are there constructions that

achieve IND-CCA from schemes with weaker security properties,
e with a security proof as tight as possible,
e even if there exists a possibility of decryption failure,
e and even if the adversary possesses quantum capabilities?

To answer those questions, we provide in Section 2.1 a modular toolkit of transfor-

mations that can be combined, according to the properties of the underlying scheme.
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We remark that some of our transformations essentially recover more versatile variants
of the original FO and GEM/REACT transformations. Whereas previously known
security proofs in the random oracle model for the FO transformation were non-tight,
our combinations tightly turn IND-CPA into IND-CCA security, with a very small ef-
ficiency overhead. A selection of these transformations is then also proven secure in
the quantum random oracle model in Sections 2.2 and Section 2.3. Since all of our
security proofs furthermore account for the possibility of decryption failures, the results
are applicable to all proposals currently under consideration for standardisation by
the NIST, and indeed, our analysis was used to give guidance on how to choose the
parameters, in particular with respect to correctness errors. In Section 2.4, we further
broaden the class of schemes to which our security proofs apply by weakening our
correctness requirements.

The results presented in Section 2.1 and Section 2.2 are based on joint work with
Dennis Hofheinz and Eike Kiltz, published in [HHK17], and the result presented in
Section 2.3 was established as a helper result in [HKSU20] to achieve authenticated
key exchange (see “further publications”). The result presented in Section 2.4 is an
unpublished manuscript, based on discussions with Eike Kiltz, Vadim Lyubashevsky

and Dominique Unruh.

ADAPTIVE REPROGRAMMABILITY IN THE QUANTUM RANDOM ORACLE MODEL. As
we have pointed out, The ROM still enjoys widespread popularity, mostly because it
tends to allow for tight and conceptually simple proofs where provable security in the
standard model is elusive or costly. While being the adequate replacement of the ROM
for post-quantum security, the QROM has thus far failed to provide these advantages
in many settings. In Chapter 3, we focus on adaptive reprogrammability: We show
that adaptive reprogramming is feasible also in the QROM. More precisely, we prove
a bound on the adversarial advantage in distinguishing whether a random oracle has
been reprogrammed or not. The achieved bound is essentially optimal, as there exists
an attack that matches our bound, up to a constant factor. The resulting statement is
a straightforward QROM generalisation of adaptive reprogrammability and can serve
as a drop-in replacement in many important cases. We demonstrate that our technique

recovers the mentioned advantages of the ROM in several QROM applications:

o We show that the standard ROM proof of chosen-message security for Fiat-Shamir
signatures can be lifted to the QROM, straightforwardly, achieving a reduction
that is tighter than previously known, and requires less from the underlying

scheme.

o We give the first QROM proof of security against fault injection and nonce attacks
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for the hedged Fiat-Shamir transform.

The results presented in Chapter 3 are based on joint work with Alex Grilo, Andreas

Hiilsing, and Christian Majenz (currently in submission).

Further publications.

POST-QUANTUM SECURE AUTHENTICATED KEY EXCHANGE (AKE) WITH WEAK PER-
FECT FORWARD SECRECY. AKE protocols allow applications to switch from the use
of asymmetric cryptography (which usually features computationally more expensive
mathematical structures) to symmetric key cryptography with simpler structure and
faster algorithms. The overall quantum resistance of many security systems crucially
relies on that of the underlying AKE protocol. Most AKE protocols, however, rely on
constructions based on an ad-hoc Diffie-Hellman key exchange that is authenticated
either via digital signatures, Diffie-Hellman-based mechanisms, or public-key encryption.
Since classical Diffie-Hellman based mechanisms do not provide security in the presence
of quantum attackers, it is an important task to build efficient post-quantum secure
AKE protocols entirely from alternative mathematical assumptions that are not known
to be vulnerable to quantum attacks. Lattice-based cryptography currently is seen
as one of the most popular and versatile approaches to mitigate the quantum threat.
However, digital signatures based on lattice assumptions are usually considered less
efficient. This issue can be circumvented by considering constructions that, instead of
authenticating via signatures, use implicit authentication. While there already existed
constructions [FSXY12, FSXY13] that only rely on PKE to authenticate implicitly,
they required the underlying PKE scheme to be perfectly correct. Similar to the case
of actively secure encryption, dealing with the possibility of correctness errors is one
of the major difficulties in a setting involving active attacks against an AKE protocol.
In a joint work with Eike Kiltz, Sven Schéige, and Dominique Unruh [HKSU20], it
was therefore shown how to achieve a post-quantum secure two-message authenticated
key exchange (AKE) protocol from any passively secure public-key encryption scheme,
without having to rely on signatures or perfect correctness. As a consequence, our
construction can be instantiated with any of the submissions to the recent NIST com-
petition, e.g., those based on codes and lattices. In fact, when applied to schemes such

as these, our construction is more natural than ones that were previously known.

TIGHTER PROOFS OF IND-CCA SECURITY. A lot of research has been invested in finding
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tighter proofs for different variants of FO-like conversions, in the quantum random oracle
model. Amongst these efforts is a joint work with Nina Bindel, Mike Hamburg, Andreas
Hiilsing, and Edoardo Persichetti [BHH19], in which we revisited the constructions
given in [HHK17]. In particular, this work provides a proof of IND-CCA security for
constructions from deterministic public-key encryption schemes that is less non-tight
than previous ones. This result is enabled by a new quantum query extraction technique
which gives a tighter bound than previous ones. Since there has been real-world interest
in the question if and how the choice of transformation impacts security, the relation
between these different constructions is clarified by proving several equivalences and

implications.
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CHAPTER 1

PRELIMINARIES

For n € N, we let [n] := {1,...,n}. For a finite set S, we denote by |S| the cardinality
of S, and by x +—g S we denote the sampling of a uniform random element z. We
denote the sampling according to some distribution ® by x + ©. By [B] we denote the
bit that is 1 if the boolean statement B is true, and otherwise 0. For a subset U C S,
we will denote by U¢ the complement of U in S. By 1 we denote the identity map.

ALGORITHMS. We denote deterministic output y of an algorithm A on input x by
y := A(z). We denote algorithms with access to an oracle O by A®. Unless stated
otherwise, we assume all our algorithms to be probabilistic and denote the computation
by y < A(x).

RANDOM VARIABLES. Given a discrete distribution ® over a set X, we define the
support of D as the set supp(D) := {z € X : D(x) > 0}. For distributions on R with a

finite number of finite outcomes, we define the expectation of © as

E@]:= Y z-D().

zEsupp(D)

We furthermore define the statistical distance between two discrete distributions 21

and D5 over a set X as

Dist(D1, D) := % D1 (x) - Da()]

zeX

GAMES. Following [Sho04b, BRO6], we use code-based games. Games will run adver-
saries A as a subroutine. We will say that A wins in game G if the game terminates
with output 1, and will denote this event by G* = 1. We implicitly assume boolean

variables to be initialised to false, numerical types to 0, sets to (J, and strings to the
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empty string. A boolean game variable is called a flag if it starts off as false and
changes its value at most once: Once a flag is set to true, it can never revert to false.
We will call two games G and H identical-until-bad if they share the same pseudocode,
except for statements that are subsequent to the event that a flag BAD was set to
true. Let BADg (BADpg) be the event that flag BAD is set to true at the end of
execution of A in game G (game H). If G and H are identical-until-bad, we have that
Pr[BAD¢| = Pr[BADy], and we can simply write Pr[BAD] instead.

Lemma 1.0.1. (Difference Lemma [Sho04b, Lem. 1]) Let A be an adversary, and let
G, H be identical-until-bad games with respect to flag BAD. Then

| Pr[G” = 1] — Pr[H” = 1]| < Pr[BAD)] .

In the next two sections, we will define syntax and security notions for several public-
key primitives. For a more detailed discussion of the standard definitions included
in Sections 1.1 and 1.2, we refer to [KL14]. The algorithms of such primitives are
usually parametrised by a public system parameter par. For convenience, we will
treat the algorithms as implicitly parametrised and omit the system parameter par
from out notation. While we provide a concrete treatment of those definitions, we
sometimes misstep by informally writing something like “Transformation X turns A
security into B security”, by which we mean that the advantage of a B-attacker against
the X-transformed can be upper bounded in terms of a reduction that attacks the A

security of the underlying primitive.

1.1 Public-Key Encryption and Key Encapsulation

Mechanisms

Definition 1.1.1 (Public-Key Encryption Schemes). A PKE = (KG, Enc, Dec) consists

of three algorithms, and a finite message space M.

o The key generation algorithm KG outputs a key pair (pk, sk), where pk also defines
a finite randomness space R = R(pk) as well as a ciphertext space C.

e The encryption algorithm Enc, on input pk and a message m € M, outputs an
encryption ¢ <— Enc(pk, m) of m under the public key pk. If necessary, we make
the used randomness of encryption explicit by writing ¢ := Enc(pk, m;r), where

T <g R.

e The deterministic decryption algorithm Dec, on input sk and a ciphertext c,
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outputs either a message m = Dec(sk,c) € M or a special symbol L ¢ M to

indicate that c is not a valid ciphertext.

Definition 1.1.2 (y-spreadness [FO99]). We say that PKE is v-spread iff for all key
pairs (pk, sk) € supp(KG) and all messages m € M it holds that

mgg{Pr[Enc(pk,m) =c] <277

where the probability is taken over the internal randomness Enc.

In one section of this thesis, we will consider encryption schemes that come with
an additional property: We will require that given a ciphertext and its engendering
plaintext, it is possible to recover the used randomness. In particular, we will require
that recovering the wrong randomness occurs only if decryption failure occurs. We

formalise this property in the next definition.

Definition 1.1.3 (Randomness recovery [LS19]). We say that PKE comes with ran-
domness recovery if there exists an algorithm Rec that takes as input sk, a message
m, and a ciphertext ¢, and outputs some randomness r such that for all key pairs
(pk, sk) € supp(KG), all messages m € M and all r € R it holds that either

m’ := Dec(sk,c) #m

or

Rec(sk,m',c) =1 ,

where ¢ := Enc(pk, m; 7).

We will furthermore require that, vice versa, it is possible to recover the plaintext
from the ciphertext and the used randomness. We formalise this property in the next

definition.

Definition 1.1.4 (Invertible Encryption). We say that PKE comes with invertible
encryption if there exists an algorithm Inv that takes as input pk, r and ¢ and outputs
a message m such that for all key pairs (pk, sk) € supp(KG), all messages m € M and
all » € R it holds that

Inv(pk, Enc(pk,m;r),r) =m .

25



1.1.1 Security Notions for Public-Key Encryption

Standard notions under passive attacks

First, we define two standard security notions for public-key encryption: One-Wayness
(OW) and Indistinguishability under Chosen-Plaintext Attacks (IND-CPA).

Definition 1.1.5 (OW, IND-CPA). Let PKE = (KG, Enc, Dec) be a public-key encryp-
tion scheme with message space M. We define game OW as in Figure 1.1, and the OW

advantage function of an adversary A against PKE as
AdvoRE(A) == Pr[OWpye = 1] .

Furthermore, we define game IND-CPA (also in Figure 1.1), and the IND-CPA
advantage function of an adversary A = (A1, As) against PKE (where Ay has binary
output) as

1
AdviZCPA(A) := | Pr[IND-CPA? = 1] — 5

GAME OW GAME IND-CPA
01 (pk, sk) < KG 06 (pk, sk) < KG
02 m* +g M 07 b<g {0,1}
03 ¢* + Enc(pk,m") 08 (mg, mi,st) < Ai(pk)
04 m’ « A(pk,c*) 09 ¢* « Enc(pk, my})
05 return [m’' = m*] 10 b’ + Ax(pk,c*,st)
11 return [b’ = b]

Fig. 1.1: Games OW and IND-CPA for PKE.

As proven in, e.g., [KL14], IND-CPA security of a scheme PKE with sufficiently large

message space M implies its OW security.

Lemma 1.1.6. For any adversary A, there exists an adversary B such that Advoye(A) <
AdvPEPA(B) + 1/|m|, and the running time of A is about that of A.

We also consider IND-CPA security in the (quantum) random oracle model, where
PKE and adversary A are given access to a (quantum) random oracle. (How to model
quantum access will be made explicit in Section 1.3.) We will usually denote the number

of random oracle queries to O by go.
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GAME OW-ATK: PCO(m € M,c)

01 (pk, sk) + KG 06 return [Dec(sk,c) = m]
02 m* g M

03 ¢* < Enc(pk, m™) VALID(c # ¢*)

04 m/ «— ACATK(pk, c) 07 m := Dec(sk, c)

05 return [m’ =m*] 08 return [m € M]

Fig. 1.2: Games OW-ATK for PKE, where ATK € {PCA,VCA,PVCA} and Oatk is
defined in Definition 1.1.7. PCO is the Plaintext Checking Oracle, and VALID is the
Validity checking Oracle.

One-Wayness with access to additional oracles (OW-PVCA)

Next, we introduce some intermediate helper notions which we will use during our
security proofs. These intermediate notions are variations of one-wayness, in which the

adversary has additional access to one or both of the following two oracles:

¢ Plaintext-ciphertext checking oracle PCO. Oracle PCO takes as input a
message m # 1 and a ciphertext ¢, and returns to the adversary whether ¢

decrypts to m.

e Validity checking oracle VALID. Oracle VALID takes as input a ciphertext

¢ and returns whether ¢ decrypts to a message that lies within the message space.

We will call the respective notions One-Wayness under Plaintext Checking Attacks
(OW-PCA), under Validity Checking Attacks (OW-VCA), and under Plaintext and
Validity Checking Attacks (OW-PVCA). In previous literature [Den03], OW-VCA se-
curity was called OW-CPA™ security, and OW-PVCA security was called “OW-CPA™

security with access to a PCO oracle”.

Definition 1.1.7 (OW-ATK). Let PKE = (KG, Enc, Dec) be a public-key encryption
scheme with message space M. For ATK € {PCA,VCA,PVCA}, we define OW-ATK

games as in Figure 1.2, where

PCO ATK = PCA
OaTk := ¢ VALID ATK = VCA
PCO,VALID ATK =PVCA

We define the OW-ATK advantage function of an adversary A against PKE as

AdvOREATK(A) := Pr[OW-ATKpe = 1] .
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GAME DS,:

o1 (pk, sk) < KG

02 m* g M

03 ¢y < Enc(pk,m™)
04 ¢y < fakeEnc(pk)
05 b < A(pk,cp)

06 return b’

Fig. 1.3: Games DS; (where b € {0,1}) for PKE.

Note that our definition of the plaintext checking oracle PCO (see Figure 1.2)
implicitly disallows queries on messages m ¢ M. (We make the convention that for
messages m ¢ M, PCO(m,c) always returns L.) This restriction is important since
otherwise, the ciphertext validity oracle VALID could be simulated via access to
PCO, as VALID(m) = PCO(L, ¢). Similarly, the ciphertext validity oracle VALID(c)

implicitly disallows queries on the challenge ciphertext c*.

Disjoint Simulatability (DS)

Following [SXY18], we will also consider PKE schemes for which it is possible to sample
fake ciphertexts such that they are indistinguishable from proper encryptions of a
random message (simulatability), while the intersection of fake ciphertexts and proper

encryptions is unlikely (disjointness).

Definition 1.1.8. (DS) Let PKE = (KG, Enc, Dec) be a PKE scheme with message
space M, coming with an additional algorithm fakeEnc that takes as input a public key
pk and outputs bitstrings. We define games DS;, (where b € {0,1}) in Figure 1.3, and
the DS advantage function of an adversary A against (PKE, fakeEnc) as

Adv[P)liE,fakeEnc(A) ::| PI‘[DSQ = 1] - PI‘[DS? = 1” :

When there is no chance of ambiguity, we will drop fakeEnc from the advantage’s

subscript for convenience.

Let Enc(pk, M) := Uper supp(Enc(pk,m)). We call PKE ¢g;s-disjoint if for all
(pk, sk) € supp(KG) it holds that Pr[c € Enc(pk, M)] < eqis, where the probability is
taken over ¢ < fakeEnc(pk).
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1.1.2  Key Encapsulation Mechanisms (KEMs)

Key encapsulation mechanisms are schemes that allow a sender to securely transmit
a cryptographic key, using the receiver’s public key. The motivation of defining this
primitive is that public-key encryption schemes are usually less efficient than symmetric
encryption schemes, it hence is desirable to use a public-key primitive (the KEM) only
to securely transmit a (usually relatively short) symmetric key, and use the symmetric
key to encrypt bulk data. Combining an IND-CCA secure KEM with any (one-time)
chosen-ciphertext secure symmetric encryption scheme indeed gives rise to an IND-CCA
secure public-key encryption scheme [CS03], however, KEMs are also important building

blocks in the design of more advanced primitives like authenticated key exchange.

Definition 1.1.9 (Key Encapsulation Mechanisms). A key encapsulation mechanism

KEM = (KG, Encaps, Decaps) consists of three algorithms.

o The key generation algorithm KG outputs a key pair (pk, sk), where pk also defines
a finite key space K.

e The encapsulation algorithm Encaps, on input pk, outputs a tuple (K, ¢), where ¢

is said to be an encapsulation of the key K which is contained in key space K.

e The deterministic decapsulation algorithm Decaps, on input sk and an encapsula-
tion ¢, outputs either a key K := Decaps(sk,c) € K or a special symbol L ¢ K to

indicate that c is not a valid encapsulation.
We now define Indistinguishability under Chosen-Ciphertext Attacks (IND-CCA).

Definition 1.1.10 (IND-CCA). [RS92] We define the IND-CCA game as in Figure 1.4
and the IND-CCA advantage function of an adversary A (with binary output) against
KEM as

AdvidiCeA(A) := | Pr[IND-CCA* = 1] — 12| .

GAME IND-CCA DEC(c # ¢¥)
01 (pk, sk) < KG 07 K := Decaps(sk, c)
02 b+g {0,1} 08 return K

03 (Kg,c") + Encaps(pk)
04 Ki +s K

05 b« AP™(pk, c*, K})
06 return [i = b]

Fig. 1.4: Game IND-CCA for KEM.
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1.1.3 Correctness Errors and Rigidity

AVERAGE-CASE CORRECTNESS OF PKE. In previous literature (e.g., [DNR04, BV17]),
non-perfect correctness was defined by considering the probability that an encryption
of a random message fails to decrypt. As we will soon point out, our results require
an alternative definition that is more conservative. To be able to differentiate between
those different definitions, however, we will first reintroduce the definition that was
given in previous literature, which we will call average-case correctness throughout this

thesis.

Definition 1.1.11 (Average-case correctness). For a PKE scheme PKE, we define
Oac := Pr[Dec(sk,c) #m] ,

where the probability is taken over (pk, sk) +— KG, m <—g M, and ¢ < Enc(pk,m). We

say that a scheme is §-average-case correct if §,. < 6.

Note that the phrasing is somewhat counterintuitive, as with this definition, a
perfectly correct scheme would be called 0-correct. Since we do not want to deviate from
recent literature that deals with correctness errors [BHH'19, JZM19b, KSST20, BS20],

however, we decided to stick with the phrasing above.

WORST-CASE CORRECTNESS OF PKE. During the proofs of our main results, we will
have to take into account that adversaries may deliberately search for messages whose
encryptions induce decryption failure!. To deal with this setting, using average-case
correctness proves insufficient, since messages are chosen adversarially instead of being
drawn uniformly at random. Therefore, we will now strengthen our correctness definition
such that it takes into account the worst message possible, and call this definition
worst-case correctness. We want to stress that this differentiation is significant, as in
practice, worst-case correctness can be strictly stronger than average-case correctness.?
This new definition, however, has been carefully crafted such that it is sufficient to
prove some of our main theorems, while at the same time being achieved by most recent

proposed lattice-based encryption schemes with non-perfect correctness.

IFor an example in which this possibility indeed has to be tended to while proving IND-CCA security,
we refer to Sections 2.1.2 and 2.1.3, pages 68 to 80.

2As a simple, albeit artificial example, consider a scheme that is perfectly correct, except for one
publicly known message that always induces decryption failure. While this scheme has an average-case
correctness error of dac = 1/|M|, an adversary could easily trigger decryption failure. As a more
practical example of real-world importance, consider the NTTRU encryption scheme defined in [LS19].
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Definition 1.1.12 (Worst-case correctness). For a PKE scheme PKE, we define
dwe :=E Pr[Dec(sk, )
max r[Dec(sk, ¢) # m)|

where the expectation is taken over (pk, sk) < KG, and the probability is taken over
¢ < Enc(pk,m). We say that a scheme is d-worst-case correct if 0y < 9, and we call a

scheme perfectly correct if dy = 0.

In particular, dy.-worst-case correctness means that even (possibly unbounded)
adversaries with access to the secret key will succeed in triggering decryption failure
with probability at most dy..

We formalise this property with the following game-based definition, in which the
adversary outputs a list of messages and wins if at least one message exhibits decryption
failure. We also need to include a game-based version in which the adversary has access
to a random oracle, as we will cover schemes in this thesis that are defined relative to

such.?

Definition 1.1.13. We define correctness game COR in Figure 1.5 (left), and the

advantage of an adversary A returning a list of N many messages as
AdvSORN (A) := Pr[CORpxe = 1] .

We furthermore define the random-oracle correctness game COR-RO in Figure 1.5

(right), and the advantage of an adversary A as
AdvSRERON (A) := Pr[COR-ROpe = 1] .

We will also consider game COR-RO in the quantum random oracle model, adversary
A is given quantum access to random oracle G. (Again, how to model quantum access

will be made explicit in Section 1.3.)

Note that our game-based definition in the standard model is a special case of the
one in the random oracle model, where the number of random oracle queries is zero.
Clearly, 6-worst-case correctness of a scheme implies its J-average-case correctness.?
In Lemma 1.1.14, we establish that the other direction holds if and only if all messages

induce decryption failure with the same probability. °

3For an example in which the random oracle queries actually matter in the context of correctness,
we refer to Theorem 2.1.2 in Section 2.1.1, see page 62.

4This can be easily verified by applying the law of total probability in order to upper bound J,c in
terms of Owe.

5Again, Lemma 1.1.14 can be easily verified by applying the law of total probability to both terms
and comparing the difference in the respective summands.
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GAME COR: GAME COR-RO:

09 (pk, sk) + KG 16 (pk, sk) < KG

10 Laq < A(sk, pk) 17 Laq < AS(sk, pk)
11 for m € Lm 18 for m € £m

12 ¢« Enc(pk,m) 19 ¢ < Enc(pk,m)
13 if Dec(sk,c) #m 20 if Dec(sk,c) #m
14 return 1 21 return 1

15 return 0 22 return 0

Fig. 1.5: Correctness games COR for PKE in the standard model (left), and COR-RO
for PKE defined relative to a random oracle G (right).

Lemma 1.1.14. Let PKE be a PKE scheme. We have that dy. < dac (and they hence
are equal) if and only if for all key pairs (pk, sk) € supp(KG) there exists a constant
A(pk, sk) such that for all messages m € M,

Pr[Dec(sk,c) # m] = A(pk, sk) ,
where the probability is taken over ¢ <— Enc(pk, m).

In some of our results, we will require from a deterministic scheme that decrypting
a ciphertext c results in 1 unless re-encrypting results in the ciphertext ¢ again. We

formalise this requirement in the next definition.

Definition 1.1.15 (Rigidity [BP18]). We call a deterministic public-key encryption
scheme PKE rigid if for all key pairs (pk, sk) € supp(KG) and all ciphertexts ¢ € C it
holds that Dec(sk,c) = L or Enc(pk, Dec(sk,c)) = c.

For perfectly correct schemes, requiring rigidity is equivalent to requiring that for
all key pairs (pk, sk) € supp(KG), and all ciphertexts ¢ that do not lie in the range of
Enc(pk, —), we have that Dec(sk,c) = L.

CORRECTNESS OF KEMS. We furthermore define correctness for key encapsulation
mechanisms. Throughout this thesis, we will only have to account for decryption failure
that is triggered by honestly generated ciphertexts. This is the reason why we only give
the KEM equivalent of average-case correctness, and simply call it d-correctness.

Definition 1.1.16. We call KEM §-correct if
Pr [Decaps(sk,c) # K| < ¢ ,
where the probability is taken over (pk, sk) < KG and (K, ¢) < Encaps(pk).
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1.2 Identification Schemes and Signatures

1.2.1 Identification Schemes

We now define syntax and security of canonical identification schemes [AABNO02],
which are interactive protocols that allow a party (called the prover) to prove to
another party (called the verifier) knowledge of a secret key. A natural application of
identification schemes is in user identification, however, we will see in Section 1.2.2 that

they also give rise to signature schemes.

Definition 1.2.1 (Identification Schemes). An identification scheme ID is defined as a

collection of algorithms ID = (IG, Commit, Respond, V).

e The key generation algorithm |G returns a key pair (pk, sk). We assume that pk

defines a challenge space C, a commitment space ¥V and a response space Z.

o Commit takes as input the secret key sk and returns a commitment w € W and a

state st.

¢ Respond takes as input the secret key sk, a commitment w, a challenge ¢, and a
state st, and returns a response z € Z U {1}, where L ¢ Z is a special symbol

indicating failure.

e The deterministic verification algorithm V(pk,w,c,z) returns 1 (accept) or 0

(reject).

Prover (sk) Verifier (pk)

(w, st) < Commit(sk) w
c c+gsC

2 + Respond(sk, w, ¢, st) z
return b := V(pk, w, ¢, 2)

Fig. 1.6: Proving knowledge of a secret key via an identification scheme.

Note that during one of our application examples (i.e., in Section 3.3), we will define
the response algorithm such that it does not explicitly take a commitment w as input.
If needed, it can be assumed that st contains a copy of w.

A transcript is a triplet trans = (w, ¢, z) € W xC x Z. Tt is called valid (with respect
to public key pk) if V(pk,w,¢,z) = 1. In Figure 1.7, we define transcript algorithm
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getTrans that returns the transcript trans = (w, ¢, z) of an honest interaction between
prover and verifier. We furthermore define another transcript algorithm getTransChall

that returns a transcript for a fixed challenge c.

Oracle getTrans(sk) Oracle getTransChall(sk, ¢)
01 (w,st) + Commit(sk) 05 (w,st) < Commit(sk)
02 ¢c4+gC 06 z < Respond(sk,w, c,st)
03 z < Respond(sk, w, ¢, st) 07 return (w,c, z)

04 return (w,c, 2)

Fig. 1.7: Generating honest transcripts with algorithm getTrans, and generating
challenge-dependent transcripts with algorithm getTransChall.

Definition 1.2.2 (Commitment Entropy). We define

v(Commit) := E[max] Prfw = w'] ,
where the expectation is taken over (pk, sk) < 1G, and the probability is taken over
(w, st) « Commit(sk).

In one of our results (see Section 3.3), the Respond algorithm is required to reject
whenever its challenge input ¢ is malformed. As observed in [AOTZ20], this additional
requirement is not too severe, since most practical implementations perform a sanity

check on c. We will call this property validity awareness.

Definition 1.2.3 (Validity Awareness). We say that ID is wvalidity aware if for all
challenges ¢ ¢ C, Respond(sk, w, c,st) = L.

(SPECIAL) HONEST-VERIFIER ZERO KNOWLEDGE. We will now formalise the property
that honest transcripts do not provide too much information to an adversary, which
is also called Honest-Verifier Zero Knowledge (HVZK). Intuitively, an identification
scheme is HVZK if honest transcripts can be simulated without knowledge of the secret
key. To make this description more formal, we will first introduce the notion of an
HVZK simulator. Our definition comes in two flavours: While a (standard) HVZK
simulator generates transcripts relative to the public key, a special HVZK simulator

generates transcripts relative to (the public key and) a particular challenge.

Definition 1.2.4 ((Special) HVZK Simulator). An HVZK simulator is an algorithm
Sim that takes as input the public key pk and outputs a transcript (w, ¢, z). A special
HVZK simulator is an algorithm Sim that takes as input the public key pk and a

challenge ¢ and outputs a transcript (w, ¢, z).
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STATISTICAL HVZK. Next, we will now reintroduce the definition of statistical HVZK
[GMRS5], and the definition of special statistical HVZK from [AOTZ20].

Definition 1.2.5 ((Special) Statistical HVZK). Assume that ID comes with an HVZK
simulator Sim. We say that ID is Apyzk-statistical HVZK if for any key pair (pk, sk) €
supp(lG), the distribution of (w, ¢, z) <= Sim(pk) has statistical distance at most Anyzx
from an honest transcript (w, ¢, z) < getTrans(sk).

To define special statistical HVZK, assume that ID comes with a special HVZK
simulator Sim. We say that ID is Agyvzk-statistical SHVZK if for any key pair (pk, sk) €
supp(IG) and any challenge ¢ € C, the distribution of (w, ¢, z) + getTransChall(sk, c)
and the distribution of (w, ¢, z) <= Sim(pk, ¢) have statistical distance at most Agpyzk.

COMPUTATIONAL HVZK FOR MULTIPLE TRANSCRIPTS. In our security proofs, we will
have to argue that collections of honestly generated transcripts are indistinguishable
from collections of simulated ones. Since it is not always clear whether computational
HVZK [FS87] implies computational HVZK for multiple transcripts, we extend our
definition, accordingly: In the multi-HVZK game, the adversary obtains a collection
of transcripts (rather than a single one). Similarly, we extend the definition of special
computational HVZK from [AOTZ20].

Definition 1.2.6 ((Special) Computational Multi-HVZK). Assume that ID comes with
an HVZK simulator Sim. We define multi-HVZK games ¢-HVZK as in Figure 1.8, and

the multi-HVZK advantage function of an adversary A against ID as
AdviVK(A) := |Pr[t-HVZKY p = 1] — Pr[t-HVZK),p = 1]

To define special HVZK, assume that ID comes with a special HVZK simulator Sim. We
define multi-sHVZK game as in Figure 1.8, and the multi-sHVZK advantage function of

an adversary A against 1D as

Advig"VEK(A) == |Pr[t-sHVZK? 5 = 1] — Prlt-sHVZK),, = 1]

Following [AOTZ20], we now define subset-revealing identification schemes. Intu-
itively, an identification scheme is subset-revealing if Respond responds to a challenge
by revealing parts of the state that was computed by Commit, and the response does

not depend on sk.
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GAME t-HVZK, GAME t-sHVZK, GETTRANS(c)

01 (pk, sk) < 1G 07 (pk, sk) < 1G 11 if ¢ > ¢ return L

02 for i € {1,---,t} 08 i:=1 12 4:=i+1

03 trans? < getTrans(sk) 09 b = ATINS(pk) 43 trans® getTransChall(sk, ¢)
04 trans; + Sim(pk) 10 return b’ 14 trans' < Sim(pk, c)

05 b« A(pk, (trans®)1<i<t) 15 return trans®

06 return b’

Fig. 1.8: Multi-HVZK game and multi-sHVZK game for ID. Both games are defined
relative to bit b € {0,1}, and to the number ¢ of transcripts the adversary is given.

Definition 1.2.7 (Subset-revealing ID scheme). Let ID = (IG, Commit, Respond, V) be
an identification protocol. We say that ID is subset-revealing if there exists an algorithm
DeriveSet that takes as input a challenge ¢ and returns a set I C {1,---, N} for some
natural number N such that for any key pair (pk, sk) € supp(lG), any tuple (w,st) €
supp(Commit(sk)), and any challenge ¢ € C it holds that Respond(sk, c,st) = (st;)ier,
where I = DeriveSet(c) and (st,)neq1,... N} = st.

1.2.2  Signature Schemes

Signature schemes are a digital analogue to handwritten signatures. Similarly to
a handwritten one, it should be hard to forge a digital signature, while it should be
publicly verifiable that a signature was created by the signer. A generic strategy to
obtain a digital signatures is to apply the Fiat-Shamir heuristic which we will reintroduce
below. We will also reintroduce the hedging paradigm that was devised in order to

immunise signature schemes against biased randomness.

Definition 1.2.8 (Signature Scheme). A digital signature scheme SIG is defined as a
triple of algorithms SIG = (KG, Sign, Vrfy).

o The key generation algorithm KG returns a key pair (pk, sk). We assume that pk

defines the message space M.
o The signing algorithm Sign(sk, m) returns a signature o.
o The deterministic verification algorithm Vrfy(pk, m, o) returns 1 (accept) or 0

(reject).

SECURITY. Following [GMRS88], we define UnForgeability under Chosen Message
Attacks (UF-CMA) and UnForgeability under Chosen Message Attacks with 0 queries
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to the signing oracle (UF-CMA, also known as UF-KOA) advantage functions of an

adversary A against SIG as
AdvSlc™MA(A) == Pr[UF-CMAS ¢ = 1]

and
Advglz™MAo(A) := Pr[UF-CMAg§,c = 1] ,

where games UF-CMA and UF-CMA, are given in Figure 1.9.

Game | UF-CMA | UF-CMA, | SIGN(m)

01 (pk, sk) < 1G 06 L£a =Ly U{m}

02 ’ (m*, ) <« ASIN(pk) ‘ g; :ezlfrilgr;(sk, m)

04 if m* € £, return 0
05 return Vrfy(pk,m*, o)

Fig. 1.9: Games UF-CMA and UF-CMA, for SIG.

THE FIAT-SHAMIR TRANSFORM [F'S87]. To an identification scheme ID = (IG, Commit, Respond, V)
with commitment space W, and random oracle H : W x M — C for some message space
M, we associate

FS[ID, H] := SIG := (IG, Sign, Vrfy) ,

where algorithms Sign and Vrfy of SIG are defined in Figure 1.10.
In this thesis, we will also consider the modified Fiat-Shamir transform, in which

lines 02 and 05 are replaced with ¢ := H(w, m, pk).

Sign(sk, m) Vrfy(pk, m,o = (w, 2))
01 (w,st) + Commit(sk) 05 ¢:= H(w,m)
02 ¢:=H(w,m) 06 return V(pk,w,c, 2)

03 z « Respond(sk, w, ¢, st)
04 return o := (w, z)

Fig. 1.10: Signing and verification algorithms of SIG = FSJID, G].

HEDGED SIGNATURE SCHEMES [BPS16, BT16]. Let N be any nonce space. To a sig-
nature scheme SIG = (KG, Sign, Vrfy) with secret key space SK and signing randomness
space Rsign, and random oracle G : SK x M x N = Rsign, We associate

R2H[SIG, G := SIG' := (KG, Sign’, Vrfy) ,
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where the signing algorithm Sign’ of SIG’ is defined in Figure 1.11.

Sign'(sk, m;n)

o1 r:= G(sk,m,n)
02 o := Sign(sk, m;r)
03 return o

Fig. 1.11: Hedged signing algorithm Sign’ of SIG’ = R2H[SIG, G].

1.3 Quantum Computation and the Quantum Ran-
dom Oracle Model (QROM)

In this section, we briefly give some background on quantum computation and current
techniques used in the context of security proofs in the quantum random oracle. For a
more detailed discussion of the basic definitions introduced in Section 1.3.1, we refer to
[NC11].

1.83.1 Basic Definitions

QUBITS AND QUANTUM REGISTERS. We will treat a qubit as a vector |¢) that lies
in the unity sphere of C2?. In more detail, qubits |¢) are a linear combination |¢) =
ag - |0) + g - |1) of the two basis states (vectors) |0) and |1), such that «p € C for both
bits b, and it additionally holds that |ag|? + |a1|> = 1. (By |- | we denote the Euclidean
norm.)

Similarly, we will treat an n qubit quantum register (or quantum bitstring) as
a vector |¢) that lies in the unity sphere of C2". Le., |¢) is a linear combination
|0) =3 se (0,13 Qo |2) of the basis states (vectors) |x), where o, € C for all z € {0,1}",
and it additionally holds that >° . 1y» | |? = 1.

We call the basis {|z)},eq0,13» the standard orthonormal computational basis. Clas-
sical bitstrings can be interpreted as quantum bitstrings via the mapping (2’ +—
Srcony Lo =21 [2).

The quantum bitstring |¢) is said to be in superposition, and we will say that |p)
contains (classical) bitstring x if oy # 0.

At times, we will generalise the definitions above such that they account for any

finite set X, as opposed to only considering a set {0,1}" of bitstrings. Any finite set
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X gives rise to its own canonical complex Hilbert space Hx (also called state space):
Space Hx is completely described by taking the set X as its set of base vectors. Again,
a quantum register is a vector that lies in the unity sphere of Hx. We use a subscript
to indicate that a vector |¢) is the state of a quantum register X with Hilbert space
Hx, i.e., we write |) y. In this generalised setting, we will at times consider systems
that comprise more than one quantum register. E.g., the system might comprise one
register with respect to some finite base set X (e.g., an input register), and one register
with respect to some finite base set Y (e.g., an output register). Registers X and YV
give rise to Hilbert spaces Hx and Hy, and the composite system state space is defined
as Hxxy = Hx ® Hy. Where it helps simplify notation, we take the liberty to reorder
registers, keeping track of them using register subscripts. The base states of Hxxy
hence are all vectors |z,¥) v,y = [2) x @ |Y)y-

For a vector |¢) € H, we denote the standard Euclidean norm by | |¢) ||. Similarly,
My indicates that a matrix M acting on H is considered as acting on register X. The
only other norm we will require is the trace norm. For a matrix M acting on H, the
trace norm ||M]|; is defined as the sum of the singular values of M.

Given a quantum state |¢), we denote by |¢)¢| the orthogonal projection onto the
subspace spanned by |p).

One important quantum operation is the quantum extension of the classical CNOT.
This is a unitary matrix CNOT acting on two qubits, i.e. on the vector space C? @ C2,
as CNOT |by) |ba) = |b1) b2 @ b1). We sometimes subscript a CNOT gate with control
register X and target register Y with X : Y, and extend this notation to the case where
many CNOT gates are applied, i.e. CNOTS?, means a CNOT gate is applied to the
i-th qubit of the n-qubit registers X and Y for each ¢ = 1,...,n with the qubits in X

being the controls and the ones in Y the targets.

MEASUREMENTS. Qubits can be measured with respect to a basis. In this thesis, we
will usually consider measurements in the standard orthonormal computational basis.
We will denote measuring some quantum register |¢) in the standard orthonormal
computational basis by z + Measure(|p)). After the measurement, the amplitudes are
collapsed, meaning that all amplitudes are switched to 0 except for the one that belongs
to the measurement outcome x, which will be switched to 1. Measuring a quantum
register [p) =3, c(0,1}n @ - [2) will result in the classical bitstring « with probability

|eva .

Theorem 1.3.1. (Principle of deferred measurement [NC11, Sct. 4.4]) Measurements
can always be moved from an intermediate stage of a quantum circuit to the end of
the circuit; if the measurement results are used at any stage of the circuit, then the

classically controlled operations can be replaced by conditional quantum operations.
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QUANTUM ADVERSARIES AND THE QUANTUM RANDOM ORACLE MODEL. We will
consider security games in the quantum random oracle model (QROM) as counterparts
to the respective games in the classical random oracle model. To be more precise,
quantum adversaries will be given quantum access to all random oracles involved, and
classical access to all other oracles (e.g., plaintext checking or decapsulation oracles),
as the latter represent honest users.

To model quantum oracle access, let X and Y be finite sets, and let O : X — Y.
Following [BDF*11, BBCT98], we usually model quantum access to O via oracle access

to the unitary mapping

Uo: Hxxy — Hxxy

17) x [Y)y — |2) x [y ® O(z))y

Furthermore, we model adversaries A with quantum access to O by a sequence Uy,
Uo, Uz, Ug, - -+, Uo, Un, where Uy, - - -, Uy are unitary transformations. We write Al®)
to indicate that O is quantum-accessible (contrary to oracles which can only process
classical bits).

Zhandry [Zhal2b] proved that no quantum algorithm Al®?  issuing at most ¢ quantum
queries to O, can distinguish between a random function O : {0,1}" — {0,1}" and
a 2¢-wise independent function. This allows us to view quantum random oracles as
polynomials of sufficiently large degree. I.e., we can replace quantum access to O
with an oracle that evaluates a random polynomial fs, of degree 2¢q over the finite
field Fa». The running time to evaluate fa, is linear in ¢. In this thesis, we will use
this observation in the context of security reductions, where a quantum reduction B
against some underlying security property executes a quantum adversary A9 issuing
at most ¢ queries to O, against the target security property. The running time of B
is Time(B) = Time(A) + ¢ - Time(Sim(0)), where Time(Sim(O)) denotes the time it
takes to simulate quantum access to O. When using a 2¢-wise independent function
in order to (information-theoretically) simulate quantum access to O, we obtain that
the running time of B is Time(B) = Time(A) + ¢ - Time(fa4), and the time Time( foq)
to evaluate foq is linear in ¢. Following [SXY18] and [KLS18], we make use of the fact
that the second summand of Time(B), which is quadratic in ¢, can be further reduced
to a term linear in ¢: As [SXY18] observe, it can be viewed as natural to model B
with access to its own additional external oracle O. In this case, the second summand
is reduced to ¢ - Time(O), where Time(O) now simply denotes the time it takes to
evaluate O. Assuming that evaluating a random oracle takes one time unit, we then
have Time(B) = Time(A) + ¢q. Throughout this thesis, we will hence endow quantum

adversaries B with access to an additional external oracle, and simplify the bounds on
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running time by dropping Time(Sim(O)) altogether.

1.8.2  Query Ezxtraction Arguments: One-Way to Hiding

EXTRACTABILITY. In (classical) random oracle proofs, a common proof strategy is
to make use of the observation that A can not distinguish a particular random oracle
value O(z*) from random unless A queries O on z*. When aiming to reduce the success
probability of A by giving a reduction B to some underlying problem P, learning
preimage z* can often be exploited to generate a solution to P. In the classical random
oracle model, this approach usually is formalised by “identical-until-query” games: The
game keeps track of all random oracle queries and raises flag QUERY if O ever is
queried on x*. The probability that QUERY occurs is then upper bounded in terms
of the success probability of some reduction B, which simulates the game to A until
(and wins with some probability if) QUERY occurs. (The probability of B winning if
QUERY occurs can depend on the number of oracle queries to O.) This property of

the classical random oracle model is sometimes called extractability.

In the quantum random oracle model, however, things become slightly more involved:
For an oracle that is quantum-accessible, the value x* is contained in a superposition
|p) of (potentially exponentially many) base states. In order to extract a classical value
from |¢), the reduction would need to measure |¢), but this measurement would let
the amplitudes of |p) collapse. Answering A’s query after execution of a measurement

hence would not be true to the original game, and might derail its behaviour.

QUANTUM COUNTERPARTS OF EXTRACTABILITY. Luckily, there have been recent results
that showed how to give a quantum equivalent of “random-until-query”-like arguments.
Sticking to the established naming convention, we will gather those arguments under
the umbrella term “one-way to hiding”, as they prove O(z*) to be hidden unless it can

be inverted.

The first one-way to hiding argument (“original one-way to hiding”) was given by
Unruh in [Unrl4b]. Accounting for the fact that the reduction cannot exploit random
oracle queries without potentially disturbing A’s behaviour, the argument describes an
extractor algorithm that randomly commits to one of the quantum queries a priori (i.e.,
before starting to execute A) and runs A only until this query, which then is measured to
extract a classical value. With a probability dependent on the number of random oracle

queries, the extractor will find x* if A behaves differently when receiving random input
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(instead of receiving (x*, O(z*))). We will formalise this argument in Theorem 1.3.2
below. In [HHK17], we used a slightly more general variant of this argument (called
“algorithmic one-way to hiding”), where adversaries receive additional input, and might
furthermore have access to additional oracles (which might be defined relative to O). We
will formalise this generalisation in Section 2.2. While being the conceptually simplest
solutions, the resulting upper bounds are far from tight: They lose a factor of ¢ (the
number of random oracle queries), and additionally suffer from a quadratic loss in the

extraction advantage.

Given that one-way to hiding is such an important tool when trying to lift random
oracle proofs to the quantum random oracle model, several recent publications [AHU19,
BHH™19, KSS™20] improved the upper bound by deploying more sophisticated proof

techniques. All improvements, however, come with some additional technical restrictions.

In [AHU19], Ambainis et al. generalised original one-way to hiding for multiple
preimages and reduced the factor ¢ to q%, by a technique they called “semi-classical
one-way to hiding”. Semi-classical oracles are oracles that measure queries, but only
partially. (To be more precise, it is only measured whether the query contained a
desired preimage. In particular, this means that if a query does not contain such a
preimage, the measurement has no effect on the query whatsoever.) We will formalise
this argument in Theorems 1.3.3 to 1.3.5 below, in which A has quantum access to
either a random oracle Oy, or an oracle O, such that O, coincides with O; everywhere
but on some subset S C X. (In our use cases, S will simply be the set that contains
one particular z*.) It was then shown that there exists an extractor which will find
some x € S (again, with probability dependent on ¢) if A behaves differently when
accessing O,. The additional technical requirement is that for each classical value x
contained in a query to O € {O1, 05}, the extractor must be able to recognise whether

x € S (Otherwise, another factor of q? is lost, and we end up with a factor of ¢ again.)

Subsequent to [AHU19], Bindel et al. [BHH"19] were able to remove the factor ¢
altogether with a technique called “double-sided one-way to hiding”. The name was

chosen as the extractor must be able to evaluate both oracles O; and O».

Finally, Kuchta et al. [KSST20] built on the work of [BHH"19], leading to the same
additional requirement. By also considering A’s internal workings (as opposed to simply
measuring one of the random oracle queries), a reduction was achieved that removed the
square root, albeit at the price of reintroducing factor ¢q. The additional requirement is
as in [BHHT19].

We give a simplified overview in Figure 1.12, where e denotes the success probability
of the respective extractor, or, in the case of [AHU19], the probability of measuring

that a query contains the desired preimage. We disregard small constant factors.
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Variant bound additional
(simplified) restrictions

Original [Unrl14b] qve

Semi-classical [AHU19] /g€ v
Double-sided [BHH"19] /e v
MRM [KSS™20] ge v

Fig. 1.12: Comparison of known one-way to hiding variants.

i

ORIGINAL ONE-WAY TO HIDING. We will now restate “original one-way to hiding’
[Unrl4b, Lemma 5].

Theorem 1.3.2. (Original one-way to hiding) Let O : {0,1}"™ — {0,1}™ be a random
oracle, and let A be a quantum algorithm with binary output, issuing at most qo
(quantum) queries to O. Let B be an oracle algorithm that, on input z*, does the
following: Pick i <—¢ {1, ,qo} and y* < {0,1}™, run Al® (z*, y*) until (just before)
the i-th query, measure the argument of the query in the computational basis, and
output the measurement outcome. (When A makes less than ¢ queries, B outputs
1 ¢{0,1}™.) Then

| Pr(Gf = 1] = Pr[G} = 1]| < 2q0 - y/PrivD
where games G, (for bit b) are defined below and
priND = Prlz’ = 27]

with the probability taken over z* <—g {0,1}", and 2’ < B9 (2*).

GAME G,

01 z* ¢ {0,1}"

02 y§ := O(x), yi +s {0,1}™
03 b« Al (2", y)

ONEWAY TO HIDING WITH SEMI-CLASSICAL ORACLES. We will now restate “semi-
classical one-way to hiding” [AHU19]. To any subset S C X, we associate the following
“semi-classical” oracle Ogcz Intuitively, Oéc collapses states taken from Hx xy to a state
that contains only elements of either S or X \ S. To be more precise, Ogc takes as input
a quantum state [1),0) such that [¢)) € Hy ® Hy. O2° first measures the X-register
with respect to the projectors My 1=} ¢ |z) (x| and Mo := 3~ o |2) (x|, and then
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initialises the last register to |b) for the measured bit b. Consequently, |, 0) collapses
to either a state |¢), 1) such that the X-register of |1’} only contains elements of S, or
a state [¢,0) such that the X-register of |¢)') only contains elements of X \ S.

To a quantum-accessible oracle O and a subset S C X, we furthermore associate
oracle O\ S which first queries O2¢ and then O. Let FIND denote the event that O2¢
ever returns a state |¢)’,1). Unless FIND occurs, the outcome of O\ S is independent
of the values O(z) for all € S, which is why O\ S is also called a “punctured” oracle.

The following theorem is a simplification of several statements given in [AHU19,
Thm. 1: “Semi-classical O2H”]. While [AHU19] consider adversaries that might execute
parallel oracle invocations, and therefore differentiate between query depth d and

number of queries ¢, we use the upper bound ¢ > d for the sake of simplicity.

Theorem 1.3.3 (Distinguishing). Let S C X be random. Let O;,0, € YX be random
functions such that Oq(z) = O(x) for all z € X \ S, and let z be a random bitstring.
(S, 01, Oz, and z may have an arbitrary joint distribution.) For ¢ € {1,2}, let

p; = Pr[l + A|07>(2)] ,

and let
prIND = Pr[b < Al®1\S)(2) : FIND] .

Then the probability of FIND is the same for both oracles, i.e.,
prinD = Pr[b « Al92\S)(2) . FIND] . (1.1)

Furthermore, for all quantum algorithms A with binary output, issuing at most ¢

lp1 —p2| <2-V/(g+1) prinp - (1.2)

It furthermore holds that

lVP1 = Vbl < V(g +1) - prnp (1.3)

queries, we have that

where we let
ph == Pr[1 « Al9\S) (2) A =FIND)]

for either oracle O € {0y, 03}.

Unfortunately, it is not always enough to argue that FIND occurs during a game, as
our reductions will not always know the set according to which the oracle is punctured.

To give an upper bound for prinp in this setting, we now restate a simplified version of

44



[AHU19, Thm. 2: “Search in semi-classical oracle”] and [AHU19, Cor. 1].

Theorem 1.3.4 (Extracting unknown preimages). Let S C X be random, let O be a
random function, and let z be a random bitstring. (S, O, and z may have an arbitrary

joint distribution.) Let
priND = Prlb < Al9\S)(2) . FIND] .

Then, for all quantum algorithms A with binary output issuing at most ¢ queries,
we have that
prIND < 4q - Prlz + B(2):z € 5] , (1.4)

where B is the algorithm that, on input z, chooses i <—g {1, , ¢}, runs Al until (just
before) the i-th query, measures its query input register in the computational basis and
outputs the measurement outcome.

If S := {z*} for * <5 X, and z* and z are independent, we have that

DPFIND < (1.5)

4q
X1
We will also use the following theorem, which generalises Theorem 1.3.2 by consid-

ering arbitrary (S, Oy, Oy, 2).

Theorem 1.3.5. [AHU19, Thm. 3: “One-way to hiding, probabilities”] We have that

Ip1 — p2| <2¢-/Prlz < B(z):z€ 8],

where p; and p, are defined as in Theorem 1.3.3, and B is defined as in Theorem 1.3.4.

1.8.83  Quantum Search and Distinguishing Problems

In our security proofs, we will sometimes argue that it is hard to find elements of
a finite set X that fulfill certain properties, where any element x fulfills this property
only with some bounded probability. We will formalise this argument as follows: For
A € [0,1], let By denote the Bernoulli distribution, i.e., Pr[b = 1] = A for the bit b + Bi.
Let X be some finite set, and let F : X — {0,1} be a random function such that
for each x € X, F(x) is distributed according to By. The Generic quantum Search
Problem (GSP, [HRS16, Thrm. 1], [Zhal2a]) is to find an z € X satisfying F(z) = 1,

given quantum access to F'.
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We will also at times argue that it is hard to detect when random sampling of
x <—¢ X is replaced with sampling x in a way such that no element carries the desired
property any more. To this end, we will make use of the Generic quantum Distinguishing
Problem (GDP): The generic quantum distinguishing problem ([ARU14, Lemma 37:
"Preimage search in a random function" | [HRS16, Lem. 3]) is to distinguish quantum
access to F' from quantum access to the zero function.

To be more precise, we will need slight variations of GSP and GDP: In the generic
quantum search (distinguishing) problem with Bounded probabilities GSPB (GDPB),
the Bernoulli parameter A(z) may depend on z, but it is upper bounded by a global A.

Lemma 1.3.6. (Generic search (distinguishing) problem with bounded probabilities)
Let X be a finite set, and let A € [0,1]. For any (unbounded, quantum) algorithm A

issuing at most ¢ quantum queries to F,
Pr[GSPBY = 1] <8-\-(¢+1)% , (1.6)

where game GSPB) is defined in Figure 1.13. Furthermore, for any (unbounded,

quantum) algorithm A issuing at most ¢ quantum queries to F,
| Pr[GDPB} , = 1] — Pr[GDPBY, = 1] < 8- X (¢+1)* (1.7)

where games GDPB,, ;, (for bit b € {0,1}) are also defined in Figure 1.13.

GAME GSPB, GAME GDPB,
01 ()\(I))mex — Aq 08 ()\z)zgx — Ay
02 if 3z € X st. A(z) > X 09 if Fz € X sit. Ap > A
03 return 0 10  return 0
04 for all z € X 1ifb=1
05  F(x) < Ba@) 12 forallzc X
06 z + AP 13 F(z) < Bx,
07 return F(x) 14 else

15 F:=0

16 b« AP

17 return b’

Fig. 1.13: Generic search game GSPB) and generic distinguishing games GDPB, , with
bounded maximal Bernoulli parameter A € [0, 1].

Note that Equation (1.6) was already proven in [KLS17]. Similar to the proof
of Equation (1.6), we showed in [HKSU20] that the bound in Equation (1.7) can be
reduced to the known bound on GDP by artificially increasing the Bernoulli parameter

in order to obtain the dependence on each z.
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In Section 3.1, we will consider a scenario win which a register is either in a state |y)
or in a state |y1). As a helper theorem, we will now recall that the optimal distinguishing
advantage between those states can be upper bounded in terms of the trace distance of
their density matrices |yo)X7yo| and |1 )}{y1|. Theorem 1.3.7 is a straightforward corollary
of [NC11, Thm. 9.1].

Theorem 1.3.7. (Optimal distinguishing advantage) For any quantum algorithm A,

we have that

1
| Pr[1 = A(|70))] = Pr[1 <= A([ym)]] < 5 lllvoXvol = [vXnlll,
1.8.4  The Superposition Oracle Formalism

In this section, we present the (simplest version of the) superposition oracle formalism
that was introduced in [Zhal9], and which we will need in Chapter 3. Superposition
oracles are a perfectly correct method to simulate a quantum-accessible random oracle
O :{0,1}™ — {0,1}™. Different variants of the superposition oracle have different
additional features that make them more useful than the quantum-accessible random
oracle model itself. In Chapter 3, we will be considered with the question whether
reprogramming of a quantum-accessible oracle O can be done without causing too much
of a difference in the behaviour of algorithms that access O, and since we will prove an
information-theoretical bound, we only need the simplest version of the superposition
oracle formalism.% In this basic form, there are three conceptual steps underlying the
construction of the superposition oracle, with the last one being key to its usefulness in

our analysis of the question stated above:

1. For each input value z € {0,1}", O(x) is a random variable uniformly distributed
on {0,1}™. This variable can be sampled by performing a computational basis

measurement of the uniform superposition

) =272 37 )

ye{0,1}m

For a function O : {0,1}™ — {0,1}™, we can store the string O(z) in a quantum

6We will use the fact that in the superposition oracle formalism, reprogramming can be implemented
directly by replacing a part of the quantum state that is held by the oracle, instead of using a simulator
that sits between the original oracle and the adversary. We will not be bothered with the time that it
takes to simulate such a quantum-accessible random oracle, since we will use Theorem 1.3.7 to prove a
bound that holds for any adversary, regardless of its running time.
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register Fj,. In fact, to sample O(z), we can prepare a register F, in the state
|po), perform a computational basis measurement, and keep the collapsed post-
measurement state. The outcome y of the measurement corresponds to the

projector |y)Xy|, and a post-measurement state proportional to
)yl eo) =27 [y).

The complete quantum-accessible random oracle O : {0,1}" — {0,1}™ can
accordingly be sampled by measuring a uniform superposition of all possible value
tables: O can be sampled by preparing a register F, for each input value x as

described above, resulting in a state

Po)p= &) 0)p, -

z€{0,1}n

where F' = Fyn Fyn—11...F1n, followed by a measurement of F' in the computational

basis.

. We will later argue that we can delay the measurement by which O is determined
until after the algorithm accessing O has finished, leading to the question how to
process the adversary’s queries while the random oracle still is in superposition.
On a high level, we do the same thing as in the usual quantum random oracle
formalism, meaning that we answer to quantum queries on registers X and Y by
@-ing the oracle values into the Y-register, only that now the oracle values are
still in superposition: Say a query is issued on |z) y |1}y, where X is the input
register and Y is the output register. We answer to the query using quantum
CNOT gates, i.e., we answer with a superposition oracle unitary Oxy r that acts
on the registers X,Y and the oracle register F' such that

Oxvyr |z x|y = |z)z|y ® (CNOT@m)Fm:Y

Before we proceed to the third conceptual step, we provide some more details on how

transformation O xyp works for readers who are not yet familiar with this formalism.

Readers who are already familiar with this formalism can proceed to page 50.

We will now make explicit how unitary Oxy g acts on XY F when a query is on a

base state |z*,y*). Since Oxy r is linear, it is thereby completely described.

As a warm-up, let us first assume that registers F,- and F,+. can be separated

in the current oracle state [®)p, i.e., we have that [®)p = |¢)p . ® [|¢/) 5 . for some

state [9) ., =, cq0,1ym @y [y) and some state [¢/) . . In this case, Oxyr works as
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follows: For any base state |y) = [y1 -~ yn) contained in |¢) _, we can compute

VY O p.y =Y O Y O Y.y = CNOT®™ Wy ) ey

The joint query-oracle state transitions to

Oxvr o5 ) xy @ 19) 5 = Oxvr 0,5 )y @ (16, ©10)..)
= [2")x ® ((CNOT®™) g,y [y")y ®10) . ) © 19},

=|z") x ® Z oy ly" S y)y @ ‘i‘/>Fﬁ ® |¢/>Fﬁc )
y€{071}7n

and the oracle answers with the X- and Y-register.

In the general case where the registers cannot necessarily be separated, we have
that {|y) .}y constitutes a basis for register Fy-, and that {b;i}icr == {|y)p, tora=y
constitutesua basis for F«-. We can therefore write the current oracle state in this basis
as [ ) p =3, cro1ymicr i V) p,. ©[bi)p ... When queried on base state [2*,y*), the

joint state transitions to (and the oracle answers with the X- and Y-register of)

Oxvr o',y ) xy ®19)p =Oxvrle* v ) xy ® (Y. oyil)p. ®[bi)p..)
ye{0,1}m icl

=[z")x ® Z i ly* B Y)y ® |y>Fm* ® |bi>}:‘m*C
ye{0,1}m il

Note that with its queries, the querying algorithm becomes entangled with the
oracle state: As an easy example, assume that the algorithm issues a first oracle
query on some base state |z*,y*). The initial oracle state |®y), is separable into
|60) p = |¢0>F; ® |¢0>%5:L;1, and we have that

OxvyFr |$*>y*>x,y®|‘b0>p = [z") x® 27/ Z ly" ©y)y @ |y>F,$* ®|¢0>%3*;1

ye{0,1}m

Since the state 27/2 2 oyefo1}m
entangled with the F.«-register.

y* @ y,y) is not separable, the Y-register has become

In particular, this means that the algorithm that queries the oracle can influence the
oracle by measuring the responses it obtains. In the example above, a measurement of
the Y-register will also let the F,«-register collapse. This should not be too surprising,
though: With its measurement, the adversary has learned the value of O(z*) and it is

hence determined from now on.
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We now proceed to the last conceptual step of the superposition oracle formalism.

3. Since the matrices |y)y|, and (CNOT®m)F1:Y commute, we can delay the mea-
surement that performs the sampling of the random oracle until after the querying
algorithm was executed. Queries are hence answered using the unitary Oxy g,
acting on oracle registers F; that are all initialised in the uniform superposition
state |@g), and only after the querying algorithm has finished, the register F is

measured to obtain the concrete random function O.

THE FORMALISM, IN A NUTSHELL. Due to the observations above, we can equivalently
implement a quantum-accessible oracle for a random function O : {0,1}"™ — {0,1}™ as

follows:

o Initialise: Prepare the initial state

|®o) o = ® |¢0>Fm'

z€{0,1}™

e Responding to oracle queries: A quantum query on registers X and Y is answered

using the unitary Oxyp.
e Post-processing: Register F' is measured to obtain a random function O.

The last step can be omitted whenever the function O is not needed for the evaluation
of the adversary’s success.

In Chapter 3, we will also need the following helper lemma, which is a reformulation
of [AMRS20, Lemma 2]. In a way, Lemma 1.3.8 generalises that when accessing a
classical oracle, an adversary issuing ¢ many queries learns at most ¢ oracle values. While
superposition queries can of course result in answers that contain many oracle values
at once, and while the adversary can become entangled with the oracle, Lemma 1.3.8
states that the joint state of adversary and oracle still is a superposition of states in

which at most ¢ many outputs (registers F) were touched.

Lemma 1.3.8. Let [¢,) 4, be the joint adversary-oracle state after an adversary A has
made ¢ queries to the superposition oracle with register F'. Define the low hamming-
weight subspace for register F' as the span of all vectors of which at most ¢ many
subregisters F; are not in state |¢o) . Then [t)y) , - is supported by the tensor product

x

of A’s registers and this subspace. Le., [1)) ,» can be written as

o) ar = D |¢§S)>AFS ® (|¢0>®(2”_‘S|)>Fsc ’

sc{o,1}"
[SI1<q
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where for any set R = {x1,x2,..., 2/} C {0,1}" we have defined Fr = Fy, Fy,...F};

and |¢§S)> Ars are some unnormalised vectors such that (dol g, |z/1((15 )> ars = 0 for all

xEeS.
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CHAPTER 2

FO-LIKE TRANSFORMATIONS IN
THE (Q)ROM

The notion of indistinguishability against chosen-ciphertext attacks (IND-CCA) [RS92] is
now widely accepted as the standard security notion for public-key encryption schemes.
While IND-CCA security is in many applications the desired notion of security, it is
usually much more difficult to prove than passive (i.e., IND-CPA or OW) security. Thus,
several transformations have been suggested that turn a public-key encryption scheme
with weaker security properties into an IND-CCA one, generically.

For instance, the aforementioned Fujisaki-Okamoto (FO) transformation [FO99,
FO13] yields a hybrid encryption scheme from combining any public-key encryption
scheme with any symmetric encryption scheme. If the underlying public-key encryption
scheme is OW secure, and the underlying symmetric scheme is one-time secure, then the
hybrid scheme is IND-CCA secure in the random oracle model. The REACT and GEM
transformations [OP01, CHJT02] are considerably simpler, but require the underlying
asymmetric scheme to satisfy OW-PCA security (see Definition 1.1.5, page 26). A similar
transformation was also implicitly used in the “Hashed ElGamal” encryption scheme
by Abdalla et al. [ABRO1].

Since real-world systems often work with hybrid encryption schemes that are derived
from a KEM, the primary goal of Chapter 2 will be to construct IND-CCA secure
KEMs. An important step towards this goal was already taken in [Den03], in which
several KEMs were constructed and proven IND-CCA secure, including constructions
that can be viewed as KEM variants of the FO transformation [Den03, Table 5] and
the REACT/GEM transformations [Den03, Table 2].

LIMITATIONS OF PREVIOUSLY KNOWN RESULTS FOR FO, REACT, AND GEM. Despite

their versatility, these transformations exhibit a couple of disadvantages.
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e Non-Tightness. The security reduction of the FO transformation in the random
oracle model is non-tight, i.e., it loses a factor of ¢, where ¢ is the number of
random oracle queries. While the REACT/GEM transformations have a tight
security reduction, they require the underlying encryption scheme to be OW-PCA
secure. As observed by Peikert [Peil4], many natural lattice-based encryption
scheme are not OW-PCA secure due to their decision/search equivalence, and it is
not clear how to modify them to be so. In fact, the main technical difficulty is to
build an IND-CPA or OW-PCA secure encryption scheme from a scheme that is
OW secure such that the security reduction is tight.

o Correctness errors. The FO as well as the REACT/GEM transformations
require the underlying asymmetric encryption scheme to be perfectly correct,
i.e., not having a decryption error. In general, one cannot exclude the fact
that decryption errors can be exploited by an active adversary, and in fact,
recent research [DVV18, BS20] has confirmed this assessment. Dealing with
imperfectly correct schemes hence proves of great importance, as many (but not
all) practical lattice-based encryption schemes have a small correctness error,
see, e.g., DXL [DXL12], Peikert [Peil4], BCNS [BCNS15], New Hope [ADPS16],
Frodo [BCD'16], Lizard [CKLS16], and Kyber [BDK*17].

e The security model. The aforementioned constructions were proven secure
in the random oracle model, meaning that the proof did not consider quantum
adversaries. While a QROM proof for a variant of FO was given in [TU16], it was
highly non-tight and again required the underlying scheme to be perfectly correct.
Furthermore, the construction in [TU16] introduced a communication overhead

of the length of the transmitted plaintext.

These deficiencies were of little or no concern when the FO and REACT/GEM
transformations were originally devised. Today, however, we view these deficiencies as
acute problems, due to the emergence of large-scale scenarios, in which tight security
reductions offer security at significantly lower costs, the increased popularity of lattice-
based schemes with correctness errors, and the potential threat of attackers with

quantum capabilities.
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Organisation of Chapter 2

In section Section 2.1, we offer a modular analysis of FO-like KEM transformations
in the random oracle model. To put it more precisely, we provide fine-grained trans-
formations that can be used to turn any passively secure PKE scheme into a KEM
that is IND-CCA secure in two steps. Intuitively, the first step (called transformation T)
achieves several intermediate notions (e.g. OW-PCA) and tightness properties, depend-
ing on properties of the underlying scheme. The second step (called transformation U)
comes in different variations, with all of them tightly achieving IND-CCA security. In
particular, we show that T turns OW security into OW-PCA security, and we give a
OW-PCA — IND-CCA variant of transformation U such that combining the two yields
the KEM equivalent of the original FO transformation. The benefit of this modular ap-
proach is not only a conceptual simplification, but also that it results in a larger variety
of possible combined transformations (with different requirements and properties). In
particular, we can combine two results about our transformations T and U to obtain
that the KEM equivalent of the original FO transformation yields IND-CCA security
from IND-CPA security with a tight security reduction.

Recall that all previous work on FO-like transformations assumed the underlying
scheme to be perfectly correct. It turns out that the possibility of correctness errors
can indeed affect the level of the resulting scheme’s security: All of our security bounds
for the U-transforms include a term relative to the level of the underlying scheme’s
worst-case correctness (see Definition 1.1.12), and subsequent work [DVV18, BS20] has
shown that this term is not a mere artifact of our proof strategy, but indeed reflects
the possibility of an adversary learning secret information by deliberately triggering

decryption failures.

In Section 2.2, we will revisit transformation T and generalise its analysis such
that it accounts for adversaries with quantum capabilities, i.e., we prove its security
in the quantum random oracle model. We furthermore show how to modify two of
the U-variants such that they achieve IND-CCA security in the quantum random oracle
model. The results presented in Section 2.1 and Section 2.2 are based on joint work
with Dennis Hofheinz and Eike Kiltz, published in [HHK17].

The security proofs given in Section 2.2, however, are highly non-tight, as all of them
invoke a quantum query extraction argument which comes with quadratic loss in the
extraction probability, and linear loss in the number of oracle queries. Combining the
security statement for transformation T with the security statement for either one of the

U-transformations, hence, leads to quartic loss in the advantage, rendering the security
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statement quite meaningless for real-world applications. It was left as an open problem
in [HHK17] to derive tighter security reductions. Furthermore, the quantum-secure
U-variants from Section 2.2 introduced some communication overhead when compared
to their classical counterparts from Section 2.1, which is why real-world implementations
generally follow the framework from Section 2.1. In Section 2.3, we therefore revisit
one of the combined KEMs from Section 2.1. We give a proof in the quantum random
oracle model that comes with better IND-CCA bounds than that of Section 2.2, with
respect to the underlying security assumption as well as with respect to the probability
of decryption failure. Due to a proof of equivalence, the analysis provided in Section 2.3
immediately carries over to another KEM variant from Section 2.1. Unfortunately, the
proof strategy does not carry over to the other two variants from Section 2.1. The
result presented in Section 2.3 is based on joint work with Eike Kiltz, Sven Schége,
and Dominique Unruh [HKSU20], in which it was generalised to achieve post-quantum
secure authenticated key exchange.

What all known security proofs for FO-like transformations have in common is that
they require at least worst-case correctness, if not even perfect correctness. As already
pointed out, our somewhat conservative definition of worst-case correctness indeed
reveals a potential attack venue that should not be neglected. On the other hand,
there exist practical schemes which do not naturally meet the requirement of worst-case
correctness, while fulfilling the more traditional (and less conservative) definition of
average-case correctness. In order to further broaden the applicability of known results
for FO-like transformations, we therefore introduce a new transformation in Section 2.4
that achieves average-case correctness from worst-case correctness, and that integrates
well into FO if the scheme either is one-way secure and randomness-recoverable, or if it

satisfies either IND-CPA security or partial one-wayness.

OPEN PROBLEMS. Subsequent to the publication of the results from Section 2.2, a lot
of independent research [SXY18, JZCT18, JZM19a, JZM19b, BHHT19, KSST20] has
been invested in the open problem (of proving tighter QROM bounds) that was stated
in [HHK17]. As of today, there exist tight proofs for deterministic schemes that satisfy
disjoint simulatability and perfect correctness (see [SXY18, Thm. 4.2] and [JZM19a,
Thm. 5]). For deterministic schemes that do not satisfy disjoint simulatability, all known
reductions are still at least quadratically loose [BHH19] or lose a factor of ¢ [KSS™20].
In the case that the underlying scheme is non-deterministic, all known bounds are

roughly of the form?® (or can be straightforwardly improved to) \/ q - Adviyr A (B)+¢2-9,

INote that in order to keep the comparison lucid, we disregarded small constant factors and
additional inherent summands that stem from, e.g., the search advantage corresponding to implicit
rejection. We furthermore want to mention that [BHH'19, KSST20] require the T-transformed
deterministic scheme to be injective with overwhelming probability.
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or respectively, ¢ - \/ Advoye(B) + ¢2 - 4, with the exception of [KSS*20] , in which the
square root was avoided by proving a bound roughly of the form ¢2- Advies P4 (B)+¢2-4.
Given that there exist tight reductions in the ROM when starting from IND-CPA security,
and that the last years have seen several refinements of the query extraction arguments
that can be deployed, it remains an open question whether the non-tightness of the
recently known bounds are proof artefacts, and the bounds hence could be improved
further, or whether it is meaningful as it reflects the possibility of a quantum attack.
Furthermore, we note that all constructions either involve a re-encryption step or
demand for additional requirements (like rigidity of a deterministic scheme, or OW
security in the presence of a quantum-accessible plaintext checking oracle). We view
it as an interesting question whether constructions can be found that do not involve
a re-encryption step, without making additional requirements and without sacrificing
the currently achieved level of efficiency. Given that key encapsulation mechanisms are
usually more “lightweight” than public-key encryption schemes, we also view it as an
interesting open question whether there exist direct transformations that only assume

(and yield) KEMs, while preserving efficiency.

2.1 Modular Constructions in the ROM

In this section, we provide modular variants of the FO transformation that work in two
steps, and prove their security in the random oracle model. An overview is given in

Figure 2.1.

T: FROM OW TO OW-PCA SECURITY (“DERANDOMISATION”+“RE-ENCRYPTION”).
Transformation T is the Encrypt-with-Hash construction from [BBOOT7], originally
proposed in [BHSV98, Sec. 5]: Starting from an encryption scheme PKE and a hash
function G, we build an encryption scheme PKE' := T[PKE, G| by defining

Enc’(pk, m) := Enc(pk, m; G(m)) ,

where G(m) is used as the random coins for Enc. Note that Enc’ is deterministic.
Dec’(sk, ¢) first decrypts ¢ into m’ and rejects by returning L if Enc(pk, m’; G(m')) # ¢
(“re-encryption”). Modeling G as a random oracle, OW-PCA security of PKE' non-tightly
reduces to OW security of PKE, and tightly reduces to IND-CPA security of PKE. If
PKE furthermore is y-spread (for sufficiently large «), then PKE" is even OW-PVCA
secure. Recall that OW-PVCA security is OW-PCA security, where the adversary is
additionally given access to a validity oracle VALID(c) that checks ¢’s validity (in the
sense that it does not decrypt to L, see Definition 1.1.7 on page 27). Furthermore, it is
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IND-CPA

\
s OW-PCA (det.)

777777777777 Lyt
ow + rigid w\
IND-CPA T ~ OW—PV?A. (det.) = ™ IND-CCA
+ v-spread 7 + rigid UL . Ut
ow  _.--°T
+ ~y-spread
. o s ROM .
Transformation Security implication Tightness? Requirements
PKE' = T[PKE, G] (§2.1.1) IND-CPA = OW-PCA v none
IND-CPA = OW-PVCA v ~-spread
OW = OW-PCA — none
OW = OW-PVCA — ~-spread
KEM#L,C = U#L,C[PKE'7 H] (§2.1.2) OW-PVCA = IND-CCA v none
KEM#,C = Uﬁﬂc[PKE'7 H] (§2.1.2) OW-PCA = IND-CCA v none
KEM, = UL [PKE’,H] (§2.1.3) OW-VCA = IND-CCA v PKE’ det. + rigid
KEMZ, = U [PKE', H] (§2.1.3) OW = IND-CCA v PKE’ det. + rigid

Fig. 2.1: Our modular transformations. Top: solid arrows indicate tight reductions,
dashed arrows indicate non-tight reductions. Bottom: properties of the transformations.

easy to verify that T achieves rigidity, meaning that ciphertexts either decrypt to L or

re-encryption yields the original ciphertext, see Definition 1.1.15 on page 32.

U;LM: FROM OW-PCA TO IND-CCA SECURITY (“HASHING” + “IMPLICIT REJECTION’).
Starting from an encryption scheme PKE’' and a hash function H, we build a key

encapsulation mechanism KEM#C = Uﬁ’C[PKE', H] with “implicit rejection” by defining

Encaps(pk) := (¢ < Enc'(pk,m), K := H(m,c)), (2.1)
where m is picked at random from the message space.
H(m,c) m# L
Decapsf@,c(sk,c) = (m; ¢) # , (2.2)
H(c,s) m=_1

where m := Dec(sk, ¢), and s is a random seed which is contained in sk. Modeling H as
a random oracle, IND-CCA security of KEMﬁyc tightly reduces to OW-PCA security of
PKE’. In the context of the FO transformation, implicit rejection was first introduced
by Persichetti [Per12, Sec. 5.3].
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Uﬁci FROM OW-PVCA TO IND-CCA SECURITY (“HASHING”+ “EXPLICIT REJEC-
TION’). Starting from an encryption scheme PKE’ and a hash function H, we build a
key encapsulation mechanism KEML = U3 C[PKE/, H] with “explicit rejection” which
differs from KEMZ,

e only in decapbulatlon

sk, c) == Him,c) m#L , (2.3)
1 m=_1

Decapsm o

where m := Dec(sk, ¢). Modeling H as a random oracle, IND-CCA security of KEM#C
tightly reduces to OW-PVCA security of PKE'. We remark that transformation UJW-LC is
essentially [Den03, Table 2], i.e., a KEM variant of the REACT/GEM transformations.

U# (UL): FROM DETERMINISTIC OW (OW-VCA) 10 IND-CCA SECURITY. We consider
two more variants: Transformation U7, (Uz,) is a variant of U . (Uf, ), where K =
H(m,c) from Equations (2.1)-(2.3) is replaced by K = H(m). We prove that in
the random oracle model, IND-CCA security of KEM#, := UZ%[PKE’,H] (KEMZ :=
Ui [PKE’, H]) tightly reduces to OW (OW-VCA) security of PKE’, if the encryption
algorithm of PKE’ is deterministic and the scheme is rigid. Recall that OW-VCA
security is essentially OW security, where the adversary is additionally given access to a
validity oracle VALID(c) that checks ¢’s validity, see Definition 1.1.7 on page 27.

THE RESULTING FO TRANSFORMATIONS. Our final transformations FO;%L . (“FO with
implicit rejection”), FO#W (“FO with explicit rejection”), FO;Zn (“FO with implicit
rejection, K = H(m)”), FO (“FO with explicit rejection, K = H(m)”) are defined in
the following table. The column indicating ROM tightness refers to the case where the

underlying scheme is assumed to be IND-CPA secure.

ROM

Transformation . Requirements
Tightness?

FO’Z .|PKE, G, H] := Uﬁ JTIPKE, G], H] v none

FO#L <[PKE, G, H] := Uy, .[T[PKE, G], H] v ~-spread

FO’Z[PKE G, H] := UL[T[PKE, G], H] v none

FO;. [PKE, G, H] := U [T[PKE, G|, H] v ~y-spread

As corollaries of our modular transformation we obtain that IND-CCA security of
FO7. .[PKE, G, H], FO,, .[PKE, G, H], FOL[PKE, G, H], and FO,,[PKE, G, H] non-tightly
reduces to the OW security of PKE, and tightly reduces to the IND-CPA security of PKE,
in the random oracle model. We remark that transformation FO . essentially recovers a
KEM variant [Den03, Table 5] of the original FO transformation [FO99]. Whereas the
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explicit rejection variants FO%C and FO#1 require PKE to be ~y-spread, there is no such

requirement on the implicit rejection variants FOfw and FOﬁ.

CORRECTNESS ERROR. We stress that all our security reductions also take non-perfect
correctness into account. Finding the “right” definition of correctness that is achievable
(say, by currently proposed lattice-based encryption schemes) and at the same time
sufficient to prove security turned out to be a bit subtle. This is the reason why our
definition of correctness (see Section 1.1.3, page 30) deviates from the ones that were

previously used. The concrete bounds of FO£  FO: FOfl, and FOJW‘L give guidance

m,c? m,c?

on the required correctness error of the underlying PKE scheme. Concretely, for “x bits

security”, PKE requires a worst-case correctness error of at most 27".

EXAMPLE INSTANTIATIONS. In the context of ElGamal encryption, one can apply
{FOZ. ., FO,, ,,FO7,,FO,.} to obtain the schemes of [KM03, BLK00, GMMVO05] whose
IND-CCA security non-tightly reduces to the CDH assumption, and tightly reduces
to the DDH assumption. Alternatively, one can directly use U#L’c / U#L’C to obtain the
more efficient schemes of [OP01, CHJ*02, ABRO1, Sho04a] whose IND-CCA security
tightly reduces to the gap-DH (a.k.a. strong CDH) assumption. In the context of
deterministic encryption schemes, one can apply Uﬁm / U#’C to obtain schemes mentioned
in [Sho04a, Den03], whose IND-CCA security tightly reduces to one-way security. Finally,
in the context of lattices-based encryption (e.g., [Reg05, LPR13]), one can apply FOZ

FO;: ., FO7, FO. to achieve IND-CCA security.

m,c?

RELATED WORK. As already pointed out, FOﬁL = U;: oT is essentially a KEM variant of
the Fujisaki-Okamoto transform from [Den03, Table 5]. Further, U, . is a KEM variant
[Den03] of the GEM/REACT transform [OP01, CHJ"02, ABRO1]. Our modular view
suggest that the FO transform implicitly contains the GEM/REACT transform, at least
the proof technique. With this more general view, the FO transform and its variants
remains the only known transformation from IND-CPA to IND-CCA security. It is an
interesting open problem to come up with alternative transformations that get rid of
derandomisation or dispense with re-encryption (while preserving efficiency). Note
that for the ElGamal encryption scheme, the “twinning” technique [CKS08, CKS09]
does exactly this, but it uses non-generic zero-knowledge proofs that are currently not
available for all schemes (e.g., for lattice-based schemes).

In concurrent and independent work, [AOP*17] considered the IND-CCA security
of LIMA, which in our notation can be described as FO:[RLWE, G, H]. Here RLWE
is a specific encryption scheme based on lattices associated to polynomial rings from
[LPR10], which is IND-CPA secure under the Ring-LWE assumption. As the main result,
[AOPT17] provides a tight reduction of LIMA’s IND-CCA security to the Ring-LWE
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assumption, in the random oracle model. As observed in [AOP*17], the proof exploits
“some weakly homomorphic properties enjoyed by the underlying encryption scheme”,
and therefore does not seem to be applicable to other schemes. The tight security
reduction from Ring-LWE is recovered as a special case of our general security results
on FO. We note that the security reduction of [AOP*17] does not take the (non-zero)

correctness error of RLWE into account.

Organisation of Section 2.1

In Section 2.1.1, we will define and analyse transformation T that turns any OW secure
public-key encryption scheme PKE into a scheme PKE’ that is OW-PCA secure. We
achieve a tight reduction if PKE is IND-CPA secure. If PKE furthermore is y-spread, then
the resulting scheme even satisfies the stronger security notion of OW-PVCA security.
Next, in Sections 2.1.2 and 2.1.3, we will introduce transformations U;,c, Uﬁ,c (U,
U#%) that transform any OW-PVCA (OW-PCA) secure encryption scheme PKE into an
IND-CCA secure KEM. The security reductions are tight. Transformations U3 and U#%,
however, can only be applied to deterministic encryption schemes that are rigid.
Combining T with {U;, ., U#, ., Ui, UL}, we provide concrete bounds for the

IND-CCA security of the resulting KEMs in Section 2.1.4.

2.1.1 Transformation T: From OW and IND-CPA to OW-PVCA

Transformation T transforms a passively secure public-key encryption scheme into
an OW-PVCA secure one, given that the underlying scheme is y-spread for sufficiently
large «y. If the underlying scheme is not y-spread, then T still achieves OW-PCA security.

THE CONSTRUCTION. To a public-key encryption scheme PKE = (KG, Enc, Dec) with
message space M and randomness space R, and random oracle G : M — R, we associate
PKE’ := T[PKE, G]. The algorithms of PKE' = (KG, Enc’, Dec’) are defined in Figure 2.2.
Note that Enc’ deterministically computers the ciphertext as ¢ := Enc(pk, m; G(m)).
It is easy to verify that PKE’ is rigid (see Definition 1.1.15 on page 32): If m/ =
Dec'(sk,c) # L, then Enc’(pk,m) = Enc(pk, m’; G(m')) = c.

CORRECTNESS. The following theorem establishes that if PKE is §-worst-case correct,
then PKE’ achieves game-based correctness (see Definition 1.1.13, page 31), in the

random oracle model.
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Enc’(pk, m) Dec’(sk, c)

01 c:= Enc(pk,m; G(m)) 03 m’ := Dec(sk,c).

02 return c 04 if m’ = L or Enc(pk,m’;G(m')) # ¢
05 return L
06 else return m’

Fig. 2.2: OW-PVCA secure encryption scheme PKE' = T[PKE, G] with deterministic
encryption.

Theorem 2.1.1. If PKE is §y.-worst-case correct, and G is a random oracle, then for

any adversary A returning a list of N many distinct messages it holds that
AdvSORRON(A) < N - e

where game COR-RO is defined as in Figure 1.5.

Proof. To prove the upper bound, consider an adversary A, playing game COR-RO.
We will call a message m problematic iff it exhibits a correctness error in PKE’, i.e., if
Dec(sk, Enc(pk,m; G(m))) # m. A wins if there exists at least one message in £ that
is problematic.

For a fixed key pair (pk, sk) € supp(KG), let &’(pk, sk) := max,,ca Pr[Dec(sk, c) #
m], where the probability is taken over ¢ < Enc(pk,m). Since G outputs independent
random values, any message m € M is problematic with probability at most ¢'(pk, sk),

hence we can take the expectation over (pk, sk) < KG and the union bound to obtain

Pr[COR-ROAg = 1] = E [Pr[COR-Ro’;KE, = 1| (pk, sk)]

<EI[N -8 (pk,sk)] = N - dye -

O

NON-TIGHT SECURITY FROM OW. The following theorem establishes that OW-PVCA
security of PKE'( (see Definition 1.1.7, page 27) non-tightly reduces to the OW security
of PKE, in the random oracle model, given that PKE is y-spread (for sufficiently large
7). If PKE is not y-spread, then PKE’ is still OW-PCA secure.

ROM

Theorem 2.1.2 (PKE OW = PKE' OW-PVCA). Assume PKE to be §y.-worst-case
correct and v-spread. Then, for any OW-PVCA adversary A that issues at most ¢g
queries to random oracle G, gpco queries to plaintext checking oracle PCO, and gyarip

queries to validity checking oracle VALID, there exists an OW adversary B such that
Advpke YA (A) < (g6 + apco + 1) - AdvRke(B) + (g6 + qpco) - Owe + qvaLin <277,
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and the running time of B is about that of A.

The main idea of the proof is that since Enc’ is deterministic, oracle PCO can be
simulated by “re-encryption”, and oracle VALID can be simulated by controlling the
random oracles. Additional care has to be taken into account for the correctness error.

Per definition, OW-PCA security is OW-PVCA security with gyarip := 0 queries to
the validity checking oracle. Hence, the bound of Theorem 2.1.2 in particular shows
that PKE" is OW-PCA secure, without requiring PKE to be ~-spread.

Proof. To prove security, let A be an adversary against the OW-PVCA security of PKE’,
issuing at most g queries to G, at most gpco queries to PCO, and at most gyarLip

queries to VALID. Consider the sequence of games given in Figure 2.3.

GAMES Gy - Gs PCO(m € M, ¢)

ot (pk, sk) < KG 14 m’ := Dec(sk, c) /Go-G1
02 m* <5 M 15 return [m’ = m and Enc(pk,m’; G(m')) = ] JGo-G1
03 ¢* := Enc(pk,m*; G(m")) 16 return [Enc(pk,m,G(m)) = c] [ G2-G3
04 m!  AGPCOVALID (1 by

05 return [m' = m*]
VALID(c # ¢¥)

17 m’ := Dec(sk, c) [ Go-G1
G(m) 18 return [m’ € M] and [Enc(pk,m’; G(m")) = (] /Go
06 if Jrs. th.(m,r) € £¢ 19 return [Ir s. th. (m',r) € £ and Enc(pk,m’;r) =] [G1
07 returnr 20 return [3(m,r) € L s. th. Enc(pk,m;r) = (| /G2-G3
08 if m =m* /G
09  QUERY :=true JGs
10 abort /Gs
11 r+sR

12 L6 := LcU{(m,r)}
13 return r

Fig. 2.3: Games G(-Gj3 for the proof of Theorem 2.1.2.
GAME Gy. This is the original OW-PVCA game. Random oracle queries are stored in
set £¢ with the convention that G(m) = r iff (m,r) € £¢. Hence,

Pr[G4 = 1] = AdvORerVA(A) .

GAME (7. In game G, the ciphertext validity oracle VALID(c¢ # ¢*) is replaced with
one that first computes m’ = Dec(sk, ¢), and returns 1 iff there has occurred a previous
query m’ to G and re-encryption works, i.e., if there exists an r such that (m/,r) € £¢
and Enc(pk,m’;r) = c.
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Consider a single query VALID(c¢) and define m/ := Dec(sk, ¢). It is easy to verify
that if VALID(¢) = 0 in Gy, then VALID(c) = 0 also in G;: If VALID(¢) = 0 in Go,
then either m’ := L or Enc(pk,m’; G(m/)) # c¢. If m’ := L, then no query to G on m’
can occur. If Enc(pk,m’; G(m')) # ¢, then VALID(c¢) returns 0 in game G even if a
query to G on m’ has occurred.

If VALID(c) = 1 in Gy, then VALID(¢) = 0 in G; only if G(m’) was not queried
before. The adversary hence has to come up with a ciphertext ¢ such that ¢ =
Enc(pk,m’; G(m')) = ¢, without knowledge of G(m’). This happens with probability
277, where + is the parameter from the ~-spreadness of PKE.

By the union bound we obtain

|PI’[GS = 1] — PI‘[G? = 1]| < QvALID * 277,

GAME G5. In game G4, we replace plaintext checking oracle PCO(m, ¢) and ciphertext
validity oracle VALID(c) by simulations that do not check anymore whether m =
Dec(sk,c). We claim

| Pr[G4 = 1] — Pr[GS = 1]| < (g6 + qpco) - Owe - (2.4)

To show Equation (2.4), observe that both game G; and game G5 make at most ¢
(distinct) queries G(mq), ..., G(my,) to G, where ¢ counts both the explicit queries to G
that are issued by B and the implicit queries that are triggered by PCO. Again, we
call such a query G(m;) problematic if it exhibits a correctness error in PKE', i.e., if
Dec(sk, Enc(pk, m;; G(m;))) # m;.

Consider a single query PCO(m, ¢) (VALID(c)) and define m’ := Dec(sk, c). We
first show that if G; answers a query to one of the oracles with 1, so does game Gg: If
PCO(m,c) = 1in game Gy, then m = m’ and Enc(pk, m; G(m)) = Enc(pk, m'; G(m')) =
¢, hence PCO(m,c) = 1 in game Go. If VALID(¢) = 1 in game G;, then G was already
queried on m’ and Enc(pk, m’; G(m’)) = ¢, hence VALID(c) = 1 in game Ga.

We now show that if G2 answers a query to one of the oracles with 1, so does game
G1, conditioned on the event that no random oracle query G(m;) is problematic: If
PCO(m,c) = 1 in game Ga, then Enc(pk,m;G(m)) = c. Since we condition on the
event that no random oracle query is problematic, we have m’ = Dec(sk, ¢) = m, hence
PCO(m,c) =1 in game G;. If VALID(¢) = 1 in game Gg, then G was already queried
on some m such that Enc(pk,m;G(m)) = ¢. Again, m can not be problematic and
hence VALID(c) =1 in game Gs.

We have shown that the two games can only differ if A submits a PCO query (m, c¢),
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or a VALID query ¢, together with a random oracle query G(m), such that G(m) is
problematic and ¢ = Enc(pk, m; G(m)). (In this case, G; will answer the query with 0,
while G5 will answer with 1.) Clearly, if A makes a problematic query, then there exists
an adversary F that wins the correctness game COR-RO by returning to game COR-RO
the list of all queries to G and PCO. Hence, the probability that at least one query
G(m;) is problematic is at most (¢g + gpco) - dwe. This proves Equation (2.4).

GAME G3. In Game Gj3, we add a flag QUERY in line 09 and abort when it is raised.
Hence, G2 and G3 only differ if QUERY is raised, meaning that A made a query G on

m*, or, equivalently, (m*,-) € £¢. Due to the difference lemma (Lemma 1.0.1),
| Pr[G4 = 1] — Pr[G5 = 1]| < Pr[QUERY] .

We first bound Pr[G4 = 1] by constructing an adversary B in Figure 2.4 against
the OW security of the original encryption scheme PKE. B; inputs (pk,c*) for a
random, unknown m*, and ¢* < Enc(pk, m*). Since G5 aborts if G was queried on m*,
¢* < Enc(pk, m*) is indistinguishable from ¢* := Enc(pk, m*; G(m*)) unless G3 aborts.
Hence, By perfectly simulates game G3 for A and outputs m’ = m™* if A wins in game
Gs.

Pr[G4 = 1] = AdvOYe(By) .

So far, we have established the bound
AdvEETYA(A) < quarn 277 + (g6 +qpco) - Owe + Advpke (B1) + Pr[QUERY] . (2.5)

To finally upper bound Pr[QUERY], in Figure 2.4 we construct an adversary B,
against the OW security of the original encryption scheme PKE, that inputs (pk, c¢*
Enc(pk, m*)) and perfectly simulates game G3 for A until QUERY occurs. If flag
QUERY is set in G5, then there exists en entry (m*,-) € £¢, and B, returns the correct
m’ = m* with probability 1/(¢c + gpco). We just showed

Pr[QUERY] < (qc + grco) - AdvERe(B2) -

Combining the latter bound with Equation (2.5) and folding B; and B, into one
single adversary B against the OW security of PKE yields the bound given in the

theorem.
O

TIGHT SECURITY FROM IND-CPA. Whereas the reduction to OW security in Theo-
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Bi1(pk, c*) B2(pk, c*)
01 m! - AGPCONVALID (1 ) 03 m < ASPCONVALID (1 ox)
02 return m’ 04 (m/,r") 5 £

05 return m’

Fig. 2.4: Adversaries B; and B; against OW of PKE for the proof of Theorem 2.1.2.
Oracles PCO, VALID are defined as in game G35, and G is defined as in game Gy of
Figure 2.3.

rem 2.1.2 was non-tight, the following theorem establishes that OW-PVCA security of
PKE’ tightly reduces to IND-CPA security of PKE, in the random oracle model, given
that PKE is y-spread. If PKE is not y-spread, then PKE' is still OW-PCA secure.

Theorem 2.1.3 (PKE IND-CPA "2 PKE' OW-PVCA). Assume PKE to be dyc-worst-
case correct and 7-spread. Then, for any OW-PVCA adversary A that issues at most ¢g
queries to the random oracle G, gpco queries to plaintext checking oracle PCO, and
qvaLID queries to validity checking oracle VALID, there exists an IND-CPA adversary
B such that

2(gc + grco) +1

AVGHEPYA ) < 3 AQYBRTAB) (0 Hanco) e a2+ 2000 £

and the running time of B is about that of A.

With the same argument as in Theorem 2.1.2, a tight reduction to OW-PCA security
is implied by Theorem 2.1.3 without requiring PKE to be v-spread.

Proof. Considering the games of Figure 2.3 from the proof of Theorem 2.1.2, we obtain
by Equation (2.5)

AdvEREPYA(A) < guawp - 277 + (g6 + qrco) - dwe + AdvERE(B1) + Pr[QUERY]
~ 1
< gvaLp - 277 + (g6 + qpco) - dwe + Advpre TA(C) + ™M
+Pr[QUERY] ,

where the last inequation uses Lemma 1.1.6 (see page 26).

In Figure 2.5 we construct an adversary D = (D1, D2) against the IND-CPA security
of the original encryption scheme PKE that wins if flag QUERY is set in G3. The
first adversary D; picks two random messages mg, m;. The second adversary Do
inputs (pk, ¢* < Enc(pk, mj), st), for an unknown random bit b, and runs A on (pk, ¢*),
simulating its view in game G3. Note that by construction, message m; is uniformly
distributed.
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D1 (pk) Da(pk,c", st)

06 st := (mg, m}) g M?> 08 m/ < AGPCOVALID () o)
07 return st 0 |€a(m§)] > |La(m?)]
09 b :=<¢1 |€a(m?)] > |La(mg)]

+3 {0,1} otherwise
10 return b’

Fig. 2.5: Adversary D = (D1, D;) against IND-CPA for the proof of Theorem 2.1.3. For
fixed m € M, £4(m) is the set of all (m,r) € £¢ (if any). Oracles PCO and VALID
are defined as in game Gz, and G is defined as in game G5 of Figure 2.3.

Consider game IND-CPAP with random challenge bit b. Let QUERY¢ be the event
that A queries random oracle G on mj_,. Since mj_, is uniformly distributed and
independent from A’s view, we have Pr{QUERY¢] < (g +4gpco)/|M|. For the remainder
of the proof we assume QUERY( did not happen, i.e., |£g(m]_;)| = 0.

If QUERY happens, then A queried the random oracle G on mj, which implies
that |£q(m;)| > 0 = |£€a(mi_,)| and therefore b = b'. If QUERY does not happen,
then A did not query random oracle G on m}. Hence, |Lq(m})| = [La(m;_,)| =0, and
Pr[b = b'] = 1/2 since B picks a random bit &’. Overall, we have

AdvNE-CPA(D) 4 T TIPCO |+/\j]11|jco > |Prjp=1b]— 1‘

2

1 1
Pr[QUERY] + 5 Pr[-QUERY] — 5

_ %Pr[QUERY].

Folding C and D into one single IND-CPA adversary B yields the required bound of
the theorem. 0

Transformation U: From OW-PVCA to IND-CCA

In this section, we introduce four variants of transformation U, namely U#yc, U#L,c,
Ui, U#

. . /. .
m, Uz, that convert a public-key encryption scheme PKE' into a key encapsulation

mechanism KEM. Their differences are summarised in the following table.
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Transformation Rejection method KEM key PKE"’s requirements

Um.e explicit K =H(m,c) OW-PVCA

Ut implicit K =H(m,c) OW-PCA

Ut explicit K =H(m) det. + OW-VCA + rigid
ux implicit K = H(m) det. + OW + rigid

Superscript + indicates that decapsulation rejects all inconsistent ciphertext by
returning L (“explicit rejection”), whereas * indicates that a pseudorandom key is
returned instead (“implicit rejection”). A subscript m, ¢ indicates that the KEM key is
derived by hashing message m and ciphertext ¢, i.e., K = H(m,¢), and a subscript m

indicates that the KEM key is derived by only hashing message m, i.e., K = H(m).

2.1.2  Transformation U, , (U% . ): From OW-PVCA (PCA) to IND-CCA

Transformation UJ,;LC: from OW-PVCA to IND-CCA

Transformation Uf;b, . transforms an OW-PVCA secure public-key encryption scheme

into a key encapsulation mechanism that is IND-CCA secure. The * in U#C means

that decapsulation of an invalid ciphertext results in the rejection symbol L (“explicit

rejection”).

THE CONSTRUCTION. To a public-key encryption scheme PKE' = (KG’,Enc’, Dec’)
with message space M, and a hash function H : {0,1}* — {0,1}", we associate
KEM,, . = UL .[PKE',H]. The algorithms of KEM;,, ., = (KG’, Encaps, Decaps;, ,) are
defined in Figure 2.6.

It is easy to verify that if PKE' is &/ .-average-case correct, then KEI\/I#’C is 0} .-correct.

Ean(pk) Decaps#w(sk, c)

01 m g M 05 m' := Dec'(sk, c)

02 ¢ + Enc’(pk,m) 06 if m’ = 1 return L
03 K := H(m,c) 07 else return

04 return (K, c) K :=H(m/,c)

Fig. 2.6: IND-CCA secure key encapsulation mechanism KEM: = U#,C[PKE', HJ.

m,c

SECURITY. The following theorem establishes that IND-CCA security of KEMi‘w tightly
reduces to the OW-PVCA security of PKE’, in the random oracle model.
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GAMES Gy - G» H(m, c)

01 (pk, sk) <+ KG’ 15 if K such that (m,c¢,K) € £x
02 m* +g M 16  return K
03 ¢* « Enc’(pk,m*) 17 K +3s K
04 K§ :=H(m*,c") 18 if Dec(sk,c) =m JG1-G2
05 K7 +s {0,1}" 19 ife=c* JASE
06 b<«g {0,1} 20 CHAL := true; abort /G2
07 b «— ADECi,c’H(pk’ c* Ky 21 if 3K’ such that (¢, K') € £p  [JG1-G2
08 if Dec'(sk,c*) #m* JGa2 22 K=K /G1-Ga
09  ERROR := true )Gy 23 else /G1-G
10 abort JGy 2% £p = Lp U{(c,K)} /G1-Ga
11 return [b' = b] 25 Ly = Lu U{(m,c, K)}

26 return K
DEC (¢ # c*) /Go DECy (c# ) /G1-G2
o = Dec (s, 0) 27 if 3K s. th. (¢, K) € £p
13 if m’ = L return L 28 return K
14 return K := H(m/,c) 29 if Dec'(sk,c) ¢ M

30 return L

31 K +g K

32 £p:=Lp U{(¢,K)}
33 return K

Fig. 2.7: Games G - G for the proof of Theorem 2.1.4.

Theorem 2.1.4 (PKE' OW-PVCA 2" KEMZ, | IND-CCA). Assume PKE' to be &-
1

average-case correct. For any IND-CCA adversary A against KEM;, ., issuing at most
qp queries to the decapsulation oracle DECJT;W and at most gy queries to the random
oracle H, there exists an OW-PVCA adversary B against PKE’ that issues at most gy
queries to its PCO oracle, and gp queries to its VALID oracle such that

AGBECAR) < AWGEN @) + 4L

and the running time of B is about that of A.

The main idea of the proof is to simulate the decapsulation oracle without the secret
key. This can be done by answering decryption queries with a random key and then
later patch the random oracle, using the plaintext checking oracle PCO provided by
the OW-PVCA game. Additionally, the ciphertext validity oracle VALID is required to

reject decapsulation queries with inconsistent ciphertexts.

Proof. Let A be an adversary against the IND-CCA security of KEI\/Ifnyc,

qp queries to DECJT;W and at most gy queries to H. Consider the sequence of games

issuing at most

given in Figure 2.7.
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GAME Gj. Since game G is the original IND-CCA game,

Pr[G) = 1] — =

AdVEBEA(A) = :

|

GAME G;. In game G, the oracles H and DEC#L’C are modified such that they make
no use of the secret key any longer, except by testing if Dec’(sk, c) = m for given (m, c)
in line 18, and if Dec’(sk,c) € M for given c in line 29. We will use two lists, hash list
L and decapsulation list £p, for book-keeping. Existence of an entry (m,c¢, K) € £
indicates that H was queried on (m, ¢) and returned H(m, ¢) := K, existence of an entry
(¢, K) € £p indicates that either DEC#_’C was queried on ¢ (see line 32) and returned K,
or that H was queried on (m/, c) for m’ := Dec’(sk, c¢) and returned K (see line 24). In
order to show that the view of A is identical in games Gy and G, we have to consider

the following cases for a fixed ciphertext ¢ and m’ := Dec’(sk, c):

o Case 1: m’ ¢ M. Since Dec'(sk,c) ¢ M is equivalent to m’ = L, DEC#@(C)
returns L in both games. Note that Dec’(sk,c) ¢ M is also equivalent to
VALID(c) = 0.

o Case 2: m’ € M. We will now show that H in game G is “patched”, meaning
that it is ensured that DECJT,‘I’C(C) = H(m/,¢) for all ciphertexts ¢ such that
m' := Dec’(sk,c) € M. We distinguish two sub-cases: A might either first query

H on (m/,¢), and then query DEC#%C on ¢, or the other way round.

— If H is queried on (m/, ¢) first, it is recognised that Dec’(sk,c) = m in line
18. Since DEC#’C was not yet queried on ¢, no entry of the form (¢, K) can
already exist in £p. Therefore, besides adding (m, ¢, K <—g K) to £x, H also
adds (¢, K) to £p in line 24, thereby defining DECf‘nﬁc(c) =K =H(m/,c).

- If DECJW‘I’C is queried on c first, no entry of the form (¢, K) exists in £p yet.
Therefore, DEC#@ adds (¢, K <3 K) to £p, thereby defining DEC;,C(C) =
K. When queried on (m/, ¢) afterwards, H recognises that Dec’(sk, c) = m/

in line 18 and that an entry of the form (¢, K) already exists in £p in line

21. By adding (m, ¢, K) to £5 and returning K, H defines H(m/,¢) := K =

DECf‘m (o).

Note that Dec’(sk,c) = m is equivalent to PCO(m,c) = 1.

We have shown that A’s view is identical in both games and
Pr[Gh = 1] = Pr[GY} = 1]| .
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GAME G3. In game G5, we abort immediately on the event that A queries H on

(Dec’(sk, c*),c*). We denote this event by CHAL. Furthermore, we raise lag ERROR
in line 09 and abort if ¢* exhibits decryption failure, i.e., if Dec’(sk,c*) # m*. Unless
ERROR happens, H(m*, ¢*) will not be given to A in game Go; neither through a hash
nor a decryption query, meaning bit b is independent from A’s view and hence,

1
Due to the difference lemma,

| Pr[G} = 1] — Pr[G5 = 1]| < Pr[ERROR vV CHAL]
= Pr[ERROR] + Pr[CHAL A -ERROR] .

Since m* was drawn uniformly at random,
Pr[ERROR] < 4., .

It remains to bound PrfCHAL A-ERROR]. To this end, we construct an adversary
B against the OW-PVCA security of PKE' in Figure 2.8, simulating G5 for A.

Note that the simulation is perfect. The event that CHAL occurred (but ERROR
did not) implies that A queried H(m*, c*), hence (m*,c*, K') € £p for some K’, and

B returns m’ = m*.

Pr[CHAL A ~ERROR] = AdvOuePVA(B) .

Collecting the probabilities yields the desired bound.

Transformation Ufm: from OW-PCA to IND-CCA

Transformation UZ . is a variant of U3, . with “implicit rejection” of inconsistent
ciphertexts. The £ in Ufw means that, instead of returning |, decapsulation returns
a pseudorandom key. It transforms an OW-PCA secure public-key encryption scheme

into an IND-CCA secure key encapsulation mechanism.

THE CONSTRUCTION. To a public-key encryption scheme PKE' = (KG’,Enc’, Dec’)
with message space M, and a random oracle H : {0,1}* — K, we associate KEMiL’c =
Uz, [PKE' H] = (KG*, Encaps, Decaps;%w). The algorithms of KEM#W are defined in

Figure 2.9. Note that Encaps is the same as in KEI\/I#%C (Figure 2.6), and that Uz, .
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B"C(pk, ") H(m, ¢)

01 K* +3 K 06 if 3K such that (m,c, K) € L
02 b «— ADECTLn,cv"'(pk7 ¢ K*) 07 return K
03 if I(m',c,K’) € £x 08 K+ K
s. th. PCO(m/,¢*) =1 09 if PCO(m,c) =1
04 return m’ 10 if 3K’ such that (¢, K') € £p
05 else abort 11 K : =K'
12 else

13 Lp:=Lp U{(c,K)}
14 Ly =Ly U{(m,c,K)}
15 return K

Fig. 2.8: Adversary B against OW-PVCA for the proof of Theorem 2.1.4, where DECJ,;L’c
is defined as in Game G of Figure 2.7. (Line 29 can be executed via a call to the
VALID oracle.)

and U;%hc essentially differ in decapsulation: Decapsi,c from U#L,C rejects if ¢ decrypts
to L, whereas Decapsﬁ’C from Uﬁ’c returns a pseudorandom key K := H(s, c).
Again, it is easy to verify that if PKE' is ¢’ .-average-case correct, then KEI\/Iﬁ’C is

/
0, .-correct.

KG* Encaps(pk) Decapsﬁyc(sk, c)
01 (pk', sk") - KG' 05 m 4 M 09 Parse sk = (sk’, s)
02 s 5 M 06 ¢« Enc'(pk,m) 10 ' = Dec(sk', c)
03 sk := (sk',s) 07 K := H(m,c¢) 1ifm = L
04 return (pk’, sk) 08 return (K,c) 12 return K := H(s, c)
13 else return K := H(m/,c)

Fig. 2.9: IND-CCA secure key encapsulation mechanism KEI\/I#,c = Ufn,c[PKE', H.

SECURITY. The following theorem establishes that IND-CCA security of KEMfW tightly
reduces to the OW-PCA security of PKE’, in the random oracle model.

ROM

Theorem 2.1.5 (PKE' OW-PCA = KEM;Zn,C IND-CCA). Assume PKE’ to be d/-
average-case correct. For any IND-CCA adversary A against KEM#)C, issuing at most
qp queries to the decapsulation oracle DECfL,C and at most gy queries to the random
oracle H, there exists an OW-PCA adversary B against PKE’ that makes at most gy
queries to the PCO oracle such that

AdVEGEN A) < AdVEKE"A(B) + T + 01

and the running time of B is about that of A.

The proof is very similar to the one of Theorem 2.1.4. The difference is the handling
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GAMES Gy - Gs H(m, c)

o1 (pk', sk") «+ KG’ 20 if 3K s. th. (m,c, K) € £5 return K

02 s 4+g M 21 K+ K

03 sk := (sk',s) 22 if m=s JG1-G3
04 m* +g M 23 QUERY := true; abort /G1-G3
05 ¢* + Enc'(pk',m") 24 if Dec’(sk’,c) =m JG2-Gs
06 K§ :=H(m",c") 25 if c=c" /G
07 Ki +35 {0,1}" 26 CHAL := true; abort /G
08 b<g {O, 1} 27 if 3K’ such that (C, K/) € £Lp //GQ—GS
09 b ¢ AP H (pk! ot K7 8 K=K //G2-Gs
10 if Dec'(sk,c*) #m* )Gy 29 else /G2-Gs
11 ERROR := true JGs 30 Lp = Lo U{(¢, K)} /G2-Gs
12 abort //Gg 31 Ly :=Lp U {(mv < K)}

13 return [b' = b] 32 return K

DECH, (¢ # ) JGo-Gy DECH,(c # ¢) [/G2-Gs
o = Dec (K, ) 23 if 3K s. th. (¢, K) € £p

15 if m' = L 34  return K

16 return K := H(s,c) JGo 3° else

17 return K := H'(c) /Gy 36 K< K

18 if m’ = sreturn K :=H'(¢c) )G, ¥ £p:=LpU {(c, K}

19 return K := H(m/,c) 38 return K

Fig. 2.10: Games G - G3 for the proof of Theorem 2.1.5 . Oracle H’ (lines 17 and 18)
is an independent internal random oracle that cannot be accessed by A.

of decapsulation queries for inconsistent ciphertexts. Since the OW-PCA experiment
does not provide a VALID oracle, the handling of invalid ciphertexts has to be integrated

into how we patch the random oracle.

Proof. Let A be an adversary against the IND-CCA security of KEMZ% _ issuing at most

m,c’

qp queries to DEc’ . and at most gn queries to H. Consider the sequence of games

m,c

given in Figure 2.10.
GAME Gj. Since game (G is the original IND-CCA game,

1
Pr[G) = 1] — ’

AdVIND-CCA(A) — 5

KEMZ% .

GAME G;. In game G, we make two changes: First, we raise flag QUERY and abort
if H(s, ") is queried (lines 22 and 23). Second, we make the pseudorandom keys that are
returned by DEC#C perfectly random. That is, in DEC;};’C(C% we replace K = H(s, ¢)
by K = H'(c) if m’ := Dec'(sk’,¢) = L (line 17) or if m’ := Dec'(sk’,c) = s (line 18),
where H’ is an independent internal random oracles that cannot be accessed by A.

Unless QUERY occurs, A’s view is identical in both games: Let ¢ be any query to
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DEC;K,M such that Dec’(sk’,c) € {L,s}. Since DEC;fW(c) still returns a random value,
and since Dec’(sk’, ¢) is unique, the change remains unnoticed by A unless A queries H
on (s,c).

Since A’s view is independent of (the uniform secret) s unless Gy aborts due to
occurrence of QUERY,

|Pr[GA = 1] - Pr[GA = 1) < 1
M|
GAME (. In game G, the oracles H and DEC#C are modified such that DEC#c does
not make use of the secret key any longer, except by testing if Dec’(sk’,c) = m for
given (m, c¢) in line 24. We will use two lists, hash list £ and decapsulation list £p,
for book-keeping. Existence of an entry (m,c, K) € £ indicates that H was queried
on (m,c) and returned H(m,c) := K. Existence of an entry (¢, K) € £p indicates that
either H was queried on (m := Dec(sk’, ), c), or DEC#C was queried on ¢, and either
way, it holds that DECY, .(c) = K.

In order to show that the view of A is identical in games G; and G5, consider the

following cases for a fixed ciphertext ¢ and m’ := Dec(sk’, c).

o Case 1: m' € {L1,s}. Since H cannot be queried on (m/,¢) (i.e., H(L,") is not
allowed, and H(s, ¢) results in abort), the simulation of H can never add a tuple
of the form (¢, K) to £p. Hence, querying DECﬁﬁC(c) in game Gy will return a

uniformly random key, as does Game G.

o Case2: m' ¢ {L,s}. We will now show that H in game G5 is “patched”, meaning
that it is ensured that DEC#7C(C) = H(m/,¢) for all valid ciphertexts ¢ with
m' = Dec'(sk, c) # s. We distinguish two sub-cases: A might either first query H

on (m/,c), and then query DEC#I’C on ¢, or the other way round.

— If His queried on (m’, ¢) first, it is recognised that Dec’(sk’, ¢) = m/ in line 24.
Since DECfmc was yet not queried on ¢, no entry of the form (¢, K) already
exists in £p. Therefore, besides adding (m/, ¢, K <3 K) to £, H also adds
(¢, K) to £p in line 30, thereby defining DEwa(c) =K =H(m/,c) .

- If DEC;Zn,C is queried on c¢ first, no entry of the form (¢, K) exists in £p yet.
Therefore, DEC#M adds (¢, K +g K) to £p thereby defining DEC;,KW(C) =K.
When queried on (m’, ¢) afterwards, H recognises that Dec’(sk’, c) = m’ in
line 24 and that an entry of the form (¢, K) already exists in £p in line 27.
By adding (m/, ¢, K) to £g and returning K, H defines H(m/,¢) := K =
DEC#C(C).

74



We have shown that A’s view is identical in both games and

Pr[G'f‘ =1] = Pr[G;\ =1]| .

GAME G3. From game G5 on, we proceed identically to the proof of Theorem 2.1.4: In
game (3, we abort immediately (and raise flag CHAL) on the event that A queries
H on (Dec'(sk,c*),c*). Furthermore, we raise flag ERROR in line 11 and abort if c*
exhibits decryption failure, i.e., if Dec(sk, c*) # m*.

Unless ERROR happens, H(m*, ¢*) will not be given to A in game Gj; neither
through a hash nor a decryption query, meaning bit b is independent from A’s view and

hence,
1

Due to the difference lemma,

| Pr[GS = 1] — Pr[G% = 1]| < Pr[ERROR vV CHAL]
= Pr[ERROR] + Pr[CHAL A -ERROR]
< ¢!+ Pr[CHAL A -ERROR] .

It remains to bound PrfCHAL A-ERROR]. To this end, we construct an adversary
B against the OW-PCA security of PKE’ in Figure 2.11, simulating G3 for A. Note
that the simulation is perfect. The event that CHAL occurred (but ERROR did not)
implies that A queried H(m*, ¢*), hence (m*,c*, K') € £p for some K’', and B returns
m' = m*.

Pr[CHAL] = Advoee “A(B) .

Collecting the probabilities yields the desired bound.

2.1.8  Transformation UL (UL): From deterministic OW-VCA (OW) to
IND-CCA

Transformation U;. is a variant of Uf;L?c that derives the KEM key as K = H(m),
instead of K = H(m, ¢). It transforms an OW-VCA secure public-key encryption scheme

with rigid deterministic encryption (e.g., one obtained via T from Section 2.1.1) into an
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B0 (pk, ") H(m, <)
01 K" +g K 0g if 3K s. th. (m,c¢, K) € £g return K
02 s 4—g M 09 K<+ K
03 b «— ADEC;,ZL,UH(pk’ ¢ K*) 10 if m = s abort
04 if A(m', ¢, K') € &n 11 if PCO(m,c) =1
s. th. PCO(m/, c*) = 1 12 if 3K’ s. th. (¢, K') € £p
05 return m’ 13 K:=K'
06 else 14 else
07 abort 15 L£p = LpU{(c,K)}
16 Ly =Ly U{(m,c,K)}
17 return K

Fig. 2.11: Adversary B against OW-PCA for the proof of Theorem 2.1.5. Oracle DEC;)L,L’c
is defined as in game Gj3 of Figure 2.10.

IND-CCA secure key encapsulation mechanism. We also consider an implicit rejection
variant U# that only requires OW security of the underlying encryption scheme PKE'.

THE CONSTRUCTIONS. To a public-key encryption scheme PKE' = (KG’, Enc’, Dec’)

with message space M, and a random oracle H : {0,1}* — {0,1}", we associate
KEM? := U%[PKE’, H] := (KG*, Encaps,,,, Decaps?, )

and
KEM: := U [PKE’, H] := (KG', Encaps,,,, Decaps,,,) .

Algorithm KG* is given in Figure 2.9, and the remaining algorithms of KEMﬁ and
KEM:: are defined in Figure 2.12.

Again, it is easy to verify that if PKE is &/ -average-case correct, then both KEMfI

L
and KEM;, are ¢/ -correct.

Encaps,, (pk) Decaps?; (sk, c) Decapsz; (sk, c)
01 m +—g M 05 Parse sk = (sk', s) 10 m’ := Dec/(sk, c)
02 ¢:= Enc'(pk,m) 06 m' := Dec'(sk’,c) 11 if m' = 1 return L
03 K :=H(m) o7 if m' =L 12 else return K := H(m/')
04 return (K, c) 08 return K := H(s,c)
09 else return K := H(m')

Fig. 2.12: IND-CCA-secure key encapsulation mechanisms KEM# = U% [PKE’, H] and
KEM: = UL [PKE', H|.
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Transformation UL: from OW-VCA to IND-CCA

SECURITY OF KEMTLn. The following theorem establishes that IND-CCA security of
KEM tightly reduces to the OW-VCA security of PKE’, in the random oracle model.

m

ROM

Theorem 2.1.6 (PKE’ det. + rigid, OW-VCA =" KEMZ, IND-CCA). Assume PKE’ to
be deterministic and rigid, and furthermore, let PKE’ be §/, .-worst-case correct. Let G
denote the random oracle that PKE’ uses (if any). Let Genc’ ¢ denote an upper bound
on the number of G-queries that Enc’ makes upon a single invocation (if any).

For any IND-CCA adversary A against KEI\/I;, issuing at most gp queries to the
decapsulation oracle DECJW‘L and at most gy, resp. ¢g queries to its random oracles H
and G, there exists an OW-VCA adversary B against PKE’ issuing at most ¢p queries
to the VALID oracle, and ¢g + gH - genc’,c many queries to oracle G, and a correctness

adversary C such that

AdvIRCA(A) < AdVOREVEA(B) + Advpgg, ™ (C)

and the running time of B is about that of A.

In principle, the proof is similar to the one of Theorem 2.1.4. The main difference
is that we now exploit that Enc’ is deterministic and rigid to (implicitly) simulate our

own PCO oracle via re-encryption during the proof.

Proof. To show security of KEM#I7 let A be an adversary against the IND-CCA security
of KEM;

mo

issuing at most gp queries to DEC# and at most gy queries to H. Consider

the games given in Figure 2.13.

GAME Gj. Since game Gy is the original IND-CCA game,

AGREEAR) - :

1
Pr[G) = 1] — ’

GAME G7. In game Gi, the oracles H and DEC# are changed such that they make
no use of the secret key any longer, except for testing if Dec’(sk,c) € M for given
¢ in line 27. Similar to the proofs for Uﬁ,c and U#)C,

decapsulation list £p for book-keeping. Hash list £5 contains all entries (m, K) where

we will use hash list £ and
H was queried on m and returned H(m) := K. Decapsulation list £p contains all entries
(¢, K) where either DEC#L was queried on ¢, or H was queried on some message m such

that ¢ = Enc’(pk, m).
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GAMES G - G» H(m)

o1 (pk, sk) < KG' 12 if 3K such that (m, K) € £y

02 m* g M 13 return K

03 Kg :=H(m") 14 if m =m” and ¢* defined /G2

04 K{ +g{0,1}" 15 CHAL := true /G2

05 ¢* := Enc(pk,m*) 16 abort /G2

06 b<s {0,1} 17 ¢ := Enc’(pk,m) JG1-G2

07 b < AP H (pk c* K7) 18 K+sK

08 return [b' = b] 19 if 3K’ such that (¢, K') € £p  JG1-G2
20 K: =K' /G1-G2
21 else /G1-G2
22 Lp:=Lp U{(C/,K)} //Gl—GQ

23 Ly =Ly U {(m, K)}
24 return K

DECL (¢ # ¢*) /Gy DECm(c#c) /G1-G2
05 m’ = Dec(sk, ¢) 25 if 3K s. th. (¢, K) € £p
10 if m' = L return L 26 . retlfrn K
11 return K := H(m') 27 if Dec'(sk,c) ¢ M
28 return L
29 K g K
30 £p = £p U {(C, K)}
31 return K

Fig. 2.13: Games Gy - G for the proof of Theorem 2.1.6

We note that if the scheme were not assumed to be rigid, then there could ex-
ist two distinct ciphertexts ¢; # co that decrypt to the same message m. In game
Go, DEC# would answer both queries with the same value, but this would not nec-
essarily be the case in game G;. Since we assume the scheme to be rigid, however,
we have that if Dec’(sk,c;) = Dec'(sk,cz) # L, then ¢; = Enc’(pk, Dec'(sk,c1)) =
Enc’(pk, Dec’(sk, c2)) = ca.

Let BAD denote the event that £ contains an entry (m, K) such that m exhibits
a correctness error, i.e., such that Dec’(sk, Enc’(pk,m)) # m. We will show that the
view of A is identical in games G and G unless a query to H occurs on a plaintext that
induces a correctness error, i.e., we show that the view only differs if BAD happens.

First, we observe that line 17 will only let H coincide on two distinct messages
my # me if they encrypt to the same ciphertext, meaning that one of the two messages
must trigger BAD.

To further analyse game G1, let ¢ be a query to DECTL,L7 and let m’ := Dec(sk, c).
We want to show that unless BAD happens, consistency is maintained in game Gj.
Here, consistency means that if m’ # L, we also have that DEC (¢) = H(m/) in game
Gi.

Before the queries to DEC;; on ¢ and to H on m’, no entry of the form (¢, K)
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could already exist in £p unless BAD occurs: Since neither DECJT;Z was yet queried
on ¢, nor was H queried yet on m/, existence of an entry (¢, K) in £p implies that
H was already queried on some message m # m’ such that Enc’(pk,m) = c. Hence,
Dec’(sk,Enc’(pk,m)) = Dec(sk,c) = m’ # m, meaning that m induces a correctness
error and BAD happened.

To show DEC (¢) = H(m/), we distinguish two sub-cases: A might either first query

H on m’, then DECf‘n on ¢, or the other way round.

o If His queried on m/’ first, no entry of the form (¢, K) already exists in £p. Hence,
besides adding (m/, K < K) to £z, H also computes ¢’ := Enc’(pk,m'). Since
PKE' is assumed to be rigid and m’ # L, we have that ¢’ = Enc’(pk, Dec’(sk, c)) =
c. By adding (¢, K) to £p in line 22, H defines DEC; (¢) := K = H(m/).

o If DEC#1 is queried on c¢ first, it adds (¢, K +g K) to £p, thereby defining
DEcC (¢) := K. When queried on m’ afterwards, H computes ¢ := Enc’(pk, m') =
¢, and recognises that an entry of the form (¢, K) already exists in £p in line 19. By
adding (m’, K) to £ and returning K, H again defines H(m') := K = DEC (c).

We have shown that A’s view is identical in both games unless a correctness error
(in the form of BAD) occurs and

|Pr[G = 1] — Pr[GY = 1]| < Pr[BAD] .

We can bound Pr[BAD] with a straightforward reduction to the game-based cor-
rectness of PKE'. In this reduction, adversary C simulates game Gg, and adds to its
output list each query to H that is issued by A. In total, the list will hence consist of

qu many entries. Hence,

Pr[BAD] < Advpeg O™ (C) .

GAME G3. In game G2, we abort immediately on the event that A queries H on m*.
We denote this event as CHAL. Due to the difference lemma,

| Pr[G} = 1] — Pr[GS = 1]| < Pr[CHAL] .

In game G2, H(m*) will not be given to A; neither through a hash nor a decryption

query, meaning bit b is independent from A’s view and hence,
A 1
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BVALID (pk, C*) DEC#(C 75 C*)
01 K" +g K 06 if 3K s. th. (¢,K) € £p
02 b+ ADECvle(pk, ¢t K*) 07 return K
03 if 3(m’, K') € £xr 08 if VALID(c) = 0

s. th. Enc'(pk,m') = c* 09 return L
04 return m’ 10 K<+ K
05 else abort 11 £p:=Lp U{(c,K)}

12 return K

Fig. 2.14: Adversary B against OW-VCA for the proof of Theorem 2.1.6, where H is
defined as in Game G, of Figure 2.13.

It remains to bound Pr[CHAL]. To this end, we construct an adversary B against
the OW-VCA security of PKE’ simulating G5 for A as in Figure 2.14.

Note that the simulation is perfect until CHAL occurs. The event that CHAL
occurred implies that A queried H(m*), and hence, (m*, K') € £g for some K'. Since

Enc’ is deterministic, we have that Enc’(pk, m*) = ¢*, and thus B returns m*.
Pr[CHAL] = AdvayeV“A(B) .

Collecting the probabilities yields the required bound.

Transformation U%: from OW to IND-CCA

SECURITY OF KEM;fl. The following theorem establishes that IND-CCA security of
KEM;%L tightly reduces to the OW security of PKE’, in the random oracle model.

ROM

Theorem 2.1.7 (PKE' OW "2 KEM# IND-CCA). Assume PKE’ to be deterministic
and rigid, and furthermore, let PKE' be 4/, .-worst-case correct. Let G denote the random
oracle that PKE' uses (if any), and let genc’,¢ denote an upper bound on the number of
G-queries that Enc’ makes upon a single invocation.

For any IND-CCA adversary A against KEM#, issuing at most ¢p queries to the
decapsulation oracle DEC;Ln and at most gy, resp. gg queries to its random oracles H
and G, there exists an OW adversary B against PKE’, issuing at most gg + g - dEnc' .G

many queries to oracle G, and a correctness adversary C such that

- qH COR-RO,
Adviger i (A) < Advipge: (B) + ™ + Advpep  ™M(C)

and the running time of B is about that of A.
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GAMES Gy - Gs H(m)

o1 (pk', sk") «+ KG’ 19 if 3K s. th. (m, K) € £y return K

02 s 4+g M 20 K < K

03 m* g M 21 if m=s /G1-Gs
04 c¢* := Enc'(pk’,m*) 22 QUERY := true; abort /G1-G3
05 Kg := H(m") 23 if m =m”™ and ¢" defined /G
06 Ki <g {0,1}" 24  CHAL := true /G
07 b g {0,1} 25 abort /Gs
08 b «— ADECT{L,H(pk/’C*’KJ) 26 ¢ = Enc'(pk/,m) //Gl-GQ
09 if Dec’(sk, ") # m" JGs 27 if 3K’ such that (¢, K') € £p /G1-G2
10 ERROR := true )G 28 K= K’ /G1-Go
11 abort JGs 2° else /G1-G2
12 return [b’ = b] 30 £p:=£LpU{(c,K)} /G1-Ga

2 L= £ U{(m, K}
32 return K
DEck(c £ ¢°) JGoGh
13 m' := Dec’(sk', c)
1aifm' =1
15  return K := H(s,¢)
16 return K := H'(c) /)Gy 2° else
17 if m' = s return K :=H'(c) /G 36 K<+sK
18 return K := H(m') 37 Lp:=LpU{(c,K)}
38 return K

DECH (¢ # ¢¥) [ G2-G3
33 if 3K s. th. (¢, K) € £p
/Go 34  return K

Fig. 2.15: Games Gy - G5 for the proof of Theorem 2.1.7 . Oracle H' (lines 17 and 18)
is an independent internal random oracle that cannot be accessed by A.

The proof is easily obtained by combining the proofs of Theorem 2.1.5 and Theo-
rem 2.1.6, but we include it for the sake of completeness.

Proof. Let A be an adversary against the IND-CCA security of KEI\/If17 issuing at most
qp queries to DEC# and at most gy queries to H. Consider the sequence of games given

in Figure 2.15.

GAME Gj. Since game G is the original IND-CCA game,

; 1
AdviginiA(A) = |PriGg = 1] - 2’

GAME G;. In game G, we make two changes: First, we raise flag QUERY and abort
if H(s) is queried (lines 21 and 22). Second, we make the pseudorandom keys that are
returned by DEC# perfectly random. That is, in DEC;};(C), we replace K = H(s, c) by
K =H'(c) if m’ := Dec'(sk’,¢) = L (line 16) or if m’ := Dec’(sk’, c) = s (line 17), where
H’ is an independent internal random oracles that cannot be accessed by A. Unless

QUERY occurs, A’s view is identical in both games: Let ¢ be any query to DECﬁ

81



such that Dec’(sk’,c) € {L, s}. Since DECZ (¢) still returns a random value, and since
Dec’(sk’, ¢) is unique, the change remains unnoticed by A unless A queries H on s.

Since A’s view is independent of (the uniform secret) s unless Gy aborts due to
occurrence of QUERY,

Pr[GA = 1] - Pr[G) = 1 gq—H.

GAME G,. In game G, the oracles H and DEC;&L are modified such that DEC;ﬁ does
not make use of the secret key any longer: Again, we will use two lists, hash list £ and
decapsulation list £p, for book-keeping. Existence of an entry (m, K) € £ indicates
that H was queried on m and returned H(m) := K. Existence of an entry (¢, K) € £p
indicates that either H was queried on some message m such that ¢ = Enc’(pk’, m) or
DEC;K,L was queried on ¢, and either way, it holds that DEC#(C) =K.

Let BAD denote the event that £5 contains an entry (m, K) such that m exhibits
a correctness error, i.e., such that Dec’(sk’, Enc’(pk’,m)) # m.

Similar to the proof of Theorem 2.1.6, we will now show that the view of A is
identical in games G; and G2 unless a query to H occurs on a plaintext that induces a
correctness error, i.e., we show that the view only differs if BAD happens.

To do so, we have to examine if DEC;%L and H handle queries consistently in game
Gi: In game Gy, it holds that DEc (¢) = H(Dec'(sk’, ¢)) for all ciphertexts ¢ such that
Dec’(sk',¢) ¢ {L, s}, and DECZ, () = H'(c) for all ciphertexts ¢ such that Dec'(sk’, c) €
{L1,s}.

In order to show that the view of A is identical in games GG; and G5 unless BAD
happens, we fix any ciphertext ¢ and let m’ := Dec’(sk’, c).

Similar to the observation made in the proof for Theorem 2.1.5, we first observe
that if m’ € {L, s}, the simulation of H can never add a tuple of the form (¢, K') to £p
as a query to H on s results in abort. Hence, DEC;L,L_’ .(¢) will return an independent
uniformly random key, like in game G, whenever queried on a ciphertext ¢ such that
Dec’(sk', c) € {L, s}.

It remains to analyse the case where m’ ¢ {L,s}. We first show that before the
query to DEC;& on ¢ and the query to H on m/, no entry of the form (¢, K) could already
exist in £p unless BAD occurs: Since neither DECﬁ was yet queried on ¢, nor was
H queried yet on m/, existence of an entry (¢, K) in £p implies that H was queried
on some message m # m’ such that Enc’(pk’,m) = c. Hence, Dec’(sk, Enc’(pk’,m)) =
Dec’(sk,c) = m' # m, meaning that m induces a correctness error and BAD happened.

We will now further analyse the games’ behaviour in the case that H was not queried

on such an error-inducing message, i.e., conditioned on ~BAD. We will show that
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DECZ (¢) = H(m') if m/ # L. We distinguish two sub-cases: A might either first query

H on m/, then DECf1 on ¢, or the other way round.

o If His queried on m/’ first, no entry of the form (¢, K) already exists in £p. Hence,
besides adding (m’, K <3 K) to £5, H also computes ¢’ := Enc’(pk,m’). Since
PKE’ is assumed to be rigid and m’ # L, we have that ¢’ = Enc’(pk, Dec’(sk, c)) =
c. By adding (¢, K) to £p in line 30, H defines DEC (¢) := K = H(m/).

o If DECﬁ is queried on c¢ first, it adds (¢, K +g K) to £p, thereby defining
DEc? (¢) := K. When queried on m’ afterwards, H computes ¢ := Enc’(pk, m') =
¢, and recognises that an entry of the form (¢, K) already exists in £p in line 27.
By adding (m/, K) to £ and returning K, H defines H(m’) := K = DECZ (c).

We have shown that A’s view is identical in both games unless a correctness error
(in the form of BAD) occurs and

|Pr[G} = 1] — Pr[G% = 1]| < Pr[BAD] .

Again, we can bound Pr[BAD] with a straightforward reduction to the game-based-
correctness of PKE’ and there exists an adversary C such that
Pr[BAD] < Advpeg 0™ (C) .

GAME G3. In game G3, we abort immediately on the event that A queries H on m*.
We denote this event as CHAL. Due to the difference lemma,

| Pr[GS = 1] — Pr[G% = 1]| < Pr[CHAL] .

In game G3, H(m™) will not be given to A; neither through a hash nor a decryption

query, meaning bit b is independent from A’s view and hence,
A 1

It remains to bound Pr[CHAL]. To this end, we construct an adversary B in
Figure 2.16 against the OW security of PKE’, simulating G5 for A.

Note that the simulation is perfect until CHAL occurs. The event that CHAL
occurred implies that A queried H(m*), and hence, (m*, K’) € £y for some K’'. Since

Enc’ is deterministic, we have that Enc’(pk,m*) = c¢*, and thus B returns m*.
Pr[CHAL] = Advoee(B) .
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B(pk,c*)
01 K*+g K
02 b« APERH(pk oK)
03 if I(m',K’) € Lu

s. th. Enc’(pk,m') = c*
04 return m’
05 else abort

Fig. 2.16: Adversary B against OW for the proof of Theorem 2.1.7, where DEC;ﬁ and H
are defined as in Game G5 of Figure 2.15.

Collecting the probabilities yields the required bound.

2.1.4 Combined FO-like Transformations: The Resulting KEMs

For completeness, we combine transformation T with {U% ., Us, ., U#, UL} from
the previous sections to obtain four variants of the FO transformation.

To a public-key encryption scheme PKE = (KG, Enc, Dec) with message space M
and randomness space R, and hash functions G : M — R and H : {0,1}* — {0,1}",

we associate

KEM,, ., := FO;, [PKE,G,H]:= U [T[PKE,G],H] = (KG,Encaps, Decaps,, .)
KEMZ, . = FO}, [PKE,G,H]:= U} [T[PKE,G],H] = (KG*, Encaps, Decapsy, ..)
KEM% := FOZXL[PKE,G,H] := UL[T[PKE, G|, H] = (KG, Encaps,,, Decaps;)

KEM# = FOZ%[PKE,G,H] := UZ[T[PKE, G], H] = (KG*, Encaps,,, Decaps?;) .

Their constituting algorithms are given in Figure 2.17.

We will now show how to concretely bound the IND-CCA security of KEM €
{KEM,, ., KEM7, ,,KEM; KEMz }. To this end, we will first give a simplified pre-
sentation of our modular results: We will denote by OW-ATK,(PKE) (CPA;(PKE),
CCA(KEM)) the upper bound on the respective advantage of all adversaries running in
time at most .

As a first step, we gather our results for PKE' := T[PKE, G]. The bounds given in
Theorem 2.1.2 and Theorem 2.1.3 share an additive term relative to the underlying
scheme’s correctness (§) and spreadness (), and differ with regards to the tightness of

the reduction to the underlying’s scheme level of security. The following table gathers
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KG* | Encaps(pk) || Encaps,,, (pk)
01 (pk, sk) < KG 05 m s M

02 g M 06 ¢ := Enc(pk, m; G(m))
03 sk’ :=(sk,s) T 0 T3 k

04 return (pk, sk') I S |

| Decapsﬁhc(sk, ¢) 1| Decaps (sk, c) | Decaps;ﬁ’c(sk'7 c)wl Decaps?: (sk', c)
e A e S S —

10 m' := Dec(sk, c) 16 Parse (sk,s) := sk’

11 if m’ = 1 or ¢ # Enc(pk,m’;G(m')) 17 m' := Dec(sk,c)

12 return L 18 if m’ = L or ¢ # Enc(pk, m’; G(m'))
13else _____________ ‘ 19  return K := H(s,c)

14 return K := H(m/,c)1 20 else

21 | K = H(m'
15 ’return K :=H(m')  return (m';¢) !

22 ’return K :=H(m')

Fig. 2.17: Key encapsulation mechanisms KEM% = (KG, Encapsy, Decapsy), and

KEM}K( = (KG’K, Encapsy, Decaps)’z(), where subscript X is either m, ¢ or m, obtained
from PKE = (KG, Enc, Dec).

both results.

OW-PVCA,(PKE') < + additive term justification

(46 + grco +1) - OW,(PKE) (g + grco) - dwe + gvaumn - 277 Theorem 2.1.2
3- CPAt(PKE) + w (qG + qPCQ) . 5WC “+ qvaLID * 277 Theorem 2.1.3

As a second step, we gather our results for KEM := U[PKE',H], where U €
{U#LC, Uﬁ’c, UL, U# 3. In the respective theorems, it is specified how queries issued by
A in the IND-CCA game translate to queries issued by B in its game against PKE'. As
an example, recall that queries to H in the IND-CCA game for KEMf;L’C trigger B to
query PCO. The following table compares the four results, where the column gx — gy
indicates that for the number ¢x of queries that A issues to oracle X, the corresponding
adversary B against the underlying scheme makes gy queries to oracle Y. Furthermore,
COR-RO(PKE’, ¢) denotes the probability that an adversary creates a list of ¢ many

entries such that at least one entry exhibits decryption failure with respect to PKE’.
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U=  CCAL(KEM) < qx — qy justification

Um.. OW-PVCA;(PKE) + &.. H+— PCO Theorem 2.1.4
D — VALID

Uc OW-PCA,(PKE') + 8ic + 2t H+— PCO Theorem 2.1.5

UL  OW-VCA(PKE’) + COR-RO(PKE’, gu) H— G Theorem 2.1.6
D +— VALID

U OW:(PKE') + COR-RO(PKE',gn) + (%; H—G Theorem 2.1.7

Combining the tables above, we obtain the following table which provides (simplified)
concrete bounds of the IND-CCA security of KEM € {KEM,, ., KEMZ, ., KEM;,, KEMZ# }.
Here gro := q¢ + qu counts the total number of A’s queries to the random oracles G and
H, and gp counts the number of A’s decryption queries. We make use of the observation
that dac < dwe-

KEM CCA(KEM) <

gro - OW(PKE)

3. CPA(PKE) + aro/|Mm|
aro - OW, (PKE)

3. CPA.(PKE)

KEM'IJ;L,cv KEM# (qRO + 1) . 6WC + qp - 277 + {

KEM#,chEMﬁ (QRO + 1) . 6WC + QRO/|M| + {

CONCRETE PARAMETERS. For “k bits of security”, one generally requires that for all
adversaries A with advantage Adv(A) and running time Time(A), we have

Time(A)

Adv(A) =

K

The table below gives recommendations for the information-theoretic terms that appear
in the concrete security bounds above, namely dy. (worst-case correctness error of PKE),

~ (v-spreadness of PKE), and M (message space of PKE).

Term in concrete bound  Minimal requirement for x bits security

qrO * 5wc 5wc S 27'{
qro - 277 Y> kK
aro/| M| (M| > 2"

For example, if the concrete security bound contains the term g¢ro - dwe, then with
Owe < 27% one has

Time(A) - RO _ 1 > ox.
AdV(A) " qrRO - 5wc 5wc o

as required for k bits security.
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2.2 Modular constructions in the QROM

In this section, we will revisit our modular approach from Section 2.1. In order to
lift the proof strategies used in Section 2.1 to the quantum random oracle model, we
require a slight generalisation of original one-way to hiding. We describe and prove this

generalisation in Section 2.2.1.

T: FroM OW TO OW-PCA SECURITY IN THE QUANTUM ROM. First, we will first
reconsider transformation T from Section 2.1.1 (see Figure 2.2, page 62) in Section 2.2.2.
We show that T achieves OW-PCA security also in the quantum random oracle model.
Since quantum queries to G are in superposition, both our handling of correctness
errors and our reduction itself are slightly more involved and yield non-tight bounds, as
the former involves a quantum search problem, and the latter involves the extraction

argument from Section 2.2.1.

QU,,: From OW-PCA 1O IND-CCA SECURITY IN THE QUANTUM ROM. Next, to go
from OW-PCA to IND-CCA in the quantum random oracle model, we modify transfor-
mations U, and U#, (that were defined in Figure 2.12, on page 76):

We construct a key encapsulation mechanism QKEM: := QU [PKE', H, H._ ] with

conf

explicit rejection by defining

QEncaps,, (pk) := ((c + Enc'(pk,m),d := H. ¢(m)), K := H(m)) ,

conf

where m is picked at random from the message space, and

H(m') m' # 1 and H._ . (m')=d

QDecaps: (sk, (¢, d)) = conf
1 m/ =lor H::onf(m/) 7é d

where m’ := Dec(sk, c). Transformation QU7 differs from U only in the additional
hash value d = H’

! onf(m) included in the ciphertext, which is used for consistency

checking. Including this additional value is sometimes called “key confirmation”. Note

that H. ¢ is required to have matching domain and range.

Similarly, we construct an implicit rejection variant of the key encapsulation mecha-
nism above, i.e., we define QKEM?# := QU [PKE’, H, H/_ ., H.

conf» Hieject], Which differs from

QKEMJW‘1 only in decapsulation:

H(m/ "+ 1 and H’ N =d
QDecaps? (sk, (¢, d)) == () m’ # conf (M)
H:gject(cv d) m' = 1 or Héonf(m/) #d
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Modeling H, Hf, ¢ and Hfe.; as quantum random oracles, we show in Section 2.2.3
that IND-CCA security of QKEM# and QKEMﬁ non-tightly reduces to OW-PCA security
of PKE'.

THE RESULTING FO TRANSFORMATIONS. Combining T with QU and QUZ, in
Section 2.2.4 we provide concrete bounds for the IND-CCA security of

QFOL[PKE, G, H, H., ] := QUA[T[PKE, G|, H, H., ]
and
QFO},[PKE, G, H, Hlo] := QU [TIPKE, G], H, H gpp, Hitject]

in the quantum random oracle model.
As a corollary, we obtain that IND-CCA security of both QFO[PKE, G, H, H.__]

conf

and QFOZ [PKE, G, H, H._ (] reduces to the OW security of PKE. Our transformation
QFO# essentially recovers a KEM variant of the modified FO transformation that was

defined by Targhi and Unruh [TU16].

2.2.1 Algorithmic One-Way to Hiding

In this section, we formalise our slightly more general variant of “original one-
way to hiding” (see Theorem 1.3.2, page 43), which we will use during our security
proofs in the following sections. To a quantum-accessible oracle O and an algorithm
A that has quantum access to O (and that possibly has access to some collection
Oracles := {Oracley,--- ,Oracley} of additional oracles), we associate the following
extractor algorithm EXT[AIO)-Oracles O] " which executes AlO)-Oracles yntil a randomly
chosen quantum query to O, measures this query’s input register, and returns the
measurement result z’. (If A issues go, oracles queries to its collection Oracles of additional

oracles, these queries are included in the choice which query is measured.)

Theorem 2.2.1. (Algorithmic One-Way to Hiding (AOW2H)) Let O : {0,1}" —
{0,1}™ be a random oracle, and let A be a quantum algorithm with binary output,
issuing at most go explicit (quantum) queries to O, and triggering at most g0, Oracles
queries to O by its queries to Oracles = {Oracley, - - - , Oracley }.

Furthermore, let Genlnp be an algorithm that takes as input bitstrings in {0, 1}7T™

and returns some input inp. If Genlnp does not make any queries to O, we have that

|PT[G€ = 1] - PI‘[G? = 1” < 2((10 + qo,OracIes) *V/PFIND , (26)
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EX—[-[’AJO),OracIes7 O} (an)

01 1% s {1, s+ ,qo + qo,OracIes}

02 Run A‘O>’o'a°'es(inp) until the ¢th query |p) y (¢)y to O
03 if ¢ > number of queries to O

04 return L

05 else

06 &'+ Measure(|p) )

07 return z’

Fig. 2.18: Extractor algorithm EXT for algorithmic one-way to hiding.

where games Gy, (for bit b) are defined below and
prIND = Pr[z’ = x7]

with the probability taken over z* <g {0,1}", y* < {0,1}™, inp < Genlnp(z*,y*),
and 2/ < EXT[AIO).Oracles O] (jnp).
If all additional oracles are only classically accessible, and none ever triggers a query

to O on z*, then we can replace the upper bound above with

|Pr[GS = 1] — Pr[G} = 1]| < 240 - /PFIND (2.7)

where the extractor’s query choice only considers the go many explicit queries to O.

GAME Gy

ot z* <—¢ {0,1}"

02 yg = O(x)v yiﬁ 3 {07 1}m
03 inp < Genlnp(z™, y;)

04 b «— A\O),Oracles(inp)

The difference between original and algorithmic one-way to hiding is that the
original one-way to hiding lemma ([Unr14b, Lemma 5]) only considers the case that
Genlnp(z*,y*) := (z*,y*), and that no additional oracles Oracley,--- ,Oracley are
accessed by A. However, Theorem 2.2.1 is a straightforward corollary to [Unrl4b,
Lemma 5]: A reduction to the original variant is run on input (z*,y;) and can hence
compute inp < Genlnp(z*, y;) on its own (without any additional queries to O). Since
the reduction has to provide access to Oracles (which might happen to be be defined
relative to O), the providing of the oracles results in at most go oractles many additional
queries to O.

In order to prove the second statement (the bound given in Equation (2.7)), we

have to show how to get rid of the additional summand ¢o oracles in Equation (2.6).
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Intuitively, we can do so because in the view of the additional oracles, z* is removed

from the domain of O. We will now make this argument more formal.

Random oracle O can be dissected into the tuple (z*, O(x*) and its mapping rule on
X \ {z*}. Equivalently, O can be defined by drawing two random oracles O1, Oz, and
letting O(2*) := O1(2*) and O(x) := Oy(z) anywhere else. As a warm-up, we observe
that this equivalent description allow us to give a reduction B that also is run in an
AOW?2H game, but here we identify O; as B’s oracle O’, and O, as its (only) additional
oracle Oracle]. (In order to avoid confusion: While we assume all of A’s additional
oracles to be accessible only classically, we will still model B’s additional oracle Oracle]
as quantum-accessible.) We furthermore identify the input of B with (z*, inp), where
inp < Genlnp(z*, y;') is the input generated according to A’s game. Having quantum
access to both O; and O;, B can trivially simulate O for A as well as all of A’s additional
oracles and

Pr[Gy = 1] = Pr[HE = 1],

where Hj, denotes B’s AOW2H games. (Note that the simulation of O only works since

B knows z*.)

The reduction above, however, still suffers from the classical queries triggered by
A’s additional oracle queries. As the second step, we therefore change B as follows:
Before executing A, B obtains the complete table of O on X \ {z*}, i.e., the collection
(z,02()) 2+, by querying its additional Oracle] = O, on each (classical) value x # z*.
(Note that our reduction is not required to be bounded, as [Unrl4b, Lemma 5] (and
consequentially, Equation (2.6)) is information-theoretical and only depends on the
number of queries to O’ = 0;.) Clearly, none of these preparation queries trigger a
query to B’s oracle O’ = O;. When queried on any additional oracle Oracle,, B can
now use the table to answer consistently, without having to issue any queries to one of

its oracles. Since the only queries to O’ are now triggered by A’s explicit queries to O,
| PriGo = 1] = Pr[G} = 1]| = | Pr[HG = 1] = Pr[H} = 1]| < 2q0 - /priD

and the resulting extractor randomly picks one of A’s explicit queries to O.

Note that this argument only works since access to all oracles Oracle,, is assumed to
be classical, and their execution is independent of O(z*), as otherwise, the table would

not be sufficient to simulate the additional oracles.
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2.2.2  Transformation T: from OW to OW-PCA

Recall transformation T from Figure 2.2 (see page 62). We have shown in Section 2.1.1
that T transforms an OW secure public-key encryption scheme into an OW-PCA secure
one, in the random oracle, and will now adapt the proof such that it accounts for
quantum random oracle queries. Note that OW-PVCA security is not required here,

since the transformations from the next section only require OW-PCA security.

CORRECTNESS. Similar to the statement of Theorem 2.1.1, we first establish that if PKE
is worst-case correct, then PKE’ achieves game-based correctness (see Definition 1.1.13,
page 31), in the quantum random oracle model. The handling of decryption failure is
slightly more involved, since the random oracle G which determines decryption failure

is now searchable with quantum access.

Lemma 2.2.2. If PKE is dy.-worst-case correct, then for any adversary A, issuing qg

(quantum) queries to G and returning one message it holds that
AdviRe RO (A) <8 (g6 + 1)+ bwe -

Proof. Consider an (unbounded, quantum) adversary A in game COR-RO, issuing ¢g

queries to G. For fixed (pk, sk) € supp(KG) and message m € M, we denote by
Rbad(pk, sk,m) := {r € R | Dec(sk, Enc(pk, m;r)) # m}
the set of “bad” randomness. We further define
3(pk, sk, m) = [Ruaa(pk, sk, m)|/|R| (2.8)
as the fraction of bad randomness, and
0(pk, sk) :== max d(pk, sk,m) .

Note that with this notation, we have that dy,. = E[d(pk, sk)], where the expectation
is taken over (pk, sk) < KG.

To upper bound Pr[COR-RO* = 1], we construct an (unbounded, quantum) adver-
sary A in Figure 2.19 against the generic search problem with bounded probabilities
GSPB, defined in Figure 1.13 (see page 46).

A runs (pk, sk) + KG, and computes the Bernoulli parameters A(m) of its generic
search problem as A(m) := 0(pk, sk,m), which are bounded by A := 0(pk, sk) =
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B G(m)
o1 (pk, sk) «+ KG os if F(m) =20

02 for m € M 09 G(m) := Sample(R \ Ruad(pk, sk,m); f(m))
03 A(m) := §(pk, sk,m) 10 else

04 return (A(m))mem 11 G(m) := Sample(Rbad (pk, sk, m); f(m))

12 return G(m)
B,
05 Pick 2gu-wise hash f
06 m + Al® (pk, sk)
07 return m

Fig. 2.19: Adversary A, executed in game GSPBs(p, o) (With quantum access to F'), for
the proof of Lemma 2.2.2. §(pk, sk, m) is defined in Equation (2.8). f (lines 09 and
11) is an internal 2¢g-wise independent hash function that cannot be accessed by A.
Sample(Y') is a probabilistic algorithm that returns a uniformly distributed y +g Y.
Sample(Y’; f(m)) denotes the deterministic execution of Sample(Y), using explicitly
given randomness f(m).

max,,c m Pr[Dec(sk, Enc(pk, m)) # m].

To analyze A, we first fix (pk, sk). For each m € M, by the definition of game
GSPB,, the random variable F'(m) is distributed according to Bx(m) = Bs(pk,sk,m)-
When running A, B, provides quantum access to G that is defined relative to F'. To be
more precise, G(m) is sampled from the set of bad randomness in line 09 if F(m) =1,
and from its complement in line 11 if F'(m) = 0. Note that by construction, G(m) is
uniformly distributed in R, and G hence is a random oracle.

A wins its game COR-RO iff it returns a message m such that G(m) € Ryaq(pk, sk, m),
as then and only then it will hold that Dec(sk, Enc(pk, m; G(m))) # m. The condition
that G(m) € Rpad(pk, sk,m) is equivalent to F'(m) = 1, in which case A wins its game
GSP,. To summarise, conditioned on a fixed (pk, sk), we can apply Lemma 1.3.6 to

obtain
Pr[COR-RO* = 1| (pk, sk)] < Pr[GSP/g(pkvsk.) = 1] < 8- 6(pk, sk) - (g6 +1)* ,
and by taking the expectation over (pk, sk) + KG, we obtain

Pr[COR-RO* = 1] < 8- 8y - (gc +1)% .

OW-PCA securiTY FROM OW. The following theorem establishes that OW-PCA
security of PKE’ reduces to the OW security of PKE, in the quantum random oracle

model.
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Theorem 2.2.3 (PKE OW M pKE’ OW-PCA). Assume PKE to be dyc-worst-case
correct. For any OW-PCA adversary A, issuing at most ¢g (quantum) queries to random
oracle G and gpco (classical) queries to plaintext checking oracle PCO, there exist OW

adversaries B; and B, such that

AdvpRer “M(A) < AdvERE(B1) + 2 (g6 + qpco) - \/ Advpke (B2)

+8- (g6 +gqrco + 1) - Oye (2.9)

and the running time of B; and B, is about that of A. If none of A’s queries to PCO is

of the form (m*,—), then we can replace the upper bound above with

AdvOREPA(A) < AdvORE(B1) + 2qc - \/ AdvEre(Bs)

+8- (qG + grco + 1)2 . 5wc . (210)

Below we will prove Equation (2.9), which can be sketched as follows: Similar
to the proof of Theorem 2.1.2, our proof first implements the PCO oracle via “re-
encryption” in game G;. Next, we use algorithmic oneway to hiding (AOW2H, see
Theorem 2.2.1 on page 88) to argue that we can decouple the challenge ciphertext
¢* := Enc(pk, m*; G(m*)) from random oracle G, even if it is quantum-accessible. The
decoupling can be upper bounded (non-tightly) in terms of extracting m* (see B,), and
having a random challenge ¢* allows for an ensuing trivial reduction to OW security
(see B1). The approach of decoupling and then extracting via AOW2H is loosely based
on [TU16].

In order to verify Equation (2.10), it remains to show how to drop summand gpco
from the loss in By’s advantage, assuming that none of A’s queries to PCO is of the form
(m*

with O, m* with z, and oracle PCO with additional oracle Oracle;. At the point where

,—). The summand gpco stems from application of AOW2H, where we identify G

we apply AOW2H, the PCO oracle is implemented via “re-encryption”. If no query of
PCO is of the form (m*, —), then no query to PCO can trigger a query to G on m*.
Since PCO is only classically accessible, and no query to PCO can trigger a query to

G on m*, we can use the improved bound (Equation (2.7)) and drop summand gpco-

Proof. Let A be an adversary against the OW-PCA security of PKE’, issuing at most
g queries to G and gpco queries to PCO. Consider the sequence of games given in
Figure 2.20.
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GAME Gy-G3 PCO(m (S M, C)

01 m* +—g M 08 m’ := Dec(sk, c) /Go
02 r* := G(m*) /Go-G1 09 return [m' = m]

03 1* 5 R [ G2-G3 and [Enc(pk,m’;G(m’)) = (] /Go
04 c* := Enc(pk,m*;r*) 10 return [Enc(pk,m;G(m)) = c] /G1-G3
05 m' « Al®PCO(pE ") /G1-G2

06 m’ = EXT[AI®FO G](pk,c*)  [Gs
07 return [m’ = m*]

Fig. 2.20: Games Gy - G3 for the proof of Theorem 2.2.3.

GAME (. Since game Gy is the original OW-PCA game,

AdvOREr “M(A) = Pr[Gh = 1] .

GAME G;. In game G1, the plaintext checking oracle PCO is replaced with a simulation

that doesn’t make use of the secret key anymore. We claim
| Pr[Gh = 1] — Pr[G} = 1]] < 8- (gc + gpco + 1)? - e - (2.11)

To show Equation (2.11), first note that both game G and game G proceed identically
unless A submits a PCO query (m,¢) such that ¢ = Enc(pk, m; G(m)), but Dec(sk, ¢) #
m. We call this event BAD. Since both game Gy and game G proceed identically
conditioned on the event that BAD does not happen,

| Pr[Gh = 1] — Pr[GY} = 1]| < Pr[BAD] .

Similar to the proof of Theorem 2.1.2, one can again show that there exists an
adversary F against COR-RO that perfectly simulates games Gy and G; until BAD
happens: Since F holds the secret key, it can check for event BAD on each query to
PCO(m, ¢), and immediately abort A and return m to its game COR-RO if BAD occurs.
Note that during this check, re-encryption triggers F to issue an additional query to G.

Applying Lemma 2.2.2, we obtain
Pr[BAD] < Pr[COR-RO] < 8- (g6 + grco + 1) - due -
GAME Gy. In game Go, we replace r* := G(m*) with uniform randomness r* in line 02.

Now that r* is uniformly random, we can trivially construct a first one-way adversary

B; in Figure 2.21 against the original encryption scheme PKE, simulating game G2 for
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B1(pk, c*) B2(pk, c*)
01 m’ « AlSPEO(pE ) 03 m’ « EXT[AI®FCO G](pk, c*)
02 return m’ 04 return m’

Fig. 2.21: Adversaries B; and B, for the proof of Theorem 2.2.3. Oracle PCO is defined
as in game G2 of Figure 2.20.

A. Bj outputs m’ = m* if A wins in game Gs.
Pr[G5 = 1] = AdvOre(B1) .
So far, we have shown that

AdvBEPA(A) < 8- (g6 + gpco + 1)? - Sy + AdvERE(By)
+ | Pr[GY} = 1] — Pr[Gh = 1] .

To upper bound | Pr[G4 = 1] — Pr[GS = 1]|, we will apply Theorem 2.2.1 (AOW2H):
We identify « with m*, y with r*, and define algorithm Genlnp in Figure 2.22. Taking
into account that A additionally has access to PCO, which triggers exactly one query

to G per incovation, we obtain
|Pr[G) = 1] — Pr[G% = 1]| < 2- (¢ + qpco) - \/Pr[G4 = 1] ,

where the extractor algorithm EXT used in game G3 is defined as in Figure 2.18 (see
page 89). (Recall that EXT represents execution of A until a randomly chosen query to
G, which is then measured to extract a message m’.)

Finally, we construct another one-way adversary B, in Figure 2.21 against the

original encryption scheme PKE, simulating game G5 for A.

Pr[G4 = 1] = AdvOre(B,) .

Algorithm Genlnp(m™*,r*)
ot (pk, sk) < KG

02 ¢* := Enc(pk,m";r")

03 inp = (pk,c*)

04 return inp

Fig. 2.22: Input generation algorithm Genlnp for the proof of Theorem 2.2.3.
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2.2.8  Transformations QU#L, QU;fl: From OW-PCA to IND-CCA

In this section, we define our quantum variations of Uz, and U# (for the original

transformations, see Figure 2.12, page 76).

THE CONSTRUCTIONS. To a public-key encryption scheme PKE' = (KG’, Enc’, Dec’) with
message space M = {0,1}™, and hash functions H : {0,1}* — {0,1}", H,_ : M — M,

conf

and Hlje, : {0, 1}* — {0,1}", we associate
QKEMZ := QU [PKE', H, H., ] := (KG', QEncaps,,, QDecaps;.)
and

QKEM?, := QU2 [PKE', H, H.o ¢, Hileee] := (KG', QEncaps,,, DecapsQImpMess) .

conf»

The algorithms of QKEM3- and QKEMZ, are defined in Figure 2.23.

Like KEM: and KEM?% | QKEM;: and QKEM?, essentially differ in how they reject:
v

7. uses an additional random oracle

While QDecapsi rejects by returning 1, QDecaps

Hitject to return a random key.

Furthermore, QKEM7: (QKEM?,

m

) essentially differ from KEM=, (KEM?,) by including
(m) in the ciphertext, and using d to check validity of

key confirmation value d = H._
!/

con

the ciphertext during decapsulation. We stress that hash function H
domain and range M = {0, 1}™.

¢ has matching

QEncaps,, (pk) QDecapsz (sk, ¢, d) : QDecaps? (sk, ¢, d)
01 m g M R EEETEEEEE

f 06 m' := Dec'(sk,c)
02 ¢ = Enc'(pk,m) o je i — | or HY,(m') # d

03 d:=H. +(m)
0 di= M)

05 return (K,c,d) 09 | return K := H/.(c,d) |

,,,,,,,,,,,,,,,,,,

10 else return K := H(m/')

Fig. 2.23: Key encapsulation mechanisms QKEM:: = (KG', QEncaps,,, QDecaps:;) and

m m

QKEMﬁ = (KG', QEncaps,,,, DecapsQImpMess).

SECURITY OF QKEM;. The following theorem establishes that IND-CCA security of
QKEM#I reduces to OW-PCA security of PKE’, in the quantum random oracle model.

Theorem 2.2.4 (PKE’ OW-PCA “2" QKEM?, IND-CCA). For any quantum adversary

A issuing at most ¢gp (classical) queries to the decapsulation oracle QDECAPSJ,;L7 at

96



most ¢y (quantum) queries to random oracle H, and at most anr, . (quantum) queries

to random oracle H’

conf> there exist OW-PCA adversaries By and Bj, issuing at most

2qpqn:, . queries to oracle PCO, such that
Advgieemt (A) < (g + aw,, +ap) - \/ Advige! A (Bo)
+ (g, +ap)  \/ Advice” A(B1) (2.12)

and the running time of Bg and By is about that of A. If PKE’ furthermore is deterministic
and rigid, there exist OW-PCA adversaries B and B such that

AQVRRECA (A) < (an + aw, )+ AVEIETA(B) + i, -\ AAVEVEPA(BY) +

f ogm—1 7’

(2.13)

the running time of Bf, and Bj is about that of A, and no query to QDECAPSJT;L will

ever trigger either adversary Bj, to issue a query to PCO on (m*, —).

We will first prove Equation (2.12). Similar to the proof of Theorem 2.1.4, the main
idea of the proof is to decouple the challenge key and the challenge confirmation value
from the challenge message, and to simulate the decapsulation oracle without the secret
key. Like in our proof of 2.2.3, decoupling is achieved via usage of AOW2H, yielding a
non-tight bound.

Since oracle queries are in superposition, we cannot simply answer decryption
queries with random keys and later patch H for m’ := Dec/(sk,c). We circumvent
this difficulty by exploiting the fact that we can (information-theoretically) replace
key confirmation oracle H._  with a polynomial of sufficiently large degree. With this
change, we can compute all potential preimages of d. Using the plaintext checking
oracle PCO provided by the OW-PCA game, we recognise the correct message (if it
exists) and answer decryption queries consistently without the secret key. The idea to

use a key confirmation value to achieve recognisability stems from [TU16].

Proof. Let A be an adversary against the IND-CCA security of QKEM#, issuing at most
qp (classical) queries to the decapsulation oracle QDECAPS#L, at most gy (quantum)
queries to random oracle H, and at most awr_ (quantum) queries to random oracle

H.,.¢- Consider the sequence of games given in Figure 2.24.

GAMES Gopp. Games Goo and Gy, describe the IND-CCA game in its equivalent

“left-or-right” variant:
1
Advguent (A) = 5 - [PrlGho = 1] — Pr(Gf, = 1]
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GAMES Gy, G1 QDEcAPSE((c,d) # (c*,d"))

01 (pk, sk) + KG’ 10 m’ := Dec'(sk, c)

02 m* < {0,1}" 11 if m' # L and H+(m') = d
03 ¢* « Enc’(pk,m*) 12 return K := H(m')

04 K§ :=H(m"); Ky < {0,1}" 13 else return L

05 K* := K /Gob

06 d* = Hipyy (1) JGo

o7 (K*,d*) < {0,1}"t™ JG1

08 b «— AQDECAPS#JH),\HQOM) (pk, (C*,d*)7K*)

09 return b’

Fig. 2.24: Games Gy, (for bit b € {0,1}) and G; for the proof of Theorem 2.2.4.

The next two steps are preparation steps to ensure that no query to QDECAPSf‘n

can trigger a query to Héonf on m*.

GAME G; AND GAMES Ga,. In game G1, we replace (K™ := K}, d* := H._ ((m™*)) with

conf
uniform random (d*, K*) in line 07. We have that

!Pr[G’&O = 1] — Pr[Ga1 = 1]’ < |Pr[G(A,_’O =1]— Pr[G{f = 1]|
+ |Pr[G/i\ =1] - Plr[Gé’1 = 1”

We will now upper bound each of the two terms by applying a suitable variant of
Theorem 2.2.1 (AOW2H).

In the case that b=1 (i.e., in game Gy,1), K* was already random and only d* is
changed, hence we need to apply AOW2H only with respect to O := H._ .. We identify
x with m*, y with d*, and define algorithm Genlnp; in Figure 2.25.

Algorithm Genlnp,(m*, K*,d*) Algorithm Genlnp,(m*,d")

o1 (pk, sk) + KG’ 05 (pk, sk) < KG’

02 ¢* « Enc’(pk,m*) 06 ¢* « Enc'(pk, m")
03 inp = (pk,c*,d", K*) 07 K* +g {0,1}"

04 return inp 08 inp = (pk,c*,d*, K*)

09 return inp

Fig. 2.25: Input generation algorithms Genlnp, (left) and Genlnp; (right) for the proof
of Theorem 2.2.4.

With this definition, the AOW2H game is identical to game Go; if y = O(z) =
H/

! onf(m*), and it is identical to game Gy if y is random. Taking into account that A

additionally has access to H (which is independent of H._ ) and QDECAPS:-, which

conf m
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/

conf Der incovation, we obtain

triggers at most one query to H

|Pr[Gh, = 1] = Pr[G} = 1] <2+ (g

conf

+4qp)- Pr[GQ1 =1],

where game G is given in Figure 2.26, and the extractor algorithm EXT used in

(2,1 represents execution of A until a randomly chosen query to H._ ., which is then

measured to extract a message m’ (see Figure 2.18, page 89). Note that A also has
additional access to H, but H is independent of H. and does not affect the upper
bound.

In the case that b =0 (i.e., in game Gy ), both K* and d* are changed, hence we
need to apply AOW2H with respect to O := H x H._ .2 We identify 2 with m*, y with

conf*

(K*,d*), and define algorithm Genlnp, also in Figure 2.25. With this definition, the
AOW?2H game is identical to game Gy if y = O(z) = (H(m*),H., ¢(m*)), and it is

conf

identical to game G if y is random. Note that QDECAPS# can be equivalently defined

!

such that each invocation triggers at most one query to H x H/

¢ Hence
|Pr[G§70 = 1] -Pr[G} = 1] <2 (qgn + an:. . +4ap)- Pr[GQO =1],

where game Ga g is also given in Figure 2.26. (In this case, EXT represents execution of

!/

conf » Which is then measured to extract a

A until a randomly chosen query to H or H
message m/'.)

What we have shown so far is that

Advgyant (A) < (gn + ar, +ap) - \/PrIGS o = 1]+ (qu,, +ap) - \/Pr[GS, = 1] .

GAMES G»,

01 (pk, sk) < KG’

02 (m*, K*,d*) <5 {0,1}2"™

03 ¢* + Enc'(pk,m")

04 m’  EXT[AQLEATSm M W) W 5 HL (pk, (¢, d*), K*)  [Gao
05 m’ « EXT[AQLEArsy M. o) 1/ 1 (pk. (c*, d*), K*) /G2
06 return [m' = m*]

Fig. 2.26: Games Gy, for the proof of Theorem 2.2.4. Oracle QDECAPS# remains as
in Figure 2.24.

GAMES G33. In games G3, oracle QDECAPS#‘ is changed such that it does not make

2Recall that with oracle access to O; x Oo, queries to O1 can be answered by appending an additional
Oo-register, applying 1 ® 1 ® Hp,, then Up, x0,, then applying 1 ® 1 ® Hp, again and returning only
the first two original registers. For O», replace 1 ® H;,, with Hy; ® 1 in the description above.
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use of the secret key any longer, except by testing if Dec’(sk,c) = m for given ¢ and
some message candidates m € Roots(H. ¢(X) — d) in line 05. Recall that we can
(X) of degree 2gyy; over Fom. We can hence

/

model H. as a random polynomial H. ¢

define Roots(HZ, ¢
such that H. ¢(m) = d. In order to show that the view of A is identical in games
G2 and Gsp, consider the following cases for a fixed ciphertext (¢, d) # (¢*,d*) and

m' := Dec’(sk, c).

(X) — d) as the set of polynomial roots, i.e., all messages m € {0,1}™

e Case 1: QDECAPS# returns L in game Gg . We will now show that QDECAPS#

also returns L in game Ggp: If QDECAPS# does not return L in game G3p, then

I
conf

m' # L and H.__(m') = d, which is exactly the condition that QDECAPS;. does

conf

there exists a message m € {0,1}™ such that H._ .(m) = d and m = m’, hence

not return L in Game Gg .

o Case 2: QDECAPSf‘n does not return L in game Gyjp. We will now show that
QDECAPS;, returns the same value in game G35 as it returns in game G 4: Since
m’ # L and H.  ((m') = d, m’ lies within the roots of H.  ((X) — d. Since no

other root m could satisfy m = m/, QDECAPSZ (¢, d) also returns K = H(m/) in
game G .

We have just shown that in both cases (i.e., for each b € {0,1}),

PI‘[GQb = 1] = Pr[Gé’b = ].] .

QDECAPSE((c,d) # (c*,d")) [G2p  QDECAPSE((c,d) # (c*,d")) /Gsp
01 m' := Dec(sk,c) 05 if Im € Roots(Hons(X)—d) s.t. Dec’(sk,c) =m
02 if m’ # 1 and H.(m') =d 06 return K := H(m).

03 return K := H(m') 07 else return L

04 else return L

Fig. 2.27: Oracle QDECAPSf;L in games Ga - G for the proof of Theorem 2.2.4. The
games’ main description remains as in Figure 2.26.

It remains to upper bound Pr[G4 , = 1] and Pr[G%; = 1]. To this end, we construct
OW-PCA adversaries By, B; against PKE’ in Figure 2.28 such that By, perfectly simulates
game Gz for A.

Pr(G%, = 1] = Adv3{Er A (By) -

Note that both adversaries issue at most 2gpgy: . PCO-queries: For each query
(¢,d) to QDECAPSZ,, both By and By compute the set Roots(H.__(X) — d) of complex

ms conf
roots. Since Hg,,¢(X) — d is a polynomial of degree 2gy; , the set has 2qy  elements.

conf
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In the worst case, they need to check whether PCO(m,c) = 1 for each element
m € Roots(H., ((X) — d).

conf

Blb:’CO(pk7 C*)

01 (d*,K*) «g {0,1}"*t™

02 m’  EXT[AQLEATS, M Hon) 1 5 H., ](pk, (c*, d*), K*) /Bo
03 m/ EXT[AQDE(JAPS#L,|H),|H£onf)’ éonf](pk7 (C*,d*),K*) //Bl
04 return m’

Fig. 2.28: OW-PCA Adversaries B, (for b € {0,1}) for the proof of Theorem 2.2.4.
Oracle QDECAPS# is defined as in game G3 (see Figure 2.27).

PROOF OF EQUATION (2.13). In order to prove Equation (2.13), we will first sketch
how to get rid of summand ¢p if the scheme is deterministic and rigid. To this
end, we introduce an intermediate game-hop between games Gy and game Gy, in
which we change oracle QDECAPS;, such that QDECAPS (¢, d) always returns L if
Dec'(sk,c) = m*.

To verify that A’s view is identical in both games, let (¢,d) be any query such
that Dec’(sk,c) = m*. We will now argue that QDECAPS, (¢, d) would have returned
1 in games Gyp, anyways, and hence, we only made the behaviour of QDECAPS#
explicit for this particular subcase: Since we assume the scheme to be rigid, we have
that ¢ = Enc’(pk, Dec’(sk, ¢)), and hence, ¢ = Enc’(pk, m*) = ¢*. A query on (c*,d*) is
forbidden, and a query on (c*,d # d* = H._ (m*)) would already have been answered
with L in games Gy .

We have just shown that the games proceed identically, but it is now verified that no
query to the classically accessible oracle QDECAPS# could ever trigger a query to H or
H. ¢ on m*. We can therefore apply Theorem 2.2.1, but with the improved bound given
in Equation (2.7) (see page 89), to get rid of the summand ¢p. Since G, and game
(G1 behave identically, and our simulation of QDECAPS#I in games G3; was perfect,
adversaries B, can remain unchanged and the summand ¢p can be dropped.

Second, we now show how to change our adversaries such that no query to QDECAPSJ,;L
will ever trigger them to issue a query to PCO on (m*, —):

We introduce another intermediate game-hop between games Gy, and game G 4,
in which we change QDECAPS# such that it always returns L if d = d*. In order to
recognise this change, A has to query QDECAPS# on a ciphertext (¢ # ¢*,d*) such
that QDECAPS, (¢, d*) would not have rejected in games G ;. As shown above, no

ciphertext ¢ # ¢* could decrypt to m*, since we assume the scheme to be rigid. Since
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queries on (c¢*,d*) are forbidden, the games can hence only differ if there exists a
query to QDECAPSJW‘I on a ciphertext (c # c¢*,d*) such that m’ := Dec’(sk, ¢) # m and
H. .¢(m’) = d*. Since the range of H._ ( is M, this happens with probability at most
ap/IM| =qp/2™.

Clearly, we can turn each adversary By into an adversary Bj that rejects during its

simulation of QDECAPS:: whenever queried on a ciphertext of the form (¢, d*).

SECURITY OF QKEM;Z,L. The following theorem establishes that IND-CCA security of
QKEI\/I#1 reduces to OW-PCA security of PKE', in the quantum random oracle model.

Theorem 2.2.5 (PKE' OW-PCA “" QKEMZ IND-CCA). For any IND-CCA quantum
adversary A issuing at most ¢p (classical) queries to the decapsulation oracle QDECAPS,,

at most gy (quantum) queries to random oracle H, at most gy ) (quantum) queries

/

! onf> (and arbitrarily many (quantum) queries to random oracle

to random oracle H
H//

reject?

to oracle PCO, such that

= there exist OW-PCA adversaries By and Bj, issuing at most 2qpgwy, . queries

AdvINO-CA(A) < (g + qu

OW-PCA
QKEMZ +4qp) - \/ Advpge " (Bo)

f

+ (qwr_, +ap) - \/ Advike, A(B1) |

and the running time of Bg and By is about that of A. If PKE’ furthermore is deterministic
and rigid, there exist OW-PCA adversaries Bj, and B such that

- - - qD
Advgraz (A) < (g1 +awy, ) -/ Advice” A(BY) + auy, -/ Advie” " (B) + 5,7
the running time of B} and B] is about that of A, and no query to QDECAPS# will

ever trigger either adversary B{ to issue a query to PCO on (m*, —).

The proof is almost the same as the one of Theorem 2.2.4: The crucial observation
is that in all games used in the proof of Theorem 2.2.4, QDECAPSf‘n always knows if a
given ciphertext (¢, d) is valid or not. (Recall that we achieve validity recognition even
without the secret key, by computing all possible preimages of d and using plaintext
checking oracle PCO.) If a ciphertext is not valid, our simulation of QDECAPS#
(correctly) returns L. In order to prove Theorem 2.2.5, one can hence simply replace L

with Higece(c,d). Since Hige. is an independent random oracle, this change does not

!

trigger any additional queries to either H or Hf .
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2.2.4 The Resulting KEMs

For completeness, we combine transformation T with {QU;, QUZ } from the previous
sections to obtain two post-quantum secure variants QFO# = QU# oT and QFOﬁ =
QU;K,L o T of the FO transformation.

To a public-key encryption scheme PKE = (KG, Enc, Dec) with message space M =
{0,1}™ and randomness space R, and hash functions G: M — R, H: {0,1}* — {0,1}",
H ot M — M, and H...., : {0,1}* — {0,1}", we associate

reject

QKEMZ: := QFOL [PKE, G, H, H. (] := QUL [T[PKE, G|, H, H., (]
= (KG, QEncaps,,, QDecaps;)

and

] := QUA[T[PKE, G, H, H! " et)

confs ' 'reject

QKEMy, := QFO7, [PKE, G, H, Hio., Hr.

reject

= (KG, QEncaps,,, QDecaps?.) .

Their constituting algorithms are given in Figure 2.29.

QEncaps,,, (pk) QDecaps;- (sk, ¢, d) | QDeca ps (sk, c, d)
P — — |

ot mi_éM e G 06 m' := Dec(sk,¢)
02 ¢ :=Enc(pk,m;G(m)) o7 4e i — | or ¢ # Enc(pk,m’; G(m')) or Hls(m') # d

03 K :=H(m)
R o8

05 return (K, c,d) 09 |return K := Hrgect (¢, d) |

L e e e e

10 else return K := H(m/')

3
|
|

Fig. 2.29: Key encapsulation mechanisms QKEM?, = (KG, QEncaps,,, QDecaps;-) and
QKEMZ (KG, QEncaps,,, QDecaps?,) obtained from PKE = (KG, Enc, Dec).

We will now show how to concretely bound the IND-CCA security of KEM €
{QKEan, QKEM;{,}, in the quantum random oracle model. Like in Section 2.1.4, we
will denote by OW;(PKE), OW-PCA,(PKE’) and CCA;(KEM) the upper bound on the
respective advantage of all adversaries running in time at most ¢.

As corollaries to theorems 2.2.4 and 2.2.5 (and since T[PKE, G] is rigid), we can
upper bound both IND-CCA,(QKEM:;) and IND-CCA,(QKEM%) by

IND-CCA,(QKEM::)
IND-CCA,(QKEM?)

} S (qH +2- qH(’:onf) : \/OW_PCAt(PKE/) + 2SLD_1 )
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and we know that no IND-CCA adversary will ever trigger a resulting OW-PCA adversary
to issue a query to PCO on (m*, —).

As a corollary to Theorem 2.2.3, and only considering adversaries that do not query
PCO(m*, —), we can upper bound OW-PCA,(PKE’) by

OW-PCA,(PKE’) < (1 + 2¢g) - v/OW,(PKE) + 8- (g + grco + 1)% - bye .

The following table combines the bounds above to give (simplified) concrete bounds
of the IND-CCA security of KEM € {QKEM?, QKEM:: }. Here ¢p denotes the number
of decryption queries, gro := q¢g+qn + ay, Fan counts the total number of (explicit)
quantum queries to the respective random oracles, and we used that the oracle queries

in the IND-CCA game translate to 2quHéan many queries to PCO.

KEM Concrete bound on IND-CCA;(KEM) <

3
QKEMZ, QKEMy, 443, - 3/OW.(PKE) + 12g0 - qp - V3 + 522+

2.3 Tighter Security Bounds in the QROM

Recall that the QU,,-variants from Section 2.2 require a non-standard security notion
(OW-PCA). We view it as desirable to start from a standard notion that can be verified
easily. The natural approach would be to apply transformation T before applying a
QU,,-variant, as T is proven to turn OW into OW-PCA security. This modular approach,
however, comes with a significant drawback: The security proofs given in Section 2.2 are
highly non-tight, as all of them invoke a non-tight quantum query extraction argument.
In particular, combining the security statement for transformation T with the security
statement for either one of the QU,,-transformations leads to a quartic loss in the OW
advantage, and a factor of q%.

Furthermore, the QU,,-variants from Section 2.2 introduce some communication

!

overhead by including a key confirmation ciphertext d := H__ ¢

(m) of the same length
as the message itself. Most real-world proposals are designed such that they do not use
key confirmation, meaning that they fit the framework of FO = Uo T from Section 2.1.4
for some U-variant (see page 84), rather than the framework of QFO = QU,, o T.
Prior to this result, a modular proof for a variant of FOﬁ in the quantum random
oracle model was already given in [SXY18]: In [SXY18], FO% is dissected into two
transformations TPunc and SXY. Transformation TPunc differs from transformation T
in two aspects: First, it does not execute the re-encryption check during decryption.

This check is instead shifted to the second transformation SXY, which, apart from doing
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the re-encryption check, is our transformation U#, from Section 2.1.3 (see page 80).3
Later, we will also briefly discuss other U-variants with an added re-encryption check.
To keep our notation concise, we will write U for a U-variant to which the re-encryption
check was added. With this notation, we can identify SXY with U£®, which is the
notation we will use from now on. Second, transformation TPunc removes a single
message M from the message space, for reasons we explain below.

In the quantum random oracle model, IND-CCA security of U#, with re-encryption
(i.e., the security of U£C) tightly reduces to disjoint simulatability of ciphertexts (DS, see
Definition 1.1.8 on page 28). DS is naturally satisfied by many code- and lattice-based
encryption schemes. If a scheme is IND-CPA secure, simulatability can also be achieved
generically by removing any message m from the message space, and using m to sample
fake encryptions. This method is also called “puncturing”.

Note, however, that UZC can only be applied to deterministic schemes (since it
re-encrypts). A deterministic scheme that satisfies simulatability is achieved by using
transformation TPunc, albeit non-tightly. More importantly, the result for UA® that
was given in [SXY18] only considered schemes which are perfectly correct, rendering
it inapplicable for many important constructions. It would therefore be desirable to
generalise the result such that it also holds for non-perfectly correct schemes, but this
generalisation turned out to be less than straightforward: For deterministic schemes,
worst-case correctness effectively requires that the scheme is perfectly correct for almost
all public keys. Since it is not clear how to give a correctness definition for deterministic
encryption schemes that suits known tight proof strategies for UA®, while also being
achievable by most lattice-based schemes, we circumvent this difficulty by resorting
to a non-modularised proof, i.e., we only consider transformation FO’#I =U#£ oT: By

plugging in T[—, G] into U%

7., we can modify random oracle G during the security proof

such that the scheme is rendered perfectly correct for a few game-hops. With this trick,
the UZ%-portion of the combined proof remains tight.

Our transformation FOf1 can be applied to any PKE scheme that is both IND-CPA
and DS secure. Our reduction is tighter than the one that results from combining those
for TPunc and U£© that were given in [SXY18].

Furthermore, we achieve a better bound with respect to the scheme’s correctness
than previously known due to a better bound for the generic distinguishing problem.
In the case that PKE is not already DS, this requirement can be waived with negligible
loss of efficiency: To rely on IND-CPA alone, all that has to be done is to puncture the
message space, which we formalise by giving a transformation Punc. A visualisation is

given in Figure 2.30.

3This means that the KEM now does not only reject if decryption of a ciphertext fails, but also if
re-encryption does not yield the ciphertext.
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PKE

INFI)Z)PTE?-’A e DS (prob)
g + IND-CPA
| TS FOA =UfoT
TPunc ~~_ T \\\\
) =
S~ PKE’ KEM
DS (det.) ULC IND-CCA

m

Fig. 2.30: Comparison of the modular transformation given in [SXY18] (green) with ours.
Solid arrows indicate tight reductions, dashed arrows indicate non-tight reductions.

SECURITY OF OTHER FO VARIANTS. It was shown [BHH'19, Thm. 5] that for
any deterministic scheme PKE, IND-CCA security of UAC[PKE’, H] is equivalent to
IND-CCA security of Uﬁ%[PKE’7 H]. Since T indeed renders the intermediate scheme
deterministic, we obtain as a straightforward corollary that FO#,C[PKE/, GH] is as secure
as FO#[PKE’7 GH]. For the variants with explicit reject, however, it is unclear how to
deploy a proof strategy similar to ours without either reintroducing key confirmation,

or requiring a validity oracle.

CONCRETE APPLICATIONS. Our transformation can be applied to any scheme that is
IND-CPA secure with post-quantum security, e.g., Frodo [NAB*17], Kyber [BDK™17],
and Lizard [BI17]. Recall that the additional requirement of DS can be achieved with
negligible loss of efficiency. However, in many applications even this negligible loss is
inexistent since most of the aforementioned schemes can already be proven DS under

the same assumption that their IND-CPA security is based upon.

Organisation of Section 2.3

In Section 2.3.1, we show that T achieves deterministic DS from DS and IND-CPA. Next,
in Section 2.3.2, we show that the combined transformation FO;Kn = U#% o T turns any
encryption scheme that is both DS and IND-CPA secure into a KEM that is IND-CCA
secure. The proof is applicable to non-perfectly correct schemes.

We believe that many lattice-based schemes fulfill DS in a natural way?, but for the

sake of completeness, we will show in Section 2.3.3 how transformation Punc can be

used to waive the requirement of DS with negligible loss of efficiency.

4Fake encryptions could be sampled uniformly random. DS would follow from the LWE assumption,
and since LWE samples are relatively sparse, uniform sampling should be disjoint.
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2.3.1 Transformation T: From DS and IND-CPA to deterministic DS

Recall that T from Section 2.2.2 turns any probabilistic public-key encryption scheme
into a deterministic one. In this section, we will now show that T turns any scheme that
is both DS and IND-CPA secure into a deterministic scheme that is DS. Our security
proof for T is tighter than the known proof for TPunc (see [SXY18, Theorem 3.3]) due

to our use of the semi-classical O2H theorem.

THE CONSTRUCTION. Take an encryption scheme PKE = (KG, Enc, Dec) with message
space M and randomness space R. Assume PKE to be additionally endowed with
a sampling algorithm fakeEnc that takes as input a public key and returns a fake
ciphertext. To PKE and random oracle G : M — R, we associate PKE' = T[PKE, G],
where the algorithms of PKE' are defined in Figure 2.2 (see page 62), and we add to
the description of PKE’ the sampling algorithm fakeEnc.

The following lemma states that combined IND-CPA and DS security of PKE imply
the DS security of PKE'.

Lemma 2.3.1 (DS security of PKE"). If PKE is e-disjoint, so is PKE’. For all adversaries
A issuing at most gg (quantum) queries to G, there exist an adversary Biyp and an

adversary Bps such that

AdvBRe (A) < AdvB3e(Bps) + 2 - \/ 246 - Advii“PA(Binp ) +

< AdvpRe(Bps) + 2 - \/qu - AdviieE“PA(Binp ) +

and the running time of each adversary is about that of A.

Proof. Tt is straightforward to prove disjointness since Enc’(pk, M) is a subset of
Enc(pk, M;R).

Let A be a DS adversary against PKE’. Consider the sequence of games given in
Figure 2.31. Per definition,

AdvRRe (A) = | Pr[G4 = 1] — Pr[G} = 1]|
< |Pr[Gh = 1] — Pr[GS = 1]| + | Pr[GY = 1] — Pr[GS = 1]] .

To upper bound |Pr[Gf = 1] — Pr[G5 = 1]|, consider adversary Bps against the
disjoint simulatability of the underlying scheme PKE, given in Figure 2.32. Bps runs in

the time that is required to run A and to simulate G for gg queries. Since Bpg perfectly
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Games Go-G3

01 pk + KG

02 m* g M

03 ¢* < fakeEnc(pk) //Go
04 ¢* := Enc(pk,m";G(m™)) /G
05 ¢* < Enc(pk,m™) /G2

06 b« A% (pk, c*)
07 return b’

Fig. 2.31: Games Gy - G for the proof of Lemma 2.3.1.

simulates game Gy if run with a fake ciphertext as input, and game G if run with an
encryption ¢ < Enc(pk, m*) of a random message m*,

| Pr[GA = 1] — Pr[G% = 1]] = AdvBRe(Bps) -

It remains to upper bound | Pr[G} = 1] — Pr[G4 = 1]|. We claim that there exists

an adversary Biyp such that

4 2
|Pr[G2 = 1] - Pr[Gy = 1] <2 \/2qG - AdvileE“PA(Binp ) + ﬁ .

To prove this claim, we will first introduce an intermediate game G 5 in Figure 2.33.

Bos (pk, ¢) Binp,1(pk) G\ {m"} |[¥)
01 b « Al9(pk,c) 03 m" s M 08 |¢,b) 1= 0754y |1, 0)
02 return b’ 04 return (0,m",;st :==m") o9 if p=1
10 FIND :=1

Binp,2(pk, c*, st := m”) 11 return Ug |¢)

05 FIND :=0

06 b Al D (p, ¢*)

07 return FIND

Fig. 2.32: Adversaries Bps and Bjyp for the proof of Lemma 2.3.1.

GAME G15. In game G 5, we replace oracle access to G with oracle acess to G’ in line
08, where G’ is defined as follows: we pick a uniformly random r* in line 04 and let
G'(m) := G(m) for all m # m*, and G'(m*) := r*. Note that this change also affects
the challenge ciphertext ¢* since it is now defined relative to this new r*, i.e., we now
have ¢* = Enc(pk, m*; G'(m™*)). Since r* is uniformly random and G is a random oracle,

so is G, and since we kept ¢* consistent, this change is purely conceptual and
Pr[G{{\ =1] = F’I[Gf‘.5 =1] .
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Games G1-Go

01 pk + KG

02 m* g M

03 r* := G(m") JG1
04 7 4+ R [/ G1.5-Ga
05 G =GP T /G1s
06 c¢* := Enc(pk,m";r")

07 b« Al® (pk, c*) /G1, G2
08 b« Al (pk, c*) /Gis
09 return b’

Fig. 2.33: Games G - G2 and intermediate game G 5 for the proof of Lemma 2.3.1.

GAME G3. In game G5, we switch back to oracle access to G, but without changing c*,
meaning that we have now decoupled the ciphertext from G(m*).

To upper bound | Pr[G4 5 = 1] — Pr[G% = 1]|, we will use one-way to hiding with
semi-classical oracles (see Theorem 1.3.3, page 44). Intuitively, the first part of O2H
states that if oracles G and G’ only differ on point m*, the probability of an adversary
being able to tell G and G’ apart is directly related to m* being detectable in its
random oracle queries. Detecting m™* is formalised by game G3 in Figure 2.34, in which
the input register of each random oracle query is measured with respect to projector
|m*) (m*|, thereby collapsing the query to a superposition such that the input register
only contains m* (and flag FIND is switched to true) or that it does not contain m* at
all. We denote this process by a call to oracle Osﬁ*}. Identifying O; with G, O, with G/,
S with {m*} and z with (pk, ¢* := Enc(pk, m*;r*)), we can now apply Equation (1.2)
of Theorem 1.3.3 to obtain

|Pr[GYs = 1] — Pr[Gy = 1]| <2-4/qe - Pr[G5 = 1] .

Game G3-Ga G\ {m"} )

01 FIND :=0 08 |, b) := O35+ [1,0)
02 pk + KG 09 ifb=1

03 m* g M 10 FIND:=1

04 c* + Enc(pk, m*) /G311 return Ug |¢)

05 ¢* + Enc(pk, 0) J/Ga

06 b < AlCM™ D (p, )

07 return FIND

Fig. 2.34: Games G3 - G4 for the proof of Lemma 2.3.1.

GAME G4. In game Gy, ¢* < Enc(pk, m™*) is replaced with an encryption of 0. Since in
game Gy, (pk,c*) is independent of m*, we can apply Equation (1.5) of Theorem 1.3.4
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that upper bounds the probability of finding an independent point m*, relative to the

number of queries and the size of the search space M: We obtain

4
Pr[GA = 1] < —IS

M|
To finally upper bound | Pr[G4 = 1] — Pr[G%} = 1]|, consider adversary Bijnp against the
IND-CPA security of PKE, given in Figure 2.32. Bjyp runs in the time that is required
to run A, and to simulate oracle G (and perform a measurement) for gz many queries.
Since Biyp perfectly simulates game Gz if run with an encryption of m*, and game G4

if run with an encryption of 0,
|Pr[Gh = 1] — Pr[G} = 1] = 2 - Adviir A (Binp) -

Collecting the probabilities yields

dqc

PI‘[Gg\ =1]<2- AdVIPNKDéCPA(BWD) + W .

2.8.2  Transformation FOZ : From DS and IND-CPA to IND-CCA

We will now show that the combined transformation FOZ, = U% o T from turns any
encryption scheme that is both DS and IND-CPA secure into a KEM that is IND-CCA

secure.

THE CONSTRUCTION. To PKE = (KG,Enc,Dec) with message space M and ran-
domness space R, and random oracles H : M — K, G : M — R, we associate
KEM = FOZ. [PKE, G, H] := U%[T[PKE, G, H], where the algorithms of KEM are given in
Figure 2.17 (see page 85). We slightly generalise the construction: Instead of sampling
the rejection seed s from M, we now sample it from {0, 1} for some integer /.

Before we proceed to the security statement for KEM, we recall helper lemma
[SXY18, Lem. 2.2] that will allow us to replace access to H(s, ) with access to a new,

independent random oracle H’.

Lemma 2.3.2. Let ¢ be an integer, and let H: {0,1}* x X - Y and H' : X — Y be

two independent random oracles. For any (possibly unbounded) quantum adversary A,
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issuing at most ¢y many (quantum) queries to H, we have that

Pr [l AMMHED] _prf1 « A < gy - 275
S<—${0,1}Z

SECURITY OF KEM. The following theorem establishes that IND-CCA security of KEM
reduces to DS and IND-CPA security of PKE, in the quantum random oracle model. Tts
proof is quite similar to the proof that one could obtain by combining the modular

proofs in [SXY18], except for the fact that it is able to handle correctness errors.

Theorem 2.3.3 (PKE DS + IND-CPA “S" KEM IND-CCA). Assume PKE to be 4-
worst-case correct, and furthermore assume that PKE comes with a sampling algorithm
fakeEnc such that PKE is egjs-disjoint. Then, for any (quantum) IND-CCA adversary
A issuing at most gp (classical) queries to the decapsulation oracle DEC#, at most gy
quantum queries to H, and at most gg quantum queries to G, there exist (quantum)

adversaries Bps and Bjyp such that

Adviini““A(A) < AdvBRe(Bps) +2- \/ 2qro - Advpie < (Binb)

4gro —e41

+16- (qro + qp +2)% - 0 + i +eqis+qu-272

where gro counts the total number of random oracle queries, and the running time of
Bps and Bjnp is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at most
qp queries to DEC%L7 at most qq queries to the quantum random oracle H, and at most
qc queries to the quantum random oracle G. Consider the sequence of games given in
Figure 2.35.

GAME Gj. Since game G is the original IND-CCA game,

AdvCCA(A) = | Pr[Gh = 1] — 12| .

GAME G;. In game G, we change the way how oracle DECf1 rejects implicitly:
Whenever decryption or re-encryption fails, the oracle now returns K := H’(c), see
line 17, where H’ is an independent random oracle. Clearly, this game-hop can be
simulated by a distinguisher with oracle access to H and O € {H(s,-),H’}, by using its
oracle O to reject implicitly. Applying Lemma 2.3.2, we obtain

|Pr[GA =1] —Pr[GR =1)| <gqu-277 .
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GAMES G - G4 DECH,(c # ¢) /Go - Ga
01 b« {0,1} 14 m’ := Dec(sk, c)

02 (pk, sk) + KG 15 ifm' =1

03 Hq 5 K€ [ G2 - G4 or Enc(pk,m’;G(m")) # ¢

04 H:=Hq(Enc(pk, —;G(-))) JG2-Gs 16 return K := H(s,c) /Go
05 m* «+ M 17 return K := H'(c) /G1
06 c* := Enc(pk, m*; G(m")) JGo - G2 18 else

07 ¢” < fakeEnc(pk) /Gs-Gs 19  return K :=H(m')

08 KS = H(m*) //Go - Gl

09 K¢ = Hq(c") /G2 - Gz DEcf(c # ¢¥) /G2 - G4
10 K <35 K /G4 20 return K := Hq(c)

11 Ki <35 K

12 b ADEORIHNIG) (pE oK)

13 return [b' = b]

Fig. 2.35: Games G - G4 for the proof of Theorem 2.3.3.

GAME G3. In game G4, we change the game twofold: First, we plug in encryption into
random oracle H, i.e., we draw a new random oracle Hq < K¢ in line 03 and define H
in line 04 by letting

H(m) := Hq(Enc(pk, m; G(m))) .

We also make this change explicit for K in line 09. (Note that as before, we have that
K :=H(m*).) Second, we change oracle DECZ, such that it always returns K := Hq(c).
We claim that

|Pr[Gh = 1] —Pr[G} =1]] <16 - (gro +qp +2)* -0 . (2.14)

In order to prove Equation (2.14), we introduce a sequence of intermediate games
in Figure 2.36: We first replace access to G with a modification G, s that renders the
scheme perfectly correct (in game G7.1). Second, we plug encryption into the random
oracle (game G| .5), with the result that DEC? (c) returns K := H(Dec(sk, ¢)) = Hq(c)
for all valid ciphertexts c. Third, we change DEC (c) such that it always returns Hq(c)

(game G 3). Switching back to a truly random oracle G, we arrive at game Gs.

GAME G7p1. In game G1.1, we enforce that no decryption failure can occur. More

formally, for fixed (pk, sk) and message m € M, we let
Rbad (pk, sk,m) := {r € R | Dec(sk, Enc(pk, m;r)) # m}

denote the set of “bad” randomness. We replace random oracle G in line 04 with an
oracle Gy, o that only samples from “good” randomness: Let f be a 2g-wise independent

hash function, where ¢ counts the number of all queries to G that are triggered by A,
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GAMES G - G DECH, (c # ¢*) /G1 - Gi2
01 (pk, sk) + KG 13 m’ := Dec(sk, c)

02 b+ {0,1} 1 ifm' =1

03 G +g RM JG1, G2 or Enc(pk,m’;G(m")) # ¢

04 G := Gpk,sk /G11-Gis 15  return K := H'(c)

05 Hq g K€ JG12 -Gz 16 else

06 H:=Hq(Enc(pk, —;G(-))) JGi2-G2 17 return K := H(m')

07 m* +— M

08 ¢* := Enc(pk,m*; G(m")) DEC (¢ # ¢*) JG13 - G
09 Kg :=H(m") 18 return K := Hq(c)

10 K{ <3 K

1 AP IO (o K

12 return [b' = b]

Fig. 2.36: Games G; and G5, and intermediate games (G171 to (1.3, for the proof of
Theorem 2.3.3. .

and let Sample(Y') be a probabilistic algorithm that returns a uniformly distributed
y <—g Y. We now define Gy, 5 by

Gpk,sk(m) := Sample(R \ Riad(pk, sk, m); f(m)) ,

where Sample(Y’; f(m)) denotes the deterministic execution of Sample(Y’), using the
given randomness f(m). Since 2¢-wise independent hash functions are indistinguishable
from random oracles for up to g queries, Gy sx(m) indeed is identical to uniformly
sampling “good” randomness.

In order to upper bound | Pr[G4 = 1] — Pr[G}; = 1]|, we further define

5(pk, sk, m) := |Rvaa(pk,sk,m)|/|R|

as the fraction of bad randomness, and d(pk, sk) := max,,e s 0(pk, sk, m). With this
notation, we have that 6 = E[max,,car d(pk, sk, m)], where the expectation is taken
over (pk, sk) < KG.

We now construct an (unbounded, quantum) adversary B against the generic distin-
guishing problem with bounded probabilities GDPB (see Lemma 1.3.6) in Figure 2.37.
B draws a key pair (pk, sk) < KG and computes the parameters A(m) of the generic
distinguishing problem as A(m) := d(pk, sk, m), which are bounded by \ := é(pk, sk).
To analyse B, we first fix (pk, sk). In the case that B is run in game GDPBj(p,sk),1,
the random variable F(m) is bernoulli-distributed according to Bx(m) = Bs(pk,sk,m) for
each message m € M. It is easy to verify that in this case, the random variable G(m)
defined in line 21 if F(m) = 0 and in line 23 if F(m) = 1 is uniformly distributed in R.

Hence, G is a random oracle and B!F) perfectly simulates game G if executed in game
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GDPB(pk,sk),1- In the case that B is run in game GDPB) (1, sk),0, the random variable
F(m) is always 0 and B provides access to G,y sk, thereby perfectly simulating game
Gia-

|Pr[G} = 1] — Pr[G}, = 1]| = | Pr[GDPBS ; = 1] — Pr[GDPBS , = 1]| .

Since B issues at most gg + gp + 1 queries to F, we can apply Lemma 1.3.6 to obtain

| Pr[GDPBS | = 1] — Pr[GDPBS = 1]| < 8- (qc +aqp +2)* -6 .

B; = Bj DECE (¢ # ¢¥) /Adversary B
01 (pk, sk) < KG 15 m’ := Dec(sk, c)

02 for m € M 16 if m' =L

03 A(m) := §(pk, sk,m) or Enc(pk,m’;G(m")) # ¢

04 return (A(Mm))mem 17 return K := H'(c)

18 else return K := H(m/')
B and By
05 Pick 2¢-wise hash f DEc;ﬁ(c #c") /| Adversary B’
06 b+sg {0,1} 19 return K := Hq(c)
07 H := Hq(Enc(pk, —;G(—))) /B>

S*
T
<
[2)

(m)

09 ¢* := Enc(pk,m"; G(m™)) 20 if F(m) =0

10 Kg :=H(m") /B2 21 G(m) := Sample(R \ Rbad(pk, sk, m); f(m))
11 K§ := Hq(c*) /B> 22 else

12 K{ <5 K 23 G(m) := Sample(Rbaa(pk, sk, m); f(m))

13 b« APEOIHIG) (pk,c*, Ky) 24 return G(m)

14 return [b' = b]

Fig. 2.37: Adversaries B and B’ for the proof of Theorem 2.3.3, executed in game
GDPB;(pk,sk) With access to F. Note that B (B’) can provide quantum access to random
oracle H (H := Hq(Enc(pk, —; G(—)))) since they are unbounded.

GAME G12. In game G2, we plug in encryption into random oracle H by picking a
random oracle Hq ¢ K€ in line 05 and letting H := Hq(Enc(pk, —; G(—))) in line 06.
Note that with this definition we have that K := H(m*) = Hq(c*), and that DEc},
returns K := H(m’) = Hq(c) for valid ciphertexts c.

Since G = G, o only samples good randomness, the deterministic encryption
algorithm Enc(pk, —; G(—)) is rendered perfectly correct and hence, injective. Since
Enc(pk, —; G(—)) is injective, H still is uniformly random and A’s view is identical in
both games.

Pr[G}, = 1] =Pr[GY, =1] .
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GAME G13. In game (3, we change oracle DECﬁ such that it always returns

K :=Hy(c). We will now argue that this change does not affect A’s view:

For valid ciphertexts ¢, we already had that DecZ (¢) = H(m') = Hq(c) in game
(s, the response of DEC;Z,L could thus only differ for ciphertexts ¢ that are not valid.
It is easy to verify that since G = Gpy, o only samples good randomness, no non-valid
ciphertext could lie in the range of Enc(pk, —; G(—)). But if ¢ does not lie in the range
of Enc(pk, —; G(—)), then oracle DEC/ (¢) returns in both games a random value that
can not possibly correlate to any random oracle query to H, therefore DECfl(c) is a
random value independent of all other input to A in both games. We have shown that

A’s view is identical in both games and

Pr[G}, = 1] =Pr[GY; =1] .

GAME G14. In game G4, we switch back to using a truly random oracle G. Consider
adversary B’ given in Figure 2.37. Since B’ issues at most gg + gy + 1 queries to F, we

can apply the same reasoning as for the gamehop from game G; to G711 to obtain

|Pr[G}, =1] —Pr[GE =1]| <8 (gc +qn +2)*-0 .

Combining the bounds proves Equation (2.14). The rest of the proof proceeds
similiar to the proof in [SXY18], aside from the fact that we consider the particular

scheme T[PKE, G] instead of a generic deterministic encryption scheme.

GAME G3. In game G3, we replace the challenge ciphertext ¢* with a fake encryption
in line 07. Consider the adversary Cps against the disjoint simulatability of T[PKE, G]
given in Figure 2.38. Cps runs in the time that is required to run A and to simulate
Hq(Enc(pk, —; G(—))) for gy many queries. Since Cps perfectly simulates game G if
run on input ¢* := Enc(pk, m*; G(m*)) for a random message m*, and game Gj if run

with a fake ciphertext,
|PY[G'2A =1] - Pr[Gg\ =1]| = AdV?[SPKE,G](CDS) :

Since Cpg issues at most gro = ¢ + gq many queries to G, we can apply Lemma 2.3.1

to obtain that there exist an adversary Bps and an adversary Bjyp such that

4qgro
M|

Advipke 6 (Cos) <Advpge(Bos) +2 - \/2QR0 - Advike ™ (Binp) +
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Cos'® (pk, c*) DECH (¢ # ¢*)

01 b+sg {0,1} 06 return K := Hq(c)
02 K§ :=Hq(c")

03 Ki +s K

04 b ¢ APEM IO (x| )

05 return [’ =]

Fig. 2.38: Adversary Cps against the disjoint simulatability of T[PKE, G] for the proof
of Theorem 2.3.3. Oracle H is defined as in games G5 and G3.

GAME G4. In game G4, we replace K with a uniformly random key in line 10. Since
both K§ and Ki are independent of all other input to A in game Gy,

Pr[G} = 1] =12,

and it remains to upper bound | Pr[G4 = 1] — Pr[G%} = 1]|. Since A’s view only differs
if any of the oracle answers actually contains Hq(c*), and since queries to DEC# on c*
are explicitly forbidden, it is sufficient to analyse whether A could trigger a query to
Hq containing ¢* via one of its queries to H. We know that the input register of these
queries only contain superpositions of the form ), = oy, |[Enc(pk, m; G(m))), which can
not contain the fake ciphertext ¢* unless it lies in the range of Enc(pk, —; G(—)). Since

we assume PKE to be eqi5-disjoint,

|Pr[G4 = 1] — Pr[G%} = 1]| < eqis -

2.3.3  Transformation FO% o Punc: From IND-CPA to IND-CCA

In this section, we show that the requirement of disjoint simulatability can be waived
with negligible loss of efficiency: To rely on IND-CPA alone, all that has to be done is
to puncture the message space at one message, and use this message to sample fake
encryptions. We formalise this below by defining transformation Punc. Punc achieves
(probabilistic) simulatability and maintains IND-CPA security. Note that we do not
consider disjoint simulatability, as it will turn out that disjointness is not needed in
order to achieve IND-CCA security of FO%, o Punc.
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THE CONSTRUCTION. To a public-key encryption scheme PKEy = (KGg, Encg, Decg)
with message space My, and to a message m € My, we associate PKE := Punc[PKEg, ] :=

(KGg, Encg, Decg) with message space M := Mg\ {rir}. We furthermore define sampling
algorithm fakeEnc in Figure 2.39.

fakeEnc(pk)
01 ¢ < Enco(pk,m)
02 return c

Fig. 2.39: Fake encryption sampling algorithm fakeEnc.

Given that PKE differs from PKEj only in the minimally restricted message space,
it is easy to verify that PKE (tightly) inherits IND-CPA security and d-worst-case
correctness from PKEy. The following lemma furthermore states that IND-CPA security
of PKE( implies simulatability of PKE.

Lemma 2.3.4 (DS of Punc). For all adversaries A, there exists an IND-CPA adversary
B such that

AdvRRe(A) = 2 - AdviiE™A(B) .

Proof. Let A be an adversary against DS of PKE, and consider the IND-CPA adversary
B := (B, B2) against PKEq given in Figure 2.40. If B is run in game IND-CPApkg, with
b =0, it runs A with an encryption of a message that was randomly picked from M,
and if B is run in game IND-CPApkg, with b = 1, it runs A with a fake ciphertext, hence

i 1
Advpge H(B) = 3 - Advige(A) -

B1 (pk) Ba(pk, c)
01 m <3 Mo\ {m} 03 b’ < A(pk, c)
02 return (m, ) 04 return b’

Fig. 2.40: IND-CPA adversary B = (B1, B2) for the proof of Lemma 2.3.4.

O

We can now combine Lemma 2.3.4 with Lemma 2.3.1 to obtain that combining T

with Punc achieves (deterministic) simulatability from IND-CPA security.

Corollary 2.3.5 (DS of T o Punc). For all adversaries A issuing at most gg queries to

G, there exist two adversaries B; and B, such that

4
AdV'DI'[SPunc[PKEO,m],G] (A)<2- AdVIFl\IKDE-OCPA(Bl) +2- \/QQG : AdVIFl\IKDE-OCPA(Bz) + e
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and the running time of each adversary is about that of B.

The following theorem establishes that plugging in transformation Punc (before FOZ)
achieves IND-CCA security from IND-CPA security alone, as long as PKE is y-spread
(see Definition 1.1.2).

Theorem 2.3.6 (IND-CCA security of FO# o Punc.). Assume PKEq to be d-worst-case
correct and y-spread, and let 7 € M. Let KEM := FOZ [Punc[PKEy, 7], G, H]. Then,
for any (quantum) IND-CCA adversary A issuing at most ¢p (classical) queries to the
decapsulation oracle DEC;{L7 at most gy quantum queries to H, and at most gg quantum

queries to G, there exist CPA adversaries B; and B, against PKEq such that

Advien S (A) < 2 Advig A (By) + 2 \/ 2qro - Advpyes (B2)
4qro

VIMI -1

where gro counts the total number of random oracle queries, and the running time of
B; and B, is about that of A.

+24-(qro +qp +2)%- 5+ F27 7 -2

Proof. In order to prove Theorem 2.3.6, we revisit the proof of Theorem 2.3.3 and show
how we can modify it such that it works for Punc[PKEy, 1] without having to rely on
the disjointess property.

Executing the first 3 game-hops (see Figure 2.35), we achieve that DEC (¢) always
returns Hq(c), and that the challenge ciphertext ¢* is replaced with a fake encryption,
i.e., an encryption of M.

Since PKE, is d-correct, so is Punc[PKE, 7i2], hence
AdVINRCA(A) < |Pr(Gh = 1] — 2| +qu - 277 +16- (gro + qp +2)° -0

and according to Corollary 2.3.5, there exist CPA adversaries By and B, against PKE,
such that

4qro

|Pr(G = 1]-Pr{G = 1]| < 2-AdVBR A (B1)+21/2qr0 - AdvEIRS PA(BzHW '

In order to justify that we can replace the real key K§ with random like in game G4
of Figure 2.35, we will now show how to circumvent the disjointness requirement: We
introduce an intermediate game G's.; in Figure 2.41, in which we replace G with Gy o
yet once more. Since the games can be simulated perfectly by an adversary against

GDPB;(pk,sk), We once more obtain
|Pr[GS = 1] —Pr[GF, =1]| <8 (gro +2)? -6 .
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GAMES G3 - G4

01 b<g {0, 1}

02 (pk, sk) + KG

03 G:= ka,sk //G&l -Gy
04 H := Hq(Enco(pk, —; G(—)))

05 ¢* + Enco(pk, )

06 KS = Hq(c*) //G3 - G3,1
07 K§ +g K yien
08 Ki +s K

09 b « APERIHLIG) (pk | [
10 return [b' = b]

Fig. 2.41: Games G35 and G4, and intermediate game G751, for the proof of Theorem 2.3.6.

GAME G4. In game G4, we replace Kj with a uniformly random key. Since both K

and K7 are independent of all other input to A in game Gy,
Pr[G} = 1] =12 .

and it remains to upper bound | Pr[G4; = 1] — Pr[G%} = 1]|. Again, the view of A can
only differ if A triggers a query to Hq containing c* via one of its queries to H, which
is only possible if there exists a message m such that ¢* = Enc(pk, m; G(m)). Assume

that such a message m exists. We distinguish two sub-cases: m # 1M or m = m.

- Existence of a message m # m such that ¢* = Enc(pk, m; G(m)) implies that ¢*
exhibits decryption failure: Since G = Gy, o only samples good randomness, it is
implied that Decy(sk,c¢*) = m # m. We can hence upper bound the probability
of this case by 9.

- In the case that m = 7, we have that ¢* = Encgo(pk,7; G(1h)). Since c¢* is a
random encryption, and PKE is «-spread, we can upper bound the probability of
this case by 277.

|Pr[G4, =1] - Pr[G} =1]| <6427 .
Collecting the bounds, we can upper bound

|Pr[G4 =1] —Pr[G} =1]| < 8- (qro +qp +2)* -5 +277
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2.4 Transformation ACWC: Turning Average-Case into

Worst-Case Correctness

In this section, we show how to convert average-case correct schemes (recall Defini-
tion 1.1.11, page 30) into ones that are worst-case correct, assuming that they come
with randomness recovery and invertible encryption (see Definitions 1.1.3 and 1.1.4,
page 25).

Our motivation stems from the fact that there exist passively secure schemes that
only come with average-case-correctness, but fulfill the requirement above, with one
example being the NTTRU scheme given in [LS19]°.

As shown in Section 1.1.3, worst-case and average-case correctness do not generally
coincide: The former definition can be strictly stronger than the latter, and equivalency is
given if and only if the decryption error is independent of the message (see Lemma 1.1.14
on page 32). As pointed out in [L.S19, Section 2.2], independence of the message can be
achieved for LPR-Style schemes, but this is not the case for NTRU-style schemes. Since
worst-case correctness is required in order to safely apply FO-like transformations, it
seems to be crucial for schemes like NTTRU to find a way to deal with this gap.

In fact, to bypass the correctness issue, [LS19] already included a transformation
that is quite similar in spirit to the construction we will define below. The transfor-
mation given in [LS19], however, results in a small communicative overhead, and more
importantly, its formal treatment in the quantum random oracle model was left as an
open problem. We therefore now introduce a length-preserving alternative, which we

then analyse in the (quantum) random oracle model.

THE CONSTRUCTION. Let PKEy = (KGg, Encp, Decy) be a public-key encryption
scheme with message space M and randomness space Rg. Assume that PKEy comes
with randomness recovery (see Definition 1.1.3, page Definition 1.1.3). To PKEy and
random oracle F : Ry — M, we associate PKE := ACWC[PKE, F]. The algorithms of
PKE = (KG := KGg, Enc, Dec) are defined in Figure 2.42.

In Section 2.4.1, we will prove that ACWC indeed achieves worst-case from average-
case correctness.

In Section 2.4.2, we will prove that ACWC achieves IND-CPA security from OW
security, assuming that the underlying scheme comes with invertible encryption. Hence,
transformation ACWC can be plugged into our implicitly rejecting KEM transformations

from Section 2.1.4, resulting in a OW to IND-CCA transformation which only requires

5The passively secure NTTRU construction computes ciphertexts as Enc(pk, m;r) := pk-r 4+ m.
We can hence define Inv(pk, c,r) = ¢ — pk - r. As discussed in [LS19, Section 3.1], the key generation
algorithm can be modified with negligible loss in efficiency such that pk is invertible. We can hence
define Rec(pk,m,c) = (c —m) - pk~ 1.
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Enc(pk, m) Dec(sk, c)

01 7r <3 Ro 04 M’ := DECQ(Sk},C)
02 ¢:= Enco(pk,m ®F(r);r) 05 if M’ = L return L
03 return c 06 ' := Rec(sk, M’,c)

07 return m' := M’ @ F(r')

Fig. 2.42: Worst-case correct encryption scheme PKE = ACWC[PKE, F].

average-case correctness. If PKEy is y-spread, then so is ACWC[PKE, F], and we can
also apply the variants with explicit rejection.

While our reduction has a linear loss in ¢, the number of random oracle queries, we
will now argue that this loss does not imply worse IND-CCA bounds than previously

known bounds for most application scenarios:

1. First, the bound for combining ACWC with any of the FO-like transformations
FO from Section 2.1.4 is as tight as the one for FO alone: While all FO-like
transformations also achieve IND-CCA security when the scheme is only one-way

secure, the proof then loses a factor of ¢. Intuitively, the loss is simply shifted
from T to ACWC.

2. Second, note that ACWC does not require the underlying scheme to be deter-
ministic. There exist tightly secure IND-CCA conversions for schemes that are
only one-way secure, as long as they are deterministic and either rigid (recall
Section 2.1.3) or perfectly correct (see [Den03, Theorem 4] and [BP18, SXY18]).
For one-way secure schemes that are neither deterministic nor perfectly correct,
however, we do not know of any IND-CCA conversions coming with better bounds

than our FO-bounds (i.e., where the bound does not lose a factor of q).

In Section 2.4.3, we revisit transformation ACWC in the QROM. While a generali-
sation of Section 2.4.2 to the QROM can be achieved in a straightforward manner by
applying a (non-tight) quantum query extraction argument, this simple approach would
result in suboptimal IND-CCA bounds when plugging ACWC into FOﬁ, as a (non-tight)
query extraction bound already appears in the bound for FO#. We will show that this
nested extraction argument can be avoided as follows: There already exist modular
security proofs for FOZ, (see, e.g., Section 2.3 and [BHH19]), in which the underlying
scheme is required to be IND-CPA secure. We will show how to integrate ACWC into the
modularisation from [BHHT19] such that the nested extraction bound can be avoided.
For the sake of comparability, we will furthermore show how to adapt the proof in
[BHH'19] for schemes that are only OW secure, at the price of losing an additional
factor of 2,/q. We do not know of any IND-CCA conversions that come with tighter
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bounds in the QROM than the one we achieve with this adaption, assuming one-way
secure schemes that are neither deterministic nor perfectly correct, and our reduction
for T o ACWC has essentially the same loss as our OW reduction for T alone.

In conclusion, when working with a OW secure scheme that is neither perfectly
correct nor deterministic, our resulting IND-CCA bounds are as tight as the IND-CCA
bounds for previously known conversions, in the ROM as well as in the QROM.

During our integration of ACWC into the modularisation from [BHH™19], the crucial
step is to simply reprogram both oracles F and G at once, which can furthermore easily
be carried over to the proof that T[ACWC[PKEy, F],G] is disjoint simulatable. For
completeness, we make the bounds for the KEM resulting from applying FOﬁ o ACWC
explicit in Section 2.4.4. As a corollary, we observe that authenticated key exchange
can also be achieved from schemes that are OW secure and average-case correct, at the
price of an additional factor /2g.

Lastly, we will discuss in Section 2.4.5 how the requirement of randomness recovery
can be avoided. The strategy that we came up with, however, requires the scheme to

fulfill a stronger security notion (partial one-wayness or IND-CPA security).

2.4.1 Proof of Worst-Case Correctness

Theorem 2.4.1. Assume PKE( to be dg-average-case-correct. Then PKE is d-worst-
case-correct, where

log(|Mol)

+ M —1.88 )
|RO| | 0|

0 =20+

Proof. We want to upper bound ¢ = Exg F max,ea, Pr[Dec(Enc(m)) # m], where the
expectation is taken over the internal randomness of KG and the choice of random
oracle F, and the probability is taken over the internal randomness of Enc.
We will first fix an arbitrary key pair (pk, sk) € supp(KG) and claim an upper bound
for
0(pk, sk) := E max Pr[Dec(sk, Enc(pk, m)) # m] ,

0
where the expectation is taken only over the choice of random oracle F. Taking the
expectation over the internal randomness of KG, the claimed bound is proven.
In order to upper bound §(pk, sk), we will first rewrite the average-case correctness

term of the underlying scheme PKEj: Note that by letting

do(pk, sk) := Pr[Decy(sk, Enco(pk, m;r)) # m]
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for uniform message m and randomness r, we have that

50 = EKGO (50(])]6, Sk) .

We claim that for all key pairs (pk, sk) € supp(KG = KGy),

log(|Mol)

5(pk, sk) < 8o (pk, sk) +
Ro

+ M| 788 (2.15)

Taking the expectation over the internal randomness of KG = KGg then yields
the bound claimed in Theorem 2.4.1, it hence remains to prove the upper bound
given in Equation (2.15). For the rest of the proof, we hence consider the key pair
(pk, sk) € supp(KG) to be fixed.

With respect to this key pair, we define the set of bad message-randomness combi-

nations for the underlying scheme: We let

BADy(pk, sk) := {(m,r) € My x Ry | Deco(sk, Enco(pk, m;r)) #m} .

It is easy to verify that m exhibits decryption failure with respect to the transformed
scheme PKE, i.e., that Dec(Enc(m;r)) # m, only if (m @ F(r),r) € BADy(pk, sk). Note
that here we require that recovering the wrong randomness occurs only if decryption

failure occurs. Thus,

0(pk, sk) < Egf max Pr[(m @ F(r),r) € BADy(pk, sk)] .

meMy
To further upper bound the right-hand side, we define

0(F) := max Pr[(m @ F(r),r) € BADg(pk, sk)] .

meMo

With this notation, it remains to upper bound Eg[§(F)]. Relative to any positive

real t, Eg[6(F)] can be split into three summands:
Er[5(F)] = ) Pr[F]- 6(F)
F
= > Pr[F] - 6(F) + > Pr[F] - 6(F)

F:6(F)<do(pk,sk)+t F:6(F)>d0(pk,sk)+t

< do(pk, sk) +t + PFr [06(F) > do(pk, sk) + 1] .
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In order to upper bound the probability in the last line, we now define

0(F,m) :=Pr[(m & F(r),r) € BADy(pk, sk)] = E. 6(F,m,r) ,

r

where
0(F,m,r):=[(m®F(r),r) € BADy(pk, sk)] .

Applying a union bound, we obtain

lTEr[é(F) > do(pk, sk) +t] = P;r[ max 8(F,m) > do(pk, sk) + ]
meMo

= PFr[EI m s.th. 6(F,m) > do(pk, sk) + ¢]

< | Myl max Pr[6(F,m) > do(pk, sk) + 1] .

meMgy F
We claim that for all positive reals ¢ and all messages m it holds that

f;r[é(F,m) > So(pk, sk) +t] < exp(—=2- |Rol| - t?) .

Assuming that Equation (2.16) holds, we obtain that

EF[(S(F)] < 50(pk', Sk‘) +t+ |./\/l0| . exp(—2 . |R0| -t2) .

Letting t := w/% and taking into account that

| Mol - exp(—2 - log(|Mo])) = [Mo| - [Mo| 218 < |Mg|~158

(2.16)

yields the upper bound claimed in Equation (2.15), it hence remains to prove Equa-

tion (2.16).

In the following, we consider m to be fixed. For any r € Ry, we can define a random

variable X, by picking F uniformly at random and returning 6(F, m,r). Since (X,) is a

collection of independent variables, and the support of X, — E,. X,. lies in an interval of

length 1 for each r, we can apply Hoeffding’s inequality to obtain

_ > t. < _9. .42
Pr D (X —Ee[X,]) >t |[Ro| | < exp(—2-|Ro|-1?)

T
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We can now rewrite

Pr > (X —Ee[X,]) >t R0|] =Pr

T

Z‘Rl Z|R0|EFX >t

= l?:r[ r0(F,m,7)] — Ee [0(F,m,r)] > t]

IT:r [0(F,m) > Eg . [6(F,m,r)]+¢] .

Since

Er . [0(F, m,r)] = E,[Ef[6(F, m,r)]]
E . [Exn[[(m @ m,r) € BADq(pk, sk)]]]
E,

[]E [[[(m ,7’) € BADO(pkv Sk)]”] = 60(pk7 Sk) s

we have just proven the upper bound claimed in Equation (2.16). O

2.4.2  From OW to IND-CPA, in the ROM

The following theorem states that transformation ACWC turns any OW secure

scheme into one that is IND-CPA secure.

ROM

Theorem 2.4.2 (PKE, OW/CPA =" PKE IND-CPA). Assume PKEj to come with
invertible encryption (see Definition 1.1.4). For any IND-CPA adversary A against PKE
that issues at most ¢ queries to random oracle F, there exist a OW adversary B against
PKEg such that

AdvPe ™ (A) < |’R| +qs2- AdeKEO(B) )

where ¢; is the number of queries issued by A;, and ¢o is the number of queries issued

by A,, and the running time of B is about that of A.

Proof. Consider an adversary A playing the IND-CPA game for PKE, issuing at most g
queries to F, and the sequence of games given in Figure 2.43.

GAME Gj. Since game G is the original IND-CPA game,

i 1
AVBRPA(A) = | PrlGh = 1] - 5 -

GAME G;. In game G, we indicate which part of the adversary is run by setting a to
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GAMES Gy - Gs F(r)

01 (pk, sk) < KGg 13 if 3m such that (r,m) € £¢

02 b+ {0,1} 14 return m

03 1" 35 R 15if r=r*anda=1

04 a:=1 /G1-Gs 16 QUERY, := true /G1-G3
05 (my, my, st) < AL (pk) 17 ABORT /G1-G3
06 a:= /G1-Gs 18 if r=7r" and a =2

07 m* = F(r") /Go-G1 19  return M™ & m; /G2
08 M* :=my @m* /Go-G1 20 QUERY, := true JG3
09 M* +g M /G2-Gs 21 ABORT //Gs
10 ¢ := Enco(pk, M*;r") 22 m g5 M

11 b« AS(pk, ¢, st) 23 £r:= Lr U {(r,m)}

12 return [b' = b] 24 return m

Fig. 2.43: Games Gy - G3 for the proof of Theorem 2.4.2. .

1 before running A; (see line 04), and to 2 right after A; puts out its challenge messages
(line 06). We raise flag QUERY; and abort if random oracle F is ever queried on r* by
A4, i.e., if random oracle F is ever queried on r* while a is still set to 1 (lines 16 and

17). Since both games proceed identically unless QUERY; was risen,
|Pr[G = 1] — Pr[GY = 1]| < Pr[QUERY,] ,
and since A;’s input is independent of 7*,

q1
Pr[QUERY,] < 2 .

GAME G2. In game Gy, we make two changes: First, instead of defining the challenge
plaintext as M* := mj @ F(r*), we pick message M* uniformly at random (line 09).
Second, we change the random oracle such that it is kept consistent, rendering this
change purely conceptual: We let F(r*) := M* @ mj (line 19). Since M* is uniformly
random, so is F(r*) = M* @ mj, hence F remains uniformly random. Furthermore, it is

easy to verify that c¢* still is an encryption of mj & F(r*), therefore

Pr[G} = 1] = Pr[GS = 1] .

GAME (3. In game Gj3, we raise flag QUERY, and abort if A, ever queries F on r*
(lines 20 and 21). With this change, M* is rendered independent of m; as long as the

game does not abort, therefore b is independent of A’s view and
A 1
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Since both games proceed identically unless QUERY , occurs, and since QUERY ,
only occurs if QUERY; did not occur,

| Pr[GS = 1] — Pr[G% = 1]| < Pr[QUERY,] = Pr|QUERY, A -QUERY,] .
Collecting the probabilities, we obtain

AdviND-CPA(A) < % + Pr[QUERY, A ~QUERY,] .

To upper bound PrlQUERY,; A “QUERY,], we construct adversary B against the
OW security of PKEy in Figure 2.44.

Adversary B is run on input (pk, c*), where ¢* < Enco(pk, M*;r*) for some random
message M* and some uniform randomness r*. B keeps track of the random oracle
queries issued by A, (see line 13). After running Ay, it picks one of these queries at
random (see line 04), and uses it to compute its oneway-guess as M’ := Inv(pk, ¢*, ')
in line 05. If 7/ = r*, we have that M’ = Inv(pk, Enco(pk, M*;r*),r*) = M*. Since B
perfectly simulates game G2 until QUERY, occurs, and wins with probability 1/g. if
QUERY, occurs,

PrlQUERY, A -QUERY,] < ¢, - Adv3t (B) .

B(pk,c*) F(r)
01 4:=0 07 i+ +
02 (m§, mi, st) < Af(pk) 08 if Im such that (r,m) € £¢
03 b «— Ag(pk7c*7 st) 09 return m
04 7’ g L1 10 m g M
05 M’ := Inv(pk,c*,r") 11 & == LrU{(r,m)}
06 return M’ 12ifi>aq
13 Lr:=LrU {7‘}
14 return m

Fig. 2.44: Adversary B for the proof of Theorem 2.4.2.

2.4.83 ToACWC: From OW to OW and DS, in the QROM

In this section, we show that the combined transformation T o ACWC achieves
OW security, in the QROM. Since OW security was the intermediate notion in the
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modularisation of FOZ, = U% o T that was given in [BHH'19], we can hence integrate
transformation ACWC into the analysis of FOZ from [BHH'19]. The integration
technique is fairly straightforward: Instead of decoupling the challenge ciphertext only
from G, it is at the same time decoupled from F.

Using the same integration technique, we then show that TPunc[ACWC[PKE, F], G]
is simulatable; we can hence integrate transformation ACWC into the analysis of FOf1
from Section 2.3.3 to obtain a KEM that is IND-CCA secure even for schemes that are
less than worst-case correct. We want to stress that without ACWC, a generalisation of
Section 2.3.3 towards OW security would not have been straightforward, as simulatability
of Punc requires IND-CPA security.

In order to make our OW bound for T o ACWC more comparable with the bound
that was achieved in [BHH'19] for T alone, we want to stress that it assumed IND-CPA
security. We will now first recall the security statement for T from [BHH19] in
Theorem 2.4.3, and then give an adaption of Theorem 2.4.3 for OW secure schemes
in Theorem 2.4.4. Afterwards, we show that T o ACWC achieves OW with bounds
that are not significantly worse than T alone. In conclusion, if a scheme is OW secure
(and comes with randomness recovery), then applying FOﬁ o ACWC does not yield
significantly worse bounds than applying FO;{1 alone with respect to the advantage
against the underlying scheme.

We believe that our integration technique can be applied to any existing QROM
proof for an FO-like transformation U o T that uses semi-classical one-way to hiding
techniques, e.g., [JZM19b, KSS*20]. If the original proof assumes OW security (or can
be adapted, accordingly), the bounds will only differ in terms of a search probability,
similar to how the bound in Theorem 2.4.5 differs from Theorem 2.4.4. Going over all

existing proofs, however, is beyond the scope of this thesis.

Theorem 2.4.3. [BHH™19, Theorem 1] For any adversary A issuing at most gg

(quantum) queries to G, there exists an adversary B such that

8qG+1)
M|

AdV(T)\[/gKE,G} (A) < (g6 +2) - (Advpyeg A (B) +

and the running time of B is about that of A.

We now show that OW security can be achieved from OW instead of IND-CPA
security, at the cost of losing the factor 4gg. Since the proof step for U% [PKE’ H] in
[BHH'19] relates the IND-CCA advantage to the square root of the OW advantage
against PKE’, the combined IND-CCA bound loses a factor of 2,/qc when assuming OW
instead of IND-CPA.
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Theorem 2.4.4. For any adversary A issuing at most gg (quantum) queries to G, there

exist an adversary Bow such that
Advipke g (A) < 4gc - (g6 +2) - (Advpke(B))

and the running time of B is about that of A.

Proof. In the proof of [BHH"19, Theorem 1], it was shown that
Adv?keq(A) < (g6 +2) - Pr[FIND, .| .

Unlike an IND-CPA reduction, an OW reduction does not know the challenge plain-
text(s). Since it cannot simulate the punctured oracle G\ {m*}, it will instead provide
access to G, pick a query at random, measure its input register and return the outcome
as its one-way solution. More formally, we can apply Equation (1.4) of Theorem 1.3.4

to obtain that there exists a OW adversary Bow such that
Pr[FIND,,-] < 4qc - Advoye(Bow) -

O

As a relatively simple example for how ACWC can be integrated into former QROM
proofs, we will now show how to integrate ACWC into the proof for [BHH' 19, Theorem
1] such that the bound does not get significantly worse than the bound given in
Theorem 2.4.4. Intuitively, it only differs from the bound in Theorem 2.4.4 in terms of

a search probability for the masking value m*.

Theorem 2.4.5. Assume PKE; to come with invertible encryption. For any adversary
A issuing at most g¢ (quantum) queries to G and gr (quantum) queries to F, there exists

an adversary B such that

4(qc + 1)(qro + 2)
|Mo| ’

where gro counts the number of all queries to G and F, and the running time of B is
about that of A.

Proof. Let F’ be the oracle such that F/(r*) is sampled uniformly at random, but
coincides with F anywhere but on 7*. Similarly, let G’ be reprogrammed randomly on

m™*, and coincides with G everywhere else. We claim that

Pr[A wins | < (g¢ + gr +2) - Pr[FIND,,,» V FIND,..] , (2.17)
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where FIND,,« denotes the event that the input register of one of A’s queries to
G\ {m*} collapsed to m*, and FIND,.. denotes the event that the input register of
one of A’s queries to F' \ {r*} collapsed to r*. In order to verify this claim, note that we
can replace A with an adversary A; that executes A, but before returning its one-way
guess m/, it first queries G on message m’ to receive ' = G(m’). Since A; wins with

the same probablity as A,

Pr[A wins | = Pr[A; wins | .

But if A; wins, then A; also triggered FIND,,,«, hence

Pr[A; wins A =FIND,. A =FIND,,.] =0 .

Applying Equation (1.3) and then Equation (1.1) of Theorem 1.3.3, we obtain

V/Pr[A; wins | = |/Pr[A; wins | — /Pr[A; wins A =FIND,,- A =FIND,..]

< \/(QG + gr + 2) - Pr[FIND,,,« V FIND, : A1|G>7IF>]

< \/(q(; +gf 4 2) - Pr[FIND,,,- V FIND,. : A;/¢?:F]

(Note that we can define a wrapper oracle distinguisher that simulates the game to
A; and issues exactly as many oracle queries as Aj, i.e., as many queries as A plus
one additional query to G.) Squaring the inequality hence yields the bound claimed in
Equation (2.17).

To further upper bound the right-hand side, notice that

Pr[FIND,,- V FIND,. : A;/¢/IF)] = Pr[FIND,,- v FIND,. in game Gy
< Pr[FIND,,,~ in game Go] + Pr[FIND,« in game Gy] ,

where game Gy is given in Figure 2.45.

In game Gy, A has access to G’ and F’ instead of G and F, we can hence replace r*
and m* with uniformly random values, yielding game G1. Now that m* is masked by a
uniformly random message m* which is completely independent of A’s view, we can
replace M* := m* @& m* with uniformly random, yielding game G5. Both changes do

not cause any change in A’s view.

In game G4, A’s input is independent of m*, we can hence apply Equation (1.5) of
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GAMES Gy - G B(pk, c*)

0t (pk, sk) < KGo 12 m* g M

02 m* g M 13 i 4=g {l,--- ,qr}

03 r* := G(m*) JGo 14 Run Al MM ILIF) (p e*)

04 m* := F(r*) /Go until its i-th query to F’

05 (r*,m") s R x M /G1-G2 15 ' « Measure query input register
06 M* :=m* ®m* /Go-G1 16 M’ :=Inv(pk,c*,r")

07 M* <—g M /G2 17 return M’

08 ¢* := Enco(pk, M™;r™)

05 m/ AN DIFAGTD) (e o)
10 Query G'\ {m*} on m’

11 return [m’ = m’]

Fig. 2.45: Games G - G2 and adversary B for the proof of Theorem 2.4.5.

Theorem 1.3.4 to obtain

4(qc +1)

Pr[FIND,,« in game Gg] < —————= .
M|

Furthermore, we can apply Equation (1.4) of Theorem 1.3.4 (with respect to oracle

F) to obtain that there exists a one-way adversary B such that
Pr[FIND,- in game Gs] < 4¢r - Advoge(B) ,

as measuring a random query to F and finding r* directly translates to finding M™.
Since m™* is completely independent of A’s input, A’s view can be perfectly simulated
by the OW adversary B given in Figure 2.45: B can simulate G and F with a 2¢g-wise
independent function, and puncture G with respect to a message m* of its own choosing.

If B’s measurement outcome is r*, then B wins.

Combining the bounds into one yields

4(qc +1)

Pr[FIND,,- V FIND,- : A;/¢VIF)] < 4gr - AdvO(B) + BTV

The same strategy carries over to proving that TPunc[ACWC[PKE,, F|, G] is simulat-
able.

Theorem 2.4.6 (DS of TPunco ACWC). Assume PKEg to come with invertible encryp-

tion. For any adversary A issuing at most gg (quantum) queries to G and ¢¢ (quantum)
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queries to F, there exists an adversary B such that

1 1
+ + ) ,
VIMo =1 /IR

AQVR e ACWCIPKE F, 6] (A) < 4+ (gro + 1) - (1/ Advike, (B)

where gro counts the number of all queries to G and F, and the running time of B is
about that of A.

Proof. In the DS game, the adversary either obtains a challenge ¢y := Enco(pk, mo &
F(G(mo)); G(mo)) for a random message from Mg\ {72}, or a challenge ¢} := Enco(pk, @
F(#);#) for uniform randomness 7.

Using Theorem 1.3.3, we can decouple ¢ from G(my) and F(G(my)), and ¢ from F(7).
After this change, both ciphertexts are random encryptions of random plaintexts and
hence perfectly indistinguishable, and it hence suffices to upper bound the probability
that FIND occurs for the randomness that was used to encrypt either of the ciphertexts,

or for message my:

Adv'?gunc[Acwc[PKEU,F],m,G] (A)<2- \/(QRO +1) - prinp -

With the redefined oracles, mg is now independent of A’s view, and so is the random-
ness that was not used in A’s challenge ciphertext. Applying both equations from

Theorem 1.3.4, we obtain that there exists an adversary B such that

bt
Mol =1 |Rol

prinp < 4qro - (Advpye, (B)

)

2.4.4 FO;K,L o ACWC: From OW to IND-CCA, in the QROM

As a corollary, we obtain that transformation FOZ o Punco ACWC achieves IND-CCA

security from one-wayness.

Corollary 2.4.7 (IND-CCA security of FOZ. o Punc.). Assume PKEq to be d-average-
case correct, y-spread, and to come with invertible encryption. Let m € M. Let
KEM := FO% [Punc|[ACWC|PKEy, F], 7], G, H], where H : {0,1}* — {0,1}’. The algo-
rithms of KEM are made explicit in Figure 2.46. Then, for any (quantum) IND-CCA
adversary A issuing at most gp (classical) queries to the decapsulation oracle DEC;ﬁ

and at most gro quantum queries to H and G, there exists an adversary B against the
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KG* Decaps?- (sk’, )

1 (pk, sk) < KG 09 Parse (sk, s) := sk’
02 § g M 10 M’ := Deco(sk,c)
03 sk’ := (sk, s) 11 7’ := Rec(sk, M’, c)
04 return (pk, sk') 12 m' =M ®F(")

13if M'=1
or ¢ # Enc(pk,m’ & F(G(m')); G(m"))

Encaps(pk) 14 return K :=H(s,c)
05 m g Mo \ {m} 15 else
06 c:= Enc(pk,m @ F(G(m));G(m)) 16 return K :=H(m')
07 K :=H(m)
08 return (K, c)

Fig. 2.46: Key encapsulation mechanism KEM := FOZ: [Punc[ACWC[PKEy, F], 0], G, H].

OW security of PKEg such that

Advigen™ " (A) <4 (gro +1) - \/ Advpie, (B) + 24+ (aro + ap +2)* - do

4
+ \/ﬁ (qro + 146 (qro + qp +2)* - /log(Mo))
0
4-(qro +qp +2)% - |[Mg| 158
N 4-((qro +1) ’
Mol — 1

and the running time of B is about that of A.

Proof. In order to verify the claimed upper bound, we revisit the proof of Theorem 2.3.6
(page 118). The only difference between theorem Theorem 2.3.6 and Corollary 2.4.7
is that we now plugged in transformation ACWC. In the proof of Theorem 2.3.6, it
was implicitly shown that there exists an adversary B’ against the simulatability of
PKE := TPunc[ACWC[PKEy, F], 72, G] such that

AdvNDCCA(A) < AdvBRE(B') + 24 - (qro + qp + 2)% - 6

where ¢ is the worst-case correctness term for ACWC[PKEy, F]. Applying Theorem 2.4.6
and Theorem 2.4.1 yields the claimed bound. O
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2.4.5 Achieving Worst-Case Correctness without Randomness Recovery

Below we give a transformation that achieves worst-case correctness, and that does

not require the underlying scheme to come with randomness recovery.

CONSTRUCTION WITHOUT RANDOMNESS RECOVERY. To a public-key encryption scheme
PKEq = (KGg, Encg, Decy) with message space Mg = {0, 1} randomness space R,
and random oracle F : {0,1}%* — {0,1}%2, we associate PKE := ACWC'[PKEy, F] with
message space M := {0, 1}*2. The algorithms of PKE = (KGy, Enc, Dec) are defined in
Figure 2.47.

Enc(pk,m € M) Dec(sk, c)

01 My =3 M 04 Parse M| M3 := Dec(sk,c)
02 ¢ < Enc(pk, M1||m@F(M1)) 05 return m' := M} & F(M])
03 return c

Fig. 2.47: Worst-case correct encryption scheme PKE = ACWC'[PKEj, F].

With techniques similar to the ones in Section 2.4.1, it can be shown that if the

underlying scheme is dg-average-case-correct, then PKE is §-worst-case-correct, where

§ = 50 + |R0T2 of + 2_1'88[2 .

A further formal treatment is excluded from this thesis, however, as in order to
achieve IND-CPA security, the underlying scheme itself is required to satisfy either
IND-CPA security or partial one-wayness, where the latter means that given the public
key and an encryption, it is unfeasible even to recover the first ¢; bits of the engendering
plaintext. Since we do not know of any practical schemes that achieve IND-CPA security
or partial one-wayness, while only achieving average-case correctness, we do not know

whether the construction might prove to be of interest.
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CHAPTER 3

ADAPTIVE REPROGRAMMING
AND ITS APPLICATIONS IN THE
QROM

Since its introduction, the ROM has allowed cryptographers to prove practical cryp-
tosystems secure for which proofs in the standard model have been elusive. In general,
the ROM allows for proofs that are conceptually simpler and often tighter than standard
model security proofs. Unfortunately, the QROM does not generally come with the

advantages of its classical counterpart:

- Lack of conceptual simplicity. QROM proofs can turn out extremely complex for
various reasons, with one reason being that they require at least some understand-
ing of quantum information theory. More important, however, is the fact that
many of the useful properties of the ROM (like preimage awareness and adaptive

programmability) are not known to translate directly to the QROM.

- Tightness. Many primitives that come with tight security proofs in the ROM
are not known to be supported by tight proofs in the QROM. As discussed in
chapter 2, there has been an ongoing effort to give tighter QROM proofs for

FO-like transformations.

In many cases, we expect that certain generic attacks only differ from their ROM
counterparts by a square-root factor in the required number of queries if the attack
involves a search problem, or no significant factor in the case of guessing. Hence, it
was conjectured that it might be sufficient to prove security in the ROM, and then to
simply to add a square-root factor for search problems. However, recent results [YZ20]
demonstrate a separation of ROM and QROM, showing that this conjecture does not
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hold true in general, as there exist schemes which are provably secure in the ROM and
insecure in the QROM. As a consequence, giving a proof in the QROM is crucial to

establish confidence in a post-quantum cryptosystem.®

ADAPTIVE PROGRAMMABILITY. A desirable property of the (classical) ROM is that any
oracle value O(x) can be chosen when O is queried on z for the first time (lazy-sampling).
This fact is often exploited by a reduction simulating a security game without knowledge
of some secret information. As an example in which we used this property to simulate
a decryption oracle, recall sections 2.1.2 and 2.1.3 (pages 68 to 80). Another important
example is the security proof for the Fiat-Shamir transform: To achieve UF-CMA from
UF-CMA; and HVZK, a reduction can simulate the signing oracle by generating a
HVZK transcript (w, ¢, z), and returning (w, z) as the signature. In order to maintain
consistency, however, the reduction has to reprogram H(m,w) := c¢. In the classical
ROM, A will not recognise the reprogramming of O(z) as long as the new value is
uniformly distributed and consistent with the rest of A’s view. This property is called
adaptive programmability.

The ability to query an oracle in superposition renders this formerly simple approach
more involved, similar to the difficulties arising from the question how to extract classical
preimages from a quantum query (preimage awareness) [Unrl4b, AHU19, BHHT19,
KSS'20, Zhal9, DFMS19, LZ19, BL.20, CMP20]. Intuitively, a query in superposition
can be viewed as a query that might contain all input values at once. Already the first
answer of O might hence contain information about some value O(x) that needs to be
reprogrammed during the proceedings of the game. It hence was not clear whether it is
possible to adaptively reprogram a quantum random oracle without causing a change
in the adversary’s view.

Until recently, both properties only had extremely non-tight variants in the QROM.
For preimage awareness, it was essentially necessary to randomly guess the right
query and measure it (with an unavoidable loss of at least 1/q for ¢ queries, and the
additional disadvantage of potentially rendering the adversary’s output unusable due to
measurement disturbance). In a recent breakthrough result, Zhandry developed the
compressed oracle technique that provides preimage awareness [Zhal9] in many settings.
For adaptive reprogramming, variants of Unruh’s one-way-to-hiding lemma allowed to
prove bounds but only with a square-root loss in the entropy of the reprogramming
position [Unrl4a, ES15, HRS16].

In some cases (e.g., [BDFT11, KLS18, SXY18]), reprogramming was avoided alto-
gether by giving a proof that rendered the oracle “a-priori consistent”, which is also

called a “history-free” proof: In this approach, the oracle is completely redefined in a

LUnless, of course, a standard model proof is available.
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way such that it is enforced to be a priori consistent with the rest of an adversary’s
view, meaning that it is redefined before execution of the adversary, and on all possible
input values. Unfortunately, it is not always clear whether it is possible to lift a classical
proof to the QROM with this strategy. Even if it is, the “a-priori” approach usually
leads to conceptually more complicated proofs. More importantly, it can even lead to
reductions that are non-tight with respect to runtime, and may necessitate stronger or
additional requirements like, e.g., the statistical counterpart of a property that was only
used in its computational variant in the ROM. An example is the proof of UF-CMA
security for Fiat-Shamir signatures that was given in [KLS18].

Hence, in this chapter we are interested in the question:

Can we tightly prove that adaptive reprogramming can also be

done in the quantum random oracle model?

For common use cases in the context of post-quantum cryptography, we answer the
question above in the affirmative. In more detail, in 3.1 we present a tool for adaptive
reprogramming that comes with a tight bound, supposing that the reprogramming
positions hold sufficiently large entropy, and reprogramming is triggered by classical
queries to an oracle that is provided by the security game (e.g., a signing oracle). These
preconditions are usually met in (Q)ROM reductions: The reprogramming is usually
triggered by adversarial signature or decryption queries, which remain classical in the
post-quantum setting, as the oracles represent honest users.

Using the simplest variant of the superposition oracle technique [Zhal9], we prove a
very general theorem which we call the “adaptive reprogramming” (AR) theorem. From
our AR theorem, we also derive a corollary that is tailored to cases like Fiat-Shamir
signatures (or hash-and-sign with randomised hashing). In this case, reprogramming
occurs at a position of which one part is an adversarially chosen string. The other part
is a commitment w chosen from a distribution with sufficient min-entropy. We manage

to bound the distinguishing advantage of any adversary that makes gg signing and ¢

1.5-qs/q-27" ,

random oracle queries by

where r is the min-entropy of w.

We then demonstrate the applicability of our tool, by giving

o a runtime-tight reduction of UF-CMA to plain unforgeability (UF-CMA,) for Fiat

Shamir signatures, and

o the first proof of fault resistance for the hedged Fiat-Shamir transform, recently

proposed in [AOTZ20], in the post-quantum setting.
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THE FIAT-SHAMIR TRANSFORM. In Section 3.2, we show that if an identification
scheme ID is Honest-Verifier Zero-Knowledge (HVZK), and if the resulting Fiat-Shamir
signature scheme SIG := FS[ID, H] furthermore possesses UF-CMA security, then SIG is
also UF-CMA secure, in the quantum random oracle model. Here, UF-CMA denotes
the security notion in which the adversary only obtains the public key and has to forge
a valid signature without access to a signing oracle. While this statement was already
proven in [KLS18], we want to point out several advantages of our proof strategy and

the resulting bounds.

Conceptual simplicity. A well-known proof strategy for HVZK, UF-CMAy = UF-CMA
in the random oracle model (implicitly contained in [AFLT12]) is to replace honest
transcripts with simulated ones, and to render H a-posteriori consistent with the signing
oracle during the proceedings of the game. Le., H(w,m) is patched after oracle SIGN
was queried on m. Applying our lemma, we observe that this approach actually works
in the quantum setting as well. We obtain a very simple QROM proof that is congruent
with its ROM counterpart.

In [KLS18], the issue of reprogramming quantum random oracle H was circumvented
by giving a history-free proof: In the proof, messages are tied to potential transcripts by
generating the latter with message-dependent randomness, a priori, and H is patched
accordingly, right from the beginning of the game. During each computation of H(w,m),
the reduction therefore has to keep H a-priori consistent by going over all transcript
candidates (wj, ¢;, z;) belonging to m, and returning ¢; if w = w;.

Tightness with regards to running time. Our reduction B has about the running
time of the adversary A, as it can simply sample simulated transcripts and reprogram H,
accordingly. The reduction in [KLS18] suffers from a quadratic blow-up in its running
time: They have running time Time(B) &~ Time(A) + gngs, as the reduction has to
execute ¢g computations upon each query to H in order to keep it a-priori consistent.
As they observe, this quadratic blow-up renders the reduction non-tight in all practical
aspects. On the other hand, our upper bound of the advantage comes with a bigger
disruption in terms of commitment entropy (the min-entropy of the first message (the
commitment) in the identification scheme). While the source of non-tightness in [KLS18§]
can not be balanced out, however, we offer a trade-off: If needed, the commitment

entropy can be increased by appending a random string to the commitment.?

Generality. To achieve a-priori consistency, [KLS18] crucially relies on statistical

2While this increases the signature size, the increase is mild in typical post-quantum Fiat-Shamir
based digital signature schemes. As an example, suppose Dilithium-1024x768, which has a signature
size of 2044 bytes, had zero commitment entropy (it actually has quite some, see remarks in [KLS18]).
To ensure that about 2128 hash queries are necessary to make the term in our security bound that
depends on the commitment entropy equal 1, about 32 bytes would need to be added, an increase of
about 1.6% (assuming 264 signing queries).
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HVZK. Furthermore, they require that the HVZK simulator outputs transcripts such
that the challenge c¢ is uniformly distributed. We are able to drop the requirement on ¢
altogether, and to only require computational HVZK. (As a practical example, alternate
NIST candidate Picnic [ZCD™19] satisfies only computational HVZK.)

ROBUSTNESS OF THE HEDGED FIAT-SHAMIR TRANSFORM AGAINST FAULT ATTACKS.
When it comes to real-world implementations, the assessment of a signature scheme will
not solely take into consideration whether an adversary could forge a fresh signature
as formalised by the UF-CMA game, as the UF-CMA definition does not capture all
avenues of real-world attacks. For instance, an adversary interacting with hardware
that realises a cryptosystem can try to induce a hardware malfunction, also called fault
injection, in order to derail the key generation or signing process. Although it might
not always be straightforward to predict where exactly a triggered malfunction will
affect the execution, it is well understood that even a low-precision malfunction can
seriously injure a schemes’ security. In the context of the ongoing effort to standardise
post-quantum secure primitives [NIS17], it hence made sense to affirm [NIS20] that
desirable additional security features include, amongst others, resistance against fault

attacks and randomness generation that has some bias.

Very recently [AOTZ20], the hedged Fiat-Shamir construction was proven secure
against biased nonces and several types of fault injections, in the ROM. This result can
for example be used to argue that alternate NIST candidate Picnic [ZCD 19| is robust
against many types of fault injections. We revisit the hedged Fiat-Shamir construction
in Section 3.3 and lift the result of [AOTZ20] to the QROM. In particular, we thereby
obtain that Picnic is resistant against many fault types, even when attacked by an

adversary with quantum capabilities.

We considered to generalise the result further by replacing the standard Fiat-
Shamir transform with the Fiat—Shamir with aborts transform that was introduced by
Lyubashevsky [Lyu09, KLS18]. Recall that Fiat—-Shamir with aborts was established
due to the fact that for some underlying lattice-based ID schemes (e.g., NIST finalist
Dilithium [DKL"18]), the prover sometimes cannot create a correct response to the
challenge, and the protocol therefore allows for up to x many retries during the signing
process. While our security statements can be extended in a straightforward manner,
we decided not to further complicate our proof with the required modifications. For
Dilithium, the implications are limited anyway, as several types of faults are only proven

ineffective if the underlying scheme is subset-revealing, which Dilithium is not.3

3Intuitively, an identification scheme is called subset-revealing if its responses do not depend on the
secret key. Dilithium computes its responses as z := y + ¢ - s1, where s1 is part of the secret key.
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3.1 Adaptive Reprogramming: The Theorem

During security proofs, we often need to reprogram some random oracle O several
times, adaptively: O needs to be reprogrammed after it has been queried already.
Often, the positions = at which O is reprogrammed are partially fixed by the adversary,
and partially sampled according to some distribution: As a motivating example, we
look ahead to Section 3.2, in which we give a reduction that simulates the UF-CMA
game for a Fiat-Shamir transformed scheme. We will see that a signing query on a
message m results in the need to reprogram an oracle H on some tuple (m,w), where
(w, st) < Commit(sk) are freshly sampled by the reduction and then are used to generate
the signature.

We will now formalise how to distinguish a random oracle O : X — Y from its
reprogrammed version.

As a warm-up, we will first present our reprogramming lemma in the simplest setting.
Say we reprogram an oracle R many times, where the position is partially controlled
by the adversary, and partially picked at random. More formally, let X; and X5 be
two finite sets, where X; specifies the domain from which the random portions are
picked, and X5 specifies the domain of the adversarially controlled portions. We will
now formalise what it means to distinguish a random oracle Og : X7 x X9 — Y from
its reprogrammed version O;. Consider the two REPRO games, given in Figure 3.1:
In games REPRO;, the distinguisher has quantum access to oracle Oy (see line 03)
that is either the original random oracle Oq (if b = 0), or the oracle O; which gets
reprogrammed adaptively (b =1). To model the actual reprogramming, we endow the
distinguisher with (classical) access to a reprogramming oracle REPROGRAM. Given a
value x5 € X3, oracle REPROGRAM samples random values z; and y, and programs the
random oracle to map x1||z2 to y (see line 06). Note that apart from already knowing

Z2, the adversary even learns the part z; of the position at which O; was reprogrammed.

GAME REPRO, REPROGRAM(x3)
01 Qg +—g Y X1 XXz 05 (21,y) =5 X1 XY
02 01 := Oy 06 01 := ngluxz)Hy

/ Op),REPROGRAM
03 b+ AlO) 07 return z;

04 return b

Fig. 3.1: Adaptive reprogramming games REPRO, for bit b € {0,1} in the most basic
setting.

Theorem 3.1.1. Let X7, X5 and Y be finite sets, and let A be any algorithm issuing R
many calls to REPROGRAM and ¢ many (quantum) queries to Oy, as defined in Figure 3.1.
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Then the distinguishing advantage of A is bounded by

3R
| Pr[Reprof = 1] - Pr[Reprop = 1]| < = /%. (3.1)
1

The above theorem constitutes a significant improvement over previous bounds. In
[Unrl4a] and [ES15], a bound proportional to ¢|X1|~'/? was given for the distinguishing
advantage in similar settings. This bound, however, only considered the case that
R = 1. In [HRS16], a bound proportional to ¢?|X;|™! is claimed, but that seems to
have resulted from a “translation mistake” from [ES15], and should be similar to the
bounds from [Unrl4a, ES15].

In fact, we prove something more general than Theorem 3.1.1: We prove that an

adversary will not behave significantly different, even if

- the adversary does not only control a portion s, but instead it even controls the
distributions according to which the whole positions x := (21, x2) are sampled at

which O; is reprogrammed,
- it can additionally pick different distributions, adaptively, and

- the distributions produce some additional side information =’ which the adversary

also obtains,

as long as the reprogramming positions x hold enough entropy.

Overloading notation, we formalise this generalisation by games REPRO, given in
Figure 3.2: Reprogramming oracle REPROGRAM now takes as input the description of
a distribution p that generates a whole reprogramming position x, together with side
information z’. REPROGRAM samples z and ' according to p, programs the random

oracle to map z to a random value y, and returns (z,z’).

GAME REPRO, REPROGRAM(p)
01 Qg -5 V¥ 05 (x,2') < p

02 01 := Oy 06 Y g Y

03 b «— D!Ob),REPROGRAM 07 0 1= Oalcr—>y
04 return b 08 return (z,x’)

Fig. 3.2: Adaptive reprogramming games REPRO,, for bit b € {0, 1}.

We are now ready to present our main Theorem 3.1.2. On a high level, the only
difference between the statement of Theorem 3.1.1 and Theorem 3.1.2 is that we now
have to consider R many (possibly different) joint distributions on X x X', and to
replace ﬁ (the probability of the uncontrolled reprogramming portion) with the

highest likelihood of any of those distributions generating a position x.
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Theorem 3.1.2 (“Adaptive reprogramming” (AR)). Let X, X', Y be some finite sets,
and let D be any distinguisher, issuing R many reprogramming instructions and ¢ many
(quantum) queries to O. Let ¢, denote the number of queries to O that are issued
inbetween the (r — 1)-th and the r-th query to REPROGRAM. Furthermore, let p(")
denote the rth distribution that REPROGRAM is queried on. By pgg) we will denote the

marginal distribution of X, according to p("), and define

pfggix := Emax pg) (z),

where the expectation is taken over D’s behaviour until its rth query to REPROGRAM.
Then

R
” 1
| Pr[REPRO® = 1] — Pr[REPRO) = 1]| < Z (\/ drpix + 2(irpff{;x) ) (3.2)
r=1

A r—1
where ¢, =" ¢;.

Before we prove Theorem 3.1.2, we will now quickly discuss how to simplify the
bound given in Equation (3.2) for our applications in Sections 3.2 and 3.3, and in
particular, how we can derive Equation (3.1) from Theorem 3.1.2: Throughout sections
3.2 and 3.3, we will only have to consider reprogramming instructions that occur on

positions x = (z1, 22) such that

- x1 is drawn according to the same distribution p for each reprogramming instruc-

tion, and
- o represents a message that is already fixed by the adversary.

To be more precise, (x1, ') will represent a tuple (w,st) that is drawn according to
Commit(sk).

In the language of Theorem 3.1.2, the marginal distribution pg}') will always be
the same distribution p, apart from the already fixed part x3. We can hence upper
bound pg;)ix bY Pmax 1= max,, p(x1), and §, by ¢, to obtain that cjrpggtx < @Pmax for
all1<r <R.

In our applications, we will always require that p holds sufficiently large entropy. To
be more precise, we will assume that ppax < %. In this case, we have that gpmax < 1,

and that we can upper bound ¢pmax by /qPmax t0 Obtain

Corollary 3.1.3. Let X1, X5, X’ and Y be some finite sets, and let p be a distribution
on X; x X', Let D be any distinguisher, issuing ¢ many (quantum) queries to O and

R many reprogramming instructions such that each instruction consists of a value 3,
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together with the fixed distribution p. Then
D D 3R
| Pr[REPRO] = 1] — Pr[REPRO; = 1]| < 7\/qpmax ,

where ppax 1= max,, p(z1).

From this we obtain Theorem 3.1.1 setting pma. = | X1/

3.1.1  Proof of Theorem 3.1.2

We now proceed to the proof of Theorem 3.1.2, which we break down into three
steps: In Theorem 3.1.4, we first consider the simple special case in which only a single
reprogramming instance occurs, and where no additional input 2’ is provided to the
adversary. We then use a standard hybrid argument to generalise Theorem 3.1.4 for
multiple reprogramming instances (see Corollary 3.1.5). Finally, we to how to generalise
Corollary 3.1.5 for distributions that generate additional input z’. The generalisation is
also straightforward, as the achieved bounds are information-theoretical and a reduction

can hence compute marginal and conditioned distributions on its own.

Theorem 3.1.4. Let Og be a random oracle. Consider a two-stage distinguisher
D = (Do, D1) such that

o the first stage Dg has trivial input, makes ¢ quantum queries to Og, and outputs
a quantum state |1;,:), together with a sampling algorithm for a probability
distribution p on {0,1}",

o the second stage Dy gets as input z* < p and [¢);n), has quantum access to Oy,
where Oy := OS*H‘U* for y* <3 {0,1}™, and outputs a guessing bit ¥ with the
goal that v/ = b.

Let pmax = E[max, p(z)], where the expectation is taken over (|¢in:),p) D(‘)O°>.

Then the success probability of any such distinguisher D is bounded by

Prb=0b]— = <

1
vV qPmax + EQPmam (33)

N -
N

where the probability is taken over b <—g {0, 1}, (|int),p) < Dl)00>7 A T
{0,13™ and b « DI (2%, [1hine)).-

In order to prove Theorem 3.1.4, we will use the superposition oracle formalism (see

Section 1.3.4, page 47), i.e., we implement O, as superposition oracles.
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Proof. Let |¥) ,  be the joint algorithm-oracle-state, right before Dy finishes by return-
ing a probability distribution p and an internal state |¢);,;) that will later be passed on
to D1. Without loss of generality (see Theorem 1.3.1), we can assume that Dy until
now has proceeded by performing a unitary quantum computation to arrive at [¥) , p,
which will only be followed by a measurement to produce the classical output of the
distribution p, and the discarding of Dg’s internal working registers. We can therefore

identify |¥) , » with a state |y) 5 such that

o R is the register that contains Dg’s output [¢);n:), and G is the garbage register
that Dy will discard after finishing, and

e the joint algorithm-oracle-state, after Dy has finished, can be identified with the
result of discarding the G-register of |v) o p-

Since the optimal distinguishing advantage between two states can be upper bounded
in terms of the trace distance of their density matrices (see Theorem 1.3.7), we want to
relate the density matrix of the algorithm-oracle state in the reprogrammed case to that
of the state in the non-reprogrammed case, and since the reprogramming happens on a
random z*, we will first fix any x* and define the density matrices, conditioned on this
x*. (For |v) g p, the density matrix of course is independent of z*, but we will index it

anyways for notational convenience.) Let pgg D= Y)Y g be the density matrix of

1Y) peers and let pgg ;) denote the density matrix of the algorithm-oracle-state, after
Do has finished and the oracle has been reprogrammed at z*, had Dy not discarded the

garbage register.

The distinguisher’s second stage, D1, has arbitrary query access to the oracle Oy.
In the superposition oracle framework, that means in other words that Dy can apply
arbitrary unitary operations on its internal registers, including its input register R,
interspersed with applications of the oracle unitary Oxyr from Section 1.3.4 on some
internal registers XY and the oracle register F'. We bound the success probability by
allowing arbitrary operations on F', thus reducing the oracle distinguishing task to the
task of distinguishing the quantum states p%}f*) = Trgpgg ;) for b=0,1. (Recall that
G is the garbage register that was discarded by Dy, and hence is “traced out”.)

For any fixed z*, we can now use Theorem 1.3.7 to bound

(0,z*) . (1,z*)

L_1 ©02%) (L")
) < 1 HPRF PRF

1
Pr[b =] — ‘1 < 1 HPRGF ~ PRGF

7

’ 1

where the second inequality uses that the trace distance is non-increasing under partial
trace. Taking the expectation over (|¢in:),p) Dljo")and z* < p, and applying
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Jensen’s inequality, we obtain

0,z™) (1,2™)

1
Z EHPRGF ~ PRGF (3.4)

NJ\)—I

1

In order to upper bound the trace distance, we will now examine how the two density
matrices are related to each other, conditioned on a fixed x*. We can use basic linear

algebra to dissect the density matrix pE_—?’GE ;) = V)V ger into

oo =pleer (1= 160Keols,. +100Kdols,. )

—pg(;l)«“ (]1 - ‘¢0><¢0|F *) + <¢0|F1* PRGF) |¢0> . ® |¢O><¢O‘F -
+ (1= 90X00l . ) Pleieh [ 60X 00l . - (3.5)

In the superposition oracle framework, we can formalise the reprogramming of Og
at x* with an independent uniformly random output by replacing the contents of the

register £~ with a fresh uniform superposition [¢o)p ,. We can hence write the density

matrix p%é F) as

gch) =Trp,. [ng;F ] @ [¢oXPolp.
<¢0|F pRGF) |¢0>F . ® ‘¢0><¢0|F .
+ Trp,. [(1 = [¢o)Xdol . )oleerr] © |poXdolp.. » (3.6)

where the first equality again stems from basic linear algebra, and the second equality

can be verified by computing the partial trace in an orthonormal basis containing |¢).

Using Equations (3.5) and (3.6) and the triangle inequality, we bound

0,z ,
HPRGF ~ PRGF

1

= [l (1= looKaols,. ) + (1~ oo)Xbolr.. ) PS5’ 160X ol.

= Ter,. (L~ 9o} dolr, . )oiacir] © [doXool . | (3.7)
< ||efes (1= 100K60l,. ) ||, + | (1 = t6oKeol .. ) vz’ I6oKeol. |
+ || Trr [ = 100)00 ], )PS5 © 00X ol | - (3:8)

The trace norm of a positive semidefinite matrix is equal to its trace, so the last term
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of Equation (3.8) can be simplified as

[T [0 = I60X60l .. )Jo5e7) @ 60Keol . ||, = TR = 60)olr,.) Ko g

=1— 0, , (3.9)

where

2
bur 5= (0nle obncr |

By Holder’s inequality, the second term of Equation (3.8) can be upper bounded by

the first, which we can simplify as

lofee’ (1= 160)olr. ) ||, = I W) mgr (2= 90X0li,. ) |,

= (]1 - ‘¢O><¢0|FI*) " ror Hz
S (3.10)

Inserting Equations (3.9) and (3.10) into Equation (3.4), we obtain

Prjb =] - - < -E[2\/1—5ﬁ+1—5z*}. (3.11)

DN =
>~ =

We claim that for any fixed probability p,
Ep«ep [02+] > 1 —q-maxp(x) . (3.12)
€T

Using Jensen’s inequality and inserting the claimed Equation (3.12) into Equation (3.11),

we obtain the desired bound

1 1
E[Q\/l*(sx* +1*51*:| S 5 '\/qpmax‘i’z'qpmax 5

NG

it hence remains to prove Equation (3.12). Inserting the definition of d,+, we observe
that

7>RGFH2 :

Eveploe] = Y p@)lel= D pa") (6ol

z*€{0,1}n z*e{0,1}n

We can now use Lemma 1.3.8 (see page 50) and its notation |’(/J((IS)> to rewrite |v) g s
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and thereby identify

7>RGFH2

> pa) (ol

z*e{0,1}"

= Y )| X (6ol ) o, © (10007 )

z*e€{0,1}" sc{o,1}"
[SI<q

Our goal will now be to rewrite this sum such that it can be lower bounded by the
product of (1 —g¢max, p(x)) and the squared norm of (the normalised) |v) .y to obtain

(S)
wq >RGFS =

0 for all sets S that contain 2*, and that [¢o) 5 , is normalised, we can rewrite

the desired bound. Using for the following second line the fact that (¢o| P

2

Yo e[ D (dolk.

U par, @ (I60)*70)

Fge
2 €{0,1}n Sc{0,1}"
[SI1<q
2
* ®(2"—|S|-1
= Y @) | Y e, © (I
z*€{0,1}" sc{o, 1} se\{z*}
IS|<q
SEx*
2
* ®(2"—|S]-1
= X @) 3 [ e, @ (00T
z*€{0,1}" Sc{0,1}" s\ {x*}
[S|<q
SEx*
2
= * s ®(2"—|S|-1)
= 3% ) [ g, (0% )

Sc{0,1}" z*€8S°
ISI<q

= > > pa)

Sc{0,1}" z*€8°
[S|<q

166 g, © (001 )

Fge

where we get the third line because the summands in the second sum are pairwise
orthogonal, we get the fourth line by a reordering of the summands, and we have used
again the fact that the state |¢o) F,. 18 normalised in the last line to reinclude register
F,+ into the computation of the norm. Note that in the last line, the norm in the

summands is independent of z* and can therefore be moved outside of the second sum.
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For any S C {0,1}", we have

Y pa")=1- 3 p(a”) > 1~|S| maxp(z) ,

r*ese *eS

we hence obtain

>y p)

Sc{0,1}" z*€Se

16, © (001> )

Fse

IS|<q
n_|S
> 18 ) [, (J)* ),
5c{o,1}" s
[S1<q
n_|8
> (1-qmaxp(@) > [0 e, @ (J00)°* 1)
‘ Sc{o,1}™ s
[S|<q

> (1 = qmaxp(@)) |17 rerl’

— 1 — gmaxp(a),

where we have reidentified |¢,§S)>RGFS ® (|¢0>®(2n7‘5‘))FSC with [7) g, and used
the normalisation of |y) p.p in the last line. Combining the above equations proves
Equation (3.12).

O

We now extend Theorem 3.1.4 to multiple reprogramming instances. To this end,
we introduce helper games G in Figure 3.3, in which the adversary has access to oracle
REPROGRAM’. (These are already almost the same as the REPRO games used in our
main Theorem 3.1.2. The only difference is that they do not sample and return the

additional side information 2’.) We get the following

Corollary 3.1.5. Let D be any distinguisher, issuing R many reprogramming in-
structions. Let ¢(") denote the total number of D’s queries to O until the r-th query
to REPROGRAM'. Furthermore, let p(™) denote the r-th distribution on X on which
REPROGRAM’ is queried, and let

Pk = E [maxp ()]
where the expectation is taken over D’s behaviour until its r-th query to REPROGRAM'.
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The success probability for any distinguisher D is bounded by

R
Pr[Gf = 1] - Pr[G} = 1] Vamph + =g pm
| I‘[ 0 ] I‘ Z( q p +2 Prax

GAMES G, REPROGRAM' (p)
01 Og +g Y 05 & < p

02 07 := 0O 06 Yy <3 Y

03 b D\Ob ), REPROGRAM’ 07 Oy = Oalc~—>y
04 return b’ 08 return z

Fig. 3.3: Games G, of Corollary 3.1.5.

Proof. We define hybrid settings H,. for r =0, ..., R, in which D has access to oracle O
which is not reprogrammed at the first 7 many positions, but is reprogrammed from the
(r 4+ 1)-th position on. Hence, Hy is the distinguishing game G, and Hg is Gg. Any

distinguisher D succeeds with advantage

| Pr[G] = 1] — Pr[GD = 1]| = Pr[HY = 1] — Pr[HD = 1]|

(Pr[HP | = 1] — Pr[HP = 1))

M= EM::

IN

|Pr[HP | = 1] — Pr[H? = 1]| ,

r=1

where we have used the triangle inequality in the last line.

To upper bound | Pr[HP | = 1] — Pr[HP = 1]|, we will now define distinguishers
D, = (Ijr,o, [A)T,l) that are run in the single-instance distinguishing games G}, of The-
orem 3.1.4: Let O’ denote the oracle that is provided by Gj. Until right before the
r-th query to REPROGRAM', the first stage If)r o uses O’ to simulate the hybrid setting
H,_, to D. (Until this query, H,_1 and H, do not differ.) D, o then uses as its output
to game G} the r-th distribution on which REPROGRAM’ was queried. The second
stage |5T,1 uses its input =* to simulate the r-th response of REPROGRAM’. As from
(and including) the (r + 1)-th query, D,«,l can simulate the reprogramming by using
fresh uniformly random values to overwrite O’. To be more precise, during each call to
REPROGRAM’ on some distribution p, If)m samples z < p and y <5 Y, and adds (z,y)

to a list £o. (If z has been sampled before, Ijr,l replaces the former oracle value in the
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list.) Dnl defines O by

dy s.th. (x,y) € £o
0() =Y y (z,y)
O'(xz) o.w.
In the case that D, is run in game G}, the reprogramming starts with the (r 4 1)-th
query and D, perfectly simulates game H,.. In the case that D, is run in game G, the

reprogramming already starts with the r-th query and D, perfectly simulates game
H,_ .

|Pr[HP | = 1] — Pr[HP = 1]| = | Pr[G}P = 1] - Pr[G,> = 1] .

Since the first stage DT70 issues ¢, many queries to O’, we can apply Theorem 3.1.4 to

obtain

D, D 6T Lo ot
|PI‘[G’1 = 1] _ PI‘[G’O = 1” S \/m"’ 5% pl('nzz,x .

Finally, we will now prove that Corollary 3.1.5 implies our main Theorem 3.1.2.
Le., we generalise Corollary 3.1.5 such that it considers the case where = shares a

distribution with some value z’, which the adversary also obtains.

Proof. Consider a distinguisher D run in games REPRO,. To upper bound D’s advantage,
we now define a distinguisher D against the helper games G} from Figure 3.3.

When queried on a distribution p on X x X, D will simulate REPROGRAM as follows:
D will forward the marginal distribution px of x to its own oracle REPROGRAM’, and
obtain some x that was sampled accordingly. It will then sample 2’ according to p X |2
where px|, is the probability distribution on X', conditioned on z, i.e.,

Prlz, «’
pX’\z(x/) = [ }

Pr[z]
where the probability in the numerator is taken over (z, ') + p, and the probability in
the denominator is taken over x <— px. Note that D can be unbounded with regards
to its running time, as the statement of Corollary 3.1.5 is information-theoretical, and
hence can sample px/|,. Since the distribution of (z,2’) is identical to p, and since the

reprogramming only happens on =z, D perfectly simulates game REPRO; to D if run in
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game Gy and
| Pr[REPROD = 1] — Pr[REPROD = 1]| = | Pr[GD = 1] — Pr[GD = 1] .

Since D can answer any random oracle query issued by D by simply forwarding it,
D issues exactly as many queries to O (until the r-th reprogramming instruction) as D.

We can now apply Corollary 3.1.5 to obtain

o “ ~ (7 Lo
|Pr[G® = 1] — Pr[GE = 1]| < ( GrDhix + qupfnix) ,

1M

where pfngx = E max, ps ().

3.2 Revisiting the Fiat-Shamir Transform

The following statement established that if an identification scheme ID is HVZK, and if
SIG := FS[ID, H] possesses UF-CMA security, then SIG is also UF-CMA secure, in the

quantum random oracle model.

Theorem 3.2.1. For any (quantum) UF-CMA adversary A issuing at most ¢g (classical)
queries to the signing oracle SIGN and at most gy quantum queries to H, there exists
a UF-CMA( adversary B and a multi-HVZK adversary C such that

Advigiiom (A) < Advegioy® (B) + Advig ~ () (3.13)
3
+225 \/{an + a5 + 1) -7 (Commit) . (3.14)

and the running time of B and C is about that of A. The bound given in Equation (3.13)
also holds for the modified Fiat-Shamir transform that defines challenges by letting
¢ := H(w, m, pk) instead of letting ¢ := H(w, m).

Note that if ID is statistically HVZK, we can replace Adv{5 ™ HVZK(C) with ¢g - Anpvzk.

Proof. Consider the sequence of games given in Figure 3.4.

GAME Gy. Since game G is the original UF-CMA game,

AdvESF ,%MHA(A) =Pr[G) = 1] .
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GAMES Gy - G SIGN(m) getTrans(m) /Go-G1

01 (pk, sk) < IG 07 Lam =L U{m} 12 (w, st) < Commit(sk)

02 (m*,0*) « ASICNIN (p) 08 (w,c,z) < getTrans(m) JGo-G1 13 ¢:= H(w,m) //Go
03 if m* € £, return 0 09 (w,c, z) « Sim(pk) JG2 14 ¢ 5 C JG1
04 Parse (w*,z"):=o" 10 H := Hwm)—e JG1-G2 15 z < Respond(sk,w, c, st)
05 ¢* := H(w*,m") 11 return o := (w, 2) 16 return (w,c, z)

06 return V(pk,w™*,c*,z")

Fig. 3.4: Games Gg - G5 for the proof of Theorem 3.2.1.

GAME G7. In game (G1, we change the game twofold: First, the transcript is now
drawn according to the underlying ID scheme, i.e., it is drawn uniformly at random as
opposed to letting ¢ := H(w, m), see line 14. Second, we reprogram the random oracle
H in line 10 such that it is rendered a-posteriori-consistent with this transcript, i.e., we

reprogram H such that H(w,m) = c.

To upper bound the game distance, we construct a quantum distinguisher D in
Figure 3.5 that is run in the adaptive reprogramming games REPROR; with R := ¢g
many reprogramming instances. We identify reprogramming position  with (w,m),
additional input 2’ with st, and y with ¢. Hence, the distribution p consists of the
constant distribution that always returns m (as m was already chosen by A), together
with the distribution Commit(sk). Since D perfectly simulates game Gy if run in its

respective game REPROy, we have
| Pr[G4 = 1] — Pr[G} = 1]| = | Pr[REPROY = 1] — Pr[REPRO] = 1]| .

Since D issues gg reprogramming instructions and (g 4+ ¢s + 1) many queries to H,
Corollary 3.1.3 yields

3
| Pr[RepROY = 1] — Pr[REPROP = 1] < 5/ (g +45 + D) -+ (3.15)

where pmax = Eig max,, PrW,ST(—Commit(sk) [W = ’LU] = V(Commit)'

Distinguisher D" SIGN(m)

01 (pk, sk) + IG 07 L =Ly U{m}

02 (m*,0*) « ASIENIN (p1) 08 (w,st) < REPROGRAM(m, Commit(sk))
03 if m™ € £aq return 0 09 ¢:=H(w,m)

04 Parse (w*,2") :=o" 10 z < Respond(sk, w, ¢, st)

05 ¢* := H(w*,m") 11 return o := (w, 2)

06 return V(pk,w™,c*,z")

Fig. 3.5: Reprogramming distinguisher D for the proof of Theorem 3.2.1.
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GAME G3. In game G5, we change the game such that the signing algorithm does not
make use of the secret key any more: Instead of being defined relative to the honestly
generated transcripts, signatures are now defined relative to the simulator’s transcripts.
We will now upper bound | Pr[G} = 1] — Pr[G% = 1]| via computational multi-HVZK.

Consider multi-HVZK adversary C in Figure 3.6. C takes as input a list of g
many transcripts, which are either all honest transcripts or simulated ones. Since
reprogramming is done a-posteriori in game G, C can simulate a reprogrammed oracle
H’ via access to its own oracle H and an initial table look-up: C keeps track of the
(classical) values on which H’ has to be reprogrammed (see line 13) and tweaks A’s
oracle H', accordingly. The latter means that, given the table £y of pairs (w,m, c)
that were already defined in previous signing queries, controlled on the query input
being equal to (w, m), output ¢, and controlled on the input not being equal to any
(w,m) € Ly, forward the query to C’s own oracle H. If needed, C reprograms already
set values (see line 12). Given quantum access to H, C can implement this as a quantum
circuit, allowing quantum access to H’.

C perfectly simulates game G if run on honest transcripts, and game G if run on

simulated ones, hence

| Pr[GR = 1] — Pr[G% = 1]| < AdvE "V (C) .

Adversary C" (pk, ((w;, ci, Zi)ie{1,,q5}) SIGN(m) H' (w,m)

01 7:=0 08 ¢+ + 15 if Jes. th. (w,m,c) € Ly
02 Ly =10 09 L = Lpm U{m} 16  return c

03 (m*,0") « ASIGN"H,>(pk) 10 (w, ¢, 2) := (w;, ¢, 2;) 17 else return H(w,m)

04 if m* € £, return 0 11 if 3’ s. th. (w,m,c) €

05 Parse (w*,z%) := 0" L

06 ¢* := H(w*,m") 12 Lyoi= Ly \ {(w,m, )}

07 return V(pk,w",c", z") 13 Ly = Ly U {(w,m, )}

14 return o := (w, z)

Fig. 3.6: HVZK adversary C for the proof of Theorem 3.2.1.

It remains to upper bound Pr[G% = 1]. Consider adversary B, given in Figure 3.7.
B is run in game UF-CMA( and perfectly simulates game G5 to A. If A wins in game Go,
it cannot have queried SIGN on m*. Therefore, H' is not reprogrammed on (m*, w*)

and hence, o* is a valid signature in B’s UF-CMA( game.

Pr[G5 = 1] < Advpgio'1y° (B) -

Collecting the probabilities yields the desired bound.
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Adversary B (pk) SIGN(m) H’ (w,m)

01 Ly =10 05 La:=Lam U {m} 11 if Je s. th. (w,m,c) €
02 (m*,0%) « ASSNI) (pky 06 (w, ¢, 2) < Sim(pk) L
03 if m* € £4¢ ABORT o7 if 3¢’ s. th. (w,m,c’) € &y 12 return c
04 return (m*,o") 08 Ly =Ly \ {(w,m, )} 13 else
09 Ly = Ly U{(w,m,c)} 14 return H(w,m)

10 return o := (w, 2)

Fig. 3.7: Adversary B for the proof of Theorem 3.2.1.

It remains to show that the bound also holds if challenges are derived by letting
¢ := H(w, m, pk). To that end, we revisit the sequence of games given in Figure 3.4:
We replace ¢ := H(w,m) (and ¢* := H(w*,m*)) with ¢ := H(w,m, pk) (and ¢* :=
H(w*, m*, pk)) in line 13 (line 05), and change the reprogram instruction in line 10,
accordingly. Since pk is public, we can easily adapt both distinguisher D and adversaries
B and C to account for these changes. In particular, D will simply include pk as a (fixed)
part of the probability distribution that is forwarded to its reprogramming oracle. Since
the public key holds no entropy once that it is fixed by the game, this change does not
affect the upper bound given in Equation (3.15).
O

3.3 Revisiting the Hedged Fiat-Shamir Transform
under Fault Attacks

In this section, we show how Corollary 3.1.3 can be used to extend the results of
[AOTZ20] to the quantum random oracle model: We show that the Fiat-Shamir
transform is robust against several types of one-bit fault injections, even in the quantum
random oracle model, and that the hedged Fiat-Shamir transform is as robust, even if
an attacker is in control of the nonce that is used to generate the signing randomness.
In this section, we follow [AOTZ20] and consider the modified Fiat-Shamir transform
that includes the public key into the hash when generating challenges. We consider the

following one-bit tampering functions:
flip-bit; (z): Does a logical negation of the i-th bit of .
set-bit; (x, b): Sets the i-th bit of = to b.
SECURITY OF (HEDGED) FIAT-SHAMIR AGAINST FAULT INJECTIONS AND NONCE AT-

TACKS. Next, we define UnForgeability in the presence of Faults, under Chosen Message
Attacks (UF-F-CMA), for Fiat-Shamir transformed schemes. In game UF-F-CMA, the
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adversary has access to a faulty signing oracle FAULTSIGN which returns signatures
that were created relative to an injected fault. To be more precise, game UF-Fz-CMA
is defined relative to a set F of indices, and the indices i € F specify at which point
during the signing procedure exactly the faults are allowed to occur. An overview is

given in Figure 3.8.

Commit| | 41! 7 > Respond

Fig. 3.8: Faulting a (hedged) Fiat-Shamir signature. Circles represent faults, and
their numbers are the respective fault indices ¢ € F (following [AOTZ20], for the
formal definition see Figure 3.9). Greyed out fault wires indicate that the hedged
construction can not be proven robust against these faults, in general. Dashed fault
nodes indicate that the Fiat-Shamir construction is robust against these faults if the
scheme is subset-revealing.

For the hedged Fiat-Shamir construction, we further define UnForgeability, with
control over the used Nonces and in the presence of Faults, under Chosen Message
Attacks (UF-N-F-CMA). In game UF-N-F-CMA, the adversary is even allowed to control
the nonce n that is used to derive the internal randomness of algorithm Commit. We
therefore denote the respective oracle by N-FAULTSIGN.

Our definition slightly simplifies the one of [AOTZ20]: While [AOTZ20] also con-
sidered fault attacks on the input of algorithm Commit (with corresponding indices 2
and 3), they showed that the hedged construction can not be proven robust against
these faults, in general. We therefore omitted them from our games, but adhered to
the numbering for comparability. The hedged Fiat-Shamir scheme derandomises the
signing procedure by setting the signing randomness to r := G(sk,m, n), see Figure 1.11.
Hence, game UF-N-F-CMA considers two additional faults: An attacker can fault the
input of G, i.e., either the secret key (fault index 1), or the tuple (m,n) (fault index
0). As shown in [AOTZ20], the hedged construction can not be proven robust against
faults on (m,n), in general, therefore we only consider index 1.

Furthemore, we do not formalise derivation/serialisation and drop the correspond-

ing indices 8 and 10 in order not to overly complicate our application example. A
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generalisation of our result that also considers derivation/serialisation, however, is

straightforward.

Definition 3.3.1. (UF-F-CMA and UF-N-F-CMA) For any subset F C {4,---,9}, we
define the UF-Fz-CMA game as in Figure 3.9, and the UF-Fz-CMA advantage function
of a quantum adversary A against FS[ID, H] as

Advediar A (A) = PrlUF-F z-CMARgp 1y = 1] -

Furthermore, we define the UF-N-F z-CMA game (also in Figure 3.9) for any subset
F c{1,4,---,9}, and the UF-N-Fz-CMA advantage function of a quantum adversary
A against SIG" := R2H[FS[ID, H], G] as

Advgig VT MA(A) = PrUF-N-F7-CMAS g = 1] .

Game [ UF-F£-CMA || UF-N-F£-CMA | FAULTSIGN(m,i € F, ¢) N-FAULTSIGN(m,n,i € F, $)
01 (pk, sk) < IG 08 fir=¢and fj:=1dVj#i 17 fir=¢ and f; :=I1dV j#i
. _x AFAULTSIGN, [H) (1. 09 18 7 := G(f1(sk), m,n)

o 7(17717 7 ,),T ,,,,,,,,,, (7p7 2 | __, 10 (w,st) + Commit(sk) 19 (w,st) + Commit(sk; )
05 (s o) o ANFAULTSIGN R (i 11 (uw,st) e= fa(uw,st) 20 (w,st) = fa(uw,st)
04 if m* € &y return 0 12 (@, 1, pk) := f5(w,m, pk) 21 (@, 10, pk) = fs(w, m, pk)
05 Parse (w*,z") :=0" 13 ¢:= fo(H(w, i, pk)) 22 ¢:= fe(H(w,m, pk))
06 ¢* := H(w",m") 14 z <+ Respond( f7(sk,c,st)) 23 z + Respond(f7(sk, c,st))
07 return V(pk,w*,c*,2") 15 Lp = Lpm U {m} 24 Lp 1= Em U {m}

16 return o := fo(w, 2) 25 return o := fo(w, 2)

Fig. 3.9: Game UF-Fz-CMA for SIG = FS[ID,H] and game UF-N-Fz-CMA for the
hedged Fiat-Shamir construction SIG" := R2H[FS[ID, H], G], defined relative to a set JF
of allowed fault index positions. ¢ denotes the fault function, which either negates one
particular bit of its input, sets one particular bit of its input to 0 or 1, or does nothing.
We implicitly require fault index 7 to be contained in F, i.e., we make the convention
that both faulty signing oracles return L if i ¢ F.

FroMm UF-CMA, TO UF-F-CMA. First, we generalise [AOTZ20, Lemma 5] to the

quantum random oracle model. The proof is given in Section 3.3.1.

Theorem 3.3.2. Assume ID to be validity aware (see Definition 1.2.3, page 34). If
SIG := FSIID, H] is UF-CMA, secure, then SIG is also UF-Fx-CMA secure for F :=
{5,6,9}, in the quantum random oracle model. Concretely, for any adversary A against
the UF-F z-CMA security of SIG, issuing at most gg (classical) queries to FAULTSIGN
and gy (quantum) queries to H, there exists an UF-CMA adversary B and a multi-HVZK
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adversary C such that

Advgig 200N (A) < AdvIEMN () + AdvisTVE(C)
3
+ $\/2 (qu +gs +1) - v(Commit) . (3.16)

and B and C have about the running time of A.

If we assume that ID is subset-revealing, then SIG is even UF-Fx-CMA secure
for 7' := FU{4,7}. Concretely, the bound of Equation (3.16) then holds also for
F'={4,5,6,7,9}.

FroMm UF-F-CMA 10 UF-N-F-CMA. Second, we generalise [AOTZ20, Lemma 4] to the
QROM. The proof is given in Section 3.3.9.

Theorem 3.3.3. If SIG := FS[ID, H] is UF-F =-CMA secure for a fault index set F, then
SIG’ := R2H|[SIG, G] is UF-N-F z-CMA secure for 7' := F U {1}, in the quantum random
oracle model, against any adversary that issues no query (m,n) to N-FAULTSIGN
more than once. Concretely, for any adversary A against the UF-N-Fz-CMA security of
SIG' for F’, issuing at most gg queries to N-FAULTSIGN, at most gy queries to H,
and at most gg queries to G, there exist UF-F x-CMA adversaries B; B, such that

AdvoR N MAA) < Advglc T MA(BY) + 246 - \/ AdvglFmMAB,) |

and B; has about the running time of A, while B, has a running time of roughly
Time(By) ~ Time(A) + |sk| - (Time(Sign) + Time(Vrfy)), where |sk| denotes the length
of sk.

With regards to the reduction’s advantage, this proof is not as tight as the one in
[AOTZ20]: R2H[SIG, G] derives the commitment randomness as r := G(sk, m, n). During
our proof, we need to decouple r from the secret key. In the ROM, it is straightforward
how to turn any adversary noticing this change into an extractor that returns the secret
key. In the QROM, however, all currently known extraction techniques still come with
a quadratic loss in the extraction probability. On the other hand, our reduction is
tighter with regards to running time, which we reduce by a factor of gg when compared
to [AOTZ20].

If the scheme is hedged with an independent seed s of length ¢ (instead of sk), it

can be shown with a multi-instance generalisation of [SXY18, Lem. 2.2] that

Advgic = MAA) < Advgic™ MAB) + (€ +1) - (g5 +gq) - V12
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3.3.1  From UF-CMA, to UF-F-CMA (Proof of Theorem 3.3.2)

Following the proof structure of [AOTZ20], we will break down the proof into several
sequential steps. Consider the sequence of games, given in Figure 3.10. With each
game-hop, we take one more index i for which we replace execution of FAULTSIGN
with a simulation that can be executed without knowledge of sk, see line Item 14.
The workings of these simulations will be made explicit in the proof for the respective
game-hop. Similar to [AOTZ20], the order of the indices for which we start simulating
is9,5,6,7, 4.

For a scheme that cannot be assumed to be subset-revealing, we will only proceed
until game Gz, and then use game G3 to argue that we can turn any adversary against
the UF-F 5 6.91-CMA security of SIG into an UF-CMA, adversary (see Lemma 3.3.7).

If we can assume the scheme to be subset-revealing, we will proceed until game
G5, and then use game G5 to argue that we can turn any adversary against the
UF-F4,5,6,7,91-CMA security of SIG into an UF-CMA adversary (see Lemma 3.3.10).

Note that our sequential proof is given for statistical sHVZK. The reason why we
do not give our proof in the computational setting right away is that it would then be
required to make all of our changes at once, rendering the proof overly involved, while
not providing any new insights. At the end of this section, we show how to generalise

the proof to the computational setting.

Games Gy - G5 FAULTSIGN(m,i € F, ) GETSIGNATURE(m, i, ¢)
ot (pk, sk) < IG 07 S:=10 JGo 17 fi:=¢and f; :=I1dV j#i
02 (m*zq*) — 08 §:={9} JG1-Gs 18 (w,st) + Commit(sk)
AFAULTSIGN.H) () 09 S:=SU{5} JGa-Gs 19 (w,st) := fa(w,st)
03 if m* € £ return 0 10 §:=SU{6} JG3-Gs 20 (w,m,p%) = fs(w, m, pk)
04 Parse (w*,2"):=o" 11 §:=SuU {7} JG4-Gs 21 c:= fa(H(m,w,ﬁk))
05 ¢* := H(w*, m") 12 §:= SU{4} /G5 22 z < Respond(f7(sk,c,st))
06 return V(pk,w*,c*,2") 13ifie s 23 £a = LM U {rh}

14 o < simSignature;(m, ¢) 24 return o := fo(w, z)

15 else o —

GETSIGNATURE(m, 1, ¢)

16

return o

Fig. 3.10: Games Gy - G5

for the proof of Theorem

3.3.2.  Helper methods

GETSIGNATURE and simSignature; (where ¢ € {4,5,6,7,9}) are internal and cannot
be accessed directly by A. Recall that we require queried indices ¢ to be contained in F

(see Figure 3.9).
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GAME Gj. Since game G| is the original UF-F z-CMA game,

AdvglFmMAA) = Pr[Gh = 1] .

GAMES G - G3. In games G to G3, we sequentially start to simulate faulty signatures
for fault indices 9, 5 and 6.

Lemma 3.3.4. There exists an algorithm simSignatureg such that for any adversary A
against the UF-F z-CMA security of SIG, issuing at most ¢g 9 queries to FAULTSIGN
on index 9, ¢s queries to FAULTSIGN in total, and at most gy queries to H,

3 .
|PT[G8 =1] - PT[G? =1]] <gsyo- (ASHVZK + 5\/((1;1 +qgs+1) -7(Commnt)>
(3.17)

The details on algorithm simSignatureg and the proof for Equation (3.17) are given
in Section 3.3.2.

Lemma 3.3.5. There exists an algorithm simSignature; such that for any adversary A
against the UF-Fz-CMA security of SIG, issuing at most ¢g 5 queries to FAULTSIGN
on index 5, qg queries to FAULTSIGN in total, and at most ¢y queries to H,

3 .
| Pr(GY = 1] — Pr[G5 = 1]] < gs5 - (AsHVZK + 5\/(QH +gs+1) ~27(Comm|t)>
(3.18)

The details on algorithm simSignature; and the proof for Equation (3.18) are given
in Section 3.3.3.

Lemma 3.3.6. There exists an algorithm simSignaturey such that for any adversary A
against the UF-Fz-CMA security of SIG, issuing at most ¢g ¢ queries to FAULTSIGN
on index 6, gg queries to FAULTSIGN in total, and at most ¢y queries to H,

3 -
|P1"[GA =1] - PT[GA =1]| <gsp- (ASHVZK + 5\/((111 +gs+1) -’y(Commut))

(3.19)

The details on algorithm simSignatureg and the proof for Equation (3.19) are given
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in Section 3.3.4. What we have shown by now is that

3 :
| Pr[Gh = 1] — Pr[G5 = 1]] < qs,(5,6,9) - (AsHsz + 5V +as +1) -%(Commlt)) 7
(3.20)

where gg (56,9} denotes the maximal number of queries to FAULTSIGN on all indices

i € {5,6,9}. We are now ready to give our first security statement.

Lemma 3.3.7. For any adversary A against the UF-F 5 5 91-CMA security of SIG, there
exists an adversary B such that

Pr[G5 = 1] < Adveginy°(B)
and B has the same running time as A.

The proof is given in Section 3.3.5. Collecting the probabilities, we obtain

UF-F -CMA .
AdVFS[lD{,Zf’g} (A) SAdVLFJsF[ch':/IH/?O (B)

3 -
+qs - <AsHVZK + 5\/(QH +qs+1)- 27(Commlt))

GAMES G4 - G5. In games G4 to G5, we sequentially start to simulate faulty signatures

for fault indices 7 and 4.

Lemma 3.3.8. Suppose that ID is subset-revealing. Then there exists an algorithm
simSignature; such that for any adversary A against the UF-F z-CMA security of SIG,
issuing at most gg 7 queries to FAULTSIGN on index 7, ¢s queries to FAULTSIGN

in total, and at most gy queries to H,

3 .
|PT[G§ =1] - PT[G4A =1]| <gs7- (ASHVZK + 5\/(QH +qgs+1) -7(Commnt)>

(3.21)

The details on algorithm simSignature; and the proof for Equation (3.21) are given
in Section 3.3.6.

Lemma 3.3.9. Suppose that ID is subset-revealing. There exists an algorithm
simSignature, such that for any adversary A against the UF-F z-CMA security of SIG,
issuing at most ggs 4 queries to FAULTSIGN on index 4, ¢s queries to FAULTSIGN
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in total, and at most gy queries to H,

3 -
|P1"[G2 =1] - Pr[G? =1]] < gsp - (ASHVZK + 5\/((1H +qs+1) ~27(Comm|t)>
(3.22)

The details on algorithm simSignature, and the proof for Equation (3.22) are given
in Section 3.3.7. What we have shown by now is that

3 -
| Pr(GS = 1] - Pr[G5 = 1]| < 4s.{a,7} " <A5HVZK + ﬁ\/(QH +gs+1) .7(Comm|t)) ,

where gg (4,77 denotes the maximal number of queries to FAULTSIGN on all indices

i € {4,7}. We are now ready to give our second security statement.

Lemma 3.3.10. For any adversary A against the UF-F(4 5 67.9)-CMA security of SIG,

there exists an adversary B such that
Pr[GS = 1] < Advpgo°(B)
and B has the same running time as A. The proof is given in Section 3.3.8.

Collecting the probabilities, we obtain

UF-F(4 5.6,7,01-CMA

AdvFS[ID,H]

(A) <AdvP " (B)

3 -
+qs - (ASHVZK + %\/(QH +qs+1)- W(Comm't)) ;

given that ID is subset-revealing.

GENERALISING THE PROOF FOR COMPUTATIONAL sHVZK. To generalise the proof,
we observe that every game-hop consists of two steps: Adaptive reprogramming and,
subsequently, replacing honest transcripts with simulated ones. To obtain the result for
computational sHVZK, we have to reorder the games: We will first reprogram the random
oracle for all fault indices at once, with oracle FAULTSIGN reprogramming the random

oracle for each fault index as specified in the sequential proof (see Sections 3.3.2 to 3.3.7).

Combined reprogramming yields an upper bound of &%\/ (g + gqs + 1) - v(Commit).
After these changes, the random oracle is a-posteriori reprogrammed such that it is
consistent with the transcripts, and hence, the transition to simulated transcripts
can be reduced to distinguishing the special computational multi-HVZK games (see
Definition 1.2.6). In more detail, the HVZK reduction can simply use its own transcript

oracle getTransChall, and simulate the adaptive reprogramming like our UF-CMA,
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reductions, see, e.g., the reduction given in Section 3.3.5.

3.3.2  Game Gy: Simulating FAULTSIGN for index 9 (Proof of Lemma 3.5.4)

As a warm-up, we will first consider simulations with respect to fault index 9. Recall
that index 9 denotes the fault type which allows A to fault the resulting (honestly
generated) signature (see line 05 in Figure 3.11). To prove Lemma 3.3.4, let A be
an adversary against the UF-F z-CMA security of SIG, issuing at most gg 9 queries to
FAULTSIGN on index 9, qg queries to FAULTSIGN in total, and at most gy queries
to H. We define the signature simulation algorithm simSignaturey as in Figure 3.11.

FAULTSIGN(m,i =9, ¢) simSignatureg (m, ¢)

01 (w,st) < Commit(sk) 06 c<gC

02 ¢ := H(w,m, pk) 07 (w, z) < Sim(pk, c)
03 z < Respond(sk;, ¢, st) 08 H:= Hwmphi—e

04 La =Ly U{m} 09 Lp =Ly U{m}
05 return o := ¢(w, 2) 10 return o := ¢(w, z)

Fig. 3.11: Original oracle FAULTSIGN for the case that ¢ = 9, and signature simulation
algorithm simSignaturey for the proof of Lemma 3.3.4.

To proceed from game Gy to G, we use an argument similar to the one given in
Theorem 3.2.1: During execution of FAULTSIGN(m, 9, ¢), we first derandomise the
challenges and reprogram H such that it is rendered a-posteriori-consistent with the
resulting transcripts, resulting in an invocation of Corollary 3.1.3, where R = gs9,
q = qu+qs+1, and ppax = 7(Commit). As the second step, we then make use of the fact
that we assume ID to be statistically sHVZK, and hence, honestly generated transcripts
can be replaced with simulated ones during execution of FAULTSIGN(m, 9, ¢).

After these changes, FAULTSIGN(m, 9, ¢) = simSignatureq(m, ¢) and

3qs,9
2

| Pr[Gf = 1] — Pr[GY = 1]| < gs.0 - Achvzk + V/(qm + gs + 1) - v(Commit) .

3.3.8  Game Gy: Simulating FAULTSIGN for index 5 (Proof of Lemma 3.5.5)
Recall that index 5 denotes the fault type which allows A to fault the triplet

(w,m, pk), when taken as input to random oracle H to compute the challenge ¢ (see
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line 02 in Figure 3.12). To prove Lemma 3.3.5, let A be an adversary against the
UF-Fz-CMA security of SIG, issuing at most ¢g 5 queries to FAULTSIGN on index
5, qs queries to FAULTSIGN in total, and at most gy queries to H. We define the
signature simulation algorithm simSignature; as in Figure 3.12.

FAULTSIGN(m,i =5, ¢) simSignature; (m, ¢)

01 (w,st) + Commit(sk) 07 c4gC

02 (), 1, pk) := ¢(w, m, pk) 08 (w, z) < Sim(pk, c)

03 ¢ := H(w, m, pk)) 09 (0,1, pk) := ¢(w, m, pk)
04 z + Respond(sk,c, st) 10 H := H@»mpk)—e

05 £m ::SMU{ﬁ’L} 11 L :ZSMU{T?L}

06 return o := (w, 2) 12 return o := (w, 2)

Fig. 3.12: Original oracle FAULTSIGN for the case that ¢ = 5, and signature simulation
algorithm simSignature; for the proof of Lemma 3.3.5.

To proceed from game G to G5, we adapt the argument of Section 3.3.2: During
execution of FAULTSIGN(m, 5, ¢), we first derandomise the challenges and reprogram
H such that it is rendered a-posteriori-consistent with with the resulting transcripts,
resulting in an invocation of Corollary 3.1.3, where R = ¢s5 and ¢ = gy + ¢s + 1.
To make pmax explicit, let ¢y, (¢, ¢pi) denote the share of ¢ acting on w (m, pk).
We can now identify reprogramming positions & with (¢, (m), ¢, (w), ¢pr(pk)). The
distribution p consists hence of the constant distribution that always returns ¢,,(m)
and ¢,x(pk), as these parts of the reprogramming position are already fixed, together
with the distribution ¢,,(Commit(sk)). Note that ¢,, is either the identity, a bit flip, or
a function that fixes one bit of w, hence ppax < 2v(Commit).

As the second step, we can again make use of the fact that we assume ID to be
statistically sHVZK, and honestly generated transcripts can be replaced with simulated
ones during execution of FAULTSIGN (m, 5, ¢).

After these changes, FAULTSIGN(m, 5, ¢) = simSignature;(m, ¢) and

3
955 \/(QH +gs +1) - 2y(Commit) .

|Pr[GY = 1] — Pr[G% = 1]| < qs5 - Ashvzk + 5

3.3.4  Game Gs: Simulating FAULTSIGN for index 6 (Proof of Lemma 3.5.6)

Recall that index 6 denotes the fault type which allows A to fault the output
¢ = H(w, m, pk) of the challenge hash function H (see line 03 in Figure 3.13). To prove
Lemma 3.3.6, let A be an adversary against the UF-Fz-CMA security of SIG, issuing at
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most gs,¢ queries to FAULTSIGN on index 6, g queries to FAULTSIGN in total, and
at most gu queries to H. We define the signature simulation algorithm simSignatureg as

in Figure 3.13.

FAULTSIGN(m,i = 6, ¢) simSignatureg(m, ¢)
01 (w,st) + Commit(sk) 06 c<4gC
02 ¢ := H(w, m, pk) 07 (w, z) + Sim(pk, ¢(c))
03 z  Respond(sk, ¢(c), st) og if ¢(c) ¢ C
04 La = LpmU{m} 09 z:=1
05 return o := (w, z) 10 H := Hwmpk)y—e
11 L= Lpm U {m}
12 return o := (w, z)

Fig. 3.13: Original oracle FAULTSIGN for the case that ¢ = 6, and signature simulation
algorithm simSignaturey for the proof of Lemma 3.3.6.

To proceed from game G5 to G3, we again adapt the argument from Section 3.3.2:
During execution of FAULTSIGN(m, 6, ¢), we first derandomise the challenges and
reprogram H such that it is rendered a-posteriori-consistent with with the resulting
transcripts, resulting in an invocation of Corollary 3.1.3, where R = ¢s¢ and ¢ =
qu + qs + 1. Like in Section 3.3.2, pmax = v(Commit).

As the second step, we can again make use of the fact that we assume ID to be
statistically sHVZK, and hence, honestly generated transcripts can be replaced with
simulated ones during execution of FAULTSIGN(m, 6, ¢). Note that as the challenges
are faulty, however, we have to simulate rejection whenever faulting the challenge results
in an invalid challenge, i.e., whenever ¢(c) ¢ C.

Since ID is validity aware (see Definition 1.2.3), it holds that after these changes,
FAULTSIGN(m, 6, ¢) = simSignatureg(m, ¢) and

3 -
|Pr[G§ =1] - Pr[G’? =1]| < gs;6 - Astvzk + q2376 \/(‘IH +gs +1) - y(Commit) .

3.3.5 UF-CMA, adversary for game Gs, for F = {5,6,9} (Proof of
Lemma 3.3.7)

Recall that in game G35, faulty signatures are simulated for all indices i € {5,6,9}.
Since adversaries against the UF-F5 5 9}-CMA security of SIG only have access to
FAULTSIGN(m, 1, ¢) for i € {5,6,9}, the game derives all oracle answers by a call

to one of the simulated oracles simSignature,(m, ¢), where i € {5,6,9}. To prove
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Lemma 3.3.7, we construct an UF-CMA( adversary B in Figure 3.14.

Adversary B" (pk) simSignature; (m, ¢)

ot (m*,0") < 16 c<gC

AFAULTSIGN, ) (1) 17 (w, z) + Sim(pk, ¢)

02 if m* € &0 ABORT 18 (b, 1, pk) := ¢(w, m, pk)

03 return (m*,o") 19 if 3¢’ s. th. (0,1, pk, c) € L

20 S =L \ {(@, 10, pk, )}
21 Ly = Ly U { (b, 2, pk, )}
FAULTSIGN(m,i € {5,6,9},¢) 22 Cpq = Laq U {10}
04 ¢ + simSignature,(m, ¢) 23 return o := (10, 2)
05 return o

simSignatureg(m, ¢)

H/(wvm, pk) 24 ¢4+ C

06 if Jes. th. (w,m, pk,c) € L 25 (w, 2) « Sim(pk, #(c))
07  return c 26 if ¢(c) ¢ C

08 else return H(w,m, pk) 27 z:=1

28 if 3¢’ s. th. (w,m, pkc') € L
29 Ly = Ly \ {(w, m, pk, )}
30 Ly = Lw U {(w, m, pk,c)}

31 Em =L U {m}

32 return o := (w, 2)

simSignaturey (m, ¢)

09 c<gC

10 (w, z) < Sim(pk, c)

11 if 3¢’ s. th. (w, m, pkc’) € L/
12 Ly = Ly \ {(w,m, pkc’)}
13 Ly = Ly U {(w, m, pk,c)}

14 Lpmi=LmU{m}

15 return o := ¢(w, z)

Fig. 3.14: UF-CMA( Adversary B for the proof of Lemma 3.3.7.

Since in game G3, all signatures are defined relative to simulated transcripts, and
the random oracle is reprogrammed accordingly, B perfectly simulates G5 and has the

same running time as A.

Furthermore, A can not win if m* was a query to FAULTSIGN. Therefore, it is
ensured that no reprogramming did occur on m* and A’s signature is also valid in B’s

UF-CMA( game.

PrG5 = 1] < Advpg,o°(B) -
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3.3.6  Game Gy: Simulating FAULTSIGN for index 7 (Proof of Lemma 3.5.8)

Recall that index 7 denotes the fault type which allows A to fault the input (sk, ¢, st)
to the response function Respond (see line 03 in Figure 3.15), and that we assume
that ID is subset-revealing. To prove Lemma 3.3.8, let A be an adversary against the
UF-F z-CMA security of SIG, issuing at most gg7 queries to FAULTSIGN on index
7, qs queries to FAULTSIGN in total, and at most gy queries to H. We define the

signature simulation algorithm simSignature; as in Figure 3.15.

FAULTSIGN(m,i =7, ¢) simSignature, (m, ¢)
01 (w,st) + Commit(sk) 06 c<35C
02 ¢ := H(w,m, pk) 07 Parse (¢sk, Pe, Pst) i= @
03 z < Respond(¢(sk, ¢, st)) 08 if ¢ # Id /& targets c
04 La = Ly U{r} 09 (w,z) < Sim(pk, ¢(c))
05 return o := (w, z) 10 if ¢(c) ¢C
11 z:=1
12 else
13 (w,z) < Sim(pk, c)
14 if ¢st £ Id /¢ targets st
15 I < DeriveSet(c)
16 Parse (st;)ier := 2
17 2 1= (¢hst,i (St3) )ier
18 H:= H(w,m,pk)»—w
19 Sp = Lm U {m}
20 return o = (w, 2)

Fig. 3.15: Original oracle FAULTSIGN for the case that ¢ = 7, and signature simulation
algorithm simSignature, for the proof of Lemma 3.3.8.

If fault function ¢ is targeted at ¢, the situation is essentially the same as for fault
index 6, and thus, the simulation strategy is identical to that of simSignature; (see
Section 3.3.4). If fault function ¢ is targeted at sk, ¢ has no effect whatsoever since
we assume ID to be subset-revealing, meaning that the responses returned by Respond
do not depend on sk (see Definition 1.2.7). The simulation strategy is hence identical
to that of simSignatureg. The simulation algorithm covers both cases by dissecting ¢
into the shares ¢4 (dc, Pst) acting on sk (¢, st) and treating the cases where ¢. # Id
(¢psr # Id) similar to simSignaturey (simSignatureg).

It remains to discuss the case where ¢ is targeted at st. Since we assume ID
to be subset-revealing (see Definition 1.2.7), we observe that Respond(¢(sk,c,st)) =
Respond(sk, ¢, pst(st)) = ((¢pst(st))i)icr, where I = DeriveSet(c). Hence, computing
z < Respond(¢(sk, ¢, st)) is equivalent to deriving I «— DeriveSet(c), only considering
the shares ¢ ; of ¢ that act on st;, and returning (P, (st;))ics. With this alternative
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description of the original Respond algorithm, it can easily be verified that even for the
case where ¢ is targeted at the state, honest transcripts can be replaced with simulated

transcripts by letting ¢ act on the response z as described above.

After these changes, FAULTSIGN(m, 7, ¢) = simSignature;(m, ¢) and

\PT[GA =1] - PY[GA =1]] < gs,7 - Ashvzk + ?@%\/(QH +gs +1)-v(Commit) .
3.3.7 Game Gs5: Simulating FAULTSIGN for index 4 (Proof of Lemma 3.5.9)

Recall that index 4 denotes the fault type which allows A to fault the output of
Commit(sk) (see line 02 in Figure 3.16). To prove Lemma 3.3.9, let A be an adversary
against the UF-F z-CMA security of SIG, issuing at most ¢g 4 queries to FAULTSIGN
on index 4, gs queries to FAULTSIGN in total, and at most gy queries to H. We

define the signature simulation algorithm simSignature, as in Figure 3.16.

FAULTSIGN(m,i =4, ¢) simSignature, (m, ¢)
01 (w,st) + Commit(sk) 07 c¢4gC
02 (w,st) := ¢(w,st) 08 (w, z) < Sim(pk, c)
03 ¢ := H(w, m, pk) 09 Parse (¢, Pst) i= @
04 z < Respond(sk, ¢, st) 10 if ¢y # Id /& targets w
05 Lam = L U {1} 1 (0,7, pk) = ¢(w, m, pk)
06 return o := (w,z) 19 H:= H@@mpk)—e
13 Ly = Lm U{m}
14 else
15 if ¢s # Id /¢ targets st
16 I < DeriveSet(c)
17 Parse (st;)ier := 2
18 2 1= (¢hst,s (St:) )ier
19 H:= Hwmrhme
20 Lam = LmU{m}
21 return o := (w, 2)

Fig. 3.16: Original oracle FAULTSIGN for the case that i = 4, and signature simulation
algorithm simSignature, for the proof of Lemma 3.3.9.

If fault function ¢ is targeted at w, the situation is essentially the same as for
fault index 5, and thus, the simulation strategy is identical to that of simSignature;
(see Section 3.3.3). If fault function ¢ is targeted at st, the situation is essentially

the same as for fault index 7, and thus, the simulation strategy is identical to that of
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simSignature; (see Section 3.3.6). Putting both cases together, we obtain

3 .
| Pr(GY = 1] = Pr[G5 = 1]| < gs6 - Ashvzk + %\/(QH +gs +1) - 2y(Commit) .

3.3.8 UF-CMA, adversary for game Gs, for F ={4,5,6,7,9} (Proof of
Lemma 3.3.10)

Recall that in game G5, faulty signatures are simulated for all indices i € {4,5,6,7,9}.
For adversaries against the UF-Fy4 5 6 7 93-CMA security of SIG, the game derives all
oracle answers by a call to one of the simulated oracles simSignature;(m, ¢). To prove
Lemma 3.3.10, observe that we can now extend adversary B defined in Figure 3.14
such that it is capable to perfectly simulate game G5 by running the simulations, and
simulating the random oracle to A, accordingly. (Le., B runs A with oracle access to H’
that is first set to H, and that gets reprogrammed, with B keeping track of the classical
queries to FAULTSIGN.)

Again, A can not win if m* was a query to FAULTSIGN, hence a valid signature
is also valid in B’s UF-CMA( game and

Pr(G8 = 1] < Advpgoi°(B) -

3.3.9  From UF-F-CMA to UF-N-F-CMA (Proof of Theorem 3.3.3)

Let A be an adversary against the UF-N-F z-CMA security of SIG' = R2HI[SIG, G] for
F':= FU{1}, issuing at most ¢g queries to N-FAULTSIGN, at most gy queries to
H, and at most gg queries to G. In the random oracle model, the proof would work as
follows: Either G is never queried on any faulted version of sk, or it is. In the case that
such query does not exist, the UF-N-F z-CMA experiment is completely simulatable
by a reduction against the UF-Fz-CMA security of the underlying scheme SIG, as the
signing randomness looks uniformly random to the adversary. (Note that we made the
assumption that A issues no query (m,n) to N-FAULTSIGN more than once.) In the
case that such a query ¢(sk) exists, it can be used to break UF-Fz-CMA security by
going over all possible secret key candidates, i.e., by going over all bit-flip functions,

and checking whether any of those candidates can be used to generate a valid signature.
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In principle, our QROM proof does the same. Consider the sequence of games given
in Figure 3.17: We decouple the signing randomness from the secret key in game G;.
Again, game G can be simulated by a reduction B; against the UF-F z-CMA security
of the underlying scheme SIG. To upper bound the distance between games Gy and
G1, we will use Theorem 1.3.5. (In order to give a more detailed description of how
Theorem 1.3.5 can be used, we “zoom in” and give two intermediate helper games G/,
and G,.) Applying Theorem 1.3.5, we can upper bound the distance between games
Go and GG in terms of the probability that measuring a random query to G yields ¢(sk).
We then give a reduction B, that wins whenever the latter happens, with the same
strategy as in the ROM sketch.

Games Gy - G1 N-FAULTSIGN(m,n,i € F',$)
01 (pk, sk) < 1G(par) o7 if i=1
02 (m*70_*) « AN—FAULTSIGI\',\H),\G) (pk) 08 fl — ¢
03 if m* € £, return 0 09 7 := G(f1(sk),m,n) //Go
04 Parse (w*,2") :=o" 10 7 <3 Rsign /G
05 ¢* := H(w",m") 11 0 ¢+ GETSIGNATURE(m,r,2, Id)
06 return V(pk,w™*,c*, z*) 12 else
13 r:= G(sk,m,n) /Go
14 T <3 Rsign //Gl

15 0 4 GETSIGNATURE(mM,T,1%, ¢)
16 return o

GETSIGNATURE(m, T, %, ¢)

17 fir=¢ and f; :==1dVj # i
18 (w,st) < Commit(sk;r)

19 (w,st) := fa(w,st)

20 (i, 1, pk) = f5(w, m, pk)
21 ¢ := fe(H(b, M, pk))

22 z < Respond(f(sk, c,st))
23 Lp = LM U {M}

24 return o := fy(w, 2)

Fig. 3.17: Games Gy - GG; for the proof of Theorem 3.3.3. Helper method GETSIGNATURE
is internal and cannot be accessed directly by A.

GAME Gy. The (purely conceptual) difference between game Gy and the original
UF-N-F-CMA game is that after computing the signing randomness according to SIG',
we outsource the rest of the signature computation to helper method GETSIGNATURE.
In the case that ¢ = 1, GETSIGNATURE is executed with index 2 and Id, as the rest of

the signature generation is unfaulted.

169



AdvoENFF=CMA () — Prigh = 1]

GAME G;. In game G, we re-randomise the Commit algorithm by letting r <—¢ Rsign
instead of 7 := G(f1(sk),m,n), see lines 10 and 14. To upper bound Pr[G} = 1],
consider UF-F z-CMA Adversary By given in Figure 3.18. Adversary B; has access to
the faulty signing oracle FAULTSIGN that is provided by game UF-F z-CMA, and that
covers all faults except the ones that would have occurred with respect to index 1, i.e.,
the ones that fault the secret key as input to G. Due to our change described above,
however, randomness r is drawn independently of sk in game G, hence the Commit
algorithm is randomised. The output of FAULTSIGN therefore allows B; to perfectly
simulate game (G; to A. Furthermore, any valid forgery game G is also a valid forgery
in By’s UF-Fz-CMA game. Hence,

Pr[GY = 1] < AdvgcFmMAB,) .

Adversary B,!" (pk) N-FAULTSIGN(m,n,i € F', ¢)

01 (m*,a*) « AN—FAULTSIGN,|H>,\G)(pk) 03 if1=1

02 return (m*,o*) 04 o<+ FAULTSIGN(m,2,1d)
05 else o —

FAULTSIGN (m, 1, ¢)
06 return o

Fig. 3.18: UF-Fx-CMA Adversary B;, with access to its own faulty signing oracle
FAULTSIGN, for the proof of Theorem 3.3.3.

It remains to upper bound | Pr[G4 = 1] — Pr[G} = 1]|. To this end, we will make
use of the query extraction variant of one-way to hiding (see Theorem 1.3.5). In order
to keep our proof as accessible as possible, we introduce intermediate helper games G/,
and Gz, in Figure 3.19.

As a preparation, we first consider intermediate game G1/,, in which we completely
replace random oracle G with another random oracle G’ (see lines 02, 15 and 19), where
G’ is defined as follows: Let £ denote the set of secret keys that could occur by
faulting the secret key with a one-bit fault injection. We let G’ concur with G for
all inputs such that the input secret key is not in £, i.e., for all sk’ ¢ L4 and all
(m,n) € M x N, we let G'(sk’,m,n) := G(sk’,m,n). We can then complete it to a
random oracle on SK x M x N by picking another random oracle G” : £, x M x N, and
letting G’ (sk’,m,n) := G"(sk',m,n) for all sk’ € L4 and all (m,n) € M x N. Since G’
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Games Gy/; - G1 N-FAULTSIGN(m,n,i € F', ¢)

01 (pk, sk) < 1G(par) 13ifi=1

02 0:=¢ VG 14 fri=6

03 0:=G JGas-G1 15 r:=G'(fi(sk),m,n) [Gys, Gus, E

04 (m*,07) « ANFAULTSIGNIHLIO) (1Y 16 1 4—g Reign /G
17 0  GETSIGNATURE(m, 1,2, Id)

05 if m* € £, return 0 18 else

06 Parse (w*,z") :=o" 19 r:=G'(sk,m,n) [ Gajsy Goyss E

07 ¢* := H(w*, m*) 20 7 45 Rsign /G1

08 return V(pk,w*,c*,z*) 21 0 4+ GETSIGNATURE(m, 1,1, ®)

22 return o

Extractor E/©>IM (pk, sk, L¢)

09 j<_$ {17 7q(3}
10 Run AN-FAULTSIGN,H).10) (1

until jth query to O

11 (sk’,m,n) < Measure query
input reg.

12 return sk’

Fig. 3.19: Intermediate helper games Gi/,; and Gz, justifying the game-hop from
game Gg to G, and query extractor E. Alternative oracle G’ (see lines 02, 15 and 19)
is constructed by letting G'(sk’,m,n) = G(sk’',m,n) for all input (sk’,m,n) such
that sk’ cannot result from faulting sk, and completing G’ randomly. Helper method
GETSIGNATURE remains as in Figure 3.17.

still is a random oracle, and since we also use G’ to derive the signing randomness, this

change is purely conceptual and

Pr[G) = 1] = Pr[G’f‘/3 =1] .

In game G2/, we prepare to rid the randomness generation of the secret key: We
switch back to providing A with oracle access to the original random oracle G, but we
keep using G’ to derive the signing randomness. After this change, oracle G’ is not
directly accessible by A anymore, but only indirectly via the signing queries. Since we
assume that A issues no query (m,n) to N-FAULTSIGN more than once, we can also

replace these values with freshly sampled randomness as in game Gy, i.e.,

Pr[Gif/3 =1 =Pr[G}=>1] .
So far, we have shown that

Advgg T MAR) < AdvgFAMA(BY) + | PG, = 1] - Pr[Ghy, = 1]
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In order to upper bound |P1"[G?/3 =1] - PI"[G2A/3 = 1]|, we invoke Theorem 1.3.5:
Distinguishing between the two games can be reduced to extracting one of the faulted
secret keys from the queries to G. To make this claim more formal, consider the query
extractor E from Theorem 1.3.5, whose explicit description we give in Figure 3.19.
Extractor E is run with access to oracle O € {G, G}, which it will forward to A. Tt
runs A until A’s ith oracle query to O, measures the query input register, and thereby
obtains a triplet (sk’,m,n) of classical input values. Since we are only interested in
points where G and G’ differ, it is sufficient to let E output the secret key candidate sk’.
Note that E is able to simulate the signing oracle regardless of which oracle O it has
access to: Recall that Theorem 1.3.5 makes no assumption on the runtime of the query
extractor, nor on the size of its input. Hence, the alternative oracle G’ can simply be
encoded as part of the extractor’s input, which we denote by adding £¢ to E’s input.
Since E perfectly simulates game G/, if O = G’, and game G/, if O = G, Theorem 1.3.5
yields

\Plr[GlA/3 =1] - Pr[Gé\/3 = 1]| < 2¢c - \/Pr[sk’ € Lo ¢ sk’ « EIGIM) (pk, sk, G")] .

It remains to bound the success probability of the extractor E. At this point, the
signing randomness is independent of G. We can hence also replace E with an extractor
E’ that uses freshly sampled randomness to sign, without any change in the extraction
probability. (Again, we require that A issues no query (m,n) to N-FAULTSIGN more
than once.)

To bound the success probability of E’, consider UF-F z-CMA Adversary B, which
is given in Figure 3.20. Like By, Adversary B, has access to the faulty signing oracle
FAULTSIGN provided by game UF-Fz-CMA, and it uses FAULTSIGN to answer
signing queries. By perfectly simulates the view of A when A is run by extractor E’, and
the probability that E’ returns some sk’ € £, is hence exactly the probability that By
obtains some sk’ € £, by measuring in line 03. After running A until the jth query to
G, and extracting a secret key candidate sk’ from this query, B, computes the list £
of candidate secret keys that could occur by faulting sk’ with a one-bit fault injection
(including the identity function). Since bit flips are involutory, and set-bit functions
can be reversed by set-bit functions, sk’ € £, iff sk € £,. Hence, if B, obtains some
sk’ € £, by measuring, then B, will encounter sk during execution of its loop and

therefore generate a valid signature.

Prsk' € S : sk E'M (pk, sk, G')) < AdvIEFMAB,) .
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Adversary B,!" (pk) N-FAULTSIGN(m,n,i € F', ¢)

01 j<¢9{1,---,qc} 1w0ifi=1

02 Run AN-FAULTSIGN,H)LIC) () 11 o+ FAULTSIGN(m, 2, Id)
until jth query to G 12 else o —

03 sk’ < Measure query input register FAULTSIGN(m, i, ¢)

04 m* g M\ £ 13 if ¢ =5 and ¢ affects m

05 for sk” € Ly 14 Ly =Ly U{om(m)}

06 o < Sign(sk”,m) 15 else £ = £ U {m}

07 if Vrfy(m,o) =1 16 return o

08 return (m,o)

09 return L

Fig. 3.20: UF-Fx-CMA Adversary B,, with access to its own faulty signing oracle
FAULTSIGN, for the proof of Theorem 3.3.3. List £, (see line 05) denotes the list
of secret keys that could occur by faulting sk’ with a one-bit fault injection.

173






BIBLIOGRAPHY

[AABNO2]

[ABB*20]

[ABD*18]

[ABRO]

[ACFK17]

[ADPS16]

Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre.
From identification to signatures via the Fiat-Shamir transform: Minimizing
assumptions for security and forward-security. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 418-433, Amsterdam,
The Netherlands, April 28 — May 2, 2002. Springer, Heidelberg, Germany.
33

Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick
Longa, and Jefferson E. Ricardini. The lattice-based digital signature
scheme qTESLA. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio,
and Angelo Spognardi, editors, ACNS 20, Part I, volume 12146 of LNCS,
pages 441-460, Rome, Italy, October 19-22, 2020. Springer, Heidelberg,
Germany. 18

C. Aguilar-Melchor, O. Blazy, J. Deneuville, P. Gaborit, and G. Zémor.
Efficient encryption from random quasi-cyclic codes. IEFEE Transactions
on Information Theory, 64(5):3927-3943, 2018. 18

Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-
Hellman assumptions and an analysis of DHIES. In David Naccache, editor,
CT-RSA 2001, volume 2020 of LNCS, pages 143-158, San Francisco, CA,
USA, April 8-12, 2001. Springer, Heidelberg, Germany. 13, 53, 60

Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-
tight reductions. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 101-132, Santa
Barbara, CA, USA, August 2024, 2017. Springer, Heidelberg, Germany.
12

Erdem Alkim, Léo Ducas, Thomas Poppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In 25th USENIX Security Symposium,

175



[AFLT12]

[AHU19]

[AMRS20]

[AOP+17]

[AOTZ20]

[ARU14]

[BBC*98]

USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 327—
343, 2016. 54

Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi
Tibouchi. Tightly-secure signatures from lossy identification schemes. In
David Pointcheval and Thomas Johansson, editors, FUROCRYPT 2012,
volume 7237 of LNCS, pages 572-590, Cambridge, UK, April 15-19, 2012.
Springer, Heidelberg, Germany. 138

Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security
proofs using semi-classical oracles. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 269-295, Santa Barbara, CA, USA, August 18-22, 2019. Springer,
Heidelberg, Germany. 42, 43, 44, 45, 136

Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song.
Quantum-access-secure message authentication via blind-unforgeability.
In Anne Canteaut and Yuval Ishai, editors, FUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 788-817, Zagreb, Croatia, May 10-14, 2020.
Springer, Heidelberg, Germany. 50

Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson, Guy Peer,
and Nigel P. Smart. Tightly secure ring-LWE based key encapsulation with
short ciphertexts. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, ESORICS 2017, Part I, volume 10492 of LNCS, pages 2946, Oslo,
Norway, September 11-15, 2017. Springer, Heidelberg, Germany. 60, 61

Diego F. Aranha, Claudio Orlandi, Akira Takahashi, and Greg Zaverucha.
Security of hedged Fiat-Shamir signatures under fault attacks. In Anne
Canteaut and Yuval Ishai, editors, FEUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 644-674, Zagreb, Croatia, May 10-14, 2020. Springer,
Heidelberg, Germany. 34, 35, 137, 139, 154, 155, 156, 157, 158

Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum
attacks on classical proof systems: The hardness of quantum rewinding. In
55th FOCS, pages 474-483, Philadelphia, PA, USA, October 18-21, 2014.
IEEE Computer Society Press. 46

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. In 39th FOCS, pages
352-361, Palo Alto, CA, USA, November 8-11, 1998. IEEE Computer
Society Press. 40

176



[BBMO0]

[BBOO7]

[BCD*16]

[BCL*+19]

[BCLv16]

[BCNS15]

[BDF*11]

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryp-
tion in a multi-user setting: Security proofs and improvements. In Bart
Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 259-274,
Bruges, Belgium, May 14-18, 2000. Springer, Heidelberg, Germany. 12

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and
efficiently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 535-552, Santa Barbara, CA, USA, August 19—
23, 2007. Springer, Heidelberg, Germany. 57

Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! Practical, quantum-secure key exchange from LWE. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 10061018, Vienna,
Austria, October 24-28, 2016. ACM Press. 54

Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich,
Rafael Misoczki, Ruben Niederhagen, Edoardo Persichetti, Christiane
Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang.
Classic McEliece. Technical report, National Institute of Standards
and Technology, 2019. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-2-submissions. 18

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU prime. Cryptology ePrint Archive, Report
2016/461, 2016. http://eprint.iacr.org/2016/461. 18

Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with
errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553-570, San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society
Press. 54

Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASTACRYPT 2011, volume
7073 of LNCS, pages 41-69, Seoul, South Korea, December 4-8, 2011.
Springer, Heidelberg, Germany. 17, 40, 136

177


https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://eprint.iacr.org/2016/461

[BDK17]

[BFK*12]

[BEM15]

[BHH* 19

[BHSV98]

[BI17]

[BJL17]

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS — Kyber:
a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive,
Report 2017/634, 2017. http://eprint.iacr.org/2017/634. 54, 106

Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato,
Graham Steel, and Joe-Kai Tsay. Efficient padding oracle attacks on
cryptographic hardware. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 608625, Santa Barbara, CA,
USA, August 19-23, 2012. Springer, Heidelberg, Germany. 13

Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Random-oracle
uninstantiability from indistinguishability obfuscation. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 428-455, Warsaw, Poland, March 23-25, 2015. Springer, Heidelberg,
Germany. 14

Nina Bindel, Mike Hamburg, Kathrin Hévelmanns, Andreas Hiilsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum ran-
dom oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 61-90, Nuremberg, Germany, De-
cember 1-5, 2019. Springer, Heidelberg, Germany. 21, 30, 42, 43, 56, 106,
121, 122, 128, 129, 136

Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one
trapdoor functions and their relation to public-key cryptosystems. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 283~
298, Santa Barbara, CA, USA, August 2327, 1998. Springer, Heidelberg,
Germany. 57

Subhadeep Banik and Takanori Isobe. Some cryptanalytic results on lizard.
Cryptology ePrint Archive, Report 2017/346, 2017. http://eprint.iacr.
org/2017/346. 106

Mihir Bellare, Joseph Jaeger, and Julia Len. Better than advertised:
Improved collision-resistance guarantees for MD-based hash functions. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 891-906, Dallas, TX, USA, October 31 —
November 2, 2017. ACM Press. 12

178


http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/346
http://eprint.iacr.org/2017/346

[BL20]

[Ble9s]

[BLKOO]

[BP18]

[BPS16]

[BRO3]

[BROS]

[BRO6]

[BROG]

Anne Broadbent and Sébastien Lord. Uncloneable Quantum Encryption
via Oracles. In Steven T. Flammia, editor, TQC 2020, LIPIcs, pages
4:1-4:22, Dagstuhl, Germany, 2020. 136

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 1-12, Santa Barbara, CA, USA,
August 23-27, 1998. Springer, Heidelberg, Germany. 11, 13

Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim. Secure length-saving
ElGamal encryption under the computational Diffie-Hellman assumption.
In Ed Dawson, Andrew Clark, and Colin Boyd, editors, ACISP 00, volume
1841 of LNCS, pages 49-58, Brisbane, Queensland, Australia, July 10-12,
2000. Springer, Heidelberg, Germany. 60

Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification.
Cryptology ePrint Archive, Report 2018/526, 2018. https://eprint.iacr.
org/2018/526. 32, 121

Mihir Bellare, Bertram Poettering, and Douglas Stebila. From identification
to signatures, tightly: A framework and generic transforms. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASTACRYPT 2016, Part II, volume
10032 of LNCS, pages 435-464, Hanoi, Vietnam, December 4-8, 2016.
Springer, Heidelberg, Germany. 37

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM
CCS 93, pages 62-73, Fairfax, Virginia, USA, November 3-5, 1993. ACM
Press. 13

Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Alfredo De Santis, editor, EUROCRYPT"’94, volume 950 of LNCS, pages
92-111, Perugia, Italy, May 9-12, 1995. Springer, Heidelberg, Germany. 13

Mihir Bellare and Phillip Rogaway. The exact security of digital signa-
tures: How to sign with RSA and Rabin. In Ueli M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 399-416, Saragossa, Spain,
May 12-16, 1996. Springer, Heidelberg, Germany. 12, 13

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a

framework for code-based game-playing proofs. In Serge Vaudenay, editor,

179


https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2018/526

[BROY]

[BS20]

[BT16]

[BV17]

[CGHOS]

[CHJT02]

[CHR*16]

EUROCRYPT 2006, volume 4004 of LNCS, pages 409-426, St. Petersburg,
Russia, May 28 — June 1, 2006. Springer, Heidelberg, Germany. 23

Mihir Bellare and Thomas Ristenpart. Simulation without the artificial
abort: Simplified proof and improved concrete security for Waters’ IBE
scheme. In Antoine Joux, editor, FUROCRYPT 2009, volume 5479 of
LNCS, pages 407-424, Cologne, Germany, April 26-30, 2009. Springer,
Heidelberg, Germany. 12

Nina Bindel and John M. Schanck. Decryption failure is more likely after
success. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 11th International Conference, PQCrypto 2020, pages 206—
225, Paris, France, April 15-17 2020. Springer, Heidelberg, Germany. 30,
54, 55

Mihir Bellare and Bjorn Tackmann. Nonce-based cryptography: Retaining
security when randomness fails. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 729-757,
Vienna, Austria, May 8-12, 2016. Springer, Heidelberg, Germany. 37

Nir Bitansky and Vinod Vaikuntanathan. A note on perfect correctness
by derandomization. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 592—
606, Paris, France, April 30 — May 4, 2017. Springer, Heidelberg, Germany.
30

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In 30th ACM STOC, pages 209-218,
Dallas, TX, USA, May 23-26, 1998. ACM Press. 14

Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David
Pointcheval, and Christophe Tymen. GEM: A generic chosen-ciphertext
secure encryption method. In Bart Preneel, editor, CT-RSA 2002, volume
2271 of LNCS, pages 263-276, San Jose, CA, USA, February 18-22, 2002.
Springer, Heidelberg, Germany. 13, 53, 60

Ming-Shing Chen, Andreas Hiilsing, Joost Rijneveld, Simona Samard-
jiska, and Peter Schwabe. From 5-pass MQ-based identification to MQ-
based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 135-165, Hanoi,
Vietnam, December 4-8, 2016. Springer, Heidelberg, Germany. 18

180



[CKLS16]

[CKSO8]

[CKS09]

[CMP20]

[CS03]

[Den03]

[DFMS19]

[DKL*18]

[DNR04]

Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard:
Cut off the tail! practical post-quantum public-key encryption from lwe
and lwr. Cryptology ePrint Archive, Report 2016/1126, 2016. http:
//eprint.iacr.org/2016/1126. 54

David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman
problem and applications. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 127-145, Istanbul, Turkey, April 13-17, 2008.
Springer, Heidelberg, Germany. 60

David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem
and applications. Journal of Cryptology, 22(4):470-504, October 2009. 60

Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum
copy-protection of compute-and-compare programs in the quantum random
oracle model. arXiv 2009.13865, 2020. 136

Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167-226, 2003. 29

Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson,
editor, 9th IMA International Conference on Cryptography and Coding,
volume 2898 of LNCS, pages 133-151, Cirencester, UK, December 16-18,
2003. Springer, Heidelberg, Germany. 27, 53, 59, 60, 121

Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 356-383, Santa Barbara, CA, USA,
August 18-22, 2019. Springer, Heidelberg, Germany. 136

Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. TACR TCHES, 2018(1):238-268,
2018. https://tches.iacr.org/index.php/TCHES/article/view/839.
18, 139

Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption

schemes from decryption errors. In Christian Cachin and Jan Camenisch,

181


http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2016/1126
https://tches.iacr.org/index.php/TCHES/article/view/839

[DVV18]

[DXL12]

[ES15]

[FO99)]

[FO13]

[FS87]

[FSXY12]

[FSXY13]

editors, FUROCRYPT 2004, volume 3027 of LNCS, pages 342-360, In-
terlaken, Switzerland, May 2—6, 2004. Springer, Heidelberg, Germany.
30

Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. On
the impact of decryption failures on the security of LWE/LWR based
schemes. Cryptology ePrint Archive, Report 2018/1089, 2018. https:
//eprint.iacr.org/2018/1089. 54, 55

Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key
exchange scheme based on the learning with errors problem. Cryptology
ePrint Archive, Report 2012/688, 2012. http://eprint.iacr.org/2012/
688. H4

Edward Eaton and Fang Song. Making Existential-unforgeable Signatures
Strongly Unforgeable in the Quantum Random-oracle Model. In TQC
2015, LIPIcs, 2015. 136, 141

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537-554, Santa Barbara, CA,
USA, August 15-19, 1999. Springer, Heidelberg, Germany. 13, 25, 53, 59

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. Journal of Cryptology, 26(1):80-101,
January 2013. 13, 53

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186-194, Santa Barbara, CA,
USA, August 1987. Springer, Heidelberg, Germany. 35, 37

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Strongly secure authenticated key exchange from factoring, codes, and
lattices. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 467-484, Darmstadt, Germany,
May 21-23, 2012. Springer, Heidelberg, Germany. 20

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama.
Practical and post-quantum authenticated key exchange from one-way

secure key encapsulation mechanism. In Kefei Chen, Qi Xie, Weidong

182


https://eprint.iacr.org/2018/1089
https://eprint.iacr.org/2018/1089
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688

[GMS2]

[GM84]

[GMMV05]

[GMRS5]

[GMRSS]

[Gro96]

[HHK17]

[HKSU20]

Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages 83-94,
Hangzhou, China, May 8-10, 2013. ACM Press. 20

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 1/th ACM
STOC, pages 365—377, San Francisco, CA, USA, May 5-7, 1982. ACM
Press. 12

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270 — 299, 1984. 12

David Galindo, Sebastia Martin, Paz Morillo, and Jorge L. Villar. Fujisaki-
okamoto hybrid encryption revisited. Int. J. Inf. Sec., 4(4):228-241, 2005.
60

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291-304, Providence, RI, USA, May 6-8, 1985. ACM Press.
35

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,
17(2):281-308, April 1988. 36

Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Fighth Annual ACM Symposium on The-
ory of Computing, STOC 96, page 212-219, New York, NY, USA, 1996.
Association for Computing Machinery. 15

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341-371, Balti-
more, MD, USA, November 12-15, 2017. Springer, Heidelberg, Germany.
19, 21, 42, 55, 56

Kathrin Hovelmanns, Eike Kiltz, Sven Schige, and Dominique Unruh.
Generic authenticated key exchange in the quantum random oracle model.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 389-422, Ed-
inburgh, UK, May 4-7, 2020. Springer, Heidelberg, Germany. 19, 20, 46,
56

183



[HRS16]

[JACT19]

[JZCT18]

[JZM19a]

[JZM19b)

[KL14]

[KLS17]

[KLS18)

Andreas Hiilsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume
9614 of LNCS, pages 387-416, Taipei, Taiwan, March 6-9, 2016. Springer,
Heidelberg, Germany. 45, 46, 136, 141

David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
and Geovandro Pereira. SIKE. Technical report, National Institute of
Standards and Technology, 2019. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions. 18

Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-
CCA-secure key encapsulation mechanism in the quantum random oracle
model, revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96-125, Santa
Barbara, CA, USA, August 19-23, 2018. Springer, Heidelberg, Germany.
56

Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mech-
anism with explicit rejection in the quantum random oracle model. In
Dongdai Lin and Kazue Sako, editors, PKC 2019, Part 1I, volume 11443
of LNCS, pages 618645, Beijing, China, April 14-17, 2019. Springer,
Heidelberg, Germany. 56

Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs
for generic key encapsulation mechanism in the quantum random oracle
model. Cryptology ePrint Archive, Report 2019/134, 2019. https://
eprint.iacr.org/2019/134. 30, 56, 128

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman and Hall/CRC, 2nd edition, 2014. 12, 24, 26

Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete
treatment of fiat-shamir signatures in the quantum random-oracle model.
Manuscript, 2017. 46

FEike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete
treatment of Fiat-Shamir signatures in the quantum random-oracle model.
In Jesper Buus Nielsen and Vincent Rijmen, editors, FEUROCRYPT 2018,

184


https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2019/134
https://eprint.iacr.org/2019/134

[KMO3]

[KSS+20]

[LPR10]

[LPR13]

[LS19]

[Lyu09]

[LZ19]

Part III, volume 10822 of LNCS, pages 552586, Tel Aviv, Israel, April 29 —
May 3, 2018. Springer, Heidelberg, Germany. 40, 136, 137, 138, 139

Eike Kiltz and John Malone-Lee. A general construction of IND-CCA2
secure public key encryption. In Kenneth G. Paterson, editor, 9th IMA
International Conference on Cryptography and Coding, volume 2898 of
LNCS, pages 152-166, Cirencester, UK, December 16-18, 2003. Springer,
Heidelberg, Germany. 60

Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng
Sun. Measure-rewind-measure: Tighter quantum random oracle model
proofs for one-way to hiding and CCA security. In Anne Canteaut and
Yuval Ishai, editors, FEUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 703-728, Zagreb, Croatia, May 10-14, 2020. Springer, Heidelberg,
Germany. 30, 42, 43, 56, 57, 128, 136

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1-23, French Riviera, May 30 — June 3, 2010.
Springer, Heidelberg, Germany. 60

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35-54, Athens, Greece,
May 26-30, 2013. Springer, Heidelberg, Germany. 60

Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using
NTT. TACR TCHES, 2019(3):180-201, 2019. https://tches.iacr.org/
index.php/TCHES/article/view/8293. 25, 30, 120

Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASTACRYPT 2009,
volume 5912 of LNCS, pages 598-616, Tokyo, Japan, December 6-10, 2009.
Springer, Heidelberg, Germany. 139

Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 326-355, Santa Barbara, CA, USA,
August 18-22, 2019. Springer, Heidelberg, Germany. 136

185


https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293

[NAB*17]

INC11]

[NIS17]

[NIS20]

INY90]

[OPO01]

[Peil4]

[Per12]

[PS96a)]

[PS96b]

Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easter-
brook, Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Niko-
laenko, Christopher Peikert, Ananth Raghunathan, and Douglas Ste-
bila. FrodoKEM. Technical report, National Institute of Standards
and Technology, 2017. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions. 106

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, USA, 10th edition, 2011. 38, 39, 47

NIST. National institute for standards and technology. postquan-
tum crypto project, 2017. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/. 15, 139

NIST. Status report on the second round of the nist post-quantum
cryptography standardization process. NISTIR 8309, 2020. https:
//doi.org/10.6028/NIST.IR.8309. 139

Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427-437,
Baltimore, MD, USA, May 14-16, 1990. ACM Press. 13

Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-
security Asymmetric Cryptosystem Transform. In David Naccache, editor,
CT-RSA 2001, volume 2020 of LNCS, pages 159-175, San Francisco, CA,
USA, April 8-12, 2001. Springer, Heidelberg, Germany. 13, 53, 60

Chris Peikert. Lattice cryptography for the internet. Cryptology ePrint
Archive, Report 2014/070, 2014. http://eprint.iacr.org/2014/070. 54

Edoardo Persichetti. Improving the efficiency of code-based cryptography.
PhD thesis, 2012. 58

David Pointcheval and Jacques Stern. Provably secure blind signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, ASI-
ACRYPT’96, volume 1163 of LNCS, pages 252-265, Kyongju, Korea,
November 3-7, 1996. Springer, Heidelberg, Germany. 14

David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
387-398, Saragossa, Spain, May 12-16, 1996. Springer, Heidelberg, Ger-
many. 13

186


https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
http://eprint.iacr.org/2014/070

[Reg05]

[Riv]

[RS92]

[Sho94]

[Sho04a]

[Sho04b]

[SXY18]

[TU16]

[Unrl4a]

Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84-93, Baltimore, MA, USA, May 22-24, 2005. ACM Press.
60

Ronald L. Rivest. Cryptography, volume 1, chapter 13, pages 717-755.
Elsevier. 11

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 433-444, Santa Barbara,
CA, USA, August 11-15, 1992. Springer, Heidelberg, Germany. 13, 29, 53

P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 124-134, 1994. 15

Victor Shoup. ISO 18033-2: An emerging standard for public-key encryp-
tion. http://shoup.net/iso/std6.pdf, December 2004. Final Commit-
tee Draft. 60

Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. Cryptology ePrint Archive, Report 2004/332, 2004. http:
//eprint.iacr.org/2004/332. 23, 24

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In
Jesper Buus Nielsen and Vincent Rijmen, editors, FUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 520551, Tel Aviv, Israel, April 29 —
May 3, 2018. Springer, Heidelberg, Germany. 28, 40, 56, 104, 105, 106, 107,
110, 111, 115, 121, 136, 157

Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of
the Fujisaki-Okamoto and OAEP transforms. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 192—
216, Beijing, China, October 31 — November 3, 2016. Springer, Heidelberg,
Germany. 54, 88, 93, 97

Dominique Unruh. Quantum position verification in the random oracle
model. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 201/,
Part II, volume 8617 of LNCS, pages 1-18, Santa Barbara, CA, USA,
August 17-21, 2014. Springer, Heidelberg, Germany. 136, 141

187


http://shoup.net/iso/std6.pdf
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

[Unr14b)

[Wat01]

[WMHT18]

[YZ20]

[ZCD*+19]

[Zhal2a]

[Zhal2b)

[Zhal9]

Dominique Unruh. Revocable quantum timed-release encryption. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 201/,
volume 8441 of LNCS, pages 129-146, Copenhagen, Denmark, May 11-15,
2014. Springer, Heidelberg, Germany. 41, 43, 89, 90, 136

John Watrous. Quantum algorithms for solvable groups. In Proceedings of
the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
01, page 60—67, New York, NY, USA, 2001. Association for Computing
Machinery. 15

Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka.
Memory lower bounds of reductions revisited. In Jesper Buus Nielsen and
Vincent Rijmen, editors, FEUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 61-90, Tel Aviv, Israel, April 29 — May 3, 2018. Springer,
Heidelberg, Germany. 12

Takashi Yamakawa and Mark Zhandry. A note on separating classical and
quantum random oracles. Cryptology ePrint Archive, Report 2020/787,
2020. https://eprint.iacr.org/2020/787. 135

Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio
Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig,
Jonathan Katz, Xiao Wang, and Vladmir Kolesnikov. Picnic. tech-
nical report. National Institute of Standards and Technology, 2019.
https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions. 18, 139

Mark Zhandry. How to construct quantum random functions. In 53rd
FOCS, pages 679-687, New Brunswick, NJ, USA, October 20-23, 2012.
IEEE Computer Society Press. 45

Mark Zhandry. Secure identity-based encryption in the quantum ran-
dom oracle model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 758-775, Santa Barbara, CA,
USA, August 19-23, 2012. Springer, Heidelberg, Germany. 40

Mark Zhandry. How to record quantum queries, and applications to quan-
tum indifferentiability. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 239268,
Santa Barbara, CA, USA, August 18-22, 2019. Springer, Heidelberg, Ger-
many. 47, 136, 137

188


https://eprint.iacr.org/2020/787
 https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
 https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

PUBLICATIONS

[HHK17]

[BHH+19]

[HKSU20]

[GHHM?20]

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A modular
analysis of the Fujisaki-Okamoto transformation. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 341—371, Baltimore, MD, USA, November 12-15, 2017. Springer,
Heidelberg, Germany.

Nina Bindel, Mike Hamburg, Kathrin Hévelmanns, Andreas Hiilsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum
random oracle model. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part II, volume 11892 of LNCS, pages 61—90, Nuremberg,
Germany, December 1-—5, 2019. Springer, Heidelberg, Germany.

Kathrin Hovelmanns, Eike Kiltz, Sven Schége, and Dominique Unruh.
Generic Authenticated Key Exchange in the quantum random oracle
model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS,
pages 389—422, Edinburgh, UK, May 4-—7, 2020. Springer, Heidelberg,

Germany.

Alex B. Grilo, Kathrin Hévelmanns, Andreas Hiilsing, Christian Majenz.
Tight adaptive reprogramming in the QROM. To be published.

189



	Introduction
	Preliminaries
	Public-Key Encryption and Key Encapsulation Mechanisms
	Security Notions for Public-Key Encryption
	Key Encapsulation Mechanisms (KEMs)
	Correctness Errors and Rigidity

	Identification Schemes and Signatures
	Identification Schemes
	Signature Schemes

	Quantum Computation and the Quantum Random Oracle Model (QROM)
	Basic Definitions
	Query Extraction Arguments: One-Way to Hiding
	Quantum Search and Distinguishing Problems
	The Superposition Oracle Formalism


	FO-like Transformations in the (Q)ROM
	Modular Constructions in the ROM
	Transformation T: From OW and IND-CPA to OW-PVCA
	Transformation Um,c (Um,c): From OW-PVCA (PCA) to IND-CCA
	Transformation Um (Um): From deterministic OW-VCA (OW) to IND-CCA
	Combined FO-like Transformations: The Resulting KEMs

	Modular constructions in the QROM
	Algorithmic One-Way to Hiding
	Transformation T: from OW to OW-PCA
	Transformations QUm, QUm: From OW-PCA to IND-CCA
	The Resulting KEMs

	Tighter Security Bounds in the QROM
	Transformation T: From DS and IND-CPA to deterministic DS
	Transformation FOm: From DS and IND-CPA to IND-CCA
	Transformation FOmPunc: From IND-CPA to IND-CCA

	Transformation ACWC: Turning Average-Case into Worst-Case Correctness
	Proof of Worst-Case Correctness
	From OW to IND-CPA, in the ROM
	TACWC: From OW to OW and DS, in the QROM
	FOmACWC: From OW to IND-CCA, in the QROM
	Achieving Worst-Case Correctness without Randomness Recovery


	Adaptive Reprogramming and its Applications in the QROM
	Adaptive Reprogramming: The Theorem
	Proof of theorem:reprGameBased

	Revisiting the Fiat-Shamir Transform
	Revisiting the Hedged Fiat-Shamir Transform under Fault Attacks
	From UF-CMA0 to UF-F-CMA (Proof of theorem:UFfaultCMA)
	Game G1: Simulating FAULTSIGN for index 9 (Proof of lem:UFfaultCMA:9)
	Game G2: Simulating FAULTSIGN for index 5 (Proof of lem:UFfaultCMA:5)
	Game G3: Simulating FAULTSIGN for index 6 (Proof of lem:UFfaultCMA:6)
	UF-CMA0 adversary for game G3, for F= 5,6,9  (Proof of lem:UFfaultCMA:Adversary569)
	Game G4: Simulating FAULTSIGN for index 7 (Proof of lem:UFfaultCMA:7)
	Game G5: Simulating FAULTSIGN for index 4 (Proof of lem:UFfaultCMA:4)
	UF-CMA0 adversary for game G5, for F= 4, 5, 6, 7, 9  (Proof of lem:UFfaultCMA:AdversaryAllFaults)
	From UF-F-CMA to UF-N-F-CMA (Proof of theorem:UFNonceFaultCMA)


	Bibliography
	Publications

