
Post-Quantum Privacy Pass
Via Post-Quantum Anonymous Credentials

Guru Vamsi Policharla, Bas Westerbaan, Armando Faz Hernández, and Chris Wood

RWC 2023

Post-Quantum Crypto Today

Post-Quantum Crypto Today

Encryption

😃

CRYSTALS-KYBER

Signatures

😃

CRYSTALS-Dilithium

FALCON

SPHINCS+

Post-Quantum Crypto Today

Encryption

😃

CRYSTALS-KYBER

Signatures

😃

CRYSTALS-Dilithium

FALCON

SPHINCS+

Advanced Crypto

☹

Blind Sigs - semi-practical

OPRFs - semi-practical

Anon. Creds - theoretical

… and many more!

The need for efficient PQ Blind Sigs/AC/OPRF

… and many more!

Impacts billions
of users!

The need for efficient PQ Blind Sigs/AC/OPRF

Post-Quantum Crypto Today

Encryption Signatures Advanced Crypto

😃 😃 ☹

CRYSTALS-KYBER
CRYSTALS-Dilithium

FALCON

SPHINCS+

Blind Sigs - semi-practical

OPRFs - semi-practical

Anon. Creds - theoretical

semi-practical

Blind Signatures [Cha82]

m

sk

Goal — Alice obtains a signature such that:

• Server learns nothing about

• Alice learns nothing about sk

m

m

sk

Goal — Alice obtains a signature such that:

• Server learns nothing about

• Alice learns nothing about sk

m

Blind Signatures [Cha82]

m

sk
σ ∣ Verifyvk(m, σ) = 1

Goal — Alice obtains a signature such that:

• Server learns nothing about

• Alice learns nothing about sk

m

Blind Signatures [Cha82]

How are Blind Signatures used?

How are Blind Signatures used?
Commonly used to authenticate in a privacy preserving manner

How are Blind Signatures used?
Commonly used to authenticate in a privacy preserving manner

How are Blind Signatures used?

 Are you a robot?

Commonly used to authenticate in a privacy preserving manner

😡😖

How are Blind Signatures used?

 Are you a robot?

Commonly used to authenticate in a privacy preserving manner

Can we avoid CAPTCHAs without
compromising privacy?

😡😖

How are Blind Signatures used?

 Are you a robot?

Proof that I’m human!

Okay I believe you!tk
σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

How are Blind Signatures used?

 Are you a robot?

σ ∣ Verifyvk(tk, σ) = 1

Proof that I’m human!

Okay I believe you!tk
σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

How are Blind Signatures used?

 Are you a robot?

σ ∣ Verifyvk(tk, σ) = 1

Proof that I’m human!

Okay I believe you!tk

Colluding server and website can’t track a user!

σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

How are Blind Signatures used?

 Are you a robot?

σ ∣ Verifyvk(tk, σ) = 1

Proof that I’m human!

Okay I believe you!tk
σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

Can happen at the beginning of the day!
Colluding server and website can’t track a user!

How are Blind Signatures used?

 Are you a robot?

σ ∣ Verifyvk(tk, σ) = 1

Proof that I’m human!

Okay I believe you!tk
σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

Can happen at the beginning of the day!
Colluding server and website can’t track a user!
Alternatives and extensions: [DGST+18, KLOR20, BLOR22]
Can also use OPRFs/Anonymous Credentials

Building a PQ Blind Signature

m

sk

c = com(m; r)[Fis06]

Building a PQ Blind Signature

m
c = com(m; r)[Fis06]

sk

σ = Sign(c)

Building a PQ Blind Signature

m
c = com(m; r)

σ = Sign(c)

Π = {σ, r, c ∣ Verifyvk(σ, c) ∧ m = open(c; r)}

* Extractor needs to be able to extract from many instances for security reduction

[Fis06]

skFinal signature is a zk proof of knowledge*:

• I know a signature on some commitment

• I know an opening of the commitment to

c
r c m

Building a PQ Blind Signature

m
c = com(m; r)

σ = Sign(c)

Π = {σ, r, c ∣ Verifyvk(σ, c) ∧ m = open(c; r)}

* Extractor needs to be able to extract from many instances for security reduction

[Fis06]

skFinal signature is a zk proof of knowledge*:

• I know a signature on some commitment

• I know an opening of the commitment to

c
r c m

Can also get Anonymous Credentials with !m = (att1, …, attn)

Building a PQ Blind Signature

m
c = com(m; r)

σ = Sign(c)

Π = {σ, r, c ∣ Verifyvk(σ, c) ∧ m = open(c; r)}

* Extractor needs to be able to extract from many instances for security reduction

[Fis06]

skFinal signature is a zk proof of knowledge*:

• I know a signature on some commitment

• I know an opening of the commitment to

c
r c m

Can also get Anonymous Credentials with !m = (att1, …, attn)

How do we instantiate this?

General purpose proofs are thought to be too big and slow

Prior Work
“We expect the prover runtime to be at least 1 hour”— [AKSY22]

General purpose proofs are thought to be too big and slow

Prior Work

Strategy: Move expensive parts “outside” statement. Quite non-trivial!

[AKSY22, dPK22, BLNS22]

“We expect the prover runtime to be at least 1 hour”— [AKSY22]

General purpose proofs are thought to be too big and slow

Prior Work

Caveat: Cannot be used to directly get Anonymous Credentials

Strategy: Move expensive parts “outside” statement. Quite non-trivial!

[AKSY22, dPK22, BLNS22]

“We expect the prover runtime to be at least 1 hour”— [AKSY22]

General purpose proofs are thought to be too big and slow

Prior Work

Caveat: Cannot be used to directly get Anonymous Credentials

What if we carefully choose signature+proof system and optimize?
How expensive are the Anonymous Credentials?

Strategy: Move expensive parts “outside” statement. Quite non-trivial!

[AKSY22, dPK22, BLNS22]

“We expect the prover runtime to be at least 1 hour”— [AKSY22]

Our PQ Blind Signature / AC
Client work

(s)
Verification

(ms)
Size
(KB)

Better time ~0.3 32 174

Balanced ~0.6 22 113

Better size ~4.8 20 86

Surprisingly efficient! Sizes comparable to Blind Signatures.

Two pronged effort

Strategy Overview

Strategy Overview
Two pronged effort

Dilithium → zkDilithium:

• Modify to make ZKP “friendly”

• Use ZKP friendly hashes (Poseidon [GKRRM21])

zkSTARK proof system [BBHR18]:

• Match the field with zkDilithium

• Reduce zkDilithium verification to simpler circuits

Some details

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

AIR

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

AIR

STARK
Library

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

AIR

STARK
Library

Π

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

AIR

STARK
Library

Π
Multiple libraries available

We use winterfell

* github.com/facebook/winterfell

http://github.com/facebook/winterfell

Pipeline of zkSTARKs
fn main() {
 // imagine complicated logic
 // ...
 // ...
 // ...

 println!("Hello, world!");
}

AIR

STARK
Library

Π
Crucial for performance!

Needs careful hand optimization

Can reduce to “simpler” circuits

Multiple libraries available

We use winterfell

* github.com/facebook/winterfell

http://github.com/facebook/winterfell

Dilithium Verification
, c̃) ∈ ℛ4 × {0,1}λPublic Key: (A, t) ∈ ℛ4×4 × ℛ4 zSignature: (

fn zkdilithium_verify() {
 // Fischer-Yates style

// Polynomial Multiplication

// Extract High bits of elements

// Hashing

// Range Proofs

}

c ← HashInBall(c̃)
c ∈ {−1,0,1}256, | |c | |1 = τ

w ← Az − ct

w1 ← HighBits(w)

assert(c̃ = = H(pk | |msg | |w1))

assert(| |z | |∞ < …)

Avoid rejection sampling

Dilithium Verification
, c̃) ∈ ℛ4 × {0,1}λPublic Key: (A, t) ∈ ℛ4×4 × ℛ4 zSignature: (

fn zkdilithium_verify() {
 // Fischer-Yates style

// Polynomial Multiplication

// Extract High bits of elements

// Hashing

// Range Proofs

}

c ← HashInBall(c̃)
c ∈ {−1,0,1}256, | |c | |1 = τ

w ← Az − ct

w1 ← HighBits(w)

assert(c̃ = = H(pk | |msg | |w1))

assert(| |z | |∞ < …)

Avoid rejection sampling

Reduce to polynomial identity testing

Dilithium Verification
, c̃) ∈ ℛ4 × {0,1}λPublic Key: (A, t) ∈ ℛ4×4 × ℛ4 zSignature: (

fn zkdilithium_verify() {
 // Fischer-Yates style

// Polynomial Multiplication

// Extract High bits of elements

// Hashing

// Range Proofs

}

c ← HashInBall(c̃)
c ∈ {−1,0,1}256, | |c | |1 = τ

w ← Az − ct

w1 ← HighBits(w)

assert(c̃ = = H(pk | |msg | |w1))

assert(| |z | |∞ < …)

Avoid rejection sampling

Reduce to polynomial identity testing

Check decomposition instead of computing

Dilithium Verification
, c̃) ∈ ℛ4 × {0,1}λPublic Key: (A, t) ∈ ℛ4×4 × ℛ4 zSignature: (

fn zkdilithium_verify() {
 // Fischer-Yates style

// Polynomial Multiplication

// Extract High bits of elements

// Hashing

// Range Proofs

}

c ← HashInBall(c̃)
c ∈ {−1,0,1}256, | |c | |1 = τ

w ← Az − ct

w1 ← HighBits(w)

assert(c̃ = = H(pk | |msg | |w1))

assert(| |z | |∞ < …)

Avoid rejection sampling

Reduce to polynomial identity testing

Check decomposition instead of computing

Use Poseidon hash [GKRRM21]

Dilithium Verification
, c̃) ∈ ℛ4 × {0,1}λPublic Key: (A, t) ∈ ℛ4×4 × ℛ4 zSignature: (

fn zkdilithium_verify() {
 // Fischer-Yates style

// Polynomial Multiplication

// Extract High bits of elements

// Hashing

// Range Proofs

}

c ← HashInBall(c̃)
c ∈ {−1,0,1}256, | |c | |1 = τ

w ← Az − ct

w1 ← HighBits(w)

assert(c̃ = = H(pk | |msg | |w1))

assert(| |z | |∞ < …)

Avoid rejection sampling

Reduce to polynomial identity testing

Check decomposition instead of computing

Use Poseidon hash [GKRRM21]

zkDilithium AIR
Figure roughly to scale

Guru Vamsi Policharla, Bas Westerbaan
Armando Faz Hernández, Chris Wood

701

51
2

14

HashInBall

Range Proofs

Check HighBits H

as
hi

ng

Po
ly

no
m

ia
l I

de
nt

ity
 T

es
tin

g

Store

Polynomials

Try it yourself!

zkdilithium.cloudflareresearch.com
github.com/guruvamsi-policharla/zkdilithium

http://zkdilithium.cloudflareresearch.com

Takeaways and Future work

• PQ Anonymous Credentials are semi-practical!

• Careful tailoring of ZKPs to circuit being proved performs surprisingly well

• Design PQ signatures with proof verification in mind and vice versa?

• Formal verification for the AIR translation

• More details and new ideas for rate-limiting in the paper (eprint:2023/414)

Thank you!

zkdilithium.cloudflareresearch.com

http://zkdilithium.cloudflareresearch.com

