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In many centralized matching markets, agents’ property rights over objects are derived from a
coarse transformation of an underlying score. Prominent examples include the distance-based system
employed by Boston Public Schools, where students who lived within a certain radius of each school were
prioritized over all others, and the income-based system used in New York public housing allocation, where
eligibility is determined by a sharp income cutoff. Motivated by this, we study how to optimally coarsen an
underlying score. Our main result is that, for any continuous objective function and under stable matching
mechanisms, the optimal design can be attained by splitting agents into at most three indifference classes
for each object. We provide insights into this design problem in three applications: distance-based scores
in Boston Public Schools, test-based scores for Chicago exam schools, and income-based scores in New
York public housing allocation.
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1. INTRODUCTION

In recent years, across countries such as the U.S., England, and Chile, ever more school districts,
national university admissions boards and public authorities have adopted centralized matching
mechanisms to allocate objects to agents. In many such markets, the property rights that agents
receive over such objects are given by priorities derived from various criteria such as academic
attainment, income or distance. Informed by the extensive academic literature on matching, these
authorities have often introduced stable matching mechanisms.' Stable mechanisms respect these
priorities in a natural sense by guaranteeing that no given agent strictly prefers the assigned object
of another agent with lower priority.” This makes priorities (and the property rights they encode)
critical to the realized distribution of outcomes in these markets across race, socioeconomic group,
and space.

1. See, for example, Balinski and Sonmez (1999), Abdulkadiroglu and Sonmez (2003), Roth et al. (2004), and
Abdulkadiroglu et al. (2005).

2. In the context of student assignment, stable mechanisms are both individually rational and eliminate justified
envy.

The editor in charge of this paper was Andrea Galeotti.
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2 REVIEW OF ECONOMIC STUDIES

In this context, a large matching literature takes priorities as primitive and studies the design
of the allocation mechanism (Roth, 2002). However, priorities often appear to be designed by the
relevant authorities as a function of some other, underlying score.

Prominently, Boston Public Schools (BPS) wished to ensure that students were able to attend
schools close to their own homes in order to both reduce transportation costs and improve
community cohesion (Dur et al., 2018). However, they did not introduce a priority that ranked
students strictly according to their distance from each school. Instead, in the walk-zone assignment
system employed by BPS until 2013, at each school students were partitioned into two groups:
walk-zone students who lived within a certain radius of the school and the others who did not.
Moreover, the New York City Housing Authority (NYCHA) has the goal of providing public
housing to those who cannot afford adequate housing in the absence of assistance (Collinson et al.,
2015; Arnosti and Shi, 2020). However, agents’ priorities are not strictly decreasing in their
income. Instead, a household is only eligible for public housing if its income is less than a
certain fraction of New York’s Area Median Income (AMI).? Similar design concerns that trade
off diversity and admitting the most academically qualified students are present in the Chicago
Public Schools (CPS) system which uses scores derived from the academic merit of students.*

From these examples, it is clear that these authorities not only design priorities, but also
choose coarse priority structures that do not reverse an underlying score. However, there exists
little theoretical work that approaches the problem of optimal priority design.’ Therefore, we study
the problem of a mechanism designer that is faced with an underlying score (such as distance,
income, or academic achievement in our running examples) and has the power to design priorities.
Following the priority designs we see in our applications, we restrict attention to priority designs
that do not reverse the given underlying score.® We call such designs priority coarsenings, as
they result in a coarser ordering of students relative to the initial scores. Our main results show
that, under any stable matching mechanism, the set of implementable allocations can be attained
by designs that split agents into at most three object-specific indifference classes (Theorem 1).
Moreover, when the mechanism designer has a continuous objective function, an optimal design
exists (Theorem 2) and therefore requires only three indifference classes.

Concretely, we establish a general continuum matching market framework in the spirit of
Abdulkadiroglu et al. (2015) and Azevedo and Leshno (2016) for assessing the question of
optimal priority design. In the ex-ante stage of the model, the mechanism designer knows the joint
distribution of agents’ preferences and rankings according to an underlying score and chooses a
rule that coarsens the underlying score to maximize some arbitrary, continuous objective function.
Types are then realized and in the inferim stage agents are matched to objects according to a stable
matching mechanism. Our framework features a unique stable matching, which makes it possible

3. In both BPS and NYCHA, the mechanism used during the matching process requires a strict priority order.
In both markets, this strict order is obtained by assigning a random tie-breaker number for the agents and prioritizing
according to the random tie-breaker number within each priority class.

4. To balance these competing objectives, CPS chose a policy that divided students into four socioeconomic tiers,
reserved 70% of the capacity at exam schools for these tiers in equal proportion and left the remaining 30% open to
students from all groups (Ellison and Pathak, 2021).

5. Exceptions to this include the work by Echenique and Yenmez (2015) and Erdil and Kumano (2019) who
discuss issues related to substitutable priorities. Relatedly, Hafalir e al. (2013) and Ehlers et al. (2014) study the design
of reserves as implemented through the use of differing priorities in different slots and affirmative action policies with
upper and lower bounds, while Dur ez al. (2020) study the design of precedence orders over these slots in the CPS context.

6. Beyond the relevance in our applications of restricting attention to priority coarsenings, in certain contexts such
as CPS where the underlying score is derived from academic performance, reversing scores may give rise to incentive
compatibility issues whereby students intentionally perform worse on exams. Sénmez (2013) documents a case in the
US Military Academy and Reserve Officer Training Corps where having a lower score might be more advantageous for
the graduates. As a result, cadets tried to intentionally lower their scores to get assigned to a more preferred army branch.
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CELEBI & FLYNN PRIORITY DESIGN 3

to express the type-contingent probability of assignment without reference to the specific stable
mechanism under consideration.” This object functions as an allocation in the ex-ante stage,
specifying the probability that each type of agent is assigned to each object as a function of the
coarsening chosen by the designer.

Using this framework, we establish our main theoretical contribution that the optimal design
can be attained by partitioning agents into at most three indifference classes at each object. The
intuition for this result depends crucially on specific types of equivalence classes that emerge
following the selection of a coarsening, lottery classes. Lottery classes have the property that
some agents within them have positive probability of receiving that object and an object they
rank lower in their preferences. Therefore, some agents in a lottery class have probability of being
assigned to that object strictly between zero and one. We show that under a stable mechanism,
there can be at most one lottery class of agents per object. This result holds for the following
simple reason: if there is more than one lottery class, there will be at least two equivalence classes
with interior probabilities of assignment and it must be that some agents in a lower equivalence
class will be assigned the object while some agents in the higher class will not, violating stability
(see the example below for a simple demonstration of this in the discrete context). Furthermore,
all agents in higher priority classes are guaranteed to receive the object if they prefer it, and all
agents in lower priority classes never receive the object. Thus, all classes above and below the
lottery class can be merged without affecting the allocation, so the outcome of any coarsening
can be replicated by a coarsening that splits agents into at most three indifference classes.®

We leverage the simplifying power of our theoretical results in our applications. First, we
study the design of distance-based priorities in the BPS system. The following discrete example
provides a simple illustration of the trinary optimality result and explores how the trade-off
between diversity and distance travelled shapes the optimal policy in this context. Assume there
are four students, iy,i>,i3,i4, and one school with two slots. Each student i, lives n miles away
from the school and i3 belongs to an under-represented group of society. The mechanism designer
gains « € [0, 1] utility from admitting the student from the underrepresented group, i3, and loses
utility equal to 1 — o« times the total distance that admitted students travel. Mirroring the coarse
walk-zone priorities in BPS, the mechanism designer decides how to coarsen students’ distance
to maximize this objective.

Owing to Theorem 1, it is without loss of optimality to consider priority coarsenings that
divide students into at most three groups. In this particular example, it can be shown that an
optimal policy is one of three such coarsenings: a two-zone priority with a cut-off at 2.5 miles, a
two-zone priority with a cut-off at 3.5 miles and a three-zone priority with cut-offs at 1.5 and 3.5
miles. The first option guarantees that i; and i, are admitted for sure, the second option assigns
i1, Iz, and i3 to the school with probability 2/3 each and the third option assigns i; with unit
probability and i, and i3 with probability half.

When are each of these optimal? A quick calculation shows that for o« <1/2, the first option
is optimal. This is intuitive as the first option guarantees i; and i are admitted and for low
values of o, minimizing distance travelled is much more important than diversity. For o >3/4,
the second option is optimal as it maximizes the probability that the under-represented student i3
is admitted. This is also intuitive as in this case the mechanism designer values diversity much
more than distance. For o € (1/2,3/4), the third option is optimal. Here, the mechanism designer

7. We obtain a unique stable matching through the assumption that there is full support of all student types in our
economy. We show that our results are robust to relaxation of this assumption in Supplementary Appendix F.

8. It is clear that this construction requires knowledge of the structure of the economy on the part of the planner.
We discuss the validity of this assumption in our applications and robustness of our results to aggregate uncertainty in
Section 3.4 and Supplementary Appendix C.
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not only wants to have a diverse student body but also cares about distance travelled, and hence
entails a strong preference for admitting ;.

While we here provided a discrete example for simplicity and to exemplify our theoretical
results, in our BPS application we employ the continuum framework to provide analytical results
on the optimality of various walk-zone policies. In particular, we argue that the pursued policy of
two zones is compatible with a planner who places a large weight on neighborhood assignment.
However, were diversity concerns to dominate, there remains additional policy latitude for a
planner to adopt a three-zone policy—which our trinary optimality result ensures is the only
potential welfare-improving deviation from a simple two-zone policy.

Second, we study how priority design could be used in the design of exams in the CPS system.
We show how coarser grading can increase the admissions of minority groups who score less well
on exams and show how the trade-off between diversity and admitting the best scoring students
shapes the structure of the optimal exam design. In particular, we show that when diversity
concerns are sufficiently strong, pooling students’ exam scores in up to three groups constitutes
optimal policy.

Finally, we study the design of income-based priorities in public housing allocation by
NYCHA. Relative to the other applications, this features complications as we must consider
the dynamic nature of public housing allocation. Nevertheless, in the steady state of the dynamic
matching model we develop, our Theorems 1 and 2 apply directly: the planner need only introduce
two income cutoffs. We show how the trade-off between widening eligibility for public housing
and targeting the allocation to the most needy shapes the optimal policy. In particular, when
there is a sufficiently strong relationship between income and outside options, the optimal policy
excludes the richer agents from eligibility for public housing—rationalizing the policy pursued
by NYCHA. However, we also show a three-tiered system may improve welfare in the case of
sufficient heterogeneity in outside options.

Related literature. The theory and design of matching markets was pioneered by
Gale and Shapley (1962). Balinski and Sonmez (1999) and Abdulkadiroglu and Sénmez (2003)
introduced the problems of student assignment and school choice, respectively. Much of the
literature following these seminal papers focused on allocation mechanisms that take property
rights (encoded in priorities) as given. While there is a small literature that studies the
effects of certain classes of priorities on certain mechanisms (Echenique and Yenmez, 2015;
Erdil and Kumano, 2019),° this article develops the novel idea that priorities can be viewed as
choice objects.

Our analysis is closely related to the rapidly growing literature on matching in the presence
of distributional constraints and affirmative action. Kojima (2012) studies the widely used
majority quotas and shows that such policies can harm all minority students. Hafalir ez al. (2013)
approach this question from a mechanism design perspective and introduce minority reserves to
overcome the shortcomings of quota policies. Ehlers et al. (2014) generalize these reserves to
incorporate multiple priority levels and accommodate further policies used in practice, such as
floors and ceilings, and develop new mechanisms for hard or soft floors and ceilings. Reserve
policies have also been generalized by Kominers and S6nmez (2016), who introduce and study

9. In particular, Erdil and Kumano (2019) study substitutable priorities with ties and propose an algorithm to
improve the widely used Deferred Acceptance algorithm from an efficiency point of view. Echenique and Yenmez
(2015) emphasize that substitutability is in conflict with schools’ preferences for diversity and study different rules
for incorporating such preferences into the assignment mechanism.
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CELEBI & FLYNN PRIORITY DESIGN 5

matching with slot-specific priorities.'? In an alternative approach to the literature with quotas and
reserves, Kamada and Kojima (2017, 2018) and Goto et al. (2017) study stability and efficiency in
matching-with-constraints models. Finally, Celebi and Flynn (2021) study the trade-offs between
using minority quotas (and reserves) and score subsidies in affirmative action.

The common approach of papers studying priority structures, distributional constraints, and
affirmative action in their respective contexts is to take the priority structure as given and
analyze the properties of different mechanisms. The key difference between our paper and these
literatures is our introduction of, and focus on, priority coarsenings that introduce indifferences
into underlying scores as a tool to design priorities.!' In this context, in contrast to the existing
literature, we compare different priority structures for a fixed stable mechanism and investigate
the relationship between the allocation, welfare and the priority structure.

We apply our general results regarding the design of priorities to three different settings, which
have themselves been the subject of previous research that fixes priorities and compares different
mechanisms in specific contexts. First, we study distance-based priorities and the design of
walk-zones with reference to BPS, a setting that has been studied prominently by Dur et al.
(2018). Second, motivated by the CPS assignment system outlined in Dur et al. (2020), we study
how diversity considerations in an environment with priorities based upon student achievement
affect optimal priority design. Finally, we study income-based priorities and the allocation of
public housing in NYCHA, a context studied by Arnosti and Shi (2020) in their analysis of the
design of lotteries and waitlists under fixed priorities.'> Furthermore, while not explicitly featured
as applications in this article, the design concerns we highlight are not unique to the U.S. context.
For example, Sonmez and Yenmez (2019a,b,c) and Aygun and B6 (2021) study affirmative action
policies in India and Brazil, respectively, and propose mechanisms for each context. In all of these
contexts, priority coarsenings offer a new policy lever that could be useful in cases where current
policies, such as quotas in affirmative action, are controversial.

Outline. The rest of the article proceeds as follows. Section 2 introduces the matching model
and priority coarsening. Section 3 studies optimal priority design and provides our main results
(Theorems 1 and 2). Motivated by the BPS context, Section 4 applies our results in the case
of distance-based scores and considers optimal walk-zone design. Section 5 uses our results to
study priority design with test-based scores, as in CPS. In Section 6, we augment our framework
to analyze the design of income-based scores and the allocation of public housing in a dynamic
matching model. Section 7 concludes.

2. MODEL

In this section, we develop a model of a matching market with a continuum of students as in
Abdulkadiroglu et al. (2015) and Azevedo and Leshno (2016) to study how and when priority

10. Further papers that analyze reserve-like policies include Dogan (2016), who proposes an assignment rule
that never harms all minority students. Fragiadakis and Troyan (2017) propose a dynamic quota mechanism to improve
allocations under hard bounds.

11. As the main policy tool available to the designer in our paper is the “coarseness” of the priorities to be used
in the mechanism, our article is implicitly related to the literature that studies matching markets under indifferences.
Following our applications, we require stability with respect to the tie-broken priorities and abstract away from the
issues studied in that literature such as alternative stability criteria (Kesten and Unver, 2015), computation of stable and
efficient matchings (Erdil and Ergin, 2008, 2017), correlated lotteries (Ashlagi and Shi, 2014), random assignments under
constraints (Budish ez al., 2013), and efficiency improving lottery mechanisms (Kesten et al., 2017).

12. Relatedly, Leshno (2019) and Bloch and Cantala (2017) study models of dynamic waitlists and argue that
randomized assignments will improve welfare. Geyer and Sieg (2013), Waldinger (2018), and Sieg and Yoon (2020)
estimate empirical models of public housing allocations and compare different mechanisms.
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Ex-ante Stage Interim Stage Match Realized
0 € © with measure ' g_ € Oz receive tie-breaking score 7 (55, 7) and ¢ matched
Designer chooses = and submit > to stable mechanism ¢
FIGURE 1

Model timeline

design can affect the allocation of objects and welfare. We proceed with the standard matching
literature language of matching students and schools. However, as we later show, our analysis is
of relevance beyond this context. In the ex-ante stage, the mechanism designer has a prior over the
distribution of student types (that comprise preferences over schools, underlying scores at each
school, and other identifying information) in the population and chooses a rule that coarsens the
underlying scores of students into the priorities they will hold in the interim stage. In the interim
stage, types are realized, and students submit their preferences to a stable matching mechanism
that uses these priorities. Finally, the students are matched to the schools and payoffs are realized.
The model timeline is shown in Figure 1.

2.1. Ex-ante stage and priority coarsening

There are a finite set of schools, denoted by C={cg,c1,...,cn} Where ¢g is a dummy school that
corresponds to a student going unmatched, and a unit measure of students. Let 6 = ({ug , sg Yeec k)
denote the type of a student whose utility from going to school c is uf, who has score sf eS.=[0,1]
in school ¢, where S, denotes the set of possible scores at school c. For example, S, could contain
possible distances from a school, or students’ scores in an exam. Finally, x denotes any other
information about the socio-economic situation or minority status of the student.'® We use ue,
s?, and k? to, respectively, denote the utility profile, score profile and additional information of
a student with type 6. The set of student types is denoted by ®, over which there is a probability
measure F. Q=(Qy, ..., 0y) denotes the capacities of schools.'* The economy can therefore be
summarized by the triple Q =(F, Q, ®).

In the ex-ante stage, the designer transforms the students’ scores into the priorities that will
be used in the matching mechanism. Formally, a priority design at school c €C is a function E.:
S. — P, that maps students’ scores s, € S into their priority E.(s.) € P., where P. CS.=[0, 1].
A priority design is then a function that collects each school’s design E(s)=(E1(s1),..., En(Sn)),
with corresponding domain S =[]"_, S, and range P=[[/'_; P.. As we have motivated, we will
restrict attention to coarsening rules: priority designs that coarsen, but do not reverse students’
scores.
Definition 1. A coarsening rule is a priority design &:S— P such that for all c€C and all
s,s' €S such that s. > s., we have that E¢(s¢) > E(s..). Moreover, for each ¢ €C, P is either finite
or E. is the identity function.

The final condition that either the set of priorities at each school P, is finite or the priority
design leaves scores unchanged is a technical one that ensures ties resulting from coarse priorities
can be broken while maintaining a well-defined economy. A natural example of coarsening that
many will be familiar with is the conversion of fine numerical exam scores (ranging from 1 to

13. We will suppress « until the applications sections, as it is irrelevant for allocations.
14. As school ¢ is a dummy school representing outside options, it is without loss of generality to set Qo =1.
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100) into letter grades (ranging from F to A). Example 1 demonstrates a coarsening from strict
scores over [0, 1] to a priority structure with three indifference classes, while Example 2 shows
the planner may choose to use the scores as priorities without transforming them.

Example 1. There is one school, |C|=1, scores lie in S=[0, 1], and we coarsen these strict
scores into three indifference classes P= {%, %, 1} according to the rule:

1, s€[0,1/3),
E()=1{3 se[l1/3.2/3), 1)
1, se[2/3,1].

Specifically, B takes any student who had an initial score lower than 1/3 and gives them a priority
of % students with initial score between 1 /3 and 2 /3 are given priority % and students with initial
score greater than 2/3 are given priority 1.

Example 2. Let S=P and E. be the identity function for all c €C. Then for any s, B (s)=s,
i.e. the priorities are identical to the scores.

We argue that non-reversal is a relevant and natural property to demand from a priority design
in our setting. From a practical perspective, such interventions seem feasible from a political
economy point-of-view and have occurred in markets with an established score structure, such as
distance-based priorities (as in BPS) and priorities that depend on a measurable statistic such as
income (as in NYCHA).!> Beyond the main applications of this paper, coarse priorities have also
been advocated for in the 2018 U.S. Centers for Disease Control Vaccine Allocation Guideline,
which divides the general population into four tiers based on their age (CDC, 2018). Furthermore,
many states in the U.S. have recently adopted priority systems in the allocation of ventilators based
on the Sequential Organ Failure Assessments (SOFA) score (Piscitello et al., 2020; Pathak et al.,
2020), which maps continuous measures of patient health to a discrete set of values for six organ
systems. Moreover, when scores are based on achievement (as in CPS) or can otherwise be gamed,
atransformation that does not satisfy non-reversal may incentivize students to obtain lower scores,
which is clearly undesirable.'®

We argue that requiring stability with respect to the designed priorities is reasonable for three
reasons. First, if students only know the coarsened scores, a student within a given priority class
would not be able to block a match between a student in the same priority class and a school. This
lack of knowledge seems natural, for instance, in the exam schools context where two students
who receive the same grade do not have access the underlying raw score from which their grades
were constructed. Moreover, school boards in centralized matching markets have the ability to
enforce matches and prevent schools and students from matching outside of the system. Second,
if we interpret stability as encoding procedural fairness and preventing legal challenge, then
stability with respect to coarsened scores retains these properties. Finally, as our examples in the
introduction from BPS, CPS, and NYCHA attest, authorities do in fact engage in the design of
priorities and employ matching mechanisms that yield stable outcomes.

15. See Sections 4 and 6 and the references therein for more detail on these contexts.
16. As discussed in footnote 6, Sonmez (2013) provides a concrete example of such incentive compatibility issues
in the context of the U.S. Military Academy.
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2.2.  The interim stage: matching model

We now study how to map the choice of coarsening by the designer E to a matching in the interim
stage. To do this, we first construct from our economy in the ex-ante stage an ordinal economy
that transforms utility values of the agents to ordinal preferences for the matching stage. To this
end, for any type 6 = (u? , s), we define the corresponding ordinal type 6 = (=7, s) by computing
their induced ordinal preferences by ranking the schools in decreasing order according to ug and

imposing that s” =s?.!7 Defining R as the set of ordinal preference relations over C, we see that
the set of induced types has product structure © =R x S. The distinction between a type and an
induced type is subtle. As we consider an ex-ante stage for the purposes of performing welfare
calculations in our later analysis, types refer to both a student’s v.N-M preferences and their
scores, while a student’s induced type refers to the student’s induced ordinal preferences and
their scores.'® An economy Q2=(F,Q,0) thereby results in an ordinal economy Q= (F 0, O)
where F is the probability measure over © induced by F." We further make the followmg
technical assumption that F admits a density f that has full support and has no mass points:>°

Assumption 1. The density of all ordinal types f is well-defined and f (0)>0 for all § € .

Second, we now show how the planner’s choice of coarsening E affects the ordinal economy
in the interim stage. This transforms each ordinal type 6=(>Y,5%)e® into a new ordinal type

Oz =(~Y, \_A(SG)) €Og by replacing the score vector s? with the priority P = E(s?), and changes
the set of students from ® to ® g and the probability measure from F to Fg.2! Priority coarsening
introduces indifferences, the existence of which necessitates tie-breaking to compute matchings.
To this end, we augment the model with tie-breakers. Each student Az, in addition to her ordinal
preferences and priority, receives a tie-breaker number 7 € [0, 1], where 7 ~ U[0, 1]. Thus, the
distribution over types in the economy with tie-breakers F g on @1 =0Og x [0, 1] is almost surely

such that fé (55, )= fg (55) for all 7 €[0, 1].2*> This results in the coarsened ordinal economy

with tie-breakers Q; =(F .0, (:)fs), which lies in the set of all strict ordinal economies O.
We are now ready to define the matching mechanism that applies in the coarsened ordinal

economy with tie-breakers. A matching in this environment is a function wu:C U(:)?E —209:UC,

where ,lf(ég, 7)€C is the school that any ordinal type 6z with tie-breaker 7 is assigned and
u(c) S OF is the set of students assigned to school c.? Let M be the set of all matchings.

O=c¢3,c9,c1. If uf. =uf/ for c#c/,

17. For example, if ufl =1, ufz =2, and uf3 =3, the ordinal preferences are >
then students break the ties randomly.

18. Despite being irrelevant for allocations, the cardinal utility will later matter for the welfare analysis we perform
in our applications.

19. To obtain F from F, for each induced type 6 =(>*,s%) € ®, simply compute the measure of types § = (u’,s?) € ®
such that u” induces the ordinal preferences >°.

20. See Footnote 19 to see how this condition can be easily translated to a primitive condition on F.

. See that @z =R x P, where P is the range of Z. To construct Fg from F, for all types g :(> Es ~)e Og
we compute the measure under F of all types 6 € @ such that = =>?2 and u(S )= 9' .

22. See Lemma 1 in Supplementary Appendix B for a formal statement and proof. Also note that whenever a
coarsening is not the identity, f: is a probability mass function.

23. The mathematical definition of a matching for the strict continuum economy we study (with ordinal types C:)é)
follows Azevedo and Leshno (2016) and requires that u satisfies the following four properties: (i) u(ég 7)eC.V(0z r) €
OL; (ii) 11(c) € OF is measurable, F5(1u(c)) < O, Ve eC; (iii) c = pu(fz, 1) <= (=, 7) € j1(c) ; (iv) {(fz,7) €OL :c =02
w(@z,7)} is open Yc € C\ {co}. This last requirement imposes that the set of students that prefer their match to any given
school (excluding the outside option) is open.

1202 4oquia)dag B U0 SUOqqID HaqoY Aq Z/EYSEY/EG0AEPI/PNISAI/EE0 L 0 L/I0P/S[dILE-9OUBAPE/PN)SSL/WO0"dNO"0lWapED.//:SANY WOy PapEojumoq


https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab053#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab053#supplementary-data
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdab053#supplementary-data

CELEBI & FLYNN PRIORITY DESIGN 9

A matching mechanism ¢ is a function ¢:O— M that assigns a matching to each ordinal
economy. Blocking and stability are defined as follows. A student-school pair (0, T, ¢) blocks a
matching u if the student prefers ¢ to her match under u and either the school ¢ does not fill its
capacity or the school ¢ is matched to another student who has strictly lower score than bz, 7).

Formally, (0z,7,¢) blocks u if ¢ >0z w(z,7) and either (i) F £(u(c)) < Qe, or (ii) there exists

(67’3, /)€ p(c) with (a) s0% > sgé, or (b) s22 =s§/E and T > t’. A matching u is stable if there are
no blocking pairs. A mechanism ¢ is stable if it returns a stable matching for all economies.

In this environment, any coarsening & and the matching mechanism ¢ together induce a
probability distribution for each student type over the school that they are ultimately assigned.
We call this distribution an allocation gz 4):©® x C— [0, 1], with the probability that type 6 is
assigned to school ¢ given by g(z 4)(c|0).”* We denote the set of potential allocations by G.*> We
construct this allocation from the matching and distribution of tie-breakers by taking, for each
tie-breaker realization of each student, the match the student receives and then integrating this over
the uniform distribution of tie-breakers (see Lemma 2 in Supplementary Appendix B.1). These
steps ensure that gz ¢) is a well-defined distribution and respects the constraints imposed by the
mechanism, including that no school is over capacity and no student has probability exceeding
one of attending all potential schools.

Throughout the article, as we have motivated, we will assume the matching mechanism is
stable.

Assumption 2. The matching mechanism ¢ is stable.

The importance of Assumptions 1 and 2 for our analysis is that Assumption 1 implies that
there is a unique stable matching. Thus, after the planner fixes the coarsening in the ex-ante
stage, Assumption 2 pins down the matching in the interim economy uniquely (see Lemma 1
in Supplementary Appendix B.1). Therefore, it is not important for us to specify which stable
matching mechanism ¢ is. We will correspondingly suppress dependence on ¢ for the remainder
of the analysis and write allocations as gz . A strong justification for these assumptions (which rule
out multiple stable matchings) is that, empirically, the set of stable matchings has been found to
be very small in large markets, including BPS.?® Nevertheless, in Supplementary Appendix F, we
relax this full-support assumption and allow multiple stable matchings to exist and we summarize
the robustness of our main results to relaxing Assumption 1 in Section 3.5.

3. PRIORITY DESIGN

Having established a framework for the analysis and justified our restriction of the policy space
of the designer to be that of priority coarsenings, we can now prove our main results (Theorems
1 and 2) and establish the existence of an optimal trinary coarsening. These results are stark
as they reduce the complexity of finding the optimal coarsening from an infinite-dimensional
problem to a 2|C|-dimensional problem and place a simple structure on optimal policies. We

24. Abdulkadiroglu et al. (2017) use a similar representation to obtain the propensity score that any student is
matched to a school to estimate treatment effects, albeit not as a function of any design tool of the policymaker.

25. Allocations will lie in (a subset of) the space of measurable functions with finite integral, so that G cLY(®xC0).
See Supplementary Appendix B.2 for details on the measure space with respect to which we demand that g is measurable.

26. See Roth and Peranson (1999) for evidence from National Resident Matching Program and Pathak and S6nmez
(2008) for evidence from BPS. In particular, in BPS for school years 2005-06 and 2006-07, there is only one stable
matching for either year.
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later leverage these results directly in applications to provide concrete insight into a number of
important problems in market design.

3.1.  Trinary replication

We now turn to proving the main result of the paper: any allocation achievable via a coarsening can
be replicated with a trinary coarsening. Formally, we define a trinary coarsening as a coarsening
such that the priority structure at each school features at most three equivalence classes of students.

Definition 2. A coarsening B:S— P is trinary if |P;| <3 for all schools c €C.
Our main implementation result is stated formally as Theorem 1.

Theorem 1. Suppose that a coarsening & induces the allocation gg. There exists a trinary
coarsening B’ that induces gz.

Proof. See Appendix A.1. (]

The basic intuition for this result and why it follows from stability is easily seen in the
following example. Consider a model with an outside option and a school that all students prefer
to the outside option. There is positive density of all scores between zero and one (in view of
Assumption 1) at the school and the scores are coarsened into finitely many indifference classes.
The matching mechanism is stable (by Assumption 2). Thus, if there is a positive probability that
a student with lower priority is admitted to the school, then the higher priority student must not
be allocated to the outside option, as that will violate stability. As a result, under any coarsening,
there is at most one class of students (the lottery class) who have probability strictly between zero
and one of being admitted. All students in higher priority classes are admitted with probability one
while all students in lower priority classes are admitted with probability zero.?” Thus, there can
exist at most one lottery class, and the combination of stability and full support of ordinal types
(Assumptions 2 and 1, respectively) pins down this uniqueness. The outcome of the coarsening
can then be generated by an alternative coarsening that preserves the lottery class from the first
coarsening, maps all students above this class into one class, and maps all students below the
lottery class into another class. Hence, the outcome of any coarsening can be replicated by another
coarsening with at most three indifferences classes at each school.

3.2. The planner’s objective

To discuss optimal priority design, it is necessary to have an objective function for the planner.
We assume that the planner has a complete and transitive preference over allocations g in the set

27. For concreteness, suppose instead that there were two equivalence classes A and B, where students in both
have interior probabilities of assignment—so that there are two lottery classes—and students in A have higher priority
than those in B. As these probabilities are interior, necessarily some students in A will not be allocated the school, while
some students in B are. As there is full support of ordinal types, some students in A who are not admitted most prefer
the given school. Moreover, they have higher priority than all assigned students from B. Thus, the outcome is unstable,
as these rejected students in A and the school form a blocking pair. As the mechanism is assumed to be stable, this is a
contradiction.
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of all potential allocations G represented by a utility function Z: G — R.?® Moreover, we make
the technical assumption that the utility function of the planner is continuous:

Assumption 3. The social planner’s objective function Z : G — R is continuous in g.%°

In the interests of clarity, we now discuss three natural specifications of planner utility that
satisfy this assumption and will be used later in our applications: a utilitarian planner; a planner
who cares about student utility with some penalty for deviating from the underlying score; and a
planner who has affirmative action concerns.

1. A utilitarian social planner has utility function given by:

Z(9)= /O Y MO g(clO)dF (©) )

 ceC

for some function yielding welfare weights A: ©® — R
2. A priority-augmented social planner has utility function given by:

Z(g)= f 3 [+ @)D )(cl0)dF ©). 3)
Ocec
where /:[0,1]— R is a monotonically increasing function that determines the base cost of the
score not being met and A : ® — R is the weight of that loss for each underlying type 6.
3. An affirmative-action-concerned social planner has utility function given by:

Z(e)= /@ > ulg(elo)dF©)+h( /@ 1{c” € Dg(El0)aF ®)) )
ceC

where k? € D means that type  is a student in the group which the planner wishes to ensure is more
represented (recall that k< corresponds to any non-preference or score information corresponding
to a student), ¢ is some given school, and % is a continuous and monotonically increasing function.
This specification therefore rewards the planner for admitting more students in group D to the
particular school ¢. In practice, one might imagine that ¢ is a high-quality school and D is an
under-represented minority group.

Given this structure, the planner’s problem is to choose a coarsening such that the induced
allocation maximizes the planner’s utility function over the set of potential coarsening rules.
By Theorem 1, it is without loss of optimality for the planner to restrict attention to trinary
coarsenings. That is, they can simply select two cutoff values for each school v={P¢, P}.cc
where veV={ve[0,12€l|P¢ > P¢ .V ceC}. In this representation, the P¢ represent the score
cutoffs for membership of the highest priority class and the P€ represent the score cutoffs for

28. Note that this rules out preferences that depend non-instrumentally on the coarsening itself. Namely, this rules
out a preference for “simple” policies. We argue that this restriction is unimportant given the fact that optimal policies
will be simple insofar as they are trinary in any case.

29. Recall from footnote 25 that G C L! (® x C), so continuity is here meant with respect to the associated L' —norm.
See Supplementary Appendix B.2 for more details.
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membership of the middle indifference class.’® Hence, coarsening rules reduce simply to points
in a closed subset of the unit hypercube, V. Thus, the planner’s problem can be stated as:

V* =argmaxZ(gy) 5)
veV
where g, is the allocation induced by cutoff vector ve V.

3.3.  Optimal priority design

Having established that any coarsening requires only three equivalence classes per school and
set up the problem of the planner, we now show that there exists an optimal coarsening. First, we
prove that g, is continuous in v (Lemma 3 in Supplementary Appendix B). In view of the fact
that the domain V is compact, and the objective function is continuous in g (Assumption 3), it
follows that an optimal coarsening exists. This is formalized as Theorem 2 below.

Theorem 2. V* is non-empty. That is, there exists a trinary coarsening that is optimal.

Proof. See Appendix A.2. g

The implications of Theorem 2 are significant. In particular, it reduces the dimensionality
involved in finding the optimal coarsening from an infinite-dimensional problem to a 2|C|-
dimensional problem, as now we only need to choose two numbers per school to attain any
optimum. This is interesting as it not only implies that problems of priority design for school
districts are substantially simpler than one might expect but also facilitates simple computation
of the value of a given policy even in cases with a large number of schools. We later leverage
this result to provide insights into the structure of the optimal priority design in each of our three
leading applications: design of walk-zone policies under distance-based priorities in BPS; design
of diversity policies under achievement-based priorities in CPS; and the allocation of affordable
housing under income-based priorities by NYCHA.

3.4. The impact of aggregate uncertainty

In our analysis, we have assumed that the planner both knows the distribution of student types
and that there is a continuum of students. In view of these assumptions, there is no aggregate
uncertainty in the market and the planner knows that their choice of coarsening will lead to a
particular, deterministic allocation. As most of the markets we study (BPS, CPS, and NYCHA)
are large, have used centralized assignment mechanisms for a number of years, and are arguably
likely to have similar distributions of types from year to year (they are stationary), we argue that
this is a reasonable assumption.*!

Nevertheless, to investigate the robustness of our results to aggregate uncertainty, in
Supplementary Appendix C we study the same problem considered in the main text augmented

30. Following Azevedo and Leshno (2016), one can gain an interpretation of these thresholds in terms of the budget
sets of students. If a student’s score at a school exceeds P.. then that school is in their budget set with certainty. If a student’s
score lies between P, and P, then the school is in their budget set with some probability between zero and one. If a
student’s score lies below P, then the school never lies in their budget set.

31. In particular, from 2010 to 2015 in CPS, we compute that the admissions cutoff for any school in the merit slots
is within 3% of that school’s average merit slot cutoff over this time period 96% of the time, providing strong evidence
of approximate stationarity in this market. Cut-off score data are publicly available from CPS.
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with uncertainty on the part of the planner regarding the distribution of student types in the
population. Formally, we suppose that there is a finite set of probability measures F that the planner
entertains as possible. In this context, Theorems 1 and 2 can be extended to show that an optimal
coarsening still exists but that it may involve up to 2|F| cutoffs at each school (Proposition 6 in
Supplementary Appendix C). As aresult, the presence of uncertainty can substantially complicate
the problem of priority design and give rise to a less coarse priority structure (see Example 3 in
Supplementary Appendix C for an explicit example of this). We can further characterize when
uncertainty causes a welfare loss to the planner relative to the benchmark without aggregate
uncertainty. In particular, uncertainty induces no welfare loss if and only if the ex post optimal
lottery classes either coincide or never overlap across all states of the world (Proposition 7
in Supplementary Appendix C). Intuitively, it is exactly when aggregate uncertainty makes it
impossible for the planner to target the same optimal lottery class across states of the world that
this uncertainty has bite.

While we maintain that the assumption of no aggregate uncertainty is appropriate for our
applications, these results suggest that our main results may have less bite in settings with
appreciable aggregate uncertainty, as might be the case when markets change a great deal from
year to year, or one is designing priorities in an unfamiliar market.

3.5. Extensions: homogeneous coarsenings and multiple stable matchings

In Supplementary Appendix D, we study an extension of the general analysis in this section
where a planner is constrained to use the same coarsening at every school. We prove that suitably
revised versions of Theorems 1 and 2 continue to hold in this setting, but now the designer
needs to potentially specify up to 2|C| cutoffs that are the same for each school (Proposition 8
in Supplementary Appendix D). We characterize when the imposition of homogeneity leads to
a loss in welfare: there is no resulting loss in welfare when the cutoffs for the lottery classes
of each school either coincide exactly or do not overlap at all (Proposition 9 in Supplementary
Appendix D). Intuitively, as students who always or never gain admission to a school can receive
the same allocation under homogeneity, the imposition of homogeneity leads to losses insofar
as it makes it impossible to have the same regions of students (the lottery classes) who have
fractional assignment probability to each school.

On the technical side, we proved our theoretical results under the condition that there is full
support of ordinal types. When this assumption fails, there can be multiple stable matchings
and one must address a number of technical details. To this end, in Supplementary Appendix F,
we relax this condition and show that suitably modified versions of Theorems 1 and 2 continue
to hold when the mechanism-designer optimal selection from the set of stable matchings is
used (Theorems 3 and 4 in Supplementary Appendix F) and that Theorem 1 continues to hold
under the student-optimal selection (Theorem 5 in Supplementary Appendix F). However, the
student-optimal selection can cause the mechanism designer’s objective to jump down, and so
optima can fail to exist. Thus, Theorem 2 fails to hold under the student-optimal selection (see
Example 5 in Supplementary Appendix F).

4. APPLICATION: DISTANCE-BASED PRIORITIES AND WALK-ZONE DESIGN

In many school districts, such as Boston, San Francisco, Denver, and much of the U.K., the
distance between students and schools plays an important role in the assignment process. One
widely studied example, which provides the concrete motivation for the theoretical exercise in
this section, is the walk-zone assignment system Boston Public Schools (BPS) utilized until 2013.
Under this policy, students were partitioned into two sets at all schools: the walk-zone students
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who live sufficiently close to the school and the others who do not.?? In the language of our model,
this corresponds closely to a situation where the underlying score is distance and the pursued
policy is a coarsening that splits students into two groups.

The main issue for BPS in designing its school admissions policy was the trade-off between two
competing desires. On the one hand, it is desirable to have students attend schools that are closer
to their homes on grounds of decreasing transportation costs for the school district and improving
community cohesion. Indeed, Landsmark (2009) notes the costs of school transportation are very
large for the district, at around $70 million.>* On the other hand, it is also desirable to ensure that
schools have a diverse student body and for families to have greater choice over the schools they
are able to attend. This concern is particularly relevant in communities that are socioeconomically
segregated, such as those in Boston.?> That this problem of conflicting objectives is at the heart
of the design problem is attested to by Daley (1999), who notes that the walk-zone policy was
created with the aim of “striking an uneasy compromise between neighborhood school advocates
and those who want choice.”

Thus motivated, we study the optimal distance-based priority design from the perspective
of a mechanism designer who cares both about assigning students to schools they prefer and
the distance students have to travel to their school. Our main results, Theorems 1 and 2, apply
directly in this environment and imply that the optimal design can be attained via the use of
at most three zones per school. We also show how the trade-off between distance and diversity
shapes the structure of the desirable walk-zone policy and show when a simple walk-zone policy,
corresponding to that pursued by BPS, is optimal.

4.1. Model

There is one school G with capacity Q € (0, 1) and an outside option B. There is a unit measure
of students who have bounded and positive Bernoulli utility # €/ from attending school G. The
utility from attending B is normalized to zero. Students have underlying score s € [0, 1] at school
G. Students are indexed by their type 6 =(u,s) and there is a joint distribution over the set of
types ® =U x [0, 1] given by £(8) such that there is a uniform distribution of underlying scores.*®
There is a continuous cost of students of score s attending G given by C(s). This function can be
interpreted as capturing transport costs, community cohesion, or fairness costs associated with a
student of score s attending school G. Finally, for this section, we assume that the school board
is utilitarian and has no distributional preferences:

1
Z()= /O /u (1— C(5)) g(s)dF (u.5) ©)

where g is the probability that a student with score s attends school G.

32. See Dur et al. (2018) for a more detailed account of this setting.

33. To account for additional dimensions such as sibling-based priorities, one need only construct a composite
underlying score comprising distance and sibling status. All of our analysis then applies to the model with this composite
score.

34. Moreover, Mayor Menino stated that (Goldstein, 2012): “Pick any street. A dozen children probably attend a
dozen different schools... Parents might not know each other; children might not play together. They can’t carpool, or
study for the same tests.”

35. Indeed, Levinson et al. (2012) note that increasing the priority of students who live closer to a school, as was
the case under the walk-zone system, reduced the quality of schools certain socioeconomic groups could attend, making
the assignment less equitable.

36. This is without loss in this environment as it simply redefines the scores over students.
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We denote a priority coarsening as a vector of cutoffs v=(vy,...,v,), where O0=vy <v; <
-+ <V <vp41 = 1. Students with s € [v;,v;41) for i <n or s €[v,,v,1] have the same priority at
school G as all other students with scores within the same interval prior to tie-breaking. We label
the set of such vectors for a given natural number n as V". We further denote the probability that a
student with s € [v;, vi1) goes to G under uniform tie-breaking by g'. It is further useful to define
the expected contribution to social welfare of a student with score s being assigned to school G:

W(s)=E[uls]—C(s)=B(s)—C(s) )

where B(s) captures the benefit to social welfare of student with score s attending G which we
assume to be continuous and C(s) is the cost. Using this notation, the school district’s value from
a policy (n,v) is:

n Vit
Znv)=Y g f W(s)ds. (8)
i=1 Vi
Thus, the school district faces the problem:
Z*= max Z(n,v) 9)
n,yeyn

It is important to note that this problem remains non-trivial as the choice object is of arbitrarily
high-dimension. Our Theorems 1 and 2 makes this problem tractable:

Corollary 1. Under any stable mechanism, Z* exists and there exists an optimal policy (rn*,v*)
such that n*=2.

Proof. See Appendix A.3. (]

With Corollary 1 in hand, we can restrict attention to considering coarsening rules v = (vy,v2) €
V2. We now apply this result to solve the problem of the school district.
pply p

4.2.  Solving the school district’s problem

In view of Corollary 1, one notes that there are three types of regions that can arise depending on
the priorities used. The first is an acceptance region, where students are assigned to the school
with probability one (s>1,). The second is a lottery region, where students are assigned to the
school if they have a high enough lottery number (s €[v,v7)). The third is a rejection region,
where students are never assigned to the school (s <v{). Depending on the existence of such
regions or not, there are five possible types of priorities that can be optimal:

A “double walk-zone”: an interior case where all three regions exist

A “small walk-zone”: a semi-interior case with an acceptance region and lottery region
A “large walk-zone”: a semi-interior case with a lottery region and rejection region
“Full coarsening”: a corner case with just a lottery region

“No coarsening”: a corner case with an acceptance region and a rejection region

Dbk L=

Moreover, in any of the (semi-)interior cases (i.e. any case excluding no coarsening or full
coarsening), the optimality condition for the cutoffs is simple:

1 v2
Wy)=W(rp)= s / W (s)ds (10)
vi
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That is to say, whenever a cutoff is on the interior, the cutoff is simply set to equalize the marginal
contribution to social welfare of the student at the cutoff to the average contribution of all students
in the lottery zone. As a result, under differentiability of W each optimal cutoff either satisfies
equation 10 or it is on the boundary.?’

Proposition 1. Any solution to the school district’s problem (equation 9) v* = (v}, v3) must
satisfy one of the following conditions for each v}:

1. The cutoff is an interior optimum:
1 [
Wop = [ W an
V5 —vi Jus

Moreover, the above equation is sufficient for v* to be a local optimum whenever W’(v¥) > 0 for
each cutoff to which this condition pertains.
2. The cutoff is on a boundary of the relevant constraint set:

vi€{0,1-0}, v;e{l—0,1} (12)

Proof. See Appendix A.4. (|

This proposition shows which policies can be optimal and how to compute optima given a
parametric environment, but it is otherwise silent on the forces that govern the structure of the
optimum. In the next section, we study these questions in a more specialized environment.

4.3. Optimal walk-zones in a parametric environment

To study the key trade-off faced by BPS policymakers between assigning students to schools close
to where they live and ensuring both choice and diversity, we now examine how the structure of a
simple parametric environment with these features determines the optimal walk-zone structure.
We further assume that there are two utility types of students u € {uX, u”’}. Moreover, we assume
that conditional on these utility types, there is a higher density of uR types with higher scores.
Specifically, we assume that score and utility have following joint distribution:

fwlR 9=s ful,s)=1-s. (13)

Typically, we will take u® <u” and interpret this environment as one where poor students derive
greater benefit from attending the good school relative to their outside option and the school is
located in a neighbourhood primarily featuring rich students. The average marginal benefit to
social welfare of students with score s is therefore given by:

B(s)=E[uls]=uls+uf (1—s). (14)

On the cost side, we specify a parametric cost function of admitting a student of score s given

by:
o
- % S18(5— )
CO= T empo g T SIBE-. (15)

37. Differentiability of W can be ensured by mild assumptions on primitives.
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FIGURE 2

The W, B, and C functions with an optimal “double” Walk-zone

where o, 8,5,6>0, se(1—0Q,1) and y > 1. See that this function accommodates the following
two features. First, there is a score 5 below which there is a “sharp” increase in the cost of a
student attending the school, whenever ¢ is large. This can be thought of as there being a distance
1 —5 within which students can walk to school, beyond which walking becomes infeasible for
students and transportation is required. Second, there are steadily increasing and perhaps convex
costs of students having a low score, with § controlling the slope and y the normalized convexity.
This captures increasing costs of transportation and potentially fairness and community cohesion
costs associated with admitting students who live far from the school.

As in the general analysis, the key object of interest for computing the optimal score cutoffs
is the function:

W(s)=B(s)—C(s) (16)

which captures the overall contribution to social welfare of a student who has underlying score
of s. Moreover, given the parametric structure of B and C, W features the following trade-oft:
admitting poorer students increases the quality of the assignment but is more costly as those
poorer students live further away.

To understand how these objects vary with the score in this parametric environment, Figure 2
plots the W, B, and C functions for a case where:

1. Students who live further away derive higher utility from attending the school u” > u®. This
can be seen in the figure as the downward sloping benefit line.

2. Students who live beyond s =0.8 have rapidly increasing transport costs (large ¢).

3. There is a convex cost of students beyond 5 attending the school, y > 1.

Despite the parametric structure, this model is still sufficiently rich to demonstrate each of the
five classes of walk-zone policy This is stated formally in Proposition 2:
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I/

FIGURE 3

No coarsening (top-left pane), full coarsening (top-right pane), a “small” walk-zone (bottom-left pane) and a “large”
walk-zone (bottom-right pane).

Proposition 2. For each of the five classes of policy, there exist open sets of («, 8, up,ug) such
that each class of policy is uniquely optimal for these parameters.

Proof. See Appendix A.5. ]

Guided by this result, we now provide an intuitive discussion of when each of these classes
of policy is optimal. First, we consider the double walk-zone case and refer the reader back to
Figure 2, wherein the dashed grey lines in represent the optimal score cutoffs. See that in this
example, the upper cutoff is close to s=0.8 and the lower cutoff is below the school’s capacity.
As a result, there is an acceptance region, a lottery region and a rejection region. Intuitively, the
fixed cost being sufficiently large incentivizes the creation of the acceptance zone. Moreover,
having a variable cost that is sufficiently large but not too large creates a region after s where
the benefit increases more rapidly than cost, inducing coarsening. Finally, the convexity of cost
eventually implies that cost exceeds benefit and it is optimal to create a rejection zone. Intuitively,
the optimum simply balances the benefit of there being a higher average utility from students
who are further from the school with the increasing cost of these students.

Second, we demonstrate the two corner cases that feature full coarsening and no coarsening.
A simple case in which the designer will pursue full coarsening is a case where i’ > 4R and there
is no cost of students who live further away attending the school & = 8 =0. On the other hand, no
coarsening will obtain in any case where u” <u® or « and g are sufficiently large as it is optimal
to simply admit all students who live as close to the school as is possible. The corner policies in
these cases are shown in Figure 3.
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Finally, the two simple walk-zone cases are also intuitive. When there is a very large fixed
cost of students below §, the mechanism designer wants to admit students who are sufficiently
close with certainty. Moreover, when up > ug and g is sufficiently small, the mechanism designer
wants to coarsen the remaining priority below s as much as possible. This is because the students
who are furthest away contribute the most to social welfare as u!’ types are relatively most dense.
The case for a large walk-zone is similar. When the fixed cost is small but the cost of being further
away is large, it is optimal to coarsen up to the point where the cost of being further away becomes
too large. The simple walk-zone policies in these cases are shown in Figure 3.

Having shown how each policy can obtain depending on the strength of the trade-off
between match quality and neighbourhood assignment, we supplement this analysis by deriving
comparative statics in the optimal cutoffs as the relative strength of these motives changes.
Concretely, we see how, in the case of an optimal double walk-zone, changes in transportation
costs and relative utilities of students move the optimal cutoffs:

Proposition 3. Suppose that the solution to the planner’s problem is interior and unique. The
following comparative statics hold:

1. An increase in transportation costs enlarges the acceptance region and shrinks the lottery
region:

0, —=<0. 17)
2. An increase in relative utility of students who live farther away shrinks the acceptance region

and enlarges the lottery region:
vy
2

vy
<0,
31413 3up

Proof. See Appendix A.6. ]

>0. (18)

The first of these results shows how increasing transportation costs for students who live
furthest from the school will disincentivize the admission of poorer students. On the contrary,
when the benefits of admitting poorer students increase, the reverse is true. Even though we do not
explicitly model a preference for diversity here, this increase can be thought as a preference for
such students from the perspective of the mechanism designer. If one interprets the mechanism
designer as embodying the aggregate preferences of society, an increase in up may represent
an improvement in the political organization of such parents or an increase in public pressure
they exert. As one would expect, our comparative statics suggest that such an improvement will
increase their representation in higher quality schools.

5. APPLICATION: DESIGNING EXAMS FOR DIVERSITY

In our second application, we study how to optimally design exams in an environment where a
planner cares about both admitting higher quality students and the diversity of the student body in
a competitive exam school. Concretely, our analysis is motivated by exam schools in the Chicago
Public Schools (CPS) system, where the district uses student achievement in entrance exams as
the basis for its priorities but also has a long history of controversial diversity-based affirmative
action policies.®

38. For more detail on the institutional setting of exam schools in the CPS system, we refer the reader to Dur ef al.
(2020) and Ellison and Pathak (2021).
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The key trade-off faced by CPS is admitting the students with the highest academic
qualifications while having racially and socioeconomically diverse student bodies.>® Presently,
CPS uses a strict ranking based on a composite academic score, which we take as the underlying
score. In our model, the mechanism designer can also construct a coarser ranking that partitions
students into different achievement levels, without releasing the strict ranking they obtained in
the exam. A coarser ranking may help students with lower scores, who are potentially from
less-advantaged socioeconomic backgrounds. However, this comes at the cost of admitting
students with lower levels of achievement in the entrance exam. In this section, we employ
Theorem 1 to characterize when such a coarse grading policy can be used to improve the allocation.
We therefore explore the possibility of using priority coarsening to increase diversity without any
other explicit affirmative action policies, thereby adding an additional policy lever for bodies such
as CPS to consider.

5.1. Model

There is one school with capacity Q, to be interpreted as a desirable exam school. The exam
school gives all students common utility #, which exceeds the utility they receive at their outside
option. Students have exam scores s € [0, 1]. There are two different socioeconomic groups of
equal size, x1 (the under-represented group) and «7, where the vector (s, k) summarizes the type of
any given student. The score densities of each type of students are given by fi, (s) and f, (s), where
Jic; (8)+fi, (s)=1. Motivated by affirmative action concerns of CPS, we assume the mechanism
designer has the following utility function:

1 1
Z@)=)_ /0 sg(cls.dF(s)+h( fo g(els,k1)dF ), (19)

where £ is a strictly increasing function. The first term represents the benefit to the mechanism
designer from assigning students with higher scores to the school. The second term represents
the benefit of assigning students from the under-represented socioeconomic group.

5.2.  Optimal exam design

We now study when designing the exam leads to welfare improvements. In this context, an exam
design takes the form of score cutoffs O=vy <v| <---<v, <v,;1 =1 such that students with
se[vi,viy1) for i <n or s€[v,,v,41] have the same priority as all other students with scores
within the same interval prior to tie-breaking. It is natural to interpret such a design as providing a
coarse grading of an entrance exam rather than simply ranking the students. Owing to Theorem 1,
we can restrict attention to trinary coarsenings. Hence, it is without loss of generality to assume
the mechanism designer picks two numbers v; <r and vy >r as score cut-offs where r=1—Q.
Under a grading policy (v1,v2), we have that the allocation is given by:

1 if s>vp
glels,ki)={pL(v1,v2) ifselvi,v), (20)
0 if s<vp

39. This s attested to by the Blue Ribbon Commission (BRC), which was appointed to review CPS’s policy remarks
(Dur et al., 2020): “The BRC wants these programs, [exam schools], to maintain their academic strength and excellent
record of achievement, but also believes that diversity is an important part of the historical success of these programs.”
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vo—r
V2—V1

where pr.(vi,v2)=
then given by:

. The utility of the mechanism designer under any coarsening (v,v7) is

1 )%
Zo1 )= :( f sdF e (5)+pr(v,v2) / deK,(s>)
Ki V2 Vi

1 V2
+h</ dFkl(s)+pL(Vl9v2)/ dFl(l(s)>'
V2 Vi

We can now ask when exam design leads to welfare improvements. Formally, we say that exam
design leads to welfare improvements if there exists a pair (v, v2) such that Z(vy,vp) > ZNC where
ZNC is the utility the planner receives from not coarsening exam scores.*’ Using the structure
of payoffs, one can achieve the following characterization of when exam design leads to welfare
improvements:

21

Proposition 4. Exam design leads to welfare improvements if and only if there exists a pair
(v1,v2) where v, > r and v{ < r such that:

! h ! F F F, h !
S[02=NE=vD) <h(5 =Fo 02+ Fe 2= Fe, 00)pL01.v)) =h( 5

S=Fa®) @)

Moreover, if A is linear with slope « > 0, this inequality reduces to:

FK](VZ)_Fl(](vl)_FK1(V2)_FK1(V)) (23)

(r—v1)<2a<
Vo) — V1 Vo —r

Proof. See Appendix A.7. (]

This condition simply compares the loss from having students with lower scores to the benefit of
(potentially) increasing the diversity of the student body through admitting a different composition
of students. A simple sufficient condition for a priority coarsening to increase diversity is that the
majority score distribution dominates the minority score distribution in the sense of first-order
stochastic dominance. The trade-off between student exam scores and affirmative action is clear
in the case with linear 4. As v| decreases, students with lower scores gain admission, reducing
the overall student quality. However, there is a benefit from increasing diversity if the ratio of
under-represented students with scores in [vq,Vv7) is larger than the ratio in [r,v7). The total
benefit from diversity then depends the difference of these ratios and the preference for diversity,
which is measured by «. In particular, the mechanism designer is more likely to improve the
allocation via exam design if there are more under-represented students that are close to the
no-affirmative-action cut-off r or she has a stronger preference for diversity.

6. APPLICATION: INCOME-BASED PRIORITIES AND THE ALLOCATION OF
PUBLIC HOUSING

With more than 1 million housing units, and 1.6 million households on waiting lists, public
housing programs in U.S. are very important for the welfare of low income households

40. The allocation in this case is such that students are allocated the school if their score exceeds r, and not otherwise.
Plugging this allocation into equation 19 yields ZV¢.
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(Collinson et al., 2015). Because of this, many housing authorities employ various restrictions
on the eligibility of applicants and then allocate the units via lotteries to those deemed eligible.
Concretely, to be eligible for public housing provided by the New York City Housing Authority
(NYCHA), a household must have income less than a certain fraction of New York’s Area Median
Income (AMI).*!

As in our previous applications, determining eligibility requirements for housing assistance is
a contentious topic. The main trade-off for policymakers appears to be between making a larger
part of society eligible and targeting households that will gain most from the assistance—those
with the worst outside housing options. That it is desirable to ensure wide eligibility in this context
is reflected in the words of NYC Mayor Bill de Blasio:*

“Affordable housing initiatives cannot just be for the lowest income folks, ... There has
to be a place for work force housing and middle-class housing as well.”

However, the targeting of those with low outside options that would cause them to have inadequate
housing in the absence of intervention is also extremely important. To this end, NYC officials
have recently been developing laws that would reserve 15% of affordable-housing projects for
the homeless (Stewart et al., 2019).

Thus motivated, we study the problem of a designer who determines the priority of households
as a function of their income. To model this market requires a significant departure from the
previous analysis: we must consider the dynamic nature of public housing allocation. To this end,
we develop a dynamic matching model to study how these trade-offs affect priority design in
the allocation of public housing. We leverage our general results (Theorems 1 and 2) to place a
simple three-income-tier structure on the optimal policy and deliver insights regarding the optimal
design.

6.1. Model

There is a continuum of agents i € [0, 1] that differ in their income s€ [0, 1], where s=1 is the
lowest level of income and s =0 is the highest level of income, and their outside options « € .
Income and outside options have joint distribution F(x,s) such that the marginal distribution of
incomes is uniform. Time is discrete and infinite € N. Agents have discount factors § and die at
rate (1 —6). Each period (1 —§) new agents are born from distribution F so that the population of
agents always has unit measure.

A priority design is a vector v=(vq,vs,...,v,) such that O=vyp<vi<---<v, <v41=1.
Agents with se[v;,viy1) for i <n or se[v,,v,41] have the same priority as all other agents
with incomes within the same interval prior to tie-breaking. A stock of measure Q of ex-ante
identical houses are available. Agents are allocated to houses via a stable mechanism with
tie-breaking within any tier to determine the order. When an agent is allocated a house, they
receive v~ A per period they inhabit that house, where vV € [Vinin, Vmax]- Once an agent accepts
a house, they inhabit that house until their death. Each period an agent goes unmatched, they
receive their outside option.

41. This fraction differs from development to development. Moreover, as Waldinger (2018) and Arnosti and Shi
(2020) note, in some markets, there is also a minimum income level that applicants must clear. The reason for this is to
make sure the applicant can pay the rent, which is a feasibility constraint rather than a policy with distributional motives.
We abstract away from such issues in the present analysis.

42, Stewart et al. (2019).
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Upon birth, agents are not allocated to public housing. Hence, their expected lifetime utility
at birth is given by their value function when unmatched V(«,s,v). We suppose that the social
planner has inequality-averse preferences given by the function:

1 1—y
Z()= f / (M) dF (k. s), (24)
Ko —y

where y indexes the degree of inequality aversion. Of particular interest is the Rawlsian limit
y — oo where the planner seeks to maximize the welfare of worst-off agent.

In Supplementary Appendix E, we characterize the steady state of this dynamic matching
model and derive a simple expression for the welfare of any priority design in terms of the steady
state reservation values of each type (Proposition 10). Importantly, we can apply Theorems 1 and
2 directly in this steady state to show the following Corollary:

Corollary 2. Inthe steady state of the dynamic matching model, there exists an optimal priority
design with two cutoffs v* = (], v}).

Proof. See Appendix A.8. O

This result greatly simplifies the analysis as we know that we need to specify at most two
income cutoffs to find the optimal design.

6.2. Optimal priority design

Having understood the structure of the model, we now explore the problem of priority design
from the perspective of the social planner. Given the nature of the fixed point equations for the
equilibrium density of unmatched agents, finding an analytical characterization of the optimal
cutoffs is challenging. Nevertheless, one can still establish interesting properties of the optimum
and the trade-offs involved in the construction of optimal policy.

Given the system employed by NYCHA and elsewhere, it is of particular interest to study
when we can rationalize a policy with the following feature: an income threshold below which
agents have some probability of being allocated a house and above which they are ineligible.
To this end, we show that when outside options are sufficiently increasing in income and the
planner is sufficiently inequality averse that the richer agents are optimally excluded entirely
from public housing (as in NYCHA). Conversely, if outside options are sufficiently similar across
income groups, a sufficiently inequality averse social planner would like to give all agents positive
probability of receiving public housing. Proposition 5 formalizes these statements:

Proposition 5. Suppose that agents have outside options given by a decreasing and differen-
tiable function of their underlying score, i.e. an strictly increasing function of their income,

« =h(s). In the limit of y — oo:*

43. We say that a statement is true if & is sufficiently steep if there exists o <O such that the statement is true
whenever:
H(s)<a Vse(0,1) (25)

Likewise, we say that a statement is true if % is sufficiently flat if there exists & <0 such that the statement is true whenever:

H(s)>a Vse(0,1) (26)
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1. If h is sufficiently steep, then an optimal policy features a threshold of income above which
agents have zero probability of receiving public housing

2. If his sufficiently flat, then an optimal policy gives all agents a positive probability of receiving
public housing

Proof. See Appendix A.9. (|

This result highlights the key trade-off facing the planner between effective targeting and
eligibility and shows how the strength of the relationship between outside options and incomes
governs this trade-off. In particular, when # is very steep, those agents with the highest incomes
also have relatively relatively high outside options. In this case, the poorest agents, even if they
were to receive public housing in each period with certainty would have lower welfare than the
richer agents. As a result, the targeting motive dominates the eligibility motive and the richer
agents are excluded entirely from public housing. On the other hand, when £ is very flat, all
agents have very similar outside options and excluding any agent from receiving public housing
will give rise to them being worse off than all agents who have some chance at public housing.
To a sufficiently inequality-averse planner, this is unacceptable, and so the eligibility motive
dominates the targeting motive.

The model moreover suggests that such an eligibility cutoff in income is optimal for similar
reasons to those given by advocates in the New York public housing debate: the richest are
sufficiently well off that we should reserve housing only for those who are needy. However, as
Theorems 1 and 2 showed, the planner has additional latitude to introduce a tiered system with
three tiers: one with unit probability of assignment, one with interior probability of assignment
and one with zero probability of assignment. In Example 4 in Supplementary Appendix E.1, we
construct an explicit example of when this is desirable with three groups of agents: rich, middle
class, and poor agents. If poor agents have sufficiently low outside options relative to middle class
agents who have sufficiently low outside options relative to rich agents, three priority tiers are
strictly optimal. Intuitively, it is optimal to assign poor agents as soon as they are unmatched as
their outside option is so bad (they may be homeless), while we wish to exclude rich agents from
assignment altogether as in Proposition 5. Thus, when there are enough homes relative to poor
agents, it is optimal to allocate the remaining homes via lottery to middle class agents.

7. CONCLUSION

Motivated by the clear design of priorities in centralized matching markets, we introduce and study
the problem of optimal priority design subject to a constraint that an underlying score cannot be
reversed. In our main results, we show that it is without loss of optimality for a mechanism
designer to split agents into at most three indifference classes for each object (Theorem 1) and
that an optimal policy exists (Theorem 2).

We apply these results and our framework to provide concrete insight into a number of
important and widely studied centralized matching markets: BPS, CPS, and NYCHA. In each
case, we study the trade-offs highlighted by the relevant policymakers and provide normative
insights as to the nature of optimal priority structures and positive rationalizations of the policies
pursued in practice.
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Supplementary data are available at Review of Economic Studies online.

A. OMITTED PROOFS
A.1.  Proof of Theorem 1

Proof. Fix an arbitrary coarsening E. Divide the schools to two subsets: ceCif B, is finite and ¢ eCif E. is the identity
function. In what follows, we will construct an alternative coarsening &’ that has three indifference classes in some school
¢ and induces the same allocation. Since ¢ was arbitrary, replicating this for all ¢ will yield a trinary coarsening &

For any school ceC, the coarsening E takes any student with score s to an equivalence class, hence E. (se)e
{P{.P5,....,P5} with P{ < P§ <... < P, for some N. B}: Lemma 1 in SupplejnentaryNAppendlx B, there exists a matching
it in the coarsened ordinal economy with tie-breakers QF, such that for all (fz, 7) € ©F, its matching is uniquely given by
u(Gu,r) Moreover, by Lemma 2 in Supplementary Appendlx B, any type 6 € ® whose coarsened ordinal type is given
by 6z has assignment probability at each school c, g (c|0), that is obtained by integrating @z, 7) over T.

We will construct an alternative coarsening &’ that has only three indifference classes for school ¢ and induces the

)

same allocation as E, i.e. g=(c|0) =gz (c|0) for all 6 € ® and ceC. Let P{ be the lowest indifference class that has a
student placed in school ¢, i.e. 0z, 7)=c for some (0z, 7) with sfa =P¢ and iz, 1) #c for all (0=, 7) with sfz :P§
where y <x.%* Now, define &’ by merging all indifference classes above and below x for school c:

C(sf):Pg,z<x,
s =P, (A1)
PG it B =PCz>x.

[I] 1]

And E/, =& for all ¢’ #c. To see that fi is stable under &’

, assume (ordinal) student pair i,j (with scores si,
and s’c , and tie-breakers 7; and 7;) and school ¢’ blocks fi. Then, ¢’ >;ji(i), fi(j)=c’ and either &/, (si,)> gL (s’c ,) or
g, (si,): c (si‘,) and 7; > ;/.45 First, if ¢ #c, as the priority for school ¢’ is same under both E and &/, (i,/,¢’) block i
under E, which is a contradiction. If c=c¢’, &/, (xi,) > g/, (s’c/) implies that 8. (si/) > By (s’t,) and (i,j,¢’) again block ft
under E, which is a contradiction. Next, suppose E/,(s',)=&/,(s,) and 7;> 7. As fi(j)=c" and E/,(s',)=E/,(s.), we
have that E (si,) > Pj;’. There are two cases, either . (si,) > P;l or By (si,):Pf. In the first case, from the definition of
J . ~ g ; ~ ~ .

P¢, there exists k such that fi(k)=c¢’, B, (sf,):Pi . Then, B(s},) > B¢ (sf,), ¢ > 1(i) and ji(k)=c’, which means that
(i,k,c’) block fi under E, a contradiction. In the second case, . (si,):Pf and E/,(s',)=E/,(s.,) imply E (s{_,):P)f/.
However, this violates the stability of ji under E as 7; > 7j, which is a contradiction. Hence, f& is stable under both 2
and E’. Moreover, the economy under &’ with tie-breakers retains the full support property, so there still is a unique
stable matching for both economies (see Lemma 1 in Supplementary Appendix B.1). As the stable matching is unique
in both economies, we use the same matching in the construction of gg and gz, so gg =gz (applying Lemma 2 in
Supplementary Appendix B.1).

Next, take c €C. Let 1 denote the unique stable matching under E. For any school c, let 7. denote the threshold that
the students must clear in order to gain admission to that school. Formally,

to=inf{s? : ji(0)=c). (A.2)
Next, define E' in the following way:

0 Lif sf<t.

=N
2else)=1 St s? > 1.

(A3)

Note that from the stability of i and the definition of matching (in particular, property (iv) from footnote 23), there
cannot be a student k such that ¢’ > f1(k) and sk > 1. To see that & is stable under E’, assume that student pair i,j (with

scores s’ . and v’ ,) blocks it in school ¢’. Then, we have ¢’ >; ji(i), ii(j)=c" and ”/,(1)> ,(]) As fi(j)=c’, we have

44. Note that this allows x=1andx=N, i.e., this class can be the lowest indifference class or the highest indifference
class.

45. We abuse notation slightly by evaluating & under &’ as the set of types changes under E’. However, this is not
an issue as we explicitly refer to the uncoarsened ordinal types of students i and j.
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E/,())=2/,(j)=1. But then this implies that s/, > 7-, which contradicts the stability of fi under E as ¢’ >; fi(i). By the
same argument as in the first case, it follows that gg =gz/.

Applying this argument for all ceC then yields a trinary coarsening E’ that replicates Z in the sense that
=8z O

’

8

[0}

A.2.  Proof of Theorem 2

Proof. First, by Theorem 1, we parameterize coarsenings E by the outcome equivalent ve ), where we note that V
is compact. Second, define g:V — G such that g(v)=g,. By Lemma 3 in Supplementdry Appendix B.2, we have that
g is continuous under the appropriate L'-norm on G. Third, define Z:V— R as Z=Zog. By Assumption 3 that Z is
continuous under the L!-norm and the fact that g g is continuous, it then follows that 7 is continuous. Fourth, observe that
we can write equation 5 as:

rgg}i(v) (A4)

Finally, by the extreme value theorem as V' is compact and Z is continuous, it follows that V* is non-empty. Thus, an
optimal trinary coarsening exists. O

A.3. Proof of Corollary 1

Proof. This result follows from Theorem 1 specialized to an environment with two schools. However, in this case there
is an alternative, simpler proof that we provide below for completeness.
In the first part of the proof, we show that under any stable mechanism, the allocation takes the following form:

1,v>v,
&' =\prL,velv.v), (A.5)
0,v<v.

for 0<y<v<1 and p. €[0,1]. To see this, consider priority classes defined by: i€ P; <= s; €[v;—1,v;) for j <n and
i€Pyy1 <= 5i €[y, Vur1]. Now suppose that Jie P; and ke P; for [ <j such that g, >0. If gJY <1, then a positive
measure of students in P; will not be assigned to G and a positive measure of students in Py will be assigned to G. This
violates stability. Hence, 8; !=1. Now suppose that 3i € P; and k € P; for I <j such that g] < 1. By an identical argument,
it must be that gk =0. By the above two conclusions, it must be that if there is any / such that g; € (0, 1) there is a unique
P; such that gJ €(0,1) and that gy =1 for k> and g, =0 for k <. Taking V=v; and v=v;_; thereby proves that the
allocation takes the form given in equation A.5.

Given this claim, we can take a (v,n) that induces g* and construct a (v, 2) that also induces g". If there is no j such
that gj‘.' €(0,1), then we can simply take the lowest class k for which g; =1 and set v{ =0 and v) =v;_;. If there is a j
such that g]‘f €(0, 1), then we can take v| =v;_ and v, =v;. See that v’ induces the same allocation as v in both cases.

Having now established that we can replicate any (v,n) with (v/,2), it remains to show that there exists an optimum
to establish the result. See that the optimization problem by the replication result can be rewritten as:40

v 1
maxw./ ’ W(s)ds-i—/ W(s)ds
Vi V2

Vi,V2 V2=V

(A.6)
st. 0<vi<1-Q0<w<l1

If the function W(s) is continuous, then there must exist a solution by the Weierstrass Extreme Value Theorem as we are
simply maximizing a continuous function over a compact domain. As B and C are continuous, then so too is W, so a
solution exists. This completes the proof. O

A.4. Proof of Proposition 1

Proof. The school district’s problem is given by:

n Vigl
max e / W (s)ds (A7)
Vi

n,veyn~
i=1

Applying the replication argument in Corollary 1, it is without loss of optimality to impose n=2 and to have one class
with a zero probability of assignment [0, v), one class [vi,v2) which faces a lottery of being assigned with probability

46. See Proposition 1 for the full argument.
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0<pr(vi,v2) <1 and one class [v, 1] with a unit probability of assignment. As the planner has measure Q seats to assign,
it must be that:

(I=v2)+ (2 —v)pL(vi,v2)=0. (A.8)
or 0—(-v)
—(I—v
pLL V)= (A9)
Vo — V1
Thus, the objective becomes:
—(1— v 1
V(vi,m)= M / W(s)ds-i—/ W(s)ds. (A.10)
V2=V Vi v

We require that vi >0,v, <1,pr(vi,v2) €[0, 1]. These requirements reduce to:
0<vi<1-Q0=<wv<I. (A.11)

Thus the planner’s problem is:

—(1— V; 1
maxM[ ’ W(s)ds-i—/ W(s)ds
1 v V2

vi.v2 o Vv —V (A12)
st. 0<vi<1-Q=<w<I1.
From the form of the problem, the Lagrangian can be stated as:
0—(—=w) (™ !
L(v1,v2,A1,h2, 11, U2)= 7f W(s)ds-i—/ W(s)ds—11 (i —(1—-0Q))
V2 —Vi i vy (A.13)

—22(A=Q)—v2) +urvi+p2(1—w2),

where the ); are the Lagrange multipliers on the constraints that the probability in the lottery zone does not exceed unity
or become negative and the u; are Lagrange multipliers on the constraints that the cutoffs remain in the unit interval. See
that there are five cases of interest.

1. Both v; and v are unconstrained: A; = A, =1 = o =0. In this case, the Lagrangian becomes:
—(1— V2 1
Loy vm= 22127 / W (s)ds+ / W(s)ds. (A.14)
V2 —V] vy vy
Taking FOCs:

V2
pL(v1,v2) )W) =pL,, (1 ,Vz)/ W(s)ds,
Vi

) (A.15)
2
=PV WO =pi i) [ Weskds
Vi
Noting that:
pL(vi,v2)
PLvy=—"""—
V2 —V1
(A.16)
1—pL(v1,v2)
Prv,=— -
V2 —Vi
Plugging these relations into the FOCs yields:
1"
W)= 7/ W(s)ds
V2 =V1 Jy,
(A.17)

1 2
W)= 7/ W(s)ds.
V2=Vl Jy

Thus, when either FOC holds, it must be the case that the marginal contribution to social welfare is equal to average
utility within the lottery zone. It further follows that when both FOCs hold that:
W1)=W(2). (A.18)

This reveals that an interior optimum, it must be that the marginal lottery zone student on average contributes as much to
welfare as the marginal student in the zone that gets in with probability one.
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However, for the above to hold, we must ensure that the SOCs hold. To this end, it is sufficient to show that the Hessian
of the Lagrangian is negative definite. Taking second derivatives and re-arranging:

2pL(v1,v2) 1
Ly, (v1,vm)= 7[

v
/ W(s)ds—W(v; )] —pL(vi,v2)W (v1)
V2=V V2=Vl Jy,

1—pr(vi,v2) 1
l:VIVZ(Vl’VZ):#[i

vy
/ W(s)ds — W(vl)]
v

vy —Vp vy —Vp
| v (A.19)
_PL(L’”)[i / W(s)ds—W(vz)]
va—vi Lvy—v J,,
21— ) W (s)ds )
Loy (v1.72) = W [Wen) - %] —(I=pLr V)W ().

To show that the Hessian of the Lagrangian is negative (semi-)definite, it suffices to show that £, (v,v2), Ly, (v1,v2) <
0 with one equality strict at a point satisfying the FOCs. See that if the FOC for v holds that:

Ly, v1,v2)==pr(v1,v2)W' (7). (A.20)

And if the FOC for v, holds:

Loy, v1,v2) == =pL(v1,v2))W' (). (A.21)
Thus, if both FOCs are satisfied at (v1,v>), it suffices that W’(v1), W/(v) >0 (with one strict) for (v1,v2) to be a local
optimum.

2. The lottery probability is equal to unity or zero: u =y =»x;=0 for one and only one i. In this case, there is an
acceptance zone and a rejection zone. As a result, the objective takes the value:

1
v / Wis)ds (A22)
1-0

which is simply the total value of all students living closest to the school.

3. Only the lower cutoff is zero: o =A; =i =0 and w1 > 0. In this case, vo > 1—Q and v; =0. Thus, the Lagrangian
is:

— — v 1
L= 2=d=72) / " Wis)ds+ / W(s)ds. (A23)
V2 0 V2

Taking the FOC with respect to v, as in the first case yields:
1 [
Whn)=— / W(s)ds (A.24)
v2 Jo

which reveals that the marginal student who gets in for sure should contribute as much to social welfare as the average
student in the lottery zone. The SOC for this to be an optimum is:

—(1=pr(0,v2)W'(12) <0 (A.25)

Or simply:
W' (v2)=0 (A.26)

4. Only the upper cutoff is zero: 1y =11 =X, =0 and u, > 0. Following the same approach as for the lower cutoff being
zero. The Lagrangian is:

Q 1
E(v.):H / W (s)ds. (A.27)
Vi

Taking the FOC with respect to v; yields:

1
W)= 1—1v1 / W(s)ds (A.28)
V1

again yielding the insight that the marginal student in the lottery zone should contribute as much to social welfare as the
average student in the walk-zone.

The SOC for this to be an optimum is given by:
—pr(vi, DW'(v1) <0. (A.29)

Or simply:
W' (v)>0. (A.30)
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5. Both the upper and lower cutoff are one and zero, respectively: A; =1, =0 and w1, ;2 > 0. In this case, the value is
simply given by:

1
V= Q/ W(s)ds (A.31)
0

so value is simply the total utility of all students, weighted by the probability that they are admitted to the school.

From the above analysis, it follows that whenever a cutoff is interior and W is differentiable, the following two conditions
are necessary and sufficient for a local optimum:

1 g
W)= ﬁ/ W(s)ds
vy —=vi Jur (A.32)

W' @f)>0.

As a result, an optimal cutoff either satisfies the above conditions, lies on the boundary of the constraint set, or lies at a
point of non-differentiability of W. This concludes the proof. ]

A.5. Proof of Proposition 2

Proof. We explicitly provide sufficient conditions on the parameters such that each class of policy is optimal:

1. Full coarsening: if u” > uR, then there exist &, 8 such that when o« <& and g < B, vi=0and v =1. To show this, we
want to prove in the case that u” > uR that there exist &, 8 > 0 such that when o <& and 8 < § the optimum is vi=0and
v3 =1. To this end, it is sufficient to show that for @ <« and g < B, W(s) is strictly decreasing on [0, 1]. See that W(s) is
given by:

o
1+8exp{e(s—73)}

As uf > P this is clearly the case so long as «, 8 are sufficiently small.

W(s)=u" +s@® —u’)— I[s <5]1BG—s)”. (A.33)

2. Nocoarsening: if u” <uR then Vi <1-0,v5=1-0. Alternatively, if u? > uR there exists o, B such that when & < « and
B<B,vi<1—-0Q, andv; =1—Q.In this case, it is sufficient to show that W(s) is strictly increasing. This is transparently
the case when u” < u®. Moreover, whenever 5> 1 — Q, when uf > u® and o, B are sufficiently large, then for s <5, W(s)
is strictly increasing and it is optimal to set vy =1—Q and vi <1-0Q.

3. “Small” walk-zone: if u” > u®, y > 1 and & — oo then there exist 8 and « such that when 8 <f and o >a, vi=0
and v € (1 -0, 1). In this case, it is sufficient to show that W(s) is strictly decreasing for s <5 and W (s) < W(s’) for all
s<5<s'. This is clearly the case for 8 sufficiently small and « sufficiently large.

4. “Large” walk-zone: it is sufficient to show that there is a § < 1 — Q such that for s <5, W(s) is increasing and for s > 5,
W(s) is decreasing and that W(0) < W(1). In this case, it follows that v{ € (0,1—Q) and v; =1.If uf > uR and y > 1 then
there exist B, B and & such that when 8 < < B and @ <@, the above is true.

5. “Double” walk-zone: if u” > u® and y > 1 and £ — oo then there exist 8, 8, > 0 such that when 8 < < B and a <,
vi€(0,1—-Q) and v € (1—-Q,1). In this case, it is sufficient to show that for W(s) < W(s') for all s<35<s and there is
a §<1—Q such that W(s) is increasing for s <5 and decreasing over §>s>5 and W(0) < W(5). The first condition is
satisfied for « sufficiently large. The second is satisfied so long as S is neither too small nor too large.

O
A.6. Proof of Proposition 3
Proof. We first show that for any parameter A in which W is differentiable that:
vy v .
5 S0 ; (W)= Wi (v}))dss 0 (A34)
1

fori e {1,2}. This result allows one to find comparative statics in any parametric environment and is perhaps of independent
interest.
First, note that from optimality and interiority of (v},v3) and from Proposition 1, we have that

1 v
WOH=WoH=—— [ W(s)ds. (A35)
v;—vi i
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Differentiating (v —v))W (/)= fvvﬁ W (s)ds implicitly with respect to A, we obtain
1

vy v} vy
= WEH+5 —v) | WA )+ W( )

ar ar
. (A.36)
2 W( Vi W(vl)+/ W;.(s)ds.
Plugging in W(v3)=W(})=W(}) to the RHS of this equation, we obtain
vy vt
< m 7371) W(vf)+(vzfvl><wx(v*>+ Lyw'( *))
. (A37)
vy vy Wi *)+/Vz Wis)d
o an ) OT L RO
Cancelling the terms and re-arranging, we obtain
3 / Wy(s)ds — (3 —vDW,. (7))
(A.38)

V3
=/ (Wals)—Wr(v)))ds
vi
As the solution is interior, we have 1 > v%‘ >1-0> vT >0 and from Proposition 1, W’(v;*) >0, which proves that %‘
and f“? (W)L (s)— W, (v?‘)) ds have the same sign for i € {1,2}.
1

To prove the first part of the proposition, note that Wg(s) = —I[s <5](s —s)”, which is increasing in s. Moreover, as
5> 1—Q, in an interior solution, v <5. Then for any s € (v,v3), Wg(v]) < Wg(s) < Wg(v3). Thus:

vy vy
/ . (Wa(s)—Wp(v}))ds>0> / . (Wp(s)— Wg(v3))ds (A.39)

1 1

So aﬁl >0 and 2 <0 obtains by equation A.34.
To prove the second part of the proposition, note that W,,,(s)=1—s is decreasing in s. Then for any s € (v},v3),
W, 07) > Wy, (s) > W, (v5). Thus

s

/f( Wiy (8)— Wy (1)) ds <0 < /;( Wiy (5)— Wy, (V) ds (A.40)

1 1

. v v . . . . -
As a result, from equation A.34, we have # <0 and ﬁ > 0. Other comparative statics can be derived in a similar
fashion. O

A.7. Proof of Proposition 4

Proof. The utility with cut-offs vy, v, is given by:

Z0i,v)= Z / SFo )+ Z f sdF o (s)

(AA4l1)
1 _ vy
Vva—r
wn [ ar, dFy, (5))
v2 V2—=V1 Jy
As fie; (9)+fi, (s)=1, by computing the score integrals and re-arranging, we have that:
1 vy
Z(1,v2)= [1 =3+ 022 =] +h( / dF (5) dF,(s)) (A42)
V2 Vi

Similarly, utility without coarsening is given by:

1 1 1 1
zNC=Z/ de,(,.(s)-i-h(/ dFKl(s)):E(l—rz)-i-h(/ dFKl(s)) (A43)
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Thus:

1
Z(v1,12)—2ZNC = 302 =1 =]

. (A.44)
v—r [ 1
+h( f dF e, (9)+ / dF,(5)) =h( / dF,(5))
V2 V2=Vl Jy r
For Z(v1,v2) > ZN€ to hold, it must be that:
1 1 Vo —r1 1
3102 =P =Dl <h(5 =By ()4 (i (2)= By ) 2= ) (5 = () (A45)
Which proves the first part of the result. Plugging in i(x) =ax, we have:
va—r
[(v2=r)(r—vD)] <2 (F;q (1) = Fie; 2)+ (Fie; (v2) = Fie; (V1)) p— ) (A.46)
Dividing both sides by (vo —r):
F, —F, F, —F,
(r—v1)<2a( i (V2)=Fi, (V1) Fiy () K,(r)) (A4T)
V) —Vi va—r
Yielding the second part of the result. O
A.8. Proof of Corollary 2
Proof. This is an immediate consequence of Proposition 10 in Supplementary Appendix E. O

A.9. Proof of Proposition 5

Proof. First, let us compute social welfare function under the induced trinary coarsening of any policy, v. In the y — oo
limit, we have that social welfare is given by (up to constant of proportionality that we omit):

Z(v)= min v(k,P(s,v)). (A.48)
kelkl,s€0,1]

Note that agents have outside options given by « =/h(s), where / is decreasing. Thus, within any equivalence class, the
agent with the lowest expected utility is the agent at the upper threshold for each equivalence class. Moreover, we know
that the allocation probabilities for these agents are given by 0, py(v) and 1, respectively. Thus:

Z(v)=min{V(h(v1),0),v(h(v2),pL(), v(h(1), 1)}. (A.49)

‘We now prove both parts of the proposition. In the first case, suppose that all agents have positive assignment probability.
It follows that the coarsening is given by a single number v=v;. Under this policy, welfare is given by:47

Z(v)=min{v(h(v2),p()),v(h(1), D} (A.50)
Now consider an alternative policy v/ =(g,v;) for 0 <& <v,. Under this policy, welfare is given by:
Z()y=min{(h(e),0), ¥(h(v2),pL (")), ¥(h(1), 1)} (A.51)

If h is sufficiently steep, then v(h(e),0) > v(h(v3),1). Moreover, pr(v')>pr(v). Thus, Z(v')>Z(v). Thus an optimal
coarsening features a lower cutoff and consequently some agents who have zero assignment probability.

For the second part of the proposition, simply take % to be the constant function. The optimal policy is v=(0, 1) and
all agents have interior assignment probability. This completes the proof. O
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