Manuel Daldin

Manuel Daldin

Latina, Lazio, Italia
498 follower 497 collegamenti

Attività

Iscriviti ora per vedere tutta l’attività

Esperienza

  • Grafico IRBM

    IRBM

    Pomezia, Latium, Italy

  • -

    Pomezia, Latium, Italy

  • -

    Pomezia

  • -

    Roma, Italia

Formazione

  • Grafico

    -

    In-depth knowledge of current methodologies applied to the production, control and
    distribution of medicines; cGMP, industrial management systems, evaluation of production
    costs and regulation on registration procedures of production and circulation of drugs.

  • -

    Attività e associazioni:Study of defense responses of model plant Arabidopsis thaliana, particularly of signaling components endogenous elicitors mediated.

    Master’s dissertation title: “Role of PCaP1, Ca-binding and membrane associated protein,
    in oligogalacturonides mediated signaling in Arabidopsis thaliana”.

Pubblicazioni

  • Identification and Optimization of RNA-Splicing Modulators as Huntingtin Protein-Lowering Agents for the Treatment of Huntington’s Disease

    Journal of Medicinal Chemistry

    Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49−50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein…

    Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49−50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNSpenetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49−50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTTsplicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

    Vedi pubblicazione
  • Salivary Huntingtin protein is uniquely associated with clinical features of Huntington's disease

    Scientific Reports

    Measuring Huntingtin (HTT) protein in peripheral cells represents an essential step in biomarker discovery for Huntington's Disease (HD), however to date, investigations into the salivary expression of HTT has been lacking. In the current study, we quantified total HTT (tHTT) and mutant HTT (mHTT) protein in matched blood and saliva samples using single molecule counting (SMC) immunoassays: 2B7-D7F7 (tHTT) and 2B7-MW1 (mHTT). Matched samples, and clinical data, were collected from 95 subjects:…

    Measuring Huntingtin (HTT) protein in peripheral cells represents an essential step in biomarker discovery for Huntington's Disease (HD), however to date, investigations into the salivary expression of HTT has been lacking. In the current study, we quantified total HTT (tHTT) and mutant HTT (mHTT) protein in matched blood and saliva samples using single molecule counting (SMC) immunoassays: 2B7-D7F7 (tHTT) and 2B7-MW1 (mHTT). Matched samples, and clinical data, were collected from 95 subjects: n = 19 manifest HD, n = 34 premanifest HD (PM), and n = 42 normal controls (NC). Total HTT and mHTT levels were not correlated in blood and saliva. Plasma tHTT was significantly associated with age, and participant sex; whereas salivary mHTT was significantly correlated with age, CAG repeat length and CAP score. Plasma and salivary tHTT did not differ across cohorts. Salivary and plasma mHTT were significantly increased in PM compared to NC; salivary mHTT was also significantly increased in HD compared to NC. Only salivary tHTT and mHTT were significantly correlated with clinical measures. Salivary HTT is uniquely associated with clinical measures of HD and offers significant promise as a relevant, non-invasive HD biomarker. Its use could be immediately implemented into both translational and clinical research applications.

    Vedi pubblicazione
  • Quantifying Huntingtin Protein in Human Cerebrospinal Fluid Using a Novel Polyglutamine Length-Independent Assay

    Journal of Huntington's Disease

    A novel ultrasensitive SMC immunoassay was developed to quantify HTT protein in a polyglutamine length-independent manner and shown to measure HTT in both control and HD participant CSF samples. We validate the selectivity and specificity of the readout using biochemical and molecular biology tools, and we undertook a preliminary analytical qualification of this assay to enable its clinical use. We also used this novel assay, along with the previously described mHTT assay, to analyze CSF from…

    A novel ultrasensitive SMC immunoassay was developed to quantify HTT protein in a polyglutamine length-independent manner and shown to measure HTT in both control and HD participant CSF samples. We validate the selectivity and specificity of the readout using biochemical and molecular biology tools, and we undertook a preliminary analytical qualification of this assay to enable its clinical use. We also used this novel assay, along with the previously described mHTT assay, to analyze CSF from control and HD participants. The results of this preliminary set suggests that correlation is present between mHTT and the polyglutamine length-independent HTT levels in human CSF.

    Vedi pubblicazione
  • Analysis of mutant and total huntingtin expression in Huntington's disease murine models

    Scientific Reports

    Huntington's disease (HD) is a monogenetic neurodegenerative disorder that is caused by the expansion of a polyglutamine region within the huntingtin (HTT) protein, but there is still an incomplete understanding of the molecular mechanisms that drive pathology. Expression of the mutant form of HTT is a key aspect of diseased tissues, and the most promising therapeutic approaches aim to lower expanded HTT levels. Consequently, the investigation of HTT expression in time and in multiple tissues…

    Huntington's disease (HD) is a monogenetic neurodegenerative disorder that is caused by the expansion of a polyglutamine region within the huntingtin (HTT) protein, but there is still an incomplete understanding of the molecular mechanisms that drive pathology. Expression of the mutant form of HTT is a key aspect of diseased tissues, and the most promising therapeutic approaches aim to lower expanded HTT levels. Consequently, the investigation of HTT expression in time and in multiple tissues, with assays that accurately quantify expanded and non-expanded HTT, are required to delineate HTT homeostasis and to best design and interpret pharmacodynamic readouts for HTT lowering therapeutics. Here we evaluate mutant polyglutamine-expanded (mHTT) and polyglutamine-independent HTT specific immunoassays for validation in human HD and control fibroblasts and use to elucidate the CSF/brain and peripheral tissue expression of HTT in preclinical HD models.

    Vedi pubblicazione
  • Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay.

    Journal of Huntington's Disease

    BACKGROUND:
    The measurement of disease-relevant biomarkers has become a major component of clinical trial design, but in the absence of rigorous clinical and analytical validation of detection methodology, interpretation of results may be misleading. In Huntington's disease (HD), measurement of the concentration of mutant huntingtin protein (mHTT) in cerebrospinal fluid (CSF) of patients may serve as both a disease progression biomarker and a pharmacodynamic readout for HTT-lowering…

    BACKGROUND:
    The measurement of disease-relevant biomarkers has become a major component of clinical trial design, but in the absence of rigorous clinical and analytical validation of detection methodology, interpretation of results may be misleading. In Huntington's disease (HD), measurement of the concentration of mutant huntingtin protein (mHTT) in cerebrospinal fluid (CSF) of patients may serve as both a disease progression biomarker and a pharmacodynamic readout for HTT-lowering therapeutic approaches. We recently published the quantification of mHTT levels in HD patient CSF by a novel ultrasensitive immunoassay-based technology and here analytically validate it for use.
    OBJECTIVE:
    This work aims to analytically and clinically validate our ultrasensitive assay for mHTT measurement in human HD CSF, for application as a pharmacodynamic biomarker of CNS mHTT lowering in clinical trials.
    METHODS:
    The single molecule counting (SMC) assay is an ultrasensitive bead-based immunoassay where upon specific recognition, dye-labeled antibodies are excited by a confocal laser and emit fluorescent light as a readout. The detection of mHTT by this technology was clinically validated following established Food and Drug Administration and European Medicine Agency guidelines.
    RESULTS:
    The SMC assay was demonstrated to be accurate, precise, specific, and reproducible. While no matrix influence was detected, a list of interfering substances was compiled as a guideline for proper collection and storage of patient CSF samples. In addition, a set of recommendations on result interpretation is provided.
    CONCLUSIONS:
    This SMC assay is a robust and ultrasensitive method for the relative quantification of mHTT in human CSF.

    Vedi pubblicazione
  • Polyglutamine expansion affects huntingtin conformation in multiple Huntington’s disease models

    Scientific Reports

    Conformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington's disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment…

    Conformational changes in disease-associated or mutant proteins represent a key pathological aspect of Huntington's disease (HD) and other protein misfolding diseases. Using immunoassays and biophysical approaches, we and others have recently reported that polyglutamine expansion in purified or recombinantly expressed huntingtin (HTT) proteins affects their conformational properties in a manner dependent on both polyglutamine repeat length and temperature but independent of HTT protein fragment length. These findings are consistent with the HD mutation affecting structural aspects of the amino-terminal region of the protein, and support the concept that modulating mutant HTT conformation might provide novel therapeutic and diagnostic opportunities. We now report that the same conformational TR-FRET based immunoassay detects polyglutamine- and temperature-dependent changes on the endogenously expressed HTT protein in peripheral tissues and post-mortem HD brain tissue, as well as in tissues from HD animal models. We also find that these temperature- and polyglutamine-dependent conformational changes are sensitive to bona-fide phosphorylation on S13 and S16 within the N17 domain of HTT. These findings provide key clinical and preclinical relevance to the conformational immunoassay, and provide supportive evidence for its application in the development of therapeutics aimed at correcting the conformation of polyglutamine-expanded proteins as well as the pharmacodynamics readouts to monitor their efficacy in preclinical models and in HD patients.

    Vedi pubblicazione
  • Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins.

    Biochemical and Biophysical Research Communications

    We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar…

    We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders.

    Vedi pubblicazione
  • Polyglutamine- and temperature-dependent conformational rigidity in mutant huntingtin revealed by immunoassays and circular dichroism spectroscopy.

    PLoS One

    In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational…

    In Huntington's disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays.

    Vedi pubblicazione

Lingue

  • Italiano

    Conoscenza madrelingua o bilingue

  • Inglese

    Conoscenza professionale

Altre attività di Manuel

Visualizza il profilo completo di Manuel

  • Scoprire le conoscenze che avete in comune
  • Farti presentare
  • Contattare Manuel direttamente
Iscriviti per visualizzare il profilo completo

Altri profili simili

Aggiungi nuove competenze con questi corsi