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How are Blind Signatures used? 

        Are you a robot?

σ ∣ Verifyvk(tk, σ) = 1

Proof that I’m human!

Okay I believe you!tk
σ̃ = BlindSig(tk)

Commonly used to authenticate in a privacy preserving manner

Can happen at the beginning of the day!
Colluding server and website can’t track a user!
Alternatives and extensions: [DGST+18, KLOR20, BLOR22] 
Can also use OPRFs/Anonymous Credentials
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Building a PQ Blind Signature

m
c = com(m; r)

σ = Sign(c)

Π = {σ, r, c ∣ Verifyvk(σ, c) ∧ m = open(c; r)}

* Extractor needs to be able to extract from many instances for security reduction

[Fis06]

skFinal signature is a zk proof of knowledge*:


• I know a signature on some commitment 


• I know an opening  of the commitment  to 

c
r c m

Can also get Anonymous Credentials with !m = (att1, …, attn)

How do we instantiate this?
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General purpose proofs are thought to be too big and slow

Prior Work

Caveat: Cannot be used to directly get Anonymous Credentials 

What if we carefully choose signature+proof system and optimize? 
How expensive are the Anonymous Credentials?

Strategy: Move expensive parts “outside” statement. Quite non-trivial!

[AKSY22, dPK22, BLNS22]

“We expect the prover runtime to be at least 1 hour”— [AKSY22]



Our PQ Blind Signature / AC
Client work 

(s)
Verification 

(ms)
Size  
(KB)

Better time ~0.3 32 174

Balanced ~0.6 22 113

Better size ~4.8 20 86

Surprisingly efficient! Sizes comparable to Blind Signatures.
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Dilithium → zkDilithium: 

• Modify to make ZKP “friendly”

• Use ZKP friendly hashes (Poseidon [GKRRM21])

zkSTARK proof system [BBHR18]:

• Match the field with zkDilithium

• Reduce zkDilithium verification to simpler circuits



Some details
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Pipeline of zkSTARKs
fn main() { 
    // imagine complicated logic 
    // ... 
    // ... 
    // ... 
     
    println!("Hello, world!"); 
}

AIR

STARK 
Library

Π
Crucial for performance!

Needs careful hand optimization

Can reduce to “simpler” circuits

Multiple libraries available

We use winterfell

* github.com/facebook/winterfell

http://github.com/facebook/winterfell
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zkDilithium AIR
Figure roughly to scale
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Try it yourself!

zkdilithium.cloudflareresearch.com
github.com/guruvamsi-policharla/zkdilithium

http://zkdilithium.cloudflareresearch.com


Takeaways and Future work

• PQ Anonymous Credentials are semi-practical! 

• Careful tailoring of ZKPs to circuit being proved performs surprisingly well 

• Design PQ signatures with proof verification in mind and vice versa? 

• Formal verification for the AIR translation 

• More details and new ideas for rate-limiting in the paper (eprint:2023/414)



Thank you!

zkdilithium.cloudflareresearch.com

http://zkdilithium.cloudflareresearch.com

