

I Ceinhardt Polygons

Michael Mossinghoff Davidson College

Introduction to Topics Summer@ICERM 2014 Brown University

Quantities of Interest

- For a convex polygon *P*, several quantities:
- Area, *A*.
- Perimeter, *L*.
- Diameter, *d*.
- Width, *w*.

Some Problems on Polygons

- *P* a convex polygon in the plane.
- Fix number of sides, *n.*
- Fix one of area, perimeter, diameter, and width, and optimize another.
- Produces six nontrivial problems.
- Isoperimetric problem: regular *n*-gon is the unique solution.

Three Extremal Problems

- *Fix diameter, maximize perimeter*.
	- Reinhardt (1922), Vincze (1950), Larman & Tamvakis (1984), Datta (1997).
- *Fix diameter, maximize width*.
	- Bezdek & Fodor (2000).
- *Fix perimeter, maximize width*.

- Audet, Hansen, & Messine (2009).
- When $n \neq 2^m$, precisely the same polygons are optimal in all three problems: *Reinhardt polygons*.

Reuleaux Polygons

x

L

y

- Convex planar region bounded by a finite number of circular arcs of the same radius.
- Constant width.
- Perimeter $= \pi d$.
- If *P* has diameter *d*, then there exists a Reuleaux polygon with diameter *d* containing *P*.

x

L

y

vertices.

Spotting Reuleaux Polygons

Reinhardt Polygons

- Equilateral.
- If all vertices of *P* at maximal distance are connected, then a cycle occurs (star polygon).
	- I.e., *P* may be inscribed in a Reuleaux polygon *R* with the property that every vertex of *R* is a vertex of *P*.

• $n = 12$: Two Reinhardt polygons.

- Each interior angle of the star polygon is an integer multiple of π/n .
- How many Reinhardt polygons are there for fixed *n*?
- Dihedral equivalence classes.

Example: Construct *P* for [1*,* 2*,* 1*,* 1*,* 2*,* 1*,* 1*,* 2*,* 1].

Requires:

 $1-e^{i\pi k_1/n}+e^{i\pi(k_1+k_2)/n}-\cdots+e^{i\pi(k_1+\cdots+k_{r-1})/n}=0.$

Example: Construct P for $[1, 2, 1, 1, 2, 1, 1, 2, 1].$

 $1 - e^{i\pi/12} + e^{3i\pi/12} - e^{4i\pi/12} + e^{5i\pi/12}$ $- e^{7i\pi/12} + e^{8i\pi/12} - e^{9i\pi/12} + e^{11i\pi/12} = 0.$ $1-z+z^3-z^4+z^5-z^7+z^8-z^9+z^{11}$ $=(z^3-z+1)\Phi_{24}(z).$

Cyclotomic Polynomials

$$
\Phi_n(z) = \frac{z^n - 1}{\prod_{\substack{d|n \\ d \neq n}} \Phi_d(z)}.
$$

$$
\Phi_1(z) = z - 1,
$$

\n
$$
\Phi_2(z) = \frac{z^2 - 1}{z - 1} = z + 1,
$$

\n
$$
\Phi_3(z) = \frac{z^3 - 1}{z - 1} = z^2 + z + 1,
$$

\n
$$
\Phi_4(z) = \frac{z^4 - 1}{(z - 1)(z + 1)} = z^2 + 1,
$$

\n
$$
\Phi_p(z) = 1 + z + \dots + z^{p-1}.
$$

For $n > 1$ odd: $\Phi_{2n}(z) = \Phi_n(-z)$.

Equivalent Polynomial Problem

- A Reinhardt polygon corresponds to a polynomial *F*(*z*) satisfying:
	- deg $(F) < n$.
	- $F(0) = 1$.
	- Nonzero coefficients of F alternate ± 1 .
	- Odd number of terms.
	- $F(e^{i\pi/n}) = 0$, i.e., $\Phi_{2n}(z) | F(z)$.

Example: $n = 55$

 $z^{54} - z^{53} + z^{52} - z^{51} +$ $z^{44} - z^{43} + z^{42} - z^{41} +$ $z^{40} - z^{33} + z^{32} - z^{31} +$ $z^{30} - z^{29} + z^{22} - z^{21} +$ $z^{20} - z^{19} + z^{18} - z^{11} +$ $z^{10} - z^9 + z^8 - z^7 + 1$

 $= [(7,1,1,1,1)^5].$

$n = 21$: Reinhardt Henicosagons

Compositions

- *Composition* of $n =$ sequence of positive integers whose sum is *n*.
- Number of compositions of *n* is 2*ⁿ−*1.
- *Partition* of $n =$ equivalence class of compositions under action by the symmetric group.
- *Dihedral composition*: equivalence class of compositions under action by the dihedral group.

Dihedral

Reinhardt Polygon Composition of *n* into an odd number of parts

- Not every dihedral composition with an odd number of parts produces a Reinhardt polygon.
- **Theorem:** Every *periodic* such composition does.
- Let $E_0(n)$ = number of *periodic* Reinhardt *n*-gons.
- So $E_0(n)$ = number of periodic dihedral compositions of *n* into an odd number of parts.

Theorem: (M., 2011) Let $n \neq 2^m$. Then

$$
E_0(n) = \sum_{\substack{d \mid n \\ d>1}} \mu(2d) D(n/d),
$$

where

$$
D(m) = 2^{\lfloor (m-3)/2 \rfloor} + \frac{1}{4m} \sum_{\substack{d \mid m \\ 2 \nmid d}} 2^{m/d} \varphi(d).
$$

• E.g., $E_0(21) = D(7) + D(3) - 1 = 9 + 2 - 1 = 10$.

- Are all Reinhardt polygons periodic?
- Let *E*1(*n*) = number of *sporadic* Reinhardt polygons.
- $E_1(n) = 0$ for $n < 30$.

 $[**8**, **6**, 1, **2**, 1, 1, **4**, **3**, 2, 1, **1**, 4, 1, 2]$

A ll $n < 100$ with $E_1(n) > 0$

M ore n with $E_1(n) > 0$

Results (Hare & M.; 2011, 2013)

Theorem: If *n* has exactly one odd prime divisor, then $E_1(n) = 0$.

Proof: Suppose $n = 2^a p^{b+1}$ and $F(z)$ is a Reinhardt polynomial for *n*.

 $F(z) = \Phi_{2n}(z) f(z), \deg(F) < n$, $\deg(\Phi_{2n}) = \varphi(2n) = n - n/p,$ $deg(f) < n/p$, $\Phi_{2n}(z)=1-z^{n/p}+z^{2n/p}-\cdots+z^{(p-1)n/p},$ $f(z) = 1 - z^{a_1} + z^{a_2} - \cdots + z^{a_t}$.

Results (Hare & M.; 2011, 2013)

Theorem: There is exactly one Reinhardt *n*gon precisely when $n = p$ or $2p$, for p an odd prime.

Theorem: Let *p* and *q* be distinct odd primes. Then $E_1(pq) = 0$.

Theorem: Let *p* and *q* be distinct odd primes, and let $r \geq 2$. Then $E_1(pqr) > 0$.

Question: Is $E_1(n)$ ever larger than $E_0(n)$?

Key Fact

- de Bruijn (1953): If *n* has distinct prime divisors $p_1, ..., p_r$, then the ideal $(\Phi_n(z))$ is generated by $\{\Phi_{p_i}(z^{n/p_i}): 1 \leq i \leq r\}.$
- It follows that if *F*(*z*) is a Reinhardt polynomial for *n*, with odd prime divisors *p*1, …, *pr*, then there exist polynomials $f_1(z)$, ..., $f_r(z)$ so that

$$
F(z) = f_0(z)(z^n + 1) + \sum_{i=1} f_i(z) \Phi_{p_i}(-z^{n/p_i}).
$$

• Periodic case: each $f_i(z) = 0$ except one with $i > 0$.

Constructing Sporadic Polygons

- Let $n = pqr$, p and q distinct odd primes, $r \geq 2$.
- Construct nontrivial $f_1(z)$ and $f_2(z)$ so:
	- $F(z) = f_1(z)\Phi_q(-z^{pr}) + f_2(z)\Phi_p(-z^{qr}).$
	- $F(0) = 1$, $deg(F) < n$, leading coefficient 1, and nonzero coefficients alternate ± 1 .
- Then *F*(*z*) corresponds to a Reinhardt polygon. • Verify it is sporadic.
- Take $f_1(z) = 1 z$.
- Take $f_2(z) = a$ polynomial with coefficient sequence: 0 A_1 B_1 A_2 B_2 \cdots A_t B_t C , where
	- $t = (q-1)/2$,
	- Each A_i and B_i has length r , C has length $r-1$, each one a sequence over $\{-1, 0, +1\}.$
	- Nonzero entries in each A_i and C alternate ± 1 , beginning and ending with $+1$.
	- Nonzero entries in each *Bi* alternate ∓1, beginning and ending with -1 .

 $[7, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1]$

 $[6, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 2]$

 $[5, 4, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2]$

Sporadic Polygons

- Construction produces a sporadic polygon, unless $A_1 = \cdots = A_t = C0 = -B_1 = \cdots = -B_t$.
- Sporadic polygons constructed: 2*^q*(*r*−1)−¹ − 2*^r*[−]2.
- Even more: $2^p 2$ choices for $f_1(z)$.

Number Constructed, *Ê***1(***n***)**

Number Constructed, *Ê***1(***n***)**

Number of Sporadic Polygons

• If *n* has smallest odd prime divisor *p* then

$$
E_0(n) \sim \frac{p}{4n} \cdot 2^{n/p}.
$$

• Let $E(n) = E_0(n) + E_1(n)$.

Theorem (Hare & M., 2013): If *p* < *q* are odd primes, $\epsilon > 0$, and *r* is sufficiently large with no prime divisor less than *p*, then

$$
\frac{E_1(pqr)}{E(pqr)} > \frac{2^p - 2}{p2^q + 2^p - 2} - \epsilon.
$$

• $n = 15r : > 5.8\%$ sporadic.

More Recent Work

- Hare & M., 2014.
- Generalized construction for $n = pqr$, p , q distinct odd primes, $r \geq 2$.
- each size *r*. • Form $f_1(z)$ from $A_1, ..., A_p; f_2(z)$ from $B_1, ..., B_q;$
- \bullet Choose a composition of *r* into an even number of $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$. $\frac{1$ $parts, (r_1, r_2, ..., r_{2m}).$
- Use the composition to guide selections of the indicated length *k*, and -... + denotes a selection from *Se*(*k,* 1) for the required blocks. • Use the composition to guide selections of the

More Recent Work

• Results from Hare & M., 2014:

• As
$$
r \to \infty
$$
, $\frac{E_1(n)}{E_0(n)} > \frac{r(2^{p-1})}{p2^{q-1}}(1+o(1)).$

- $E_1(n) > E_0(n)$ for almost all *n*.
- First occurs at $n = 105$.

•
$$
E_1(2pq) = \frac{2^{p-1} - 1}{p} \cdot \frac{2^{q-1} - 1}{q}
$$

Number Constructed, $E_1(n)$

- $E_0(105) = 245,518,324, E_1(105) \ge 249,597,286.$
- Some polygons for $n = 105$ need three terms for their construction.

Problems

- Can the construction methods for sporadic Reinhardt polygons be generalized to use three distinct odd prime divisors?
- E.g., say $n = l pqr$, *l*, p , q distinct odd primes, *r* **≥** 1.
- Construct nontrivial $f_1(z)$, $f_2(z)$, $f_3(z)$ so $F(z) = f_1(z)\Phi_q(-z^{lpr}) + f_2(z)\Phi_p(-z^{lqr}) +$ $f_3(z)\Phi_l(-z^{pqr})$.

Problems

- Arbitrary number of odd prime divisors?
- Can one find new lower bounds on *E*1(*n*) for some *n*?
- Are there more nice formulas for *E*1(*n*) in other cases?

Warm-Ups

- Determine all Reinhardt polynomials for $n = 15$ (say) by searching for suitable multiples of $\Phi_{2n}(z)$.
- Construct some polynomials corresponding to sporadic Reinhardt polygons with $n = 42$ sides.

Possible Avenues

- Generalize one of the constructions to threeterm expressions.
- Test if a new construction produces additional polynomials at $n = 105$.
- Find representations of missing 105-gons as three-term sums.
- Look for patterns that might indicate a method of construction.
- New bound for $E_1(105)$? For $E_1(n)$?

Resources

- M., *A \$1 Problem*, Amer. Math. Monthly **113** (2006), no. 5, 385-402. (Expository.)
- M., *Enumerating isodiametric and isoperimetric polygons*, J. Combin. Theory Ser. A **118** (2011), no. 6, 1801-1815. (Periodic case.)
- K. Hare & M., *Sporadic Reinhardt polygons*, Discrete Comput. Geom. **49** (2013), no. 3, 540-557. (Sporadic construction.)
- K. Hare & M., *Sporadic Reinhardt polygons, II*, arXiv: 1405.5233, 2014. (More general sporadic construction.)

Good Luck!

