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Abstract—Current state of practice dictates that software
developers host their projects online and employ project manage-
ment systems to monitor the development of product features,
keep track of bugs, and prioritize task assignments. The data
stored in these systems, if their semantics are extracted effectively,
can be used to answer several interesting questions, such as
finding who is the most suitable developer for a task, what the
priority of a task should be, or even what is the actual workload of
the software team. To support researchers and practitioners that
work towards these directions, we have built a system that crawls
data from the Jira management system, performs topic modeling
on the data to extract useful semantics and stores them in a
practical database schema. We have used our system to retrieve
and analyze 656 projects of the Apache Software Foundation,
comprising data from more than a million Jira issues.

Index Terms—Mining Software Repositories, Task Manage-
ment, Jira Issues, Topic Modeling, BERT

I. INTRODUCTION

The introduction of the open-source paradigm and the
evolution of online services has lately transformed software
development into a highly collaborative process. More and
more teams nowadays use online facilities both to host their
code and software artefacts, as well as to effectively monitor
the software development process. Indicatively, GitHub, at
the time of writing, hosts more than 200 million repositories
from more than 65 million developers1. Effective collabora-
tion, however, is not only limited to developing source code
artefacts, but is also required over multiple axes, including
(but not limited to) documentation writing, feature design and
discussion, bug resolution, etc.

As a result, several issue tracking systems and project man-
agement services are deployed online to allow effective moni-
toring of the software development process. This collaborative
paradigm is quite popular in contemporary software teams, and
is also especially preferred by large open-source organizations,
such as the Eclipse Foundation and the Mozilla Foundation
(that both use Bugzilla2), or the Apache Software Founda-
tion (that uses Jira3). When having multiple contributors and
multiple projects, these project management services provide
effective ways to keep track of tasks, prioritize and assign
new features, resolve bugs, and set deadlines for crafting new
releases.

Apart from monitoring and auditing the progress of software
projects, the data recorded in these systems can also be har-

1https://github.com/
2https://www.bugzilla.org/
3https://www.atlassian.com/software/jira

nessed to confront multiple challenges. For instance, extracting
and mining this type of data can be useful to automatically
determine the importance and/or priority of new tasks [1]–
[3] or the severity of bugs [4]–[8], to recommend the most
suitable developer for fixing a newly found bug [9]–[14], to
extract the roles and behavior of different contributors [15]–
[19], or even to quantify the software development process
and investigate how the productivity of a team is influenced
by the current workload [20]–[23]. Lately, these challenges are
widely confronted using semantics-enabled methods, such as
topic modeling [24]–[27], word embeddings [13], [28], or even
more complex models based on knowledge-extraction network
architectures [29].

Concerning the data sources employed by the aforemen-
tioned approaches, several of them employ a limited number
of projects extracted from individual Bugzilla/Jira installations
[1]–[5], [8], [10]–[12]. And although there are certain datasets
that extract issues from multiple projects [30]–[32], they are
not always practical and/or up to date (e.g. the Jira Repository
Dataset [30] is tailored to sentiment analysis and is last
updated in 2016), while they are often focused on the textual
information of issues [32] or even their connection with
commits [31], without incorporating semantics.

In this context, we have built a system that crawls the
Jira infrastructure of the Apache Software Foundation4, ana-
lyzes the data of all projects and stores them in a database
schema suitable for answering multiple questions relevant
to the software development process. Our analysis further
includes the extraction of topics using the BERTopic topic
modeling technique [33], to semantically enrich the issue
data. The dataset comprises more than a million issues from
approximately 650 projects, while our issue retrieval tool
supports incremental updates, ensuring that the data are always
up-to-date. Moreover, the dataset that we extracted is available
as a MongoDB dump, thus allowing easy set-up and advanced
querying capabilities.

II. ARCHITECTURE AND TOOLS

Fig. 1 depicts the architecture of our platform, which has
two modules, the Jira Apache Downloader and the Jira Topic
Extractor. These tools, which are analyzed in the following
paragraphs, are available online5 to allow full reproducibility.

4https://issues.apache.org/jira
5The web addresses of the Jira Apache Downloader and the Jira Topic

Extractor are https://github.com/AuthEceSoftEng/jira-apache-downloader and
https://github.com/AuthEceSoftEng/jira-topic-extractor, respectively.

https://github.com/
https://www.bugzilla.org/
https://www.atlassian.com/software/jira
https://issues.apache.org/jira
https://github.com/AuthEceSoftEng/jira-apache-downloader
https://github.com/AuthEceSoftEng/jira-topic-extractor
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Fig. 1. Architecture overview of the system.

A. Jira Apache Downloader

The Jira Apache Downloader comprises two interoperating
components, the Data Downloader and the Data Analyzer.
The Data Downloader uses a token as credentials for the Jira
installation and calls the Jira server API in order to retrieve the
issues of a given project. Version 2 of the Jira API is what we
may call issue-centric, meaning that issue objects practically
contain all available information, i.e. contributors, projects,
comments, etc. are all included in the issues. The advantage
of this solution is that documents are self-contained, however
there is a high degree of redundancy and the information is
not efficiently indexed.

As a result, we developed the Data Analyzer component,
which processes the retrieved issues and builds one collection
in a Mongo database for each of the Jira objects shown at
the left of Fig. 1. In specific, for each issue, we extract the
users, the events, the comments, and the worklogs, we populate
the corresponding collections and create links between the
documents. For instance, for any user found in issues, events or
worklogs (i.e. reporter or assignee in issues, author in events,
etc.), we create a user document in the database, and connect
it to the issue (or event or comment or worklog) via the user
id. Furthermore, the id of the originating issue and the name of
the project are stored and indexed in all documents, to allow
fast retrieval of the data of a project or of an issue.

Before posting a new document, we also check whether it
already exists (and if it has to be updated) and also process the
document fields in order to make sure that they are correctly
formatted (e.g. converting string dates to date objects). When
receiving a request to download the issues of a project, the
database is first queried to determine whether the project
already exists. If the project already exists, then we update
only the documents that have been changed since the last time
that we crawled the project.

B. Jira Topic Extractor

Upon retrieving the Jira issues and storing them in Mongo,
the next step is to extract useful semantics from them. To
do so, we have used BERTopic [33], a topic modeling
technique that employs transformers and class-based TF-
IDF to extract semantic topics from a corpus of documents.
One of the basic advantages of this topic modeling method

against conventional models like LDA [34] is the usage of
powerful BERT-based [35] language models. These models
generate contextual representations for the documents and
enable BERTopic to identify semantic relationships between
them, while conventional ones are based on bag-of-words rep-
resentations, which are inherently less effective for extracting
semantics. BERTopic is executed for each project in 3 steps.
First, for every issue of the project, we extract its title (i.e. the
summary field) and description, concatenate them and give
them as input to BERTopic, which uses a BERT model to
create an embedding representation for each issue. The next
step is to reduce the dimensionality of these embeddings and
create clusters of semantically similar documents. And, finally,
using c-TF-IDF, a class-based TF-IDF procedure, BERTopic
calculates the importance of specific terms in the clusters and
extracts topic representations.

We use the issues of 497 projects that have an adequate
number of issues to implement BERTopic (which, in most
cases, required at least 100 issues) and extract different topics
from them. The BERT model we use for the embeddings
generation is SBERT [36], which is the default option chosen
by BERTopic. Furthermore, HDBSCAN [37] is used for clus-
tering, while UMAP [38] is used for dimensionality reduction.
The number of topics extracted is selected automatically by
BERTopic, while at the end of execution any topics with
high similarity according to their c-TF-IDF representations are
merged by using HDBSCAN again. The outcome of applying
BERTopic to the issues of each project includes the topic
representations, the top terms per topic, and the distribution
between topics and issues, i.e. the probabilities for every issue
of the project to belong to each extracted topic.

III. DATASET CONSTRUCTION AND USAGE

The schema designed for the semantically-enriched Jira
issue tracking data is shown in Figure 2. The issues collection
involves all elements stored by Jira for a specific issue, includ-
ing e.g. the issue title, its description, its creation/update dates,
etc. Furthermore, it includes a field “projectname”, which
connects this issue to the corresponding project (collection
projects) similarly to a foreign key in relational database
terms. Note also that both this and all other foreign-key like
connections are indexed, allowing for fast queries over the
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Fig. 2. Schema of the MongoDB used to store Jira projects (not all connections are shown).

data. The reporter and the assignee of the issue are connected
to the users collection, therefore reducing the redundancy of
adding all their fields (e.g. name, avatar) to each issue. Users
are also connected to projects with a many-to-many relation.

Concerning the events, comments, and worklogs collections,
all three are connected to a specific issue as well as to a
specific project. The events involve the changes performed in
an issue; apart from the dates and the people involved, each
event stores an array of “items”, i.e. modifications performed
in the issue (e.g. a summary update or a status change).
The comments also have created/updated dates and authors.
Finally, the worklogs allow Jira contributors to keep track of
how much work they have done for a specific issue. So, they
include the relevant fields for the ids, the dates, the authors,
and the time spent for the corresponding action.

The topics collection involves all the topics extracted from
the issues of each project and the relevant information about
them. Specifically, for each topic we store its name, its top
terms as well as the ‘projectname’ field which refers to the
project this topic belongs to. Every topic also has an array
of probabilities which stores the probability of each issue to
belong to this topic (i.e. each element contains the id of an

issue and the corresponding probability). Probabilities lower
than a 10−10 threshold are dropped for performance reasons.
Thus, one can easily get all the topics related to a specific
project and gain insight as to the challenges confronted by it.

Fig. 3 depicts the topics extracted from the issues of the
FTPSERVER project. For each topic we may see the 2D
embedding representations of the assigned issues, generated
with dimensionality reduction using UMAP, in different colors.
The topics seem to be well defined; for instance, topic 1 is
mostly related to server connections, which is a rather expected
function of an ftp server. Similarly, we may identify topics that
are relevant to the Maven build system (topic 2), the Spring
Framework (topic 6), etc. Interestingly, we see that certain
topics are more cohesive, as they may relate to a very specific
component (e.g. topic 7, which concerns data I/O and sockets),
while others may be more generic as they are used throughout
the project (e.g. topic 0, which relates to file management).

Finally, our dataset is available online in the form of a
MongoDB data dump and a folder with our trained models6.
Certain statistics are shown in Table I.

6https://doi.org/10.5281/zenodo.5665895

https://doi.org/10.5281/zenodo.5665895


Fig. 3. Example of topics extracted by the FTPSERVER project, where each topic is represented with a different color.

TABLE I
DATASET STATISTICS.

Metric Value

Number of Projects 656
Number of Users 147610
Number of Issues 1013964
Number of Comments 4639882
Number of Events 7503864
Number of Worklogs 414893
Number of Topics 10510

Data Size 20.64GB (5.67GB DB-compressed)

IV. IMPACT AND RESEARCH DIRECTIONS

Our dataset can be used to confront several challenges in
current research. For instance, it can be employed for the
problem of automated bug triaging. Determining the most
suitable developer for undertaking a task or fixing a newly
found bug has been extensively researched, and is typically
considered as a challenge that can benefit from the incorpora-
tion of semantics [13], [28], [29], and even specifically from
the extraction of topics [24]–[27]. For instance, contemporary
methods extract topics from issues, and when a new issue
arrives, they first determine its topic to find similar issues, and
subsequently use their features to determine the most suitable
developer for fixing it. Other similar challenges that can be
addressed include predicting the priority of issues [1], [2] or
the severity of bugs [4]–[8]. Furthermore, our dataset is not
necessarily limited to bugs, as it comprises issues that may
describe features, requirements, or even documentation. As a
result, it could be used in a broader context, e.g. for feature
assignment [14] or task importance prediction [3].

Another interesting research direction is that of automated
role (or behavior) extraction [17]–[19]. Approaches in this
field often apply semantic analysis on projects to determine the
areas of projects and/or components that are associated with
different developers [15]. Since the issues of our dataset are
also assigned to components, such an analysis would be pos-
sible. Furthermore, given the information from the extracted
topics, one could create personalized developer profiles that
would describe the area of expertise for each developer [16] in
comprehensible terms. Finally, since our dataset includes also
events and worklogs from different projects, it could even be
used for quantifying the productivity of software development
teams with respect to the current workload [20], [21].

V. CONCLUSIONS

Mining project management data from issue tracking sys-
tems can offer useful insights for researchers and practitioners
in software engineering. In this work, we have worked towards
this direction by presenting a system and a dataset of issues ex-
tracted from the Jira tracker of Apache. Furthermore, we have
used topic modeling to extract semantic information that can
be used along with the contribution information of issues in
order to address multiple research challenges. As future work,
we will focus on comparing BERTopic with other methods that
extract semantics from issues as well as on demonstrating how
these semantics can increase the effectiveness of bug triaging
and bug priority/severity methods. Finally, we plan to augment
our dataset by including also source code/commit information,
drawn by the GitBox and GitHub repository services of the
Apache Software Foundation, to further enhance traceability
and support interesting research directions.
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