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• For a convex polygon P, several quantities: 

• Area, A. 

• Perimeter, L. 

• Diameter, d. 

• Width, w.
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Quantities of Interest



• P a convex polygon in the plane. 

• Fix number of sides, n. 

• Fix one of area, perimeter, diameter, and 
width, and optimize another. 

• Produces six nontrivial problems. 

• Isoperimetric problem: regular n-gon is the 
unique solution.

Some Problems on Polygons



 • Fix diameter, maximize perimeter.  

 • Reinhardt (1922), Vincze (1950), Larman &    
Tamvakis (1984), Datta (1997).  

 • Fix diameter, maximize width.  

 • Bezdek & Fodor (2000).    

 • Fix perimeter, maximize width.  

 • Audet, Hansen, & Messine (2009).    

 • When n ≠ 2m, precisely the same polygons are  
optimal in all three problems: Reinhardt polygons.

Three Extremal Problems



• Convex planar region bounded by a finite 
number of circular arcs of the same radius. 

• Constant width. 

• Perimeter = πd. 

• If P has diameter d, then there exists a Reuleaux 
polygon with diameter d containing P.

Reuleaux Polygons
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• Reuleaux polygons have an odd number of 
vertices.



Spotting Reuleaux Polygons



 • Equilateral.  

 • If all vertices of P at maximal distance are  
connected, then a cycle occurs (star polygon). 

 • I.e., P may be inscribed in a Reuleaux polygon R     
with the property that every vertex of R is a 
vertex of P.

Reinhardt Polygons

No! Yes!



 • n = 12: Two Reinhardt polygons. 

[4,4,4] [1,2,1,1,2,1,1,2,1]

 • Each interior angle of the star polygon is an integer  
multiple of π/n. 

 • How many Reinhardt polygons are there for fixed n?  

 • Dihedral equivalence classes. 



0 1

1 + e
i(π+πk1/n)

= 1 − e
iπk1/n

1 − e
iπk1/n

+ e
iπ(k1+k2)/n

Requires:
1−e

iπk1/n
+e

iπ(k1+k2)/n
−· · ·+e

iπ(k1+···+kr−1)/n
= 0.

Example: Construct P for [1, 2, 1, 1, 2, 1, 1, 2, 1].



1� ei⇡/12 + e3i⇡/12 � e4i⇡/12 + e5i⇡/12

1� z + z3 � z4 + z5 � z7 + z8 � z9 + z11

= (z3 � z + 1)�24(z).

Example: Construct P for [1, 2, 1, 1, 2, 1, 1, 2, 1].

� e7i⇡/12 + e8i⇡/12 � e9i⇡/12 + e11i⇡/12 = 0.



Cyclotomic Polynomials

�p(z) = 1 + z + · · ·+ zp�1.

�2n(z) = �n(�z).For n > 1 odd:

�1(z) = z � 1,

�2(z) =
z2 � 1

z � 1
= z + 1,

�3(z) =
z3 � 1

z � 1
= z2 + z + 1,

�4(z) =
z4 � 1

(z � 1)(z + 1)
= z2 + 1,

�n(z) =
zn � 1Y

d|n
d 6=n

�d(z)
.



 • A Reinhardt polygon corresponds to a polynomial  
F(z) satisfying: 

 • deg(F) < n.      

 • F(0) = 1.      

 • Nonzero coefficients of F alternate ±1.      

 • Odd number of terms.      

 • F(eiπ/n) = 0, i.e., Φ2n(z) | F(z).     

Equivalent Polynomial Problem



[7,1,1,1,1,7,1,1,1,1,7,1,1,1,1,7,1,1,1,1,7,1,1,1,1]

z54 � z53 + z52 � z51+

z44 � z43 + z42 � z41+

z40 � z33 + z32 � z31+

z30 � z29 + z22 � z21+

z20 � z19 + z18 � z11+

z10 � z9 + z8 � z7 + 1

Example: n = 55

= [(7,1,1,1,1)5].



n = 21: Reinhardt Henicosagons

[(7)3] [(3)7] [(5,1,1)3] [(4,2,1)3]

[(3,3,1)3] [(3,2,2)3] [(3,1,1,1,1)3] [(2,2,1,1,1)3]

[(2,1,2,1,1)3] [(1)21]



Compositions

 • Composition of n = sequence of positive integers  
whose sum is n. 

 • Number of compositions of n is 2n−1.  

 • Partition of n = equivalence class of compositions  
under action by the symmetric group. 

 • Dihedral composition: equivalence class of  
compositions under action by the dihedral group.



[(3,2,2)3]

Reinhardt Polygon Composition of n into 
an odd number of parts

Dihedral

 • Not every dihedral composition with an odd  
number of parts produces a Reinhardt polygon. 

 • Theorem: Every periodic such composition does. 



 • Let E0(n) = number of periodic Reinhardt n-gons.  

 • So E0(n) = number of periodic dihedral  
compositions of n into an odd number of parts.

Theorem: (M., 2011) Let n ≠ 2m.  Then

where

 • E.g., E0(21) = D(7) + D(3) − 1 = 9 + 2 − 1 = 10. 



 • Are all Reinhardt polygons periodic?  

 • Let E1(n) = number of sporadic Reinhardt  
polygons. 

 • E1(n) = 0 for n < 30. 

[7, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1][6, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2][5, 4, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2]



42









n Factorization E E
30 2⋅3⋅5 38 3
42 2⋅3⋅7 329 9
45 3 633 144
60 2 13,464 4392
63 3 25,503 1308
66 2⋅3⋅11 48,179 93
70 2⋅5⋅7 358 27
75 3 338,202 153,660
78 2⋅3⋅13 647,330 315
84 2 2,400,942 161,028
90 2 8,959,826 5,385,768
99 3 65,108,083 192,324

All n < 100 with E1(n) > 0



More n with E1(n) > 0
n Factorization E E

102 2⋅3⋅17 126,355,340 3855
110 2⋅5⋅11 48,208 279
114 2⋅3⋅19 1,808,538,359 13,797
117 3 3,524,338,001 2,587,284
130 2⋅5⋅13 647,359 945
140 2 2,414,204 633,528
154 2⋅7⋅11 48,499 837
170 2⋅5⋅17 126,355,369 11,565
182 2⋅7⋅13 647,650 2835
190 2⋅5⋅19 1,808,538,388 41,391
238 2⋅7⋅17 126,355,660 34,695
286 2⋅11⋅13 695,500 29,295



Results (Hare & M.; 2011, 2013)

Theorem: If n has exactly one odd prime 
divisor, then E1(n) = 0.

Proof: Suppose n = 2apb+1 and F(z) is a 
Reinhardt polynomial for n.

F (z) = �2n(z)f(z), deg(F ) < n,

deg(�2n) = '(2n) = n� n/p,

deg(f) < n/p,

�2n(z) = 1� zn/p + z2n/p � · · ·+ z(p�1)n/p,

f(z) = 1� za1 + za2 � · · ·+ zat .



Results (Hare & M.; 2011, 2013)

Theorem: Let p and q be distinct odd primes.  
Then E1(pq) = 0.

Theorem: Let p and q be distinct odd primes, 
and let r ≥ 2.  Then E1(pqr) > 0.

Theorem: There is exactly one Reinhardt n-
gon precisely when n = p or 2p, for p an odd 
prime.

Question: Is E1(n) ever larger than E0(n)?



Key Fact
 • de Bruijn (1953): If n has distinct prime  

divisors p1, …, pr, then the ideal (Φn(z)) is 
generated by

 • It follows that if F(z) is a Reinhardt polynomial  
for n, with odd prime divisors p1, …, pr, then 
there exist polynomials f1(z), …, fr(z) so that

 • Periodic case: each fi(z) = 0 except one with i>0. 



Constructing Sporadic Polygons

 • Let n = pqr, p and q distinct odd primes, r ≥ 2.  

 • Construct nontrivial f1(z) and f2(z) so:  

 • F(z) = f1(z)Φq(−zpr) + f2(z)Φp(−zqr).    

 • F(0) = 1, deg(F) < n, leading coefficient 1, and    
nonzero coefficients alternate ±1. 

 • Then F(z) corresponds to a Reinhardt polygon.  

 • Verify it is sporadic. 



 • Take f1(z) = 1 − z.  

 • Take f2(z) = a polynomial with coefficient sequence:  
0 A1 B1 A2 B2 ⋯ At Bt C, where 

 • t = (q − 1)/2,    

 • Each Ai and Bi has length r, C has length r − 1,    
each one a sequence over {−1, 0, +1}. 

 • Nonzero entries in each Ai and C alternate ±1,    
beginning and ending with +1. 

 • Nonzero entries in each Bi alternate ∓1,    
beginning and ending with −1.



00+0−+00−+00−0+−00+−00+0−+00−+
+−0000−+0000 −+0000+−0000+−0000

+−+0−+−+−+000−+−000000+00000−+

[7, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1]

A1 = 0+, B1 = 0−, A2 = +0, B2 = 0−, C = +.

n = 30: p = 3, q = 5, r = 2

f1
f2
F



00+0−+00−+00+0−0+0−+00+0−+00−+00−0+−00+−
+−0000−+0000 −+0000+−0000+−0000

+−+0−+−+−+000−+−000000+00000−+
00+0−0+0−+00−0+0−0+−
+−+0−00+−+000−+0−00000+00−+0−+

[6, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2]

f1
f2
F

n = 30: p = 3, q = 5, r = 2
A1 = 0+, B1 = 0−, A2 = +0, B2 = 0−, C = +.A1 = 0+, B1 = 0−, A2 = 0+, B2 = 0−, C = +.



A1 = 0+, B1 = 0−, A2 = 0+, B2 = −0, C = +.

00+0−0+0−+00+0−0+−0+ 00+0−0+0−+00+0−0+−0+
+−+0−00+−+000−+0−00000+00−+0−+

00−0+0−0+−
+−0000−+0000 −+0000+−0000+−0000

00−0+0−+0−
+−+0−0000+000−+0−+−000+00−+−0+

[5, 4, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2]

f1
f2
F

n = 30: p = 3, q = 5, r = 2
A1 = 0+, B1 = 0−, A2 = 0+, B2 = 0−, C = +.



Sporadic Polygons

 • Construction produces a sporadic polygon, unless  
A1 = ⋯ = At = C0 = −B1 = ⋯ = −Bt. 

 • Sporadic polygons constructed: 2q(r−1)−1 − 2r−2.  

 • Even more: 2p − 2 choices for f1(z). 



n Factorization E Ê
30 2⋅3⋅5 3 3
42 2⋅3⋅7 9 9
45 3 144 144
60 2 4392 3492
63 3 1308 1308
66 2⋅3⋅11 93 93
70 2⋅5⋅7 27 27
75 3 153,660 107,400
78 2⋅3⋅13 315 315
84 2 161,028 150,444
90 2 5,385,768 3,371,568
99 3 192,324 192,324

Number Constructed, Ê1(n)



n Factorization E Ê
102 2⋅3⋅17 3855 3855
110 2⋅5⋅11 279 279
114 2⋅3⋅19 13,797 13,797
117 3 2,587,284 2,587,284
130 2⋅5⋅13 945 945
140 2 633,528 478,548
154 2⋅7⋅11 837 837
170 2⋅5⋅17 11,565 11,565
182 2⋅7⋅13 2835 2835
190 2⋅5⋅19 41,391 41,391
238 2⋅7⋅17 34,695 34,695
286 2⋅11⋅13 29,295 29,295

Number Constructed, Ê1(n)



Number of Sporadic Polygons

E0(n) ⇠ p

4n
· 2n/p.

Theorem (Hare & M., 2013): If p < q are odd 
primes, ∊>0, and r is sufficiently large with no 
prime divisor less than p, then

E1(pqr)

E(pqr)
>

2p � 2

p2q + 2p � 2
� ✏.

 • If n has smallest odd prime divisor p then 

 • Let E(n) = E0(n) + E1(n). 

 • n = 15r : > 5.8% sporadic. 



More Recent Work
 • Hare & M., 2014.  

 • Generalized construction for n = pqr, p, q distinct  
odd primes, r ≥ 2.
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then it follows that i+ j and k+ ` have the same parity since p and q are both odd.
Thus, if i ⌘ j mod 2, then either A

i

is matched with (shifted) B
j

, or A
i

with B

j

;
if i 6⌘ j mod 2 then A

i

is paired with (shifted) B
j

, or A
i

with B

j

.
Suppose i, j, k, and ` are all even for a particular block n. We can exhibit the

interaction of the sequences A
i

and B

j

in our construction for this block of size r in
F (z) in the following diagram. Here, +. . . + denotes a sequence in S

o

(k, 1) for the
indicated length k, and -. . . + denotes a selection from S

e

(k,�1) for the required
length. The short box at the beginning of the second line denotes the last element
of the prior B block, which we note will either be 0 or �1.

A

i

r1+1z }| {
+. . . +

r2�1z }| {
0

r3+1z }| {
-. . . +

r4�1z }| {
0

r5+1z }| {
-. . . +

r6�1z }| {
0 . . .

B

j

0
| {z }

r1�1

-. . . +
| {z }

r2+1

0
| {z }

r3�1

-. . . +
| {z }

r4+1

0
| {z }

r5�1

-. . . +
| {z }

r6+1

. . .

(2.3)

We see that nontrivial overlaps may occur only at the boundaries of the all-zero
sub-blocks, and in every case, if two nonzero values coincide, then they have oppo-
site sign. Further, these cancellations cannot disturb the alternating sign pattern
in the sum. The same diagram holds when i, j, k, and ` are all odd, as well as
when i and k are even and j and ` are odd, and when i and k are odd and j and `

are even. The remaining four cases are similar: the corresponding diagram merely
reverses the roles of + and -. It follows that each block of r coe�cients in F (z)
has the required alternating sign pattern. By considering the leading and trailing
nonzero terms of neighboring blocks, and the possible cancellation that may occur
at their boundaries, it follows that this construction always produces a Reinhardt
polynomial. ⇤

2.4. Symmetry of the construction. In our construction, the roles of p and q

are not identical. From p, we construct our A
i,j

, the first of which has the form S

o

and the rest of which have the form S

e

or Z. From q, we construct our B
i,j

, all of
which have the form S

e

or Z. The next result shows that, despite this, the roles of
p and q are symmetric. As a corollary of this, from a computational point of view,
we may assume that p < q.

Lemma 2.1. Let f(z) = f1(z)�q

(�z

pr)+f2(z)�p

(�z

qr) be a Reinhardt polynomial
constructed as above, where f1(z) is composed of blocks A1, A2, . . . , Ap

and f2(z)
is composed of blocks B1, B2, . . . , B

q

. Then there exists a dihedrally equivalent
f

0(z) = f

0
1(z)�p

(�z

qr) + f

0
2(z)�q

(�z

pr) where f

0
1(z) is composed of blocks A

0
1, A

0
2,

. . . , A0
q

and f

0
2(z) is composed of blocks B

0
1, B

0
2, . . . , B

0
p

.

Proof. Let c = (r1, r2, . . . , r2m). Select sub-blocks A

i,j

and B

i,j

for 1  j  2m
as in (2.1) and (2.2) to form the blocks A1, . . . , Ap

and B1, . . . , Bq

. For each A

i

,
notice that the first nonzero term is (�1)i+1

s, and that there are an odd number
of alternating nonzero terms. For the first term of each A

i

, add (�1)is. That is, if
the first term is (�1)i+1

s, then it is changed to 0, and if it is 0 then it is changed to
(�1)is.) Call these modified blocks e

A

i

. We see that each e
A

i

has an even number
of alternating nonzero terms.

For each B

i

, notice that the last nonzero term, if it exists, is (�1)i+1
s, and that

there are an even number of alternating nonzero terms. For the last term of each

 • Form f1(z) from A1, …, Ap; f2(z) from B1, …, Bq;  
each size r. 

 • Choose a composition of r into an even number of  
parts, (r1, r2, …, r2m). 

 • Use the composition to guide selections of the  
blocks.



More Recent Work
 • Results from Hare & M., 2014: 

• As r ! 1,
E1(n)

E0(n)
>

r(2p�1)

p2q�1
(1 + o(1)).

 • E1(n) > E0(n) for almost all n.  

 • First occurs at n = 105. 

• E1(2pq) =
2p�1 � 1

p
· 2

q�1 � 1

q
.



n Factors E Ê Ë
60 2 4392 3492 4392
75 3 153,660 107,400 153,660
84 2 161,028 150,444 161,028
90 2 5,385,768 3,371,568 5,385,768
140 2 633,528 478,548 633,528
105 3⋅5⋅7 ? 126,714,582 211,752,810

Number Constructed, Ë1(n)

 • E0(105) = 245,518,324, E1(105) ≥ 249,597,286.  

 • Some polygons for n = 105 need three terms for  
their construction.



Problems
 • Can the construction methods for sporadic  

Reinhardt polygons be generalized to use three 
distinct odd prime divisors? 

 • E.g., say n = lpqr, l, p, q distinct odd primes,  
r ≥ 1. 

 • Construct nontrivial f1(z), f2(z), f3(z) so  

 F(z) = f1(z)Φq(−zlpr) + f2(z)Φp(−zlqr) +   
f3(z)Φl(−zpqr).



Problems

 • Arbitrary number of odd prime divisors?  

 • Can one find new lower bounds on E1(n)  
for some n? 

 • Are there more nice formulas for E1(n) in  
other cases?



Warm-Ups

 • Determine all Reinhardt polynomials for n = 15  
(say) by searching for suitable multiples of 
Φ2n(z). 

 • Construct some polynomials corresponding to  
sporadic Reinhardt polygons with n = 42 sides.



Possible Avenues
 • Generalize one of the constructions to three- 

term expressions. 

 • Test if a new construction produces additional  
polynomials at n = 105. 

 • Find representations of missing 105-gons as  
three-term sums. 

 • Look for patterns that might indicate a method  
of construction. 

 • New bound for E1(105)?  For E1(n)? 



Resources
 • M., A $1 Problem, Amer. Math. Monthly 113 (2006),  

no. 5, 385-402.  (Expository.) 

 • M., Enumerating isodiametric and isoperimetric  
polygons, J. Combin. Theory Ser. A 118 (2011), no. 6, 
1801-1815.  (Periodic case.) 

 • K. Hare & M., Sporadic Reinhardt polygons, Discrete  
Comput. Geom. 49 (2013), no. 3, 540-557.  (Sporadic 
construction.) 

 • K. Hare & M., Sporadic Reinhardt polygons, II, arXiv: 
1405.5233, 2014.  (More general sporadic construction.)



Good Luck!

U❤


