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Abstract

We study how bounded rationality coevolves with the business cycle. We intro-
duce a business-cycle model in which firms face a cognitive cost of making precise
decisions. Theoretically, we characterize equilibrium with non-parametric, state-
dependent stochastic choice. Firms have greater incentives to pay attention in
downturns because they are owned by risk-averse households. Correspondingly, the
model generates counter-cyclical attention, pro-cyclical mistakes, and an endoge-
nous attention wedge that depresses aggregate productivity when attention is low.
Empirically, we test the model’s predictions using novel measures of firms’ mis-
takes and attention. Quantitatively, attention cycles generate significant stochastic
volatility of output growth and shock propagation asymmetries.
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Firms often make decisions which, ex post, are inconsistent with profit maximization.

An influential explanation is that firms’ managers face constraints on their attention and

decisionmaking capacity that introduce “mistakes” (Simon, 1947). Although this view

relaxes perfect optimization, it still preserves incentives at its core—even if plans are im-

perfect, an optimizing manager may design them to minimize mistakes in the economic

circumstances in which mistakes are most costly. By implication, the state of the economy

may be a central determinant of apparent bounded rationality. Moreover, the macroeco-

nomic consequences of bounded rationality may depend on the state of the economy.

This paper studies the co-determination of business cycles and attention cycles, ag-

gregate fluctuations in cognitive effort and mistakes. Theoretically, we develop a general-

equilibrium model in which heterogeneous firms choose non-parametric, state-dependent

production plans and face a cognitive control cost of choosing more precise plans. Our

modeling approach allows us to analytically study state-dependent attention, a phe-

nomenon away from which much of the existing literature on macroeconomics with deci-

sion frictions abstracts (e.g., Woodford, 2003; Nimark, 2008; Maćkowiak and Wiederholt,

2009; Lorenzoni, 2009; Angeletos and La’O, 2010; Gabaix, 2019; Lian, 2021; Kohlhas and

Walther, 2021; Pavan, 2023). In our model, firms want to allocate costly attention to-

ward the states in which decision mistakes are most costly. In particular, because firms are

owned by risk-averse investors, incentives for precise, attentive behavior are high when ag-

gregate consumption is low. Therefore, in equilibrium, the model predicts higher cognitive

effort and smaller decision mistakes in downturns versus booms. Endogenous attention,

in turn, induces asymmetric propagation of positive and negative macroeconomic shocks.

To test the model empirically, we introduce new strategies to measure precision in

“what firms do,” an exact measure of mistakes as defined by our model, and attention

to the macroeconomy in “what firms say,” a suggestive proxy for cognitive effort. At

the macro level, firms make smaller input-choice mistakes and speak more about the

macroeconomy in downturns. At the micro level, input-choice mistakes reduce firms’ stock

returns, this market punishment is significantly harsher during downturns, and firms that

make smaller mistakes use more attentive language. When the model is calibrated to

match the data, we find that endogenous fluctuations in attention contribute significantly

to the observed asymmetric and state-dependent effects of macroeconomic shocks. That

is, realistic attention cycles help explain fast crashes and slow recoveries.
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Model. We build on a standard Neoclassical real business cycle model with hetero-

geneous firms. A representative household owns, supplies labor to, and consumes the

output of monopolistically competitive firms with heterogeneous productivities. An ag-

gregate shock shifts the productivity distribution and generates a business cycle.

We model firms’ state-dependent attention by subjecting firms to a cognitive control

cost of choosing any non-parametric stochastic choice rule, i.e., a mapping from all payoff-

relevant microeconomic and macroeconomic states to a distribution of production. These

control costs are greater in a given state when decisionmaking is more precise in that

state. Firms therefore choose costly “attention,” or cognitive effort, to optimally trade

off these costs with the benefit of increasing expected, stochastically discounted profits

in every state of the world. Our approach of directly modelling stochastic choice allows

for equilibrium analysis of rich decision frictions in a way that is robust to the specific

and difficult-to-test microfoundation for why precise decisionmaking is hard, like costly

information acquisition, behavioral biases, or trembling hands in implementation (see, e.g.,

Caplin and Martin, 2015; Morris and Yang, 2022; Flynn and Sastry, 2023). Despite this

generality, we show that equilibrium analysis in our setting is well-posed and tractable.

Attention Cycles and Their Consequences. In partial equilibrium, bounded ratio-

nality is lower when stakes are higher. That is, firms pay more attention, measured by

the extent of their cognitive effort, and make smaller misoptimizations, measured by the

variance of their actions around the ex post ideal, when the benefit of paying attention

is high. These benefits are driven by two forces: the sensitivity of firms’ dollar profits to

mistakes and the stochastic discount factor. The former, which we call the profit-curvature

channel, depends on the price elasticity of demand that firms face and the elasticity of

wages to real output. While this channel has an ambiguous sign in general, we argue that

in realistic parameterizations it pushes toward high attention when aggregate output and

firm productivity are low. The latter, which we call the risk-pricing channel, depends on

the firm owner’s risk aversion. This channel always pushes toward high attention when

aggregate consumption is low.

We next describe the general-equilibrium properties of “attention cycles.” We show

that, if household relative risk aversion exceeds an empirically modest lower bound of

one plus the elasticity of real wages to output and wages are not too procyclical, then

equilibrium attention is counter-cyclical: cognitive effort decreases in output and the
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average size of agents’ mistakes increases in output. Intuitively, market incentives push

firms toward paying more attention to decisions when the economy is doing poorly.

We finally study the macroeconomic consequences of attention cycles. We show that

output is the product of the counterfactual output under no cognitive friction with an

attention wedge that is less than one. The wedge arises because inattentive, stochastic

choices translate into dispersion of value marginal products across firms (“misallocation”)

and reduced aggregate total factor productivity (TFP). Due to counter-cyclical attention,

the wedge widens when the economy is booming and firms optimize less precisely. Ow-

ing to this mechanism, misallocation is endogenously higher in booms than recessions.

Starkly, equilibrium aggregate TFP can even be non-monotone in the distribution of un-

derlying microeconomic productivity. Moreover, the translation of negative shocks into

increased attention leads to asymmetric, state-dependent shock propagation and endoge-

nous stochastic volatility.

Measurement. The model makes micro and macro predictions for both choice mistakes

(“misoptimization”) and cognitive effort (“attention”). Toward testing these predictions,

we introduce new methods to measure each of these variables for firms.

We measure misoptimization, as defined in the model, using data on firm choices

and fundamentals in Compustat from 1986-2018. We do so by combining our theoretical

results with conventional econometric techniques for estimating firms’ productivity and

policy functions (e.g., Ilut et al., 2018).

Attention, unlike misoptimization, has no direct analog in observable choices. Our

premise is that, when management uses more language to describe the relationship of their

decisions with a specific topic, they are revealing greater cognitive effort toward adapting

decisions to those factors. Specifically, we quantify firms’ attention toward macroeconomic

conditions, a factor faced to some extent by all firms. Using textual data from firms’

regulatory filings (forms 10-Q/K) and conference calls, we measure firms’ attention using

a natural-language-processing technique that builds on Hassan et al. (2019). The attention

measure complements the “model-based” misoptimization measure by being constructed

in a “model-free” fashion.

Testing the Theory. As nothing in our estimation imposes that measured misopti-

mizations are bad for firms’ performance, we first test for this in the data. As predicted

by the theory, we find that both positive and negative misoptimizations (i.e., “over”- and
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“under”-hiring) have negative effects on firms’ stock returns and profitability. Moreover,

misoptimizations do not predict higher future productivity, stock returns, or profitability.

Together, these results rule out stories in which misoptimizations purely reflect misspecifi-

cation, wedges, or forward-looking adjustments with short-run costs and long-run benefits.

We next find that the size of firms’ misoptimizations is pro-cyclical, consistent with

our theoretical prediction. This result holds under a number of alternative constructions

of misoptimizations, including those that account for time-varying financial frictions and

adjustment costs; under alternative aggregation that adjusts for compositional bias; and

on the entire Compustat sample back to 1950. This finding enriches the literature’s obser-

vation, replicable in our data, that the variance of firm productivity spikes in recessions

(e.g., Bloom et al., 2018). Our new fact implies that choice dispersion conditional on

productivity decreases exactly when productivity itself becomes more volatile.

We next test the theoretical mechanism underlying pro-cyclical mistakes—that incen-

tives to avoid mistakes vary with the state of the aggregate economy. We find that the

negative effect of misoptimizations on stock returns significantly strengthens when the

market is doing poorly. For example, in the stock market trough of 2008, a misoptimiza-

tion was more than 6 times more costly for returns than it would have been in a year

with 10% aggregate returns. By contrast, the effect of misoptimizations on profitability is

close to constant. This supports a primary role for the risk-pricing channel and a limited

role for the profit-curvature channel in driving pro-cyclical misoptimization.

We finally test the model’s predictions for attention. At the aggregate level, we find

that macroeconomic attention is counter-cyclical. At the firm level, we find that macroe-

conomic attention is associated with smaller misoptimizations. These findings, together,

validate the consistency of our two approaches of measuring attention at both the microe-

conomic and macroeconomic levels and provide further support for the theory’s prediction

of counter-cyclical attention.

Quantification. To assess the effects of attention cycles on business cycles, we estimate

our model to match our empirical findings. In the model, negative productivity shocks

have a 7% larger effect on aggregate output than positive shocks of the same size. This

is 25% of the asymmetry estimated by Ilut et al. (2018) using industry-level data. Simi-

larly, in the model, a shock that replicates a “Great-Recession-sized” 5% peak-to-trough

reduction in output generates also an 11% increase in the conditional volatility of output.
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This is 19% of the increase in uncertainty about output growth between the trough of the

Great Recession and the preceding peak as measured by Jurado et al. (2015). Our model

therefore explains a significant fraction of observed non-linearities and state-dependence

of macroeconomic dynamics, solely as consequences of state-dependent attention.

Related Literature. Our study’s primary contribution is to theoretically justify and

empirically validate the hypothesis that agents’ inattention systematically varies with the

business cycle because of changing incentives. The idea that incentives drive attention

is obtained in classic single-agent models (e.g., Sims, 2003; Gabaix, 2014). By contrast,

most macroeconomic models with cognitive and/or informational frictions (e.g., Wood-

ford, 2003; Van Nieuwerburgh and Veldkamp, 2006; Maćkowiak and Wiederholt, 2009;

Lorenzoni, 2009; Angeletos and La’O, 2010; Gabaix, 2020; Kohlhas and Walther, 2021)

do not study how optimal state-dependent attention varies over the business cycle. Three

exceptions are Mäkinen and Ohl (2015), Benhabib et al. (2016), and subsequent work

by Chiang (2023).1 In contrast to all three studies, we emphasize a distinct risk-pricing

mechanism, develop novel measures of firms’ attention and misoptimization, and use these

measures to directly test and quantify both the macroeconomic and microeconomic pre-

dictions of the theory.

Methodologically, we show how to use a control-cost model to tractably and ana-

lytically study state-dependent attention in general equilibrium while allowing for rich

choice patterns. This relates to a literature that numerically studies state-dependent at-

tention under mutual-information costs (Kacperczyk et al., 2016; Afrouzi, 2023; Afrouzi

and Yang, 2021; Matějka, 2016; Stevens, 2020; Turen, 2023). In contrast to these studies,

our model allows for an exact analytical characterization of firms’ choices. This is crucial

in the theory to obtain an analytical characterization of equilibrium and in our empirical

work to obtain a direct and realistic mapping from the model’s predictions to observed

choices.2 Our approach is similar in spirit to that of Ilut and Valchev (2023), who model

cognitive constraints as costly learning of policy rules. These authors focus on different

1In Mäkinen and Ohl (2015), decreasing returns to scale lead firms to demand more information when
aggregate productivity is low. Chiang (2023) considers a complementary mechanism in the context of
a model where firms acquire Gaussian signals about the state. Benhabib et al. (2016) predict lower
information demand in recessions, a prediction at odds with our empirical findings.

2Costain and Nakov (2015, 2019) also apply the control-cost model but study different questions,
regarding price dynamics, and do not provide comparable analytical results. In the context of households’
attention to savings choices, Macaulay (2020) studies the special case of exchangeable choices under
mutual information costs, which is isomorphic to a control cost approach.
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applications and use numerical analysis of aggregative equilibrium.

Our findings regarding attention to the macroeconomy contribute to a literature mea-

suring this object in firm and household surveys (Coibion et al., 2018; Link et al., 2024).

Kuang et al. (2024) estimate that the conditional precision of professional forecasters’

signals increases when perceived recession risk and volatility are high, consistent with our

attention cycles hypothesis. Our textual measure of attention also relates to subsequent

work by Song and Stern (2023), who develop a text-based measure of firms’ attention to

macroeconomic news and use it to study the importance of inattention for the propagation

of monetary shocks.

An additional contribution is to show how endogenous attention contributes to microe-

conomic and macroeconomic volatility. A key lesson from our analysis is that endogenous

volatility in choices conditional on fundamentals may have an opposite cyclicality to ex-

ogenous volatility in fundamentals, helping reconcile the finding of counter-cyclical TFP

variance (Bloom et al., 2018) with more ambiguous evidence for the volatility of other

variables (e.g., Bachmann and Bayer, 2014; Dew-Becker and Giglio, 2020).

Outline. In Section 1, we introduce our model. In Section 2, we present our theoretical

results. In Section 3, we describe the data and measurement. In Section 4, we test the

model’s six main predictions. In Section 5, we calibrate our model and analyze the impact

of attention cycles on macroeconomic dynamics. Section 6 concludes.

1 Model

We first describe our model, a Neoclassical real business cycle model with a stochastic

choice friction for intermediate goods firms that captures inattention and mistake making.

1.1 Consumers and Final Goods

Time periods are indexed by t ∈ N. A representative household has constant relative

risk-aversion preferences over final-good consumption Ct and labor Lt. Their payoffs are:

U({Ct+j, Lt+j}∞j=0) = Et
∞∑
j=0

βj

(
C1−γ
t+j

1− γ
− v(Lt+j)

)
(1)

where β ∈ [0, 1) is the discount factor, v is an increasing and convex labor disutility, and

γ > 0 is the coefficient of relative risk aversion. The aggregate final good is produced from
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a continuum of intermediate goods, indexed by i ∈ [0, 1], by a representative, perfectly

competitive firm using a constant-elasticity-of-substitution production function

Xt = X({xit}i∈[0,1]) =

(∫
[0,1]

x
ε−1
ε

it di

) ε
ε−1

(2)

where ε > 1 is the elasticity of substitution. This firm buys inputs at prices {qit}i∈[0,1]

and sells its output at a normalized price of one. The household owns equity in firms that

produce intermediate goods, receiving profits {πit}i∈[0,1].

Wages are determined by the following wage rule:

wt = w̄ ·
(
Xt

X̄

)χ
(3)

where w̄ > 0 and X̄ > 0 are constants, and χ ≥ 0 (inversely) measures the extent of real

wage rigidity. Households supply labor to meet firms’ labor demand at the wages from

Equation 3. Describing the labor market via a wage rule is for technical simplicity as it

allows us to study the economy via a scalar fixed-point equation.3 Moreover, it allows our

model to parsimoniously match the empirical acyclicality of real wages (Solon et al., 1994;

Grigsby et al., 2021). In Appendix D, we micro-found this wage rule when households

have Greenwood et al. (1988) preferences and markets clear in the standard fashion. We

show in Appendix E.1 that our results are quantitatively robust to considering wages set

in this manner.

1.2 Intermediate Goods Firms and Productivity Shocks

Each intermediate goods firm i is a monopoly producer of its own variety and faces a

demand curve d(xit, Xt) = X
1
ε
t x
− 1
ε

it from the final goods producer. They hire a labor

quantity Lit, pay wage wt per worker, and produce with the following linear technology:

xit = θitLit (4)

where θit is a firm-level shifter of productivity, which lies in a set Θ ⊂ R+.

We parameterize the stochastic process for productivity in the following way that al-

lows for both rich cross-firm heterogeneity and “aggregate productivity” shocks. We let

θt ∈ Θ be an aggregate productivity variable. For each firm i, (θit, θt) follows a first-

order Markov process of the following form: the transition density can be factored as

h(θit, θt | θi,t−1, θt−1) = hagg(θt | θt−1)hidio(θit | θi,t−1, θt, θt−1). In words, aggregate produc-

tivity follows a first-order Markov process by itself and firm-level productivity depends

3Blanchard and Gaĺı (2010) and Alves et al. (2020) use similar wage-rule formulations.
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flexibly on its own lag and the current and lagged aggregate state. This model allows

for aggregate productivity shocks to affect all moments of the idiosyncratic productivity

distribution. For example, it is consistent with the model empirically estimated by Bloom

et al. (2018) wherein aggregate shocks affect both the mean of firm level productivity and

its idiosyncratic variance.

Throughout our analysis, we will reference two aggregate summaries of the productiv-

ity distribution. The first is the cross-sectional distribution of θit at time t, Gt ∈ ∆(Θ).

The second is the statistic,

θ̂(G) =

(∫
Θ

θε−1
i dG(θi)

) 1
ε−1

(5)

which is a quasi-arithmetic mean of the productivity distribution. Because the integrand

inside is an increasing function, θ̂(G) is monotone in distributions G and G′ ranked by

first-order stochastic dominance.

1.3 Modelling Attention via Costly Control

Due to cognitive constraints, these agents struggle to perfectly adapt their production

choice to the microeconomic and macroeconomic state without making mistakes. We

model this by having them choose stochastic choice rules, or mappings from states to a

distribution of production outcomes, subject to a cognitive cost. Both the choice set and

the cost are flexible enough to allow for unrestricted, state-dependent attention, as we

formalize below.

Decision State and Choice Variable. We first define the firm-level decision state

zit = (θit, Xt, wt) ∈ Z as the concatenation of all decision-relevant variables that the firm

takes as given.4 Firms believe that zit follows a first-order Markov process with transi-

tion density f(zit|zi,t−1). As we will soon clarify, this conjecture combines the first-order

Markov process for (θit, θt) with a conjecture for how aggregates depend on the productiv-

ity distribution. We denote the corresponding set of possible transition densities by F . At

time t, each firm i observes the history of states, {zis}s<t, but not the contemporaneous

value zit.

The firm’s choice variable is a stochastic choice rule p : Z → ∆(X ) in set P , or

a mapping from states of the world to distributions of actions described by probability

4As will become clear, Z = Θ×X ×W, where X is feasible set of production, and W is the image of
X via the wage rule (3).
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density function p(· | zit) when the decision state is zit. A firm using rule p commits

to delivering the realized quantity xit ∈ X to the market and hiring sufficient labor in

production. It is fully equivalent to interpret firms’ choices as committing to hire Lit

workers and producing xit = θitLit.

Costly Control. We model the cognitive cost of attention via a cost functional c :

P × Λ × Z × F → R which returns how costly any given stochastic choice rule is to

implement in units of utility. The cost can depend on a firm-specific type λi ∈ Λ ⊆ R+,

by assumption independent from the decision state and distributed in the cross-section

as L ∈ ∆(Λ), and the previous value of the decision state zi,t−1, which under the Markov

assumption summarizes the transition probabilities for zit.

The basic idea that we wish to embody is that playing actions that are more precise

is more costly. To make this tension clear, and also to make the analysis tractable, we

specialize to the following cost functional that equals the negative expected entropy of

the action distribution multiplied by λi > 0:

c(p, λi, zi,t−1, f) = λi

∫
Z

∫
X
p(x | zit) log(p(x | zit)) dx f(zit | zi,t−1) dzit (6)

These costs embody the idea that it is difficult for firms to avoid making mistakes (see

Morris and Yang, 2022, and Flynn and Sastry, 2023, for a discussion). In particular, they

are consistent with the experimentally verified fact that the size and character of choice

mistakes respond to incentives (Woodford, 2020), the central premise of our analysis.

Comparison to Other Models of Inattention. This notwithstanding, there are

other costs that could embody the notion of incentives-driven attention. Two prominent

examples are unrestricted costly information acquisition (Caplin and Dean, 2015), includ-

ing the mutual information model of Sims (2003), and behavioral sparse maximization

(Gabaix, 2014).

In contrast to these alternative models, our model jointly has three properties that are

important for our analysis. First, our model admits an analytical solution for the globally

optimal policy, despite the model’s state-dependence. In particular, no comparable results

exist in the literature on rational inattention with mutual information costs.5 Second, our

model allows for tractable and well-posed analysis of equilibrium and its comparative

5Even when approximated as a state-dependent quadratic function of the action, our objective is not
“linear-quadratic” in the sense studied by Sims (2010), Maćkowiak et al. (2018), or Afrouzi and Yang
(2021).
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statics. The literature on equilibrium results with general information acquisition and/or

sparsity-based decision frictions does not describe comparable comparative statics (e.g.,

Angeletos and Sastry, 2023; Hébert and La’O, 2023; Gabaix, 2019). Third, our model

allows for rich, state-dependent, and stochastic mistakes. This will prove a more realistic

prediction in our setting than, for example, the mutual information model’s prediction of

sparse actions (Matějka, 2016; Jung et al., 2019; Stevens, 2020) or the sparsity model’s

prediction of deterministic mistakes.

A key cost relative to these alternative models, however, is that our predicted optimal

policy functions will not include a force of “anchoring” toward commonly played actions

and therefore under-reacting to shocks. To gauge the importance of missing this force, we

discuss and analyze extensions of the model with unrestricted and parametric information

acquisition in Section 2.5 and Appendices F.2 and F.3.

1.4 The Firm’s Problem

Intermediate goods firms are owned by the representative household and maximize the

product of their dollar profit, which we write as π(xit, zit), and the household’s marginal

utility, which we write as M(zit). We define “risk-adjusted profits” as the product of these

terms:

Π(xit, zit) = π(xit, zit) ·M(zit) (7)

Under our assumed structure for the firms’ cost and revenue structure and the household’s

utility function, the profit function and marginal utility are respectively

π(xit, zit) = xit

(
x
− 1
ε

it X
1
ε
t −

wt
θit

)
M(zit) = X−γt (8)

The firm’s dynamic choice problem reduces to a series of one-shot problems. This follows

because zi,t−1 is an observed sufficient statistic for the history of states. Therefore the

firm’s beliefs in future periods do not depend on its decisions in the current period.

The firm’s choice at time t therefore solves the following problem of maximizing ex-

pected risk-adjusted profits net of cognitive costs:

max
p∈P

{∫
Z

∫
X

Π(x, zit) p(x | zit) dx f(zit | zi,t−1) dzit − c (p, λi, zi,t−1, f)

}
(9)

Firms flexibly choose a production plan for each decision state realization zit. For example,

firms can choose how the mean and variance of their production vary with idiosyncratic

productivity, aggregate output, and wages. Planning precisely, however, has a cognitive
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cost, which is proportional to entropy. The firm’s optimal choice trades off higher expected

utility from precise planning with the increased costs of so doing in each state.

Units for Costs. Consistent with our premise that decision frictions arise because of

cognitive limitations, the cost c is in utility units. An alternative model, motivated for

instance by a story of physical costs within the firm (e.g., hiring planners or consultants),

might denominate the costs in units of the numeraire good. In Section 2.5, we show that

this dollar-cost model (under any stochastic discount factor) is outcome-equivalent to our

utility-cost model with risk-neutral owners (γ = 0), and is therefore nested in the main

analysis. We further discuss how to interpret our main results in this special case.

1.5 Linear-Quadratic Approximation and Equilibrium

To tractably study equilibrium, we simplify the intermediate goods firms’ objective and

the final goods firm’s production with quadratic approximations. Both approximations

are derived in Appendix A.6.

Toward simplifying the intermediate goods firms’ objective, we first define an inter-

mediate firm’s ex post optimal production level, x∗(zi) := arg maxx∈X Π(x, zi). We next

define Π̄(zi) as risk-adjusted profits evaluated at (x∗(zi), zi) and Πxx(zi) as the func-

tion’s second derivative in x evaluated at the same point. The latter measures the state-

dependent cost of misoptimizations relative to x∗(zi) and will be central to our analysis.

The objective of the intermediate goods firm is, to the second order:

Π̃(x, zi) := Π̄(zi) +
1

2
Πxx(zi)(x− x∗(zi))2 (10)

The first-order term of this approximation drops out due to the envelope theorem: there

are no first-order costs of deviating from x∗(zi). So that this approximate payoff is globally

defined, we will also apply the simplifying assumption that X = R.

Next, we approximate the final goods firm’s production function (2) around the ex

post optimal production levels x∗(zi) to the second order. We first define the aggregate of

the ex post optimal production levels as X∗ =
(∫ 1

0
x∗(zi)

1− 1
ε di
) ε
ε−1

. We then write the

approximate production function as

X = X∗ − 1

2ε

∫ 1

0

(xi − x∗(zi))2

(X∗)−
1
ε (x∗(zi))

1+ 1
ε

di (11)

We now define a rational expectations equilibrium, up to these approximations, in

which all agents optimize, all markets clear, and expectations are consistent. It is conve-

nient for us to state this definition in the following, compact way in terms of the stochastic
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choices of intermediate goods firms p and the transition density f :

Definition 1 (Equilibrium). An equilibrium is a stochastic choice rule p ∈ P and a

transition density f ∈ F such that:

1. Intermediate goods firms’ stochastic choice rules p solve program (9) given f , with

Π̃, defined in (10), replacing Π.

2. The transition density f is consistent with p in the sense that: the marginal dis-

tribution of firm-level productivity is given by G; aggregate output is given by the

aggregator (11) evaluated in the cross-sectional distribution of production implied

by p and G; and the wage is derived from the wage rule (3) evaluated at aggregate

output.

2 Attention Cycles and Their Consequences

We now present our main theoretical results, in four parts. First, we characterize firms’

production and attention choices in partial equilibrium. Second, we derive primitive

conditions under which attention is counter-cyclical in general equilibrium. We argue

these conditions are ex ante reasonable based on existing macro-financial evidence. Third,

we characterize equilibrium output in the economy, isolate the role of cyclical inattention,

and show how it can drive asymmetric and state-dependent shock responses. We conclude

the section by summarizing six key predictions of the theory at the micro and macro levels,

which will form the basis of our empirical tests and quantitative calibration.

2.1 Attention and Misoptimization in Partial Equilibrium

We begin by describing the firms’ choices in partial equilibrium:

Proposition 1 (Firms’ Optimal Stochastic Choice Rules). The random production of a

type-λi firm, conditional on realized decision state zi = (θi, X, w), can be written as

xi = x∗(zi) +

√
λi

|πxx(zi)|M(zi)
· vi (12)

where x∗(zi) is the unconstrained optimal action, |πxx(zi)| is the magnitude of curvature

for the firms’ profit function, M(zi) is the firm owner’s marginal utility, and vi is an

idiosyncratic, standard Normal random variable.

Proof. See Appendix A.1.
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Mathematically, this result follows from three observations. First, entropy costs make

the firm’s problem linearly separable across state realizations zit. This implies that firms’

optimal policies are independent of the prior distribution f . Second, the firms’ payoff

functions are (up to approximation) quadratic in the action conditional on each state.

Third, under entropy costs and quadratic payoffs, the optimal non-parametric action dis-

tribution is Gaussian with the properties identified in Proposition 1. While superficially

similar to existing results in quadratic-Gaussian rational inattention models (Sims, 2003),

this characterization has two important differences from all existing results with unre-

stricted information acquisition of which we are aware. First, the cross-sectional action

distribution is a normal-mixture distribution within each aggregate state. Second, the

variance of the cross-sectional action distribution depends on the exogenous and endoge-

nous aggregate states.

The Profit-Curvature and Risk-Pricing Channels. Economically, Proposition 1

says that firms center their action around the full-attention optimum x∗(zi) but, due to

costly control, make an idiosyncratic misoptimization. The variance of the misoptimiza-

tion increases if the marginal cost of precision increases (higher λi), and decreases if either

of two components of the marginal benefits of precision increases. In this way, two chan-

nels of incentives determine agents’ apparent bounded rationality, or failure to perfectly

optimize from an ex post perspective.

The first component of this marginal benefit is the state-dependent curvature of the

firms’ dollar profit function, |πxx(zi)|, which translates small misoptimizations into their

dollar cost near the optimal production level. How |πxx(zi)| moves as a function of the

aggregate business cycle depends on the demand and cost curves that firms face. We will

refer to the effect of these incentives on misoptimization as the profit-curvature channel.

The second component of this marginal benefit is the firm owner’s marginal utility,

M(zi). This translates dollar losses into utility losses, which can be directly compared to

the utility cost of cognition. As every firm is owned by the representative household in

our model, the relevant marginal utility can be written only as a function of output X

(i.e., aggregate consumption). When this household is risk-averse, this marginal utility

is a decreasing function of output. Thus, the representative household is “hungrier” for

any firm’s dollar profits, in utility terms, when the aggregate economy is doing poorly.

Because of this, they are less tolerant of misoptimizations when output is low. We will
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refer to the effect of these incentives on misoptimization as the risk-pricing channel.

What Drives Attention and Misoptimization? The previous argument used only

the structure of the cost functional and the assumption of a “Neoclassical firm” owned

by a representative household. We can use the specific structure of our model to re-state

the comparative statics in the discussion above in terms of firms’ productivity θi and

aggregate output X, after imposing the stochastic discount factor, demand curves, and

cost curves that our model implies. In particular, the curvature terms of interest can be

written as:6

|πxx(zi)| := vπ(ε, χ, X̄, w̄) · θ−1−ε
i Xχ(1+ε)−1 M(zi) = X−γ (13)

where vπ(ε, χ, X̄, w̄) > 0. We observe also that the variance of production conditional on

the realized decision state, or E[(xi− x∗(zi))2 | zi], is a summary statistic for both misop-

timization and “attention” measured by realized cognitive costs, which are decreasing in

this variance. We summarize the comparative statics of this conditional variance below:

Corollary 1 (Comparative Statics for Mistakes). Consider a type-λi firm in state zi =

(θi, X, w(X)). The extent of misoptimization, E[(xi−x∗(zi))2 | zi], increases in θi. More-

over, E[(xi − x∗(zi))2 | zi] strictly increases in X if and only if γ > χ(1 + ε)− 1.

Proof. Immediate from combining Proposition 1 with Equation 13.

The (absolute) curvature of the profit function always increases in marginal costs, and

therefore decreases in θi. The monotonicity of curvature in aggregate output depends

jointly on the cyclicality of wages, which contributes a term with exponent χ(1 + ε); the

aggregate demand externality, which contributes a term with exponent −1; and marginal

utility, which contributes an exponent −γ. In particular, an economy with sufficiently

cyclical wages would have misoptimization decrease in aggregate output due to the profit-

curvature channel, while an economy with sufficient risk aversion or sufficiently cyclical

marginal utility would have misoptimization increase in aggregate output due to the risk-

pricing channel. We will discuss the interpretation of this parameter condition “horse

race” in the context of our general-equilibrium result in the next subsection.

6The first expression and the associated constant are derived in Appendix A.6.
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2.2 Attention and Misoptimization Cycles in Equilibrium

We now translate the partial equilibrium behavior of the firm into general equilibrium.

We first provide conditions under which equilibrium analysis is well-posed and output is

a uniquely determined, monotone function of the underlying productivity state:

Proposition 2 (Existence, Uniqueness, and Monotonicity). For any χ > 0, an equilib-

rium in the sense of Definition 1 exists. If χε < 1 and γ > χ + 1, there is a unique

equilibrium. In this equilibrium, output depends on the productivity distribution G only

through the sufficient statistic θ̂(G) ∈ Θ (Equation 5) and can be expressed via a function

X : Θ→ R that is strictly positive and strictly increasing in that sufficient statistic.

Proof. See Appendix A.2.

To establish these properties, we derive a representation of equilibrium as a fixed

point for aggregate output X as a function of the aggregate sufficient statistic θ̂(G). To

establish uniqueness and monotonicity, we derive conditions under which the fixed-point

equation is a contraction map that depends positively on θ̂. The condition χε < 1 ensures

that firms’ production plans are on average an increasing function of aggregate output,

by bounding wage pressure relative to the aggregate demand externality. The condition

γ > χ+ 1 bounds the variance of actions around this optimum and ensures that, even in

the presence of endogenous dispersion, there is positive but bounded complementarity.

The latter condition γ > χ+ 1 is both conservative in the model, as it ensures unique-

ness and monotonicity for any possible distribution of λi, and highly plausible in practice.

The elasticity of detrended real wages to GDP in US data since 1987 is 0.095, and micro-

level studies find similarly severe wage rigidity (Solon et al., 1994; Grigsby et al., 2021).7

Moreover, to be consistent with the restrictions χε < 1 (upward-sloping best responses)

and ε > 1 (substitutable goods), χ cannot exceed one. The corresponding conditions

γ > 1.095 or γ > 2 are likely both slack by an order of magnitude, given evidence in fi-

nancial economics about the high cyclicality of the stochastic discount factor (e.g., Hansen

and Jagannathan, 1991). As γ governs only the properties of the stochastic discount factor

in our model, this is the relevant evidence for determining its appropriate value.

7This calculation uses quarterly-frequency, seasonally-adjusted data on real GDP and median, CPI-
adjusted wages of all full-time employed wage and salary workers. Both series are linearly detrended.
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We now give conditions under which the economy exhibits aggregate misoptimization

and attention cycles. We say that firms “misoptimize less” in a state if, averaging over

idiosyncratic states (θi, λi), they have a lower expected mean-squared error around the

ex post optimal action x∗(zi). We say that all firms “pay more attention” in a state if,

averaging over idiosyncratic states (θi, λi), they pay a greater attention cost conditional

on that state being realized. Formally:

Definition 2 (Aggregate Misoptimization and Attention). Fix an equilibrium law of mo-

tion X : Θ → R. Firms’ aggregate misoptimization is their average mean-squared-error

around the ex post optimal action, or

m(G) := Eθi,λi,xi
[
(xi − x∗(zi(θ̂(G))))2

]
(14)

where zi(θ) = (θi, X(θ), w(X(θ))), p∗(· | zi(θ);λi) is the uniquely optimal plan of a type-λi

firm contingent on realized state zi, and the expectation is taken over θi ∼ G, λi ∼ L, and

xi ∼ p∗(· | zi(θ);λi). Firms’ aggregate attention is their average realized cognitive cost

a(G) := Eθi,λi,xi [λi p
∗(xi | zi(θ);λi) log p∗(xi | zi(θ);λi)] (15)

We now show that, under the same assumptions as Proposition 2, the model features

counter-cyclical attention and pro-cyclical misoptimization:

Proposition 3 (Attention Cycles). Assume χε < 1 and γ > χ+ 1 and consider produc-

tivity distributions G and G′. If θ̂(G) ≥ θ̂(G′), then aggregate output X and aggregate

misoptimization m are larger under G. If additionally G %FOSD G′, then aggregate at-

tention a is lower under G.

Proof. See Appendix A.3.

Economically, Proposition 3 says that any calibration of the model that is consistent

with existing evidence about wage rigidity and the stochastic discount factor predicts that

firms should pay more attention to their decisions and make smaller misoptimizations,

conditional on fundamentals, in downturns. We note that these conditions are sufficient

but not necessary. For example, misoptimization would also be pro-cyclical (and attention

counter-cyclical) if the (looser) condition in Corollary 1 held and if, by assumption, output

were monotone increasing in productivity.
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2.3 Misoptimization, Output, and Productivity

Having provided conditions for attention and misoptimization cycles, we now study the

effects of these phenomena on output and labor productivity. Despite unrestricted hetero-

geneity in the cross-sectional distributions of microeconomic productivity and attention

costs, there are scalar sufficient statistics in equilibrium for each distribution. As described

earlier, the cross-sectional distribution of productivity is summarized by the sufficient

statistic θ̂(G). We therefore, without loss of generality, write θt = θ̂(Gt) for the remainder

of the analysis. The cross-sectional distribution of attention costs is summarized by the

mean λ := EL[λi].

We define logX(log θ) as a mapping from the log productivity sufficient statistic to log

output in the economy, holding fixed all other parameters. The following result describes

output in log units as the sum of that which would be obtained absent inattention and

an attention wedge logW (log θ):

Proposition 4 (Equilibrium Output Characterization). Equilibrium output follows:

logX(log θ) = X0 + χ−1 log θ + logW (log θ) (16)

where θ = θ̂(G) is a sufficient statistic for the productivity distribution, X0 is a constant,

and logW (log θ) ≤ 0, with equality if and only if λ = 0. When χε < 1, γ > χ + 1, and

λ > 0, the wedge has the following properties:

1. ∂ logW
∂λ

< 0, or the wedge widens with the average cost of attention.

2. ∂ logW
∂ log θ

< 0, or the wedge widens as the state increases.

Proof. See Appendix A.4.

Absent inattention, output is log-linear in aggregate productivity. With inattention

and under our stated conditions from Propositions 2 and 3, output is depressed by the

presence of mistakes. The magnitude of this force increases in the extent of cognitive

costs λ and in aggregate productivity θ. Both results have a partial-equilibrium and

general-equilibrium component. In partial equilibrium, both increasing λ and increasing

θ make firms play more dispersed actions, as shown in Proposition 1, and this dispersion

has a cost to output when the aggregate production function is concave. In general

equilibrium, we iterate this logic until convergence; our comparative statics results verify

that this fixed-point operation converges on a lower value of output.

To better understand this wedge, we can re-cast it in terms of labor productivity:
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Corollary 2 (The Productivity Wedge). Equilibrium labor productivity A := X
L

follows:

logA(log θ) = log θ + χε logW (log θ) (17)

Proof. See Appendix A.5.

The productivity wedge representation allows for three useful parallels between our

paper’s mechanism and classic arguments in the literature. First, our mechanism is like

an attentional, intensive margin version of the “cleansing” effect studied by Caballero and

Hammour (1994): conditional on a given firm operating, it is more focused on making

precise choices in recessions, and this on average reduces the wedge and raises aggregate

labor productivity. Second, our model accommodates a non-monotone relationship be-

tween aggregate labor productivity and aggregate output, due to the competing forces

of increased productivity with increased misallocation. This is consistent with the un-

stable and often negative cyclicality found in US data (e.g., Gaĺı and Van Rens, 2021).

Third, the mechanism whereby dispersion in firm-level value marginal products depresses

aggregate productivity is shared with the literature on misallocation pioneered by Hsieh

and Klenow (2009) and Restuccia and Rogerson (2008).8 What is new is our prediction

about the cyclicality of this force, driven by changing incentives for (in)attention, and the

implications of that cyclicality for business cycles.

2.4 Shock Propagation and Volatility

The fact that agents are differentially attentive to shocks across states of the world makes

the economy differentially sensitive to shocks. To see this, note that the elasticity of

output to a small shock can be written as
∂ logX(log θ)

∂ log θ
= χ−1 +

∂ logW (log θ)

∂ log θ
(18)

that is, the sum of the frictionless economy’s response to shocks (χ−1) and the response of

the attention wedge to shocks. The latter term is negative in the case studied by Proposi-

tion 4, so the economy is less responsive to shocks than the full attention benchmark. This

dampened response is a familiar prediction in the literature with cognitively constrained

agents (e.g., Sims, 1998, 2003; Gabaix, 2014). Here, the result arises not from individual-

level underreaction but instead from the interaction of individual mistakes with concave

8David et al. (2016), Ma et al. (2020), and Barrero (2022) link misallocation to cognitive and infor-
mational frictions in steady state and study the implications for productivity.
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aggregation. Moreover, this dampening from the attention wedge can depend on the state.

This is a direct consequence of modeling state-dependent attention and accommodating

attention cycles.

If the slope of the attention wedge varies with the productivity state, then the economy

has different responses to productivity shocks depending on the initial level of productivity.

An immediate implication is that, even in an environment with constant volatility in log θt

(e.g., it follows a standard AR(1) process), there is endogenous stochastic volatility in

output growth. Finally, if the attention wedge has a non-zero second derivative, positive

and negative shocks have asymmetric effects on log output.

The ultimate implications of this result hinge on the concavity or convexity of the

attention wedge in the state. When the attention wedge is concave (respectively, convex),

the economy generates greater (smaller) volatility in low states, a larger (smaller) impact

of shocks in low states, and features larger (smaller) impact of negative versus positive

shocks from any initial state. While we cannot establish theoretically that the wedge is

globally concave, it cannot be globally convex and therefore must be concave in at least

some part of the parameter space. Our quantitative analysis in Section 5 will feature a

concave wedge. In that section we will review the implications of this finding.

2.5 Extensions

Decision Costs in Dollar Units. Motivated by the nature of cognitive costs, we

denominated the cost of precise planning in utility units. An alternative choice is to specify

these costs in units of final output or “dollars.” This is natural if overcoming decision

frictions requires investing in inputs, like employees tasked with planning. Since risk

aversion enters our analysis only in translating dollar costs to utility costs, the assumption

of dollar-denominated cognitive costs is nested by setting γ = 0. Proposition 1 and

Corollary 1 hold as written. If output is monotone in productivity, the model can feature

equilibrium attention cycles if 1 > χ(1 + ε). Thus, the profit-curvature channel by itself

can induce attention cycles if wages are sufficiently rigid, a condition likely to hold based

on our earlier discussion. However, our empirical analysis will support a strong role for

the risk-pricing channel. First, we will find weak evidence of differential sensitivity of

dollar profits to misoptimizations over the business cycle (Section 4.3). Second, we will

find strong procyclicality of misoptimization variance. Thus, to rationalize these facts,

our quantitative model requires a strong risk-pricing channel (γ = 11.5), rejecting the
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dollar-cost model nested with γ = 0 (Section 5.1).

Labor Wedge Shocks. Fluctuations can also arise in our model from shocks to w̄,

which can be interpreted as a labor wedge shock. Inspection of Proposition 1 reveals that

w̄ is equivalent to an aggregate shifter of firms’ revenue productivity. Propositions 2 and

3 provide conditions for output to be monotone decreasing in w̄ and for counter-cyclical

attention and pro-cyclical misoptimization in an economy with stochastic productivitity

and labor wedges. Proposition 4 holds as written, with θw̄−1 replacing θ. Thus, our core

conclusions about attention cycles and their effects on business cycles hold in a model

with both supply and demand shocks.

Costly Information Acquisition. Our model of costly control and non-parametric

choice differs from models of unrestricted costly information acquisition in several re-

spects. Costly control allows us to tractably study several partial and general equilibrium

phenomena. Nonetheless, we sacrifice the model’s ability to capture individual-level un-

derreaction (while we do generate aggregate underreaction). Motivated by this, we study

the robustness of our results to information-acquisition costs by examining our model with

Gaussian signal extraction with costly precision (Appendix F.2) and mutual-information

costs as studied by Sims (2003) (Appendix F.3). In both cases we provide conditions un-

der which a greater cost of making mistakes from either the risk-pricing or profit-curvature

channel leads to firms making smaller mistakes. We do, however, note that application of

unrestricted rational inattention to the model we study is not analytically possible using

any state-of-the-art techniques (e.g., Afrouzi and Yang, 2021; Miao et al., 2022) as our

firms’ have non-Gaussian priors and non-quadratic payoff functions, and aggregation is

non-linear.

Multiple Inputs and Classical Labor Supply. In Appendix D, we extend the model

to allow for intermediate inputs, separate capital owners and laborers, and market-clearing

wages rather than a wage rule. The first two features will be useful in mapping the model

to the data in Section 4, while the third enables a more Neoclassical micro-foundation.

We show under general conditions how the main results derived in this section, regarding

the cyclicality of attention and misoptimization and the effects on output, continue to

hold so long as the extent of the cognitive friction is not too large. Together, these

extensions demonstrate the stability of our main model insights to a richer macroeconomic

environment.
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2.6 Microeconomic and Macroeconomic Predictions

We now distill our findings into six testable microeconomic and macroeconomic predic-

tions. These will motivate our measurement strategy and empirical analysis.

The first is that firms make costly misoptimizations:

Prediction 1. Firms make misoptimizations (under- and over-production relative to the

ex post optimal level) that reduce profits.

This prediction is a consequence of costly cognition (Proposition 1). It is inconsistent with

models in which deviations from optimal choices arise from wedges in the sense of Chari

et al. (2007) or Restuccia and Rogerson (2008), as under-production would be associated

with lost profits but over-production would be associated with increased profits. Thus,

this prediction directly tests our misoptimization-based interpretation of the data.

The second prediction concerns how misoptimizations move over the cycle:

Prediction 2. Firms make larger misoptimizations in booms and smaller misoptimiza-

tions in downturns.

This arises from firms’ counter-cyclical incentives to rein in mistakes, given assumptions on

risk aversion, wage rigidity, and substitutability that we argued are natural (Proposition

3). A similar prediction does not obtain under alternative, non-cognitive theories of

stochastic wedges—for example, the natural prediction with financial frictions is that their

intensity and cross-firm heterogeneity increases, rather than decreases, in downturns. We

will revisit this comparison to other models in the empirical analysis.

The third prediction identifies the mechanism underlying attention cycles:

Prediction 3. Firm valuations are more sensitive to misoptimizations in downturns than

in booms.

In our costly attention model, firms rein in misoptimizations exactly when it is most

valuable to do so. This microeconomic prediction lies at the core of our model’s mechanism

for endogenous, pro-cyclical misoptimization.

The fourth prediction zeros in on the mechanisms driving Prediction 3:

Prediction 4. Firm profits, in dollars, may be more or less sensitive to misoptimizations

in downturns versus booms.

Prediction 3 signs the the total effect of the risk-pricing and profit-curvature channels

while Prediction 4 says that the profit-curvature channel in isolation has an ambiguous

sign. Therefore, when we confront the model with data on both financial valuation and
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profitability, we can distinguish the relative strength of these mechanisms.

The fifth prediction concerns the cyclicality of aggregate attention:

Prediction 5. Firms pay more attention to decisions in downturns and less in booms.

This prediction, like Prediction 2, derives from Proposition 3. But, since cognitive effort

is by definition unobserved, it is more challenging to directly test than its equivalent for

misoptimization. In the next section, we will introduce a method to proxy for firms’

attention using textual analysis.

The final prediction regards the relationship between misoptimization and attention:

Prediction 6. Firms that pay more attention make smaller misoptimizations.

This prediction allows us to microeconomically validate the decision-relevance of measured

attention and to further validate the attention interpretation of measured misoptimization.

3 Measuring Misoptimization and Attention

Toward testing the model’s microeconomic and macroeconomic predictions, we introduce

new empirical measures of firms’ “misoptimizations” and “attention.” Our model provides

a structural method by which we can recover firms’ misoptimizations. Econometrically,

this requires only a standard estimation of firms’ productivity and policy functions. We

proxy for attention, which is unobservable, by constructing a text-based measure: firms’

discussion of macroeconomic topics in regulatory filings and earnings conference calls.

3.1 Measuring Misoptimizations

Data. Our dataset for public firms’ production and input choices is Compustat Annual

Fundamentals. We use information on sales, employment, variable input expenses, and

capital measured via net and gross values of plants, property and equipment (PPE). We

organize firms into 44 industries, which are defined at the NAICS 2-digit level but for

Manufacturing (31-33) and Information (51), which we split into the 3-digit level. We

drop financial firms and utilities due to their markedly different production functions.

In our main analysis, we use a sample period from 1986 to 2018.9 We apply standard

filters to remove firms that are based outside the US, are insufficiently large, or are likely

to have been involved in a merger or acquisition. This yields a final sample of 68,198 firm-

year observations, or about 2,200 per year. Appendix B.1 describes the full procedure.

9To probe robustness, we also show results on the entire Compustat sample since 1950.

22



From Theory to Estimation. We start by translating our characterization of firms’

optimal stochastic choice (Proposition 1) into an estimable structural relationship. Let-

ting σ(θit, Xt, wt) =
√

λi
|πxx(θit,Xt,wt)|M(Xt)

denote the firms’ optimally chosen volatility of

mistakes and vit denote idiosyncratic, unit variance, and zero-mean firm trembles, we

observe that Proposition 1 implies:

logLit = logL∗(θit, Xt, wt) + log

(
1 +

σ(θit, Xt, wt)

L∗(θit, Xt, wt)
vit

)
= (ε− 1) log θit − ε logwt + logXt + log

(
1 +

σ(θit, Xt, wt)

L∗(θit, Xt, wt)
vit

)
≈ (ε− 1) log θit − ε logwt + logXt +

σ(θit, Xt, wt)

L∗(θit, Xt, wt)
vit︸ ︷︷ ︸

mit

(19)

where the first line uses Proposition 1 (expressed in terms of labor choice, and in logs); the

second line uses the expression for L∗(θit, Xt, wt) = x∗(θit,Xt,wt)
θit

in our model; and the third

approximates log(1 + x) ≈ x for small x and defines the residual mit. In Appendix B.3,

we show that this policy function is also obtained in a generalization of our baseline model

that features multiple flexible inputs. In words, Equation 19 says that misoptimizations

can be measured as residual variation in firms’ choices conditional on productivity, factor

prices, and demand. This is the basic blueprint for our measurement strategy.

In practice, to guard against the potential for misspecification of this relationship, we

estimate a more flexible model of the following form

logLit = ηi + χj(i),t + β log θit +mit (20)

where j(i) is the industry of firm i, β is an unrestricted coefficient, ηi and χj(i),t are re-

spectively fixed effects at the firm- and industry-by-time levels, and mit follows an AR(1)

process mit = ρmi,t−1 +
(√

1− ρ2
)
uit, where ρ ∈ (0, 1) is the persistence and uit is a

zero-mean innovation with variance σ̃2(θit, Xt, wt). If σ̃2(θit, Xt, wt) is sufficiently persis-

tent, then it is approximately the variance of mit. In the Appendix, we formally describe

how the more general model nests two economically important features from which we

abstracted in the theoretical analysis for simplicity. The first is time-varying differences

in demand and factor prices across industries and time-invariant differences across firms,

respectively captured in the industry-by-time and firm fixed effects of Equation 20 (Ap-

pendix B.3). The second is persistent mistakes, which can arise in a variant model which

accommodates cognitive inertia (Appendix F.1).
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Estimation Procedure. To empirically estimate our model, we proceed to estimate

productivity and firm policy functions using standard techniques. First, we estimate

productivity using a cost-shares approach, as in Foster et al. (2001), Bloom et al. (2018),

and Ilut et al. (2018). We describe the full details in Appendix B and summarize the

main points below. We define productivity log θit as the residual of an industry-specific,

constant-returns-to-scale, Cobb-Douglas production function over labor Lit, materialsMit,

and capital Kit:

log xit = log θit + αL,j(i) logLit + αM,j(i) logMit + αK,j(i) logKit (21)

where αL,j(i) + αM,j(i) + αK,j(i) = 1.10 We measure labor expenditures as the product of

reported employees and a sector-specific wage calculated from the US County Business

Patterns; materials expenditures as the sum of variable costs and administrative expenses

net of depreciation and labor expenditures; and the capital stock as the initial gross level

of plant, property, and equipment plus net investment. We use industry-specific ratios

of labor and materials expenditures to total sales to estimate the revenue elasticities of

labor and materials, and translate these into output elasticities given an assumption for

the elasticity of demand of ε = 4. We measure the output elasticity of capital as 1−αL,j(i)−
αM,j(i), using constant returns to scale. We combine these estimates with our production

functions and demand curves, and partial out industry-by-time fixed effects to capture

factor price and demand variation, to recover an estimate for firm-level productivity log θit.

Note that log θit could blend both firm-level productivity and demand shocks, as observed

by Foster et al. (2008) for any context without access to separate data on both prices and

quantities. But since both types of shocks behave identically in our mapping from theory

to data, this poses no issue for the interpretation of our estimated policy functions or

misoptimizations.

Next, we estimate firm policy functions as in Ilut et al. (2018) or Decker et al. (2020).

We first estimate Equation 20 via ordinary least squares (OLS) and obtain a preliminary

estimate m̂0
it of the residual. We next estimate the AR(1) process for misoptimizations

using m̂0
it to obtain an estimate ρ̂ of the residual persistence (in our main procedure, 0.70).

10The Cobb-Douglas assumption is a convenient and common step to enable production function esti-
mation via input-cost shares (e.g., Foster et al., 2001, 2008; Bloom et al., 2018). Moreover, a number of
studies including Basu and Fernald (1997) and Foster et al. (2008) argue that constant returns to scale
in physical terms is a reasonable approximation for large, US-based firms.
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We next estimate via OLS the “quasi-differenced” equation for labor choice:11

logLit − ρ̂ logLi,t−1 = ηi + χj(i),t + β0 log θ̂it + β1 log θ̂i,t−1 + νit (22)

with residual νit = mit − ρ̂mi,t−1. When ρ̂ = ρ, νit =
(√

1− ρ2
)
uit. We therefore obtain

an estimate of uit as ûit = ν̂it√
1−ρ̂2

.

We finally define aggregate “Misoptimization Dispersion” as an estimate of the cross-

sectional variance of mit with weights s∗it proportional to firms’ predicted sales based on

fundamentals:12

MisoptimizationDispersiont =

∑
i∈It s

∗
it · û2

it∑
i∈It s

∗
it

(23)

The weights are the appropriate ones for mapping average misoptimization to misalloca-

tion in the theory and will aid in our subsequent structural interpretation of our findings.

In a nutshell, these weights give higher influence to larger, more productive firms while

not “double-counting” misoptimizations in both input choice and total production. In

Appendix A.6.3, we show that pro-cyclical MisoptimizationDispersion by our empirical

definition is sufficient for pro-cyclical misoptimization as defined in Definition 2, and thus

constitutes a more stringent test of that model prediction.

Robustness to Alternative Methods. Of course, this procedure can only be in-

terpreted as recovering mistakes given the model that we have written. Any additional

unmodeled, idiosyncratic firm-level wedges à la Restuccia and Rogerson (2008) would also

be captured as a mistake.13 Later, Prediction 1 will allow us to distinguish idiosyncratic

wedges from misoptimizations: residuals from wedges should have a uniformally positive

effect on firms’ profitability and stock returns. By contrast, residuals from misoptimiza-

tion should have a hump-shaped effect on firm performance. This notwithstanding, to

explicitly account for other misspecifications, we employ several alternative strategies.

First, we construct measures that are robust to the presence of misspecification arising

from adjustment costs (e.g., as in Hopenhayn and Rogerson, 1993) and financial frictions

11Appendix Table A8 contains our estimates of Equation 22 and the AR(1) process for mit under
the baseline procedure outlined in this section, along with several alternative choices used in robustness
checks. In all estimations, we drop the top and bottom 1% tails of the TFP distribution to limit the
effects of outliers. Results are quantitatively similar without this trimming.

12In particular, the weights are the exponentiated fitted values exp(β̂ log θ̂it) from the following regres-

sion equation: log Salesit = β log θ̂it + ηi + χj(i),t + εit.
13Time-varying wedges at the industry or aggregate level would be absorbed in our model’s fixed effect,

and firm-level correlated distortions that are driven by productivity (Restuccia and Rogerson, 2008) would
be included in our productivity estimates. Thus, neither would affect our estimated misoptimizations.
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(e.g., as in Ottonello and Winberry, 2020). To do this, we estimate a variant policy

function that adds the first lag of labor choice. In this model, there is no significant

persistence of mistakes (see Table A8). To capture financial frictions, we consider an

augmented policy function with a direct control for leverage (total debt/total assets), as

constructed by Ottonello and Winberry (2020), and its interaction with TFP.

Second, for robustness to the cost-shares-based productivity estimation strategy, we

also estimate productivity using the method of Olley and Pakes (1996). We find that the

two measures are very similar to one another, with a regression coefficient close to one

and a R2 of 0.98 after including sector-by-time and firm fixed effects (Table A12).

Finally, we perform our analysis under a host of further policy functions that (i)

are industry-specific, to combat against different market conditions and/or measurement

error in TFP; (ii) have time-varying coefficients on TFP (Decker et al., 2020); or (iii) allow

for TFP to affect the policy function non-linearly, to capture decreasing returns-to-scale

and asymmetric hiring and firing rules (Ilut et al., 2018). We also consider time-varying

production functions, to capture technological trends and, to first order, cyclical changes

in input shares. In another check, we estimate production functions and policy functions

in a pre-sample, while estimating misoptimization in a post-sample, to guard against

over-fitting.

3.2 Measuring (Macroeconomic) Attention

We now describe our strategy for measuring a proxy for firms’ attention. There are two

key challenges to this. First, attention, unlike misoptimization, has no direct theoretical

analog in observable firm choices. We instead use data on how firms describe their deci-

sions in words and treat these as a window into the contingencies for which firms plan.

Second, our model predicts that attention toward all factors increases in downturns. But,

for the purpose of measurement, it is necessary to focus on factors that are commonly

faced to some extent by all firms. We will therefore focus on measuring attention to

macroeconomic conditions.

Data. Our main data source is the full text of the quarterly 10-Q and annual 10-K

reports submitted by all US public firms to the Securities and Exchange Commission

(SEC). We use data from 1995 to 2018 in our main analysis.14 Our total sample consists

14The relevant digitized documents are hosted by the Security and Exchange Commission’s EDGAR
(Electronic Data Gathering, Analysis, and Retrieval), which began operation in 1994. We choose 1995
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of 479,403 individual documents, or about 5,000 per quarter, which we index by their

date of filing.

We also apply our measurement technique to a supplemental data source of 150,000

quarterly sales and earnings conference calls from 2003 to 2014. We replicate all subse-

quent results on these data as well. We relegate some additional details about our data

construction for the conference calls to Appendix C.1.

Methodology. A difficulty for identifying macroeconomic attention is to differentiate

characteristic language of macroeconomics from firms’ standard financial vocabulary (e.g.,

“credit” and “costs”). To address this, we apply a simple natural language processing

technique that identifies specific documents as “attentive to the macroeconomy” if their

word choice is both different from the standard word choice in regulatory filings and sim-

ilar to the word choice of macroeconomics references. Following the method introduced

by Hassan et al. (2019) to study firm discussion of political risks, we use introductory

college-level textbooks as those references: Macroeconomics and Principles of Macroeco-

nomics by N. Gregory Mankiw and Macroeconomics: Principles and Policy by William

J. Baumol and Alan S. Blinder.15 This choice balances our considerations of keeping the

relevant macroeconomic vocabulary mostly non-technical (e.g., “unemployment” instead

of “tightness”), but still specific (e.g., “inflation” instead of “price”).

To operationalize this method, we first define tf(w)it as the term frequency for a word w

in the filing of firm i at time t, measured as the proportion of total English-language words;

and df(w) as the document frequency of a given word w among all observed regulatory

filings, measured as a proportion of total documents that use the word at least once. We

define the “term frequency inverse document frequency,” or tf-idf, as:

tf-idf(w)it := tf(w)it · log

(
1

df(w)

)
(24)

The log functional form is a heuristic in natural language processing for scaling the rel-

ative importance of each term. It is bounded below by 0 when a word appears in all

documents and smoothly penalizes words that appear in more documents and are there-

fore less indicative of the topic of interest. For each word that appears in the 10-Q and

10-K corpus, we calculate the tf-idf using term frequencies in each of the three textbooks

and (inverse) document frequencies among regulatory filings. We rank the top 200 words

as a starting point at which a nearly comprehensive sample of firms’ reports are available in the system.
15We use electronic copies of the 7th, 3rd, and 12th editions of these books, respectively.
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by this metric in each textbook and take the intersection among the three books to ob-

tain a final set of 89 words.16 Appendix Figure A5 prints these words in alphabetical

order, and plots their time-series frequency. Many of the words relate to common macro

indicators (“unemployment”,“inflation”); some to the topic or profession itself (“macroe-

conomics”,“economist”); and some to policy (“Fed,” “multiplier”). There are also “false

positive” words that are related to pedagogy, like “question” and “equation.” To allow the

method to be fully devoid of direct researcher manipulation, we do not remove such words

from the main analysis, and consider an ex post “cleaned” word list only in a robustness

check. We then use our set of macroeconomic words, denoted by WM , to calculate our

firm-by-time measures of attention as the sum of the (idf-weighted) macroeconomic word

frequency:

MacroAttentionit =
∑

w∈WM

tf-idf(w)it (25)

We generate an aggregate measure MacroAttentiont by averaging MacroAttentionit across

firms. In our aggregate results, we remove seasonal trends as quarter-of-the-year means.

4 Testing the Model’s Predictions

We now test the model’s six main predictions (Predictions 1-6) and report six correspond-

ing findings. Together, these findings are consistent with our macroeconomic predictions

and proposed microeconomic mechanism of incentives-driven attention.

4.1 Fact 1: Mistakes Reduce Returns and Profitability

We first test that our measured “misoptimizations” are, as predicted by the theory, bad for

firm performance (Prediction 1). We proxy for firm performance with two measures. The

first is firms’ log stock returns, Rit. The second is firms’ “profitability” πit, or this year’s

earnings before interest and taxes (EBIT) divided by the last year’s total variable costs.17

We examine the non-parametric binned scatter relationship of each of these measures with

measured misoptimization (residuals) ûit, net of industry-by-time fixed effects χj(i),t.

16Taking the intersection helps guard against the idiosyncratic language of certain books. For instance,
in Principles of Macroeconomics by N. Gregory Mankiw, a parable about supply and demand for “ice
cream” is used often enough to make “ice” and “cream” high tf-idf words in our procedure.

17Variable costs, by our definition, are cost of goods sold (COGS) plus administrative expenses (XSGA)
net of depreciation (DP). Normalization by lagged costs, rather than current costs, limits mechanical
denominator bias related to the current period’s mistakes. Results are similar when normalizing by total
sales or costs in the current or previous period.
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Figure 1: The Negative Relationship Between Misoptimization and Firm Performance
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Notes: Both panels are binned scatterplots. The outcome variables are log stock returns (Panel A) and
profitability (Panel B). Dots represent means of the corresponding outcome conditional on ventiles of the
x-axis variable, ûit, and industry-by-time fixed effects. Error bars are 95% confidence intervals based on
the method of Cattaneo et al. (2019), with two-way clustering by firm and year. The construction of ûit
is described in Section 3.1.

Misoptimizations in both directions (i.e., under- or over-hiring labor) hurt firm per-

formance, measured in each way (Figure 1). This “hump-shaped” result is consistent

with our interpretation of residuals as misoptimizations. It is inconsistent with the inter-

pretation of residuals as wedges, which would predict a positive, monotone relationship,

or pure noise, which would predict a flat relationship. In Appendix Table A1, we show

that the result of a negative relationship between û2
it and {Rit, πit} is highly statistically

significant and robust to different levels of fixed effects.

The negative effects of misoptimizations on firm performance are also persistent. To

measure the dynamic relationship between misoptimization and performance, we estimate

projection regressions of productivity growth, profitability, and returns on û2
it, net of

industry-by-time fixed effects:

Xi,t+k = βX,k · û2
it + χj(i),t + εit (26)

for Xi,t+k ∈ {∆ log θ̂i,t+k, πi,t+k, Ri,t+k} and k ∈ {0, 1, 2}. We find no evidence of a quanti-

tatively large effect on current and future TFP growth (Appendix Table A2). We also find

evidence of persistent negative effects on profitability and stock returns. These dynamic

results rule out the possibility that the observed negative effect of û2
it operates through a

channel related to productivity, or through dynamic trade-offs between poor performance

today and improved future performance (driven, for instance, by restructuring).
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Figure 2: Misoptimization Dispersion is Pro-Cyclical
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Notes: The top two panels plot Misoptimization Dispersion (blue line, left axis) along with, respectively,
unemployment and the linearly detrended S&P 500 price (black dashed lines, right axis). The bottom two
panels are scatterplots of Misoptimization Dispersion versus the corresponding macroeconomic aggregate.
The black solid line is the linear regression fit. The standard errors are HAC robust based on a Bartlett
kernel with a three-year bandwidth.

4.2 Fact 2: Misoptimizations Rise in Booms, Fall in Downturns

We now study the behavior of aggregate misoptimizations in the data (Prediction 2).

Figure 2 plots aggregate Misoptimization Dispersion against the unemployment rate and

detrended end-of-year S&P 500 price. Misoptimization Dispersion rises when the real

economy and financial markets are doing well (e.g., the late 1990s), falls during reces-

sionary or financial crisis periods (e.g., 1990, 2001, and 2008), and is approximately as

persistent as the overall business cycle. Appendix Figure A1 shows that the same pro-

cyclical pattern is apparent in two other measures of dispersion, the mean of |ûit| and

inter-quartile range of ûit.

We benchmark the strength of this relationship with the business cycle by estimating

a linear regression of Misoptimization Dispersion on each macroeconomic variable:

MisoptimizationDispersiont = α + βZ · Zt + εt (27)

for Zt ∈ {Unemploymentt/100, log SPDetrendt}, over our 31 annual observations. We

estimate a slope of -0.841 (SE: 0.341, p = 0.02) with respect to unemployment and 0.064

(SE: 0.017, p = 0.001) with respect to the detrended S&P 500. The respective correlations
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Figure 3: Robustness of Pro-Cyclical Misoptimization to Alternative Strategies
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Notes: In each panel, the blue line is the corresponding version of Misoptimization Dispersion, the black
dashed line is the unemployment rate, and ρ is their correlation. Panel (a) is the baseline measure. Panel
(b) is the measure that accounts for adjustment costs via lagged labor in the policy function. Panel (c) is
the measure that accounts for financial frictions via leverage and its interaction with productivity in the
policy function. Panel (d) allows the elasticities of the production function to vary year-by-year. Panel
(e) uses productivity estimates from the method of Olley and Pakes (1996). Panel (f) replicates our main
procedure for the sample back to 1950 and applies compositional adjustment.

are -0.493 and 0.689. The regression on unemployment implies that a five percentage point

swing in unemployment is associated with an increase of Misoptimization Dispersion by

0.042 log points, or 53% of its sample mean value.

To investigate the robustness of this finding to plausible misspecifications of firms’

policy functions, we re-visit Fact 2 under the different constructions for “mistakes” intro-

duced in Section 3.1. Our findings are summarized in Figure 3.

Adjustment Dynamics. We first account for frictional adjustment dynamics by es-

timating a policy function that controls for lagged input choice (labor). The residuals

from this equation have negligible autocorrelation (AR(1) coefficient 0.016, as reported

in Table A8). Therefore, in this variant, it is inessential to model mistakes as persistent.

The resulting measure of Misoptimization Dispersion is strongly pro-cyclical (Panel (b) of

Figure 3). The inability of adjustment dynamics to explain Fact 2 is consistent with our

finding that misoptimizations had persistent negative effects on firm performance, instead

of the mean-reverting effects which would obtain if firms endured poor performance today

to reduce costly adjustments in the future (e.g., by hoarding labor).
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Financial Frictions. We next consider financial frictions, corresponding to the policy

function augmented with leverage and its interaction with TFP. This measure behaves

almost identically to our baseline (Panel (c) of Figure 3). This is consistent with the

notion that financial frictions and their heterogeneous incidence escalate in downturns,

which would if anything lead to bias that pushes against our prediction and finding.

Time-Varying Production Functions and Olley and Pakes (1996) Estimation.

To guard against mis-specification in estimating the production function and productivity,

we also implement a method using time-varying cost shares and the method of Olley and

Pakes (1996). Both measures give similar results (Panels (d) and (e) of Figure 3).

Longer Time Period and Compositional Adjustment. We also extend our time

series back to 1950 to gauge its cyclicality properties over a longer period.18 This allows us

to assess how our prediction for cyclical misoptimization generalizes beyond the key busi-

ness cycle episodes in our main sample (the Dot-Com Boom, the Early 2000s Recession,

the Mid 2000s Boom, the Great Recession, and the post-Great Recession Recovery). In so

doing, we also account for firm fixed effects in û2
it to adjust for the changing composition of

the sample, which Davis et al. (2006) and Brown and Kapadia (2007) argue is important

when studying patterns of volatility over long horizons in Compustat data. Notwithstand-

ing significant changes in the macroeconomy over this long time period, misoptimization

is similarly pro-cyclical over this longer horizon (Panel (f) of Figure 3 and Figure A2).

Replicating the regressions against the unemployment rate and detrended S&P 500 price,

we obtain coefficients of -0.571 (SE: 0.197) and 0.052 (SE: 0.014). Both estimates are

within one standard error of our baseline estimates.19

Additional Robustness Exercises. In Appendix Table A3, we more systematically

show the stability of our pro-cyclical misoptimization finding under the aforementioned

variants, four other alternative constructions of policy and production functions described

in Section 3.1, and variant strategies that control for linear and quadratic time trends and

restrict attention to the manufacturing sector. We also recalculate misoptimizations and

Misoptimization Dispersion using total variable cost expenditures and investment rates as

18One minor difference in the calculation is that, due to lack of sectoral wage data, we calculate TFP
with two factors, materials (inclusive of labor) and capital.

19When we adjust for composition in our baseline sample, the result measure has correlation 0.91 with
our original version. This measure’s regression slopes against unemployment and the detrended level of
the S&P 500 are -0.520 (SE: 0.206) and 0.040 (SE: 0.009), comparable to our baseline estimates.
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Table 1: Markets Punish Misoptimization Harder in Low-Return States

(a) Parametric Regression

(1) (2) (3) (4)
Outcome: Rit

û2
it -0.268 -0.262 -0.097 -0.087

(0.025) (0.023) (0.034) (0.033)
û2
it ×Rt 0.376 0.376 0.443 0.431

(0.123) (0.124) (0.171) (0.167)

Sector x Time FE X X X X
Firm FE X X

TFP Control X X

N 41,578 41,578 41,206 41,206
R2 0.239 0.261 0.385 0.403

(b) Non-parametric Regression
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Notes: In panel (a), Rit is the firm-level log stock return. û2
it is the squared firm-level misoptimization

residual, constructed using the methods described in Section 3.1. Rt is the log return of the S&P 500.
Standard errors are double-clustered at the firm and year level. Panel (b) shows the estimates of βy from
Equation 29. The blue dots are the point estimates and the blue error bars are 95% confidence intervals,
based on standard errors clustered by firm and year. Years in which the S&P 500 return was less than
5% are shaded orange.

the choice variable (Appendix Figure A3). We find broadly similar patterns, particularly

in the spike of the mid-1990s and falls in the 2002 and 2009-10 downturns.

4.3 Fact 3: Returns Respond More to Misoptimizations During Downturns

We have shown that firms make smaller misoptimizations in downturns. We now inves-

tigate the extent to which this is explained by the incentives implied by our model: that

firms have higher financial costs of misoptimization in downturns (Prediction 3).

To do this, we test whether misoptimizations have a state-dependent effect on stock

returns. Specifically, we regress a firm’s log stock return Rit on the firm’s squared misop-

timization innovation over interacted with the log aggregate (S&P 500) stock return Rt:
20

Rit = β · û2
it + φ ·

(
û2
it ×Rt

)
+ χj(i),t + Γ′Xit + εit (28)

Sector-by-time fixed effects partial out industry trends. The vector of control variables Xit

can include firm fixed effects and the growth rate of firm-level TFP, to partial out other

20To be consistent with our earlier analysis, we run this regression using re-scaled mistake innovations
ûit. In Appendix Table A6, we replicate the analysis using our (first-stage) estimates of the mistake
“level” m̂it and find qualitatively similar results.
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important determinants of returns. The hypothesis that the market punishes misoptimiza-

tion more severely in times of distress, or low Rt, is captured by φ > 0. In the expanded

model of Appendix D, we directly derive the regression equation and the prediction φ ≥ 0,

with equality only if investors are risk-neutral (there is no risk-pricing channel) and profit

sensitivity to mistakes is state-independent (there is no profit-curvature channel).

We find that φ > 0: misoptimization is priced more severely in states of low aggregate

returns (panel (a) of Table 1).21 Our estimates in column 3, in particular, suggest that

mistakes have a zero price if the S&P return is 22%, close to its value in the late 1990s or

the height of the dot com bubble. By contrast, in the trough of 2008 (Rt = −0.52), the

model implies that pricing is 6.2 times more severe than in the “usual” states of Rt ≈ 0.10.

In panel (b), we show estimates from the following regression which allows for a year-

specific coefficient on û2
it instead of imposing a parametric interaction with aggregate

returns:

Rit =
∑
y

βy · û2
it · I[t = y] + χj(i),t + εit (29)

We shade years in which the S&P 500 return is relatively low (< 5%). Our estimate of

φ > 0 in the parametric model corresponds to the fact that, in this more non-parametric

model, the plotted coefficients are more negative exactly when the S&P does poorly.

Robustness. Appendix Table A4 shows the stability of our main finding to all of the al-

ternative data-construction approaches highlighted in the previous sections. In Appendix

Table A5, we show that our finding of φ > 0 is robust to controlling for other plausible

heterogeneities in the effects of misoptimizations on stock returns. In particular, we con-

trol for the level and û2
it-interaction of TFP, lagged stock returns, and financial leverage

to control for the observed tendencies for negative-return firms to have higher volatility

(the leverage effect) and binding financial constraints; and we control for interactions of

û2
it with industry and firm fixed effects to model heterogeneous exposure to aggregates.

4.4 Fact 4: The State-Dependent Effects of Misoptimization are Driven by

the Pricing of Profits and Not Profits Themselves

In our model, Fact 3 implies that at least one of the risk-pricing or profit-curvature

channels drives changes in the cost of mistakes. To differentiate these explanations, we now

explore the extent to which profitability is more sensitive to mistakes during downturns.

21Similar results are obtained using mistake “levels” (columns 3-6 of Table A6)
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Table 2: Misoptimization, Profits, and Pricing

(1) (2) (3) (4)
Outcome: πit Outcome: Rit

û2
it -0.114 -0.021

(0.020) (0.032)
û2
it ×Rt 0.112

(0.089)
πit 0.400 0.421 0.690

(0.028) (0.034) (0.305)
πit ×Rt -0.303 -1.642

(0.166) (0.632)

Firm FE X X X X
Sector x Time FE X X X X

N 50,966 40,879 40,879 40,879
R2 0.663 0.402 0.402

First-stage F 17.80

Notes: πit is firm-level profitability and Rit is the firm-level log stock return. û2
it is the squared firm-level

misoptimization residual, constructed using the methods described in Section 3.1. Rt is the log return of
the S&P 500. Standard errors are double-clustered at the year and firm level.

To this end, we define profitability πit, as before, as this year’s EBIT divided by the

last year’s total variable costs. We study the state-dependent effects of misoptimizations

on profitability in the following regression that mirrors our previous analysis of stock

returns:

πit = βπ · û2
it + φπ ·

(
û2
it ×Rt

)
+ χj(i),t + γi + εit (30)

We predict that φπ = 0 if and only if the profit function has state-independent curvature.

We find a positive, small, and statistically insignificant φπ (column 1 of Table 2). Thus,

misoptimizations have an almost constant effect on firms’ dollar profits. This suggests

that the mechanism for our earlier finding of state-dependent market punishment (Fact 3)

relates primarily to the market’s greater reaction to fixed profit effects of misoptimizations.

We next estimate a sequence of models that explore the joint effects of misoptimiza-

tions and profitability on stock returns. We first regress firm stock returns on û2
it and πit

conditional on firm and sector by time fixed effects. Conditional on profitability, misopti-

mizations have a severely attenuated, and statistically indistinguishable from zero, effect
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on stock returns (column 2 of Table 2). This is consistent with the model interpretation

that misoptimizations matter for prices by reducing current profits, and not through any

other channel.

We next explore whether profitability, more generally, has a larger effect on returns

during downturns. This allows us to test whether the market values firm performance more

strongly in low-return environments. Crucially, this tests our microeconomic mechanism

without relying on our structural estimation of misoptimization. Our estimating equation

is the mirror of Equation 28 with profitability in place of misoptimizations. We find that

returns respond more to profitability when aggregate returns are low (column 3 of Table

2) consistent with our earlier findings and interpretation.

To quantify the pathway from misoptimizations to profitability to stock returns, we

estimate an instrumental variables (IV) model of cyclical market responses. Specifically,

we use û2
it and its interaction with the market return as instruments for profitability and its

interaction with the market return, to isolate the state-dependent pricing of profitability

fluctuations that arise from mistakes. Our IV estimates suggest a greater state-dependence

of the market response to misoptimization compared to the market response to other

determinants of profits (column 4 of Table 2). We interpret this result, along with the

others in this subsection, as empirical validation of the model’s microeconomic mechanism

for state-dependent misoptimization.

4.5 Fact 5: Macro Attention Rises in Downturns

We now test our predictions for measured attention. We find that macroeconomic at-

tention, by our textual measure, persistently rises when the macroeconomy and financial

market are distressed (Figure 4). To quantify the variable’s cyclicality, we estimate the

linear regression of Macro Attention on unemployment and the detrended S&P 500, akin

to Equation 27. Our coefficient estimates are 1.529 (SE: 0.405) for unemployment and

-0.104 (SE: 0.029) for the S&P, with R2 values of 0.180 and 0.237. Our interpretation of

this fact is that firms’ cognitive effort to adapt their decisions to the state of the economy

rises in downturns. This is consistent with Prediction 5.

Robustness. Appendix Figure A5 plots the time-series behavior of each word-level com-

ponent of MacroAttention. In our sample, 61 of the 89 words have a positive correlation

with unemployment (Appendix Figure A6). As mentioned before, some words appear ex

post as “false positives” associated with pedagogy. Reassuringly, an index re-calculated
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Figure 4: Macro Attention is Counter-Cyclical
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Notes: The top two panels plot log Macro Attention (blue line, left axis) along with, respectively, un-
employment and the linearly detrended S&P 500 price (black dashed lines, right axis). The bottom two
panels are scatterplots of log Macro Attention versus the corresponding macroeconomic aggregate. The
black solid line is the linear regression fit. The standard errors are HAC robust based on a Bartlett kernel
with a four-quarter bandwidth.

without those words is, if anything, slightly more counter-cyclical (Appendix Figure A7).

In Appendix C.1, we replicate our procedure using the full text of US public firms’ sales

and earnings conference calls as an alternative dataset. This produces a similar counter-

cyclical pattern over a smaller time period (2004-2013). In Appendix C.2, we employ an

alternative procedure which uses the frequency of algorithmically determined word stems

rather than full words. This yields essentially identical results.

An additional prediction is that attention is more cyclical in industries with more

cyclical productivity due to an intensified profit-curvature channel, but is still cyclical in

acyclical industries due to the risk-pricing channel. This prediction contrasts with that

of an alternative model in which the cyclicality in macroeconomic attention is purely

driven by firms’ exposure to macroeconomic shocks. To study this, we compute “output

cyclicality” in each of our industries as the correlation between sectoral GDP growth,

calculated using quarterly BEA data since 2005 linked to our sectors, with aggregate

nominal GDP growth. In Appendix Figure A8, we plot in the cross-section of industries

the relationship between this output cyclicality and the coefficient of sector-level Macro

Attention on the US unemployment rate. We find that the extent of counter-cyclicality
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Table 3: Macro-Attentive Firms Make Smaller Misoptimizations

(1) (2) (3) (4)
Outcome: û2

it

log MacroAttentionit -0.0081 -0.0052 -0.0058 -0.0056
(0.0028) (0.0029) (0.0044) (0.0038)

Sector x Time FE X X X X
Firm FE X X

TFP, Return Controls X X

N 28,279 24,392 27,875 23,930
R2 0.053 0.067 0.383 0.384

Notes: û2
it is the squared firm-level misoptimization residual, constructed using the methods described in

Section 3.1. log MacroAttentionit is the measure of firm-level macroeconomic attention. Standard errors
are double-clustered at the firm and year level.

increases with the industry’s output cyclicality, but acyclical industries still have counter-

cyclical attention. Thus, counter-cyclical attention does not arise merely as the result of

increased exposure to macroeconomic conditions during downturns.

4.6 Fact 6: Macro Attention Predicts Smaller Misoptimizations

We next investigate the firm-level relationship between misoptimization and attention

(Prediction 6). We estimate the following regression of û2
it, the squared innovation of the

firm’s model-implied misoptimization, on the log of firm-level macro attention:

û2
it = βa · log MacroAttentionit + χj(i),t + Γ′Xit + εit (31)

Absorbed effects at the sector-by-time level partial out all trends, including the cyclical

patterns studied earlier. Additional controls Xit can include individual fixed effects, to

isolate variation at the firm level; and log stock returns and TFP growth, to help further

isolate variation in attention unrelated to firm-level fundamentals.

We find that βa < 0: higher macroeconomic attention corresponds with smaller misop-

timization (Table 3). The main specification in column (1) finds a strongly statistically

significant effect (p < 0.01). The more controlled specifications in columns (2) to (4)

estimate negative, similarly sized effects, but with less precision.

Fact 6 also helps rule out an important alternative interpretation of our time-series

finding: that managers use the macroeconomy as a scapegoat for poor performance,

engaging in a form of “attribution bias.” This is inconsistent with the fact that macro-
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attentive firms make fewer unprofitable mistakes.

Robustness. Appendix Table A7 shows that our cross-sectional result is also similar

using our conference-call measure of attention as well as all considered alternative models

and measurement strategies for the misoptimizations.

4.7 Discussion and Relationship with the Literature

Dispersion in Fundamentals Versus Misoptimizations. Bloom et al. (2018), us-

ing micro-data on the manufacturing sector, estimate that the variance in total factor

productivity rises in recessions or periods of negative growth.22 Our analysis, by contrast,

studies variance in input choices conditional on productivity.

To demonstrate the empirical consistency of these sets of findings, we follow Bloom

et al. (2018) and estimate a first-order autoregressive model for TFP with firm and sector-

by-time fixed effects:

log θit = γi + χj(i),t + ρθ log θi,t−1 + εit (32)

We estimate “TFP Innovation Variance” as the weighted average, E[s∗itε̂
2
it]/E[s∗it]. This

measure has a correlation of 0.39 with the equivalent from Bloom et al. (2018) over a

common sample period, which increases to 0.47 if we restrict our data to the manufacturing

sector.23 Like Bloom et al. (2018), we find that TFP variance is significantly higher in

recessions (coefficient: 0.098, SE: 0.022). The measure spikes markedly in the 2002 and

2007-09 recessions, as well as in the 1990s boom (Appendix Figure A4).

To summarize, in our data, misoptimizations are larger in booms, while TFP is less

volatile. Thus, counter-cyclical TFP volatility is fully consistent with our hypothesis and

finding that firms optimize more precisely conditional on productivity in downturns.

Forecast Errors and Backcast Errors. Our model makes no specific prediction about

the accuracy of firm-level forecasts over the business cycle. To illustrate this, consider

a firm’s expectation in period t of its production in period t + k, for k > 0, conditional

on the observed history of the decision state zit (firm-level TFP, aggregate output, and

aggregate wages). Writing Eit[·] as a shorthand for the firms’ expectation conditional on

22Kehrig (2015) reports that dispersion in levels of TFPR, or the marginal value product of all inputs
under a Cobb-Douglas assumption, is counter-cyclical. In Appendix C.3, we study how this object, as
well as the related calculation for the value marginal product of labor, behaves in our data.

23The common sample for comparing our measure with the one in Bloom et al. (2018) is 1987-2010.
The measure from Bloom et al. (2018) that we study is the variance (square of standard deviation) of
TFP innovations on the sample of establishments that are in the Bloom et al. (2018) data for 25 years.
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this history and applying Proposition 1, we can decompose the variance of firms’ forecast

errors as:

E
[
(xi,t+k − Eit [xi,t+k])

2]︸ ︷︷ ︸
Forecast Error Variance

= E
[(
x∗i,t+k(zi,t+k)− Eit

[
x∗i,t+k

])2
]

︸ ︷︷ ︸
Fundamental Variance

+ (σi(zi,t+k))
2︸ ︷︷ ︸

Misoptimization Variance

(33)

The first term is the forecast error variance pertaining to the optimal level of production,

x∗i,t+k, which itself depends on unknown firm-level productivity, aggregate output, and

aggregate wages. The second term is the forecast error variance arising from firms’ future

misoptimization, which has state-dependent volatility σi(zi,t+k).

Our Fact 2 showed that Misoptimization Variance is high in booms and low in down-

turns. The finding of both prior work in the literature (Bloom et al., 2018), and our own

reconstruction of these findings above, is that Fundamental Variance is high in downturns

and low in booms. Because of these countervailing forces, our main hypotheses about

misoptimizations cannot be tested by evaluating the cyclicality of forecast errors.24

By contrast, firm-level backcasts may have a more direct interpretation as “attentive-

ness.” In Appendix G, we show two pieces of evidence consistent with our analysis in the

survey of firms in New Zealand by Coibion et al. (2018). First, firms report being sig-

nificantly more likely to seek out news about the macroeconomy if there were a negative

aggregate shock. This is consistent with the cyclicality of the macroeconomic attention

cycle. Second, firms that report a higher sensitivity of firm profits to their own choices

demonstrate higher awareness of macroeconomic aggregates. This is consistent with the

profit curvature channel.

5 Quantifying the Consequences of Attention Cycles

The previous section verified the model’s microeconomic and macroeconomic predictions

for misoptimization and attention, which govern the model’s implications for output and

productivity dynamics. In this section, we quantify the macroeconomic consequences

of attention cycles by calibrating the model. We find that attention cycles generate:

asymmetrically large amplification of negative shocks; greater amplification of shocks

when output is low; and endogenously higher volatility when output is low. We show that

these findings account for a significant portion of observed business-cycle asymmetries.

24See Charoenwong et al. (2021) and Chiang (2023) for an analysis of cyclical forecast error variance.
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5.1 Calibration

In our calibration, as in our theoretical results of Section 2, the aggregate state vari-

able θt =
(
EGt [θε−1

it ]
) 1
ε−1 is a one-dimensional sufficient statistic for the productivity

distribution. We assume that log θt follows a zero-mean, Gaussian AR(1) process, or

log θt = ρθ log θt−1 + νt where νt ∼IID N(0, σ2
θ). Note that, in this formulation, the shocks

νt may reflect changes to any moment of the productivity distribution that induce changes

in the aggregate θt, such as a standard shock to average productivity or an “uncertainty

shock” to productivity dispersion as studied by Bloom et al. (2018).

We calibrate four parameters to standard values (see Table 4).25 The first is the

elasticity of substitution between products. We set ε = 4, which implies an optimal

average markup of ε
ε−1

= 4
3
. This is conservative relative to estimates by De Loecker

et al. (2020) (1.60) and slightly larger than the estimate by Edmond et al. (2018) (1.25).

The elasticity of substitution controls the translation of misoptimization into output and

productivity, with a lower value translating a fixed misoptimization dispersion into a larger

penalty for output and productivity. We next set the persistence of the productivity shock,

at the quarterly frequency, to a standard value of ρ = 0.95.26 To match the elasticity of

real wages to output (χ), we only need information on the time-series correlation between

real wages and output. We match directly an OLS regression of linearly detrended real

wages on linearly detrended GDP, at the quarterly frequency over our studied period

1987-2018.27 Our estimate of 0.095 lines up with recent evidence on the weak cyclicality

of wages (Gaĺı and Gambetti, 2019). To calibrate the shock variance σ2
θ , we match the

variance of quarterly real GDP growth over our sample period.

The key properties of inattention and misallocation are controlled by the remaining two

moments: the time-series average of Misoptimization Dispersion, 0.080, and the (negative)

slope of Misoptimization Dispersion in unemployment, 0.841. Intuitively, these moments

identify the level of misoptimization (governed by λ) and the extent of its cyclicality

25The constants w̄ and X̄ in the wage rule scale overall production in equilibrium, but are otherwise
irrelevant (see Proposition 1). We set w̄ and X̄ to match the wage and output prevailing in a frictionless
market economy with Greenwood et al. (1988) preferences over labor and leisure and elasticity of labor
supply φ = 1, evaluated at state log θ = 0.

26We study quarterly dynamics to compare our predictions to standard results about business-cycle
asymmetries, although our measurement was annual. As our measurement is based on the long-run,
cross-sectional variance of misoptimizations, the frequency of calibration is immaterial.

27Our real wage series is the median weekly real earnings for wage and salary workers over the age of
16, as reported by the US BLS.
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Table 4: Parameters for Calibration

Fixed ε Elasticity of substitution 4
Parameters ρθ Persistence of productivity 0.95

χ Elasticity of real wages to output 0.095
Free λ Average weight on entropy penalty 0.406

Parameters γ Coefficient of relative risk aversion 11.5
σ2
θ Variance of the productivity innovation 4.82× 10−7

βU Slope of Misopt. Dispersion on -Unemployment
100

0.841
Matched σ̄2

M Average level of Misopt. Dispersion 0.080
Moments χ Regression of real wages on output 0.095

σ2
Y Variance of quarterly output growth 0.337

Notes: “Fixed Parameters” are externally set. “Free Parameters” are chosen to fit the “Matched Mo-
ments,” which are calculated from the data and matched exactly by the model.

(governed by γ). Our estimates of γ are thus based entirely on fitting a stochastic discount

factor that fits misoptimization in our model, rather than incorporating an informed prior

from the asset pricing literature (see also Section 2.2). Our finding of γ = 11.5 is slightly

conservative relative to the modern asset-pricing literature that estimates, in variations of

the consumption capital asset pricing model (CCAPM), γ of about 15-20 with statistically

“unfiltered” measures of consumption (Savov, 2011) or long-run variation in consumption

growth (Parker and Julliard, 2005). Our finding of γ > 0 suggests that the risk-pricing

channel is necessary to explain misoptimization dynamics and rules out the nested model

in which control costs are denominated in dollar (rather than utility) units.

5.2 Quantitative Results

Output, Productivity, and the Attention Wedge. Panels (a), (b), and (c) of Figure

5 respectively show log output, the log attention wedge (as defined in Proposition 4), and

log labor productivity in the calibrated model. In each case, we compare to the predictions

of an otherwise identical “pure RBC model” with full attentiveness, or λ = 0, plotted as a

dashed line. As implied by Proposition 4 and Corollary 2, inattention reduces output and

productivity relative to the fully attentive counterfactual, and this effect grows in higher

productivity states. In the mean state, the attention wedge reduces output by 2.6%

relative to the fully attentive counterfactual, labor productivity by χε × 2.6% = 1.0%,

and employment by (1 − χε) × 2.6% = 1.6%. In the same state, a firm with the mean
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Figure 5: The Macro Effects of Attention Cycles
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Notes: The left three panels plot log output, the log attention wedge (Proposition 4), and log labor
productivity as a function of the state. The right two panels plot the shock-sensitivity of log output and
the conditional volatility of output growth. In each graph, the solid line (“AC”) is the calibrated model
and the dotted line is a counterfactual model with λ = 0 (“RBC”) and all other parameters held fixed.

productivity loses 3.0% of its profits, on average, due to inattention.

To highlight the importance of studying misoptimization incentives in general equilib-

rium, we calculate also a “partial equilibrium” attention wedge based on firms’ inattentive

best-responses to the counterfactual RBC dynamics (Appendix Figure A9). In the mean

state, the “partial equilibrium” attention wedge is 1.3% in terms of output, implying that

general-equilibrium interactions account for 1/2 of the losses from inattention.

We observe two further properties of output and productivity dynamics which were not

immediately clear from the theoretical results and depend on the numerical calibration.

First, labor productivity is non-monotone in microeconomic productivity θ (rightmost

panel) and hence also in aggregate output. This property results from the dueling forces of

increased microeconomic productivity and increased misallocation from reduced attention.

Second, the attention wedge is concave. In Section 2.4, we discussed how the concavity

or convexity of the attention wedge leads to business cycle asymmetries. The finding of

a concave attention wedge implies that, fixing shock sizes, negative shocks have a larger

effect on output than positive shocks, and that overall shock responses and volatility

are higher in low-output states. We explore these predictions quantitatively in the next

subsection.
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State-Dependence, Asymmetry, and Stochastic Volatility. In our calibration,

both the sensitivity of log output to productivity shocks and the conditional standard de-

viation of output growth are higher in low-productivity, low-output states (Panels (d) and

(e) of Figure 5). This is despite the lack of asymmetry, heteroskedasticity, or stochastic

volatility in the driving shocks.

One way to benchmark the extent of asymmetry and state-dependence in shock re-

sponses is to consider an “impulse response” thought experiment of a fixed size. Let

log θ̂ be the fundamental shock that induces a 3% change in output from steady state, or

solves logX(log θ̂) − logX(0) = 0.03. We compare the effect of this “Positive” shock to

the effect of a “Negative” shock from log θ0 = 0 to log θ1 = − log θ̂, and a “Double Dip”

shock from log θ0 = − log θ̂ to log θ1 = −2 · log θ̂. The negative shock has a 7% larger

effect on log output than the positive shock, and the double dip shock has a 14% larger

effect on log output than the positive shock. The same results for the response of log

employment are 5% and 8%, respectively. Empirically, Ilut et al. (2018) estimate that

US industries have on average a 20% larger response to negative aggregate productivity

shocks than to positive shocks.28 In these units, our model explains 25% of empirically

realistic asymmetry in shock response.

To benchmark the extent of stochastic volatility, we observe that a transition from

the 90th-percentile to the 10th-percentile productivity state reduces output by 4.7% and

increases the conditional standard deviation of output growth by 10.6%. The peak-to-

trough fall of output during the Great Recession (e.g., from early 2007 to early 2009)

is comparable to this level change. Empirically, Jurado et al. (2015) estimate that the

forward-looking volatility of industrial production growth at the three-month horizon in-

creased by 57% during this episode.29 Our model can explain about 19% of this movement.

Parameter Robustness and Counterfactual Scenarios. In Appendix E, we provide

additional results from our numerical exercise. We first explore the robustness of our main

findings to different external calibrations of wage rigidity χ and substitutability ε and to

introducing classical labor markets using the preferences of Greenwood et al. (1988). In

particular, the last has no quantitatively significant effect on our results provided that we

calibrate to realistically acyclical wages.

We also study the effects of attention cycles under counterfactual scenarios. In our

28This calculation is based on comparing the “data” estimates in columns 6 and 7 of Table 9.
29We compare the 3-month “macro uncertainty index” from April 2007 to October 2008.
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theory, the nature of business cycle asymmetries is endogenous to structural forces that

control firms’ state-dependent incentives for attention. We find that attention cycles

generate greater asymmetries in regimes with larger markups, greater wage rigidity, and

higher attention costs. Thus, our mechanism may interact with rising market power, the

flattening wage Phillips curve, and fluctuations in macroeconomic uncertainty.

6 Conclusion

This paper studies how attention cycles arise as the consequence of business cycles through

their effects on incentives and how attention cycles, in turn, affect business cycle dy-

namics. Theoretically, we introduce a Neoclassical business cycle model with flexible,

state-dependent stochastic choice. We show how firms’ choice of state-specific attention

is shaped by the incentives embodied in the state-dependent cost of making mistakes.

Due to firms’ ownership by risk-averse households, the incentives to pay attention and to

avoid mistakes are highest when aggregate consumption is low (a risk-pricing channel).

Attention rises in downturns and falls in booms, leading to asymmetric propagation of

macroeconomic shocks. Empirically, we introduce strategies to measure choice misopti-

mization, which has an exact analog in the model, and attention toward the macroecon-

omy, which is a more suggestive proxy for attention. Using these measures, we verify

the model’s macroeconomic hypotheses that attention rises and misoptimization falls in

downturns. We also verify the model’s microeconomic predictions that misoptimization

harms firm valuations more severely in downturns and that attention coincides with lower

misoptimization in the cross-section. Calibrating the model to match our evidence on

cyclical misoptimization, we uncover a quantitatively important role for attention cycles

in driving business-cycle asymmetries.
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Online Appendix

for “Attention Cycles” by Flynn and Sastry

A Omitted Proofs

A.1 Proof of Proposition 1

Proof. Consider a firm of type λi, with a payoff u : X × Z → R and prior density

π ∈ ∆(Z). The firm’s stochastic choice problem can be written as

max
p∈P

∫
X

∫
Z
u(x, z)p(x|z) dx π(z) dz − λi

∫
X

∫
Z
p(x|z) log p(x|z) dx π(z) dz (34)

We can formulate this problem as constrained optimization for choosing p(x|z) pointwise,

with constraints embodying non-negativity and the restriction that conditional distribu-

tions integrate to one. We can then write a Lagrangian for this problem, giving these

constraints multipliers κ(x, z) and γ(z), respectively:

L({p(x|z), κ(x, z)}, {γ(z)}) =

∫
Z

∫
X
u(x, z)p(x|z) dx π(z) dz

− λi
∫
Z

∫
X
p(x|z) log p(x|z) dx π(z) dz

+

∫
Z

∫
X
κ(x, z)p(x|z) dx π(z) dz

+

∫
Z
γ(z)

(∫
X
p(x|z) dx− 1

)
π(z) dz

(35)

The Lagrangian is concave in the collection {p(x | z)}, since the expected utility term

and the two constraint terms are linear in these variables, and the control-cost term is

convex in these variables. Taking the first-order condition of the Lagrangian with respect

to p(x|z) yields the necessary first-order condition

u(x, z)− λi(log p(x|z) + 1) + κ(x, z) + γ(z) = 0 (36)

Re-arranging this expression and applying the normalization that the density integrates

to one, we get the solution

p(x|z) =
exp
(
λ−1
i u(x, z)

)∫
X exp

(
λ−1
i u(x′, z)

)
dx′

(37)

This solution is invariant to the prior distribution π(z), and hence can be indexed solely

by the ex post realized state z.

To solve our firm’s problem, we replace u in the above with Π̃ and z with zi. Performing
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this substitution, and ignoring the normalizing constant, we get

p(x|zi) ∝ exp

(
− (x− x∗(zi))2

2λi|Πzz(zi)|−1

)
(38)

Taking X = R, it is then immediate that p(x|zi) is a Gaussian random variable with mean

x∗(zi) and variance λi|Πxx(zi)|−1. Observing that |Πxx(zi)| = |πxx(zi)|M(zi), we can re-

write the variance as λi(|πxx(zi)|M(zi))
−1. Finally, we observe that the stochasticity in

each firm’s action conditional on zi is independent from zi and/or any other firm’s action.

Thus:

xi = x∗(zi) +

√
λi

|πxx(zi)|M(zi)
· vi, vi ∼ Normal(0, 1) (39)

A.2 Proof of Proposition 2

Proof. Throughout this proof, in some abuse of notation, we write θ = θ̂(G) (Equation 5)

as the scalar summary of the productivity distribution. Our argument below makes, and

then verifies, the conjecture that this is a scalar sufficient statistic for the productivity

distribution in the definition of equilibrium output.

To prove existence, we first study the problem of a single firm i who is best replying

to the conjecture that the law of motion of the aggregate is X : Θ → R. In particular,

they believe that output is given by X(θ) in each state θ.

As established by Proposition 1, the firm’s best-response is invariant to the firm’s prior

state zi,t−1 and described by the following random variable conditional on each realization

of zit:

xit = x∗(zit) +

√
λi

|Πxx(zit)|
· vit, vit ∼ Normal(0, 1) (40)

As derived in Appendix A.6.1, the mean and variance scalings are the following, after

substituting in the equilibrium conjecture Xt = X(θt):

x∗(zit) = vx(ε, χ, w̄, X̄) ·X(θt)
1−χεθεit

|Πxx(zit)| = vΠ(ε, χ, w̄, X̄) ·X(θt)
−1−γ+χ(1+ε)θ−1−ε

it

(41)

for constants vx, vΠ > 0 given by:

vx := ε−ε (ε− 1)ε w̄−εX̄χε

vΠ := (ε− 1)−εεε−1w̄1+εX̄−χ(1+ε)
(42)
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Conditional on the realization of any state θ, aggregate output must solve the fixed

point equation defined by combining the aggregate-good production function (11) and

the firms’ best responses. Applying the law of iterated expectations, we can re-write the

aggregate-good production function as

X = X∗ − 1

2ε(X∗)−
1
ε

Eθi
[
(x∗(zi))

−1− 1
εEλi,vi

[
(xi − x∗(zi))2 | θi, θ

]
| θ
]

(43)

where

X∗ =
(
Eθi [x∗(zi)1− 1

ε | θ]
) ε
ε−1

(44)

We now specialize the expressions above using the structure of the best response in

Equations 40, 41, and 42. We first compute X∗ as

X∗ = vxX
1−χεθε (45)

where θ is the transformation defined in Equation 5. We next calculate the the second,

“variance” term. We start with the “misoptimization variance”

Eλi,vi
[
(xi − x∗(zi))2

]
=

λ

vΠ

X1+γ−χ(1+ε)θ1+ε
i (46)

and then calculate the full term

(X∗)
1
εEθi

[
(x∗(zi))

−1− 1
εEλi,vi

[
(xi − x∗(zi))2

]]
=

λ

vΠvx
Xγ−χθ (47)

where we simplify and apply the definition of θ̂(G) from Equation 5.

Substituting in Equations 45 and 47, we derive that equilibrium output solves:

X(θ) = vxX(θ)1−χεθε − λ

2εvxvΠ

X(θ)γ−χθ (48)

There is always a trivial equilibrium X = 0 arising from our approximations. Toward

proving existence and uniqueness of a non-trivial equilibrium, define:

g(X, θ) = a0X
1−χεθε − a1X

γ−χθ (49)

where a0 = vx > 0 and a1 = λ
2εvxvΠ

> 0. We now compute this function’s derivatives in

X:

gX(X, θ) = a0(1− χε)X−χεθε − a1(γ − χ)Xγ−χ−1θ

gXX(X, θ) = −a0(1− χε)χεX−χε−1θε − a1(γ − χ)(γ − χ− 1)Xγ−χ−2θ
(50)

If 1− χε > 0 and γ > 1 + χ, then

lim
X→0

gX(X, θ) = +∞ lim
X→∞

gX(X, θ) = −∞ (51)

Moreover, if γ > χ + 1 we have that gXX(X, θ) < 0 on (0,∞). Thus, when γ > χ + 1

and χε < 1, g(X, θ) crosses X from above and there exists a unique, positive fixed point
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for each θ. Iterated for all states θ ∈ Θ, this reasoning shows the existence of a unique,

positive equilibrium mapping X : Θ→ R+.

We now show monotonicity of the fixed point. To this end, we implicitly differentiate

the fixed point condition:
dX(θ)

dθ
=
[
a0(1− χε)X(θ)−χεθε − a1(γ − χ)X(θ)γ−χ−1θ

] dX(θ)

dθ

+
[
a0εX(θ)1−χεθε−1 − a1X(θ)γ−χ

] (52)

Yielding:

dX(θ)

dθ
=

a0εX(θ)1−χεθε−1 − a1X(θ)γ−χ

1− [a0(1− χε)X(θ)−χεθε − a1(γ − χ)X(θ)γ−χ−1θ]
(53)

Multiplying both sides by a factor of θ
X

:

d logX(θ)

d log θ
=

a0εX(θ)1−χεθε − a1X(θ)γ−χθ

X(θ)− [a0(1− χε)X(θ)1−χεθε − a1(γ − χ)X(θ)γ−χθ]
(54)

We first show that the numerator is positive

a0εX(θ)1−χεθε − a1X(θ)γ−χθ = a0(ε− 1)X(θ)1−χεθε +X(θ)

> 0
(55)

The first equality substitutes in the original fixed-point equation. The second follows from

observing that ε > 1, a0 > 0, X(θ) > 0, and θ > 0. To show d logX(θ)
d log θ

> 0 it now suffices

to show that the denominator is positive, which follows from χε < 1 and γ > χ+ 1 > χ:

X(θ) = a0X(θ)1−χεθε − a1X(θ)γ−χθ

≥ a0 (1− χε)︸ ︷︷ ︸
χε<1

X(θ)1−χεθε − a1 (γ − χ)︸ ︷︷ ︸
γ−χ>1

X(θ)γ−χθ (56)

This shows that d logX(θ)
d log θ

> 0 and implies that X(θ) is an increasing function.

A.3 Proof of Proposition 3

Proof. We start by proving the monotonicity of misoptimization. Using the result of

Proposition 1, and the substitution of (x∗(zi), |Πxx(zi)|) as in the proof of Proposition 2,

we show that the average “misoptimization variance” of actions conditional on (zi, λi) is

m(zi, λi, θ) := Evi
[
(xi − x∗(zi(θ)))2 | zi, λi, θ

]
=
λiX(θ)1+γ−χ(1+ε)θ1+ε

i

vΠ(ε, χ, w̄, X̄)
(57)
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where vΠ > 0 is defined in Equation 42. Using the law of iterated expectations, we can

write m(G) = Eθi,λi [m(zi, λi, θ)]. Assessing this outer expectation, we derive

m(G) =
λ

vΠ(ε, χ, w̄, X̄)
·X(θ)1+γ−χ(1+ε) · Eθi [θ1+ε

i ]

=
λ

vΠ(ε, χ, w̄, X̄)
·X(θ)1+γ−χ(1+ε) · θ1+ε

(58)

where, in the second line, we use the definition of θ = θ̂(G). This expression clearly

increases in θ, conditional on X. We next observe that X(θ)1+γ−χ(1+ε) increases in X if

γ > χ(1 + ε) − 1. This condition is guaranteed by γ > χ + 1 and χε < 1. Moreover, by

Proposition 2, the stated conditions ensure that X(θ) is an increasing function. Thus,

m(G) can be written as m(θ) and m(θ) increases in θ. This proves the first statement.

We next prove the second statement about the monotonicity of attention. The en-

tropy of a Gaussian random variable with variance σ2 is proportional, up to scaling and

constants, to log(σ2). We therefore derive, up to scaling and constants,

a(G) = (−1− γ + χ(1 + ε)) logX(θ)− (1 + ε)Eθi [log θi] (59)

This is monotone decreasing in X if γ > χ(1 + ε)− 1, which is implied by our conditions

χε < 1 and γ > χ + 1. It is monotone decreasing in G if Eθi [log θi] increases in G. The

latter claim is true because y 7→ log y is an increasing function. Finally, X is monotone

in the FOSD ordering as G %FOSD G′ =⇒ θ̂(G) ≥ θ̂(G′). Therefore, a(G) is monotone

decreasing in G in the sense of FOSD. This proves the second part of the statement.

A.4 Proof of Proposition 4

Proof. We first derive output in the fully attentive λ = 0 limit, which we define by some

mapping X0 : Θ→ R. Recall the fixed-point equation for output from Proposition 2:

X(θ) = a0X(θ)1−χεθε − a1X(θ)γ−χθ (60)

When λ = 0, we have that a1 = 0. Thus,

X0(θ) = a0X0(θ)1−χεθε (61)

Or simply:

X0(θ) = a
1
χε

0 θ
1
χ (62)

We now define the proportional wedge between equilibrium output and output without
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the attention friction as:

W (θ;λ) :=
X(θ)

X0(θ)
=

X(θ)

a
1
χε

0 θ
1
χ

(63)

Via this definition, we re-write output in the form claimed in the Proposition.

logX(log θ) = X0 + χ−1 log θ + logW (log θ) (64)

where X0 := 1
χε

log a0.

We next prove that the wedge is positive. To prove this and other properties, we write

a fixed-point equation for W (θ). Combining the definition of the wedge with Equation

60, we obtain

W (θ) = W (θ)1−χε − a1(λ)a
γ−χ−1
χε

0 W (θ)γ−χθ
γ−1
χ (65)

Based on identical arguments to those in the proof of Proposition 2, the wedge is positive

and unique under the exact same conditions that X(θ) is positive and unique: χε < 1

and γ > χ + 1. Moreover, W (θ) crosses the 45 degree line from above. To show that

W (θ) ≤ 1, it then suffices to show that the right-hand-side of the fixed point equation

is less than unity when evaluated at W (θ) = 1. As a1, a0 > 0, this is immediate. Thus

logW (θ) ≤ 0, as claimed. Moreover, given that ∂a1

∂λ
> 1, it is immediate to show ∂W

∂λ
< 0.

Toward the final claim, we show that logW (θ) is monotone decreasing in θ. First, we

implicitly differentiate the fixed point condition:

dW

dθ
=

[
(1− χε)W (θ)−χε − a1a

γ−χ−1
χε

0 (γ − χ)W (θ)γ−χ−1θ
γ−1
χ

]
dW

dθ

− a1a
γ−χ−1
χε

0

γ − 1

χ
W (θ)γ−χθ

γ−χ−1
χ

(66)

or:

dW

dθ
=

−a1a
γ−χ−1
χε

0
γ−1
χ
W (θ)γ−χθ

γ−χ−1
χ

1−
[
(1− χε)W (θ)−χε − a1a

γ−χ−1
χε

0 (γ − χ)W (θ)γ−χ−1θ
γ−1
χ

] (67)

which we can rewrite as, after multiplying by θ
W

, as

d logW

d log θ
=

−a1a
γ−χ−1
χε

0
γ−1
χ
W (θ)γ−χθ

γ−1
χ

W (θ)−
[
(1− χε)W (θ)1−χε − a1a

γ−χ−1
χε

0 (γ − χ)W (θ)γ−χθ
γ−1
χ

] (68)

By positivity of a1 and a0 and the assumption that γ > χ + 1, the numerator of this

expression is negative. To show that the wedge is monotone decreasing, we need to show
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that the denominator is positive. To this end, we see that:

W (θ) = W (θ)1−χε − a1a
γ−χ−1
χε

0 W (θ)γ−χθ
γ−1
χ

≥ (1− χε)︸ ︷︷ ︸
χε<1

W (θ)1−χε − a1a
γ−χ−1
χε

0 (γ − χ)︸ ︷︷ ︸
γ>χ+1

W (θ)γ−χθ
γ−1
χ

(69)

This completes the proof.

A.5 Proof of Corollary 2

Proof. The labor demand of any given firm i is given by Li = xi
θi

. Total labor demand in

the economy is then given by:

L =

∫
[0,1]

Li di (70)

Using Proposition 1, the definition of x∗(zi) in the proof of Proposition 2, and the equi-

librium law of motion X(θ), we write the production of each firm as

xi = x∗(zi) + ṽi = vxX(θ)1−χεθεi + ṽi (71)

where ṽi is the misoptimization scaled by its endogenous standard deviation. Plugging

this into the expression for L, we derive

L = vxX(θ)1−χε
∫ 1

0

θε−1
i di (72)

Simplifying and applying a law of large numbers, we write this as

Lt = L(θ) = vxX(θ)1−χεθε−1 (73)

where we define, as in the main text, θ :=
(
Eθi [θε−1

i | θ]
) 1
ε−1 .

Combining the definition logA(θ) = logX(θ)− logL(θ) with Equation 73, we derive

logA(θ) = − log vx + χε logX(θ)− (ε− 1) log θ (74)

Using our representation of aggregate output from Proposition 4, we obtain:

logA(θ) = (χεX0 − log vx) + log θ + χε logW (θ) (75)

where W (·) inherits all of the properties proved in Proposition 4. We finally observe that

X0 = log vx
χε

, as defined in the proof of Proposition 4, so χεX0− log vx = 0. This completes

the proof.
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A.6 Additional Calculations

A.6.1 Quadratic Approximation of Risk-Adjusted Profits

Using the expressions for dollar profits and marginal utility in Equation 8, we can write

firms’ risk-adjusted profits as the following:

Π(x, zi) := X−γ
(
x1− 1

εX
1
ε − xw

θi

)
(76)

where, as throughout, we define the decision state vector zi = (θi, X, w). The optimal

action in the absence of stochastic choice solves the first-order condition(
1− 1

ε

)
x∗
− 1
εX

1
ε =

w

θi
(77)

which can be re-arranged to define

x∗(zi) =

(
1− 1

ε

)ε
X

(
w

θi

)−ε
(78)

We now approximate the firm’s profit function to second order in x around x∗(zi):

Π(x, zi) = Π(x∗(zi), zi) + Πx(zi)(x− x∗(zi)) +
1

2
Πxx(zi)(x− x∗(zi))2 +O3(x)

=: Π̃(x, zi) +O3(x)
(79)

where Πx(zi) := Πx(x, zi)|x=x∗(zi) and Πxx(zi) := Πxx(x, zi)|x=x∗(zi). By the envelope

theorem, Πx(zi) = 0. Thus, our approximation reduces to the quadratic utility function

in the Linear-Quadratic equilibrium:

Π̃(x, zi) = Π(x∗(zi), zi) +
1

2
Πxx(zi)(x− x∗(zi))2 (80)

It remains to characterize the intercept and curvature. We first derive the intercept:

Π(x∗(zi), zi) = X−γ

(
X

(
w

θi

)1−ε
)([

1− 1

ε

]ε(1− 1
ε )
−
[
1− 1

ε

]ε)

= X−γ

(
X

(
w

θi

)1−ε
)
ε−ε (ε− 1)ε−1

(81)

We now characterize the curvature, which is the product of marginal utility with the

curvature of the dollar-profit function:

Πxx(zi) = X−γ · πxx(zi) (82)

We calculate, using the form of the profit function from Equation 8, the dollar profit
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function’s second derivative:30

πxx(x
∗(zi), X) = −1

ε

(
1− 1

ε

)
(x∗(zi))

−1− 1
εX

1
ε

= −1

ε

(
1− 1

ε

)(
1− 1

ε

)−(1+ 1
ε )ε
X−1− 1

εX
1
ε

(
w

θi

)ε(1+ 1
ε )

= −εε−1(ε− 1)−εX−1

(
w

θi

)1+ε

(83)

We substitute in the wage rule, Equation 3, to derive

πxx(zi) = −vπ(ε, χ, X̄, w̄) · θ−1−ε
i Xχ(1+ε)−1 (84)

as in Equation 13, where the constant is

vπ(ε, χ, X̄, w̄) := (ε− 1)−εεε−1w̄1+εX̄−χ(1+ε) > 0 (85)

A.6.2 Quadratic Approximation of Final-Goods Technology

We now consider the second-order approximation of the aggregator, which is re-printed

below

X({xi}i∈[0,1]) =

(∫ 1

0

x
ε−1
ε

i di

) ε
ε−1

(86)

Technically speaking, we take a quadratic approximation of a discretized version of this

aggregator, and then take consider the limit of this approximation. First, we suppose

that there are K ×K ′ ×K ′′ discrete firms. Define the firm-level state for any firm kk′k′′

as ωkk′k′′ = (θk, λk′ , vk′′) with corresponding production level x(ωkk′k′′). Define the CES

aggregator in this economy as:

XKK′K′′({xkk′k′′}) =

(
1

K

K∑
k=1

1

K ′

K′∑
k′=1

1

K ′′

K′′∑
k′′=1

x(ωkk′k′′)
1− 1

ε

) ε
ε−1

(87)

30Because marginal costs are constant, this curvature arises purely from the curvature of the revenue
function.
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Second, we take a quadratic approximation of this function around the firm-level optimal

production points xkk′k′′ = x∗(θk):

XKK′K′′ = X∗K +
1

K

K∑
k=1

1

K ′

K′∑
k′=1

1

K ′′

K′′∑
k′′=1

Dk(x(ωkk′k′′)− x∗(θk))

+
1

K

K∑
k=1

1

K ′

K′∑
k′=1

1

K ′′

K′′∑
k′′=1

1

K

K∑
k̃=1

1

K ′

K′∑
k̃′=1

1

K ′′

K′′∑
k̃′′=1

1

2
D2
kk̃

(x(ωkk′k′′)− x∗(θk))(x(ωk̃k̃′k̃′′)− x
∗(θk̃))

(88)

where:

X∗K =

(
1

K

K∑
k=1

x∗(θk)
1− 1

ε

) ε
ε−1

(89)

and:

Dk = (X∗K)
1
εx∗(θk)

− 1
ε (90)

and:

D2
kk̃

=

−KK ′K ′′ 1εx∗(θk)−
1
ε
−1(X∗K)

1
ε + 1

ε

∂X∗K
∂xkk′k′′

(X∗K)
1
ε
−1x∗(θk)

− 1
ε if kk′k′′ = k̃k̃′k̃′′

1
ε
(X∗K)

1
ε
−1(x∗(θk))

− 1
ε (x∗(θk̃))

− 1
ε if kk′k′′ 6= k̃k̃′k̃′′.

(91)

We now take limits of this approximation in the following order. We first send K ′′ →
∞. Observe that, for fixed k, k′, we have that each k′′ firm by Proposition 1 has action

distributed as N(x∗(θk), σ
2
kk′). Thus, as K ′′ →∞, by the law of large numbers:

1

K ′′

K′′∑
k′′=1

Dk(x(ωkk′k′′)− x∗(θk))→a.s 0 (92)

Thus, the second term in the quadratic expansion above is zero almost surely in the large

firm limit.

We can perform the same exercise for the third term in the quadratic expansion, which

we can write as:

Q =
1

K

K∑
k=1

1

K ′

K′∑
k′=1

1

K

K∑
k̃=1

1

K ′

K′∑
k̃′=1

1

2
D2
kk̃

 1

K ′′2

K′′∑
k′′=1

K′′∑
k̃′′=1

(x(ωkk′k′′)− x∗(θk))(x(ωk̃k̃′k̃′′)− x
∗(θk̃))


(93)

Fix k = k̃, k′ = k̃′ and consider the summation in brackets. This has two terms. First,

for k̃′′ = k′′, the summand is simply (x(ωkk′k′′)−x∗(θk))2. Second, k̃′′ 6= k′′, the summand
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is the product of two independent normal random variables with common distribution

distribution N(0, σ2
kk′). Thus, in the K ′′ →∞ limit we have that:

1

K ′′2

K′′∑
k′′=1

K′′∑
k̃′′ 6=k′′

(x(ωkk′k′′)− x∗(θk))(x(ωkk′k̃′′)− x
∗(θk))→a.s 0 (94)

1

K ′′

K′′∑
k′′=1

(x(ωkk′k′′)− x∗(θk))(x(ωk̃k̃′k′′)− x
∗(θk̃))→

a.s σ2
kk′ (95)

Thus, using the observation that limK′′→∞
∂X∗K
∂xkk′k′′

= 0, we substitute in D2
kk to obtain:

Q = − 1

2ε

1

K

K∑
k=1

1

K ′

K′∑
k′=1

σ2
kk′

x∗(θk)
1+ 1

ε (X∗K)−
1
ε

(96)

We now observe that σ2
kk′ =

λk′
λ
σ2
k. Thus, taking the K ′ →∞ limit we have that:

Q→a.s. − 1

2ε

1

K

K∑
k=1

λσ2
k

x∗(θk)
1+ 1

ε (X∗K)−
1
ε

(97)

Now taking the limit as K →∞, we can express this as:

Q→a.s − 1

2ε
E

[
λσ2

k

x∗(θk)
1+ 1

ε (X∗K)−
1
ε

]
(98)

Moreover, in the same limit, by applying the law of large numbers and the continuous

mapping theorem we have that:

X∗K →a.s.
(
E[x∗(θk)

1− 1
ε ]
) ε
ε−1

(99)

Combining all of the above, we have shown that, in the limit, almost surely:

X ≈
(
E[(x∗(θk))

1− 1
ε ]
) ε
ε−1 − 1

2ε
E

[
λσ2

k

x∗(θk)
1+ 1

ε (X∗K)−
1
ε

]
(100)

Which we denote by the (somewhat imprecise, but standard) integral form over agents:

X =

(∫ 1

0

x∗(zi)
1− 1

ε di

) ε
ε−1

− 1

2ε

∫ 1

0

(xi − x∗(zi))2

(X∗)−
1
ε (x∗(zi))

1+ 1
ε

di (101)

A.6.3 Mapping Misoptimization Dispersion to the Model

Here, we explicitly calculate the within-model analog to Misoptimization Dispersion. We

show that monotone misoptimization dispersion implies our within-model measure of

misoptimization is monotone and therefore confirms the misoptimization cycles prediction.
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Recall from Definition 2 the definition of aggregate misoptimization,

m(θ) := Eθi,λi,vi
[
(xi − x∗(zi(θ)))2 | θ

]
(102)

which, as derived in the proof of Proposition 3, had expression

m(θ) =
λ

vΠ(ε, χ, w̄, X̄)
·X(θ)1+γ−χ(1+ε) · Eθi [θ1+ε

i | θ] (103)

Misoptimization Dispersion is the optimal-sales-weighted population average of the nor-

malized mean-squared error of actions. Let us define this model object as

m̃(θ) = Eθi,λi,vi

[
ŝ∗(θi)

(
(xi − x∗(zi(θ)))

x∗(zi)

)2

| θ

]
(104)

where s∗(θi) are sales weights evaluated at the optimal production levels. We can use the

model’s structure to simplify these weights:

ŝ∗(θi) :=
q∗(zi)x

∗(zi)

Eθi [q∗(zi)x∗(zi)]
=

X
1
ε (vxX

1−χεθεi)
1− 1

ε

Eθi [X
1
ε (vxX1−χεθεi)

1− 1
ε ]

=
θε−1
i

θε−1
(105)

where, as throughout, θ =
(
Eθi [θε−1

i ]
) 1
ε−1 . We can therefore write the expected variance

of normalized misoptimizations, conditioning on a specific firm, as

m̃(zi, λi, θ) := Evi

[
s∗(θi)

(
xi − x∗(zi(θ))

x∗(zi)

)2

| zi, λi, θ

]
=
λiX(θ)γ+χ(ε−1)−1θ1−ε

vΠv2
x

(106)

where vΠ, vX > 0 are defined in Equation 42. It is trivial to integrate over (θi, λi) to derive

m̃(θ) =
λX(θ)γ+χ(ε−1)−1θ1−ε

vΠv2
x

(107)

We can relate this to m(θ) by writing

m(θ)

m̃(θ)
= v2

xθ
ε−1Eθi [θ1+ε

i | θ]X2(1−χε) (108)

See that, given ε > 1 and χε < 1, this is an increasing function of both θ and X. Therefore,

if m̃(θ) is monotone increasing in θ in an equilibrium with monotone X(θ), then m(θ) is

also monotone increasing in θ.

B Measuring Productivity and Misoptimization

This appendix describes in full detail our data construction and empirical methodologies

for our firm-level analysis of misoptimization.
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B.1 Sample Selection and Data Construction

We use data from Compustat Annual Fundamentals. We define production, in value

terms, as reported sales. Employment in Compustat is reported as the number of em-

ployees. To calculate a wage bill, we multiply this by the average industry wage calculated

from the Census Bureau’s County Business Patterns dataset in the same year, as the sec-

tor’s total national wage bill divided by the number of employees. From 1998 onward, we

use the 2- or 3-digit NAICS classification that is consistent with our main analysis. Prior

to 1997, and the introduction of NAICS codes in the CBP data, we use 2-digit SIC indus-

tries. For materials expenditure, we measure the sum of reported variable costs (cogs)

and sales and administrative expense (xsga) net of depreciation (dp) and the aforemen-

tioned wage bill. To measure the capital stock, we use a perpetual inventory method as

in Ottonello and Winberry (2020) starting with the first reported observation of gross

value of plant, property, and equipment and adding net investment or the differences in

net value of plant, property, and equipment.31

We restrict the sample to firms based in the United States, reporting statistics in

US Dollars, and present in the “Industrial” dataset. Within this sample, we apply the

following additional filters:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;

3. 2-digit NAICS is not 52 (Finance and Insurance) or 22 (Utilities);

4. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first two ensure that all companies meaningfully report all variables of interest for

our production function estimation; the second applies a stricter cut-off to eliminate

firms that are very small, and lead to outlier estimates of productivity and choices. The

third filter eliminates firms in two industries that, respectively, may have highly non-

standard production technology and non-standard market structure. The fourth is a

simple screening device for large acquisitions which may spuriously show up as large

innovations in firm choices and/or productivity. We finally restrict attention to firms

operating on a fiscal calendar that ends in December, for more straightforward calculations

of aggregate time trends.

31Because of our later usage of fixed effects and lack of direct calculations using capital “expenditures”
evaluated at an imputed rental rate, it is inessential to deflate the value of the capital stock.

13



We categorize the data into 44 sectors. These are defined at the 2-digit NAICS level,

but for the Manufacturing (31-33) and Information (51) sectors, which we classify at the

3-digit level to achieve better balance of sector size. Table A11 lists the sectors along

with summary statistics for their relative size, in terms of sales and employment, in cross-

sections corresponding to 1990 and 2010, in the full (not selected) Compustat sample.

Overall, the full dataset covers between 15-20% of US employment and 60-80% of US

output, modulo the clarification that not all Compustat sales necessarily occur in the

United States.

B.2 Production Function and Productivity Estimation

Our primary method for estimating production functions, and thereby recovering total

factor productivity, is a cost share approach. In brief, we use cost shares for materials and

labor to back out production elasticities, and treat the elasticity of capital as the implied

“residual” given an assumed markup µ > 1 (in our baseline, µ = 4/3) and constant returns

to scale. We validate, in subsection B.3 of this Appendix and in particular Lemma 3, that

this method is consistent in sample up to an essentially negligible correction term, due

to the underlying logic that input choices are “right on average” even in the presence of

mistakes. The exact procedure is the following:

1. For all firms in industry j, calculate the estimated materials and labor shares:

ShareM,j′ =

∑
i:j(i)=j′

∑
t MaterialExpenditureit∑

i:j(i)=j′
∑

t Salesit

ShareL,j′ =

∑
i:j(i)=j′

∑
t WageBillit∑

i:j(i)=j′
∑

t Salesit

(109)

2. If ShareM,j′ + ShareL,j′ ≤ µ−1, then set

αM,j′ = µ · ShareM,j′

αL,j′ = µ · ShareL,j′

αK,j′ = 1− αM,j′ − αL,j′

(110)

3. Otherwise, adjust shares to match the assumed returns to scale, or set

αM,j′ =
ShareM,j′

ShareM,j′ + ShareL,j′

αL,j′ =
ShareL,j′

ShareM,j′ + ShareL,j′

αK,j′ = 0

(111)
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We have experimented with extracting production function parameters under different

assumed markups and found overall stable results for the behavior of misoptimizations.

To translate our production function estimates into productivity, we first calculate a

“Sales Solow Residual” θ̃it of the following form:

log θ̃it = log Salesit−
1

µ

(
αM,j(i) · log MatExpit − αL,j(i) · log Emplit − αK,j(i) · log CapStockit

)
(112)

Because these variables are not in quantity units, we define our final estimate of TFP as

the residual of the previous from industry-by-time fixed effects. This procedure, under our

presumed model of industry-level variation in factor prices, identifies (log) TFP rescaled

by µ−1. The rescaling is immaterial for our analysis.

As a robustness check, we also calculate TFP using the method of Olley and Pakes

(1996), applied separately to estimate the production function of each industry.32 The

methodology of Olley and Pakes (1996) aims, in particular, to correct the bias in stan-

dard least-squares estimates that under-states the output elasticity to capital. We are

re-assured by these estimates’ “upstream” and “downstream” similarity to our baseline

estimates. To the first point, Table A12 shows the results from regressing the two TFP

measures on one another in a common sample, including various levels of fixed effects.

In each case, the slope is close to one and the within-R2, or goodness of fit net of fixed

effects, exceeds 0.6. To the second point, the relevant columns of Tables A3, A4, and A7

demonstrate how our main aggregate and firm-level results replicate under the alternative

measurement scheme, with similar quantitative and qualitative take-aways.

B.3 Theory to Data: Micro-foundations

In this subsection, we outline the mapping from our model to our production function

estimation via cost shares and our log-linear estimating equations.

Firms face a CES demand curve, or log qit = γi − 1
ε
(log xit − logXt) for some inverse

elasticity ε > 1 and aggregate output Xt.
33 Finally, firms face sector-specific input prices

(qj(i),L,t, qj(i),M,t, qj(i),K,t) for the three inputs, respectively.

32In particular, we use the implementation by Yasar et al. (2008) of the opreg package in Stata. We use
log investment as the proxy variable and year dummies as additional controls. We throw out estimates
that imply individual elasticities that are negative or greater than 1, but do not otherwise enforce any
returns to scale normalization.

33It is straightforward, and consistent with our modeling approach, also to allow substitution within
more narrowly defined industries.
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We model firm (mis-) optimization in the following way that is uniform across inputs.

Conditional on any chosen level of production, firms cost minimize over their input bundle

conditional on observed input prices. Let qi,T,t denote the associated “Total” input cost

per unit of produced output, and x∗(qT , X) denote the unconditionally profit-maximizing

level of production. Firms choose a production level which differs from this level by a

misoptimization mit:

log xit = log x∗(qi,T,t, Xt) +mit (113)

And the dynamics of the misoptimization are described by an AR(1) process in which

innovations uit are mean zero with variance σ2
it: mit = ρmi,t−1 +

(√
1− ρ2

)
uit.

First, we characterize the firm’s optimal production level x∗ as the total input price

(which itself will depend on productivity) and aggregate demand:

Lemma 1 (Optimal Output Choice). The firm’s optimal output choice is

log x∗(θ, qT , X) = ε log

(
1− 1

ε

)
+ εγi + logX − ε log qT (114)

Proof. Immediate from the first-order conditions of the program

x∗(θ, qT , X) = arg max
x

{
x
(
eγix−

1
εX

1
ε − qT

)}
(115)

We next characterize the optimal choice of each input:

Lemma 2 (Input Choice). For any input Z ∈ {L,M,K},
logZit = ηi + χj(i),Z,t + (ε− 1) log θit +mit (116)

where

ηi = εγi + ε log

(
1− 1

ε

)
(117)

and

χj(i),Z,t = logαZ.j(i)− log qj(i),Z,t+logXt+(1− ε)
∑
Z

αZ,j(i)(log qj(i),Z,t− logαZ,j(i)) (118)

Proof. In the cost minimization step, for any planned output choice Q, the firm solves

min
Lit,Mit,Kit

∑
z∈{L,M,K}

qj(i),Z,tZit s.t. θitL
αL,j(i)
it M

αM,j(i)
it K

αK,j(i)
it ≥ Q (119)

Standard first-order methods yield the solution, for each input,

logZit = log qi,T,t + logQ+ logαZ,j(i) − log qj(i),Z,t (120)

16



where the price index qi,T,t, which is also the Lagrange multiplier on the constraint, is

log qi,T,t =
∑
Z

αZ,j(i)(log qj(i),Z,t − logαZ,j(i))− log θit (121)

The desired expression comes from substituting in Equations 113 and 115 into the above.

This calculation validates our log-linear regression model Equation 20. It also has

the same loading on the misoptimization mit and log productivity log θit for all inputs

Z. Thus, all separate inputs, as well as total production in physical units, inherit the

“optimal choice plus error” structure.

We finally describe and validate our method for recovering production function pa-

rameters from a cost shares approach. The following result shows how cost shares are

recovered at the firm level, if all data were observed without noise:

Lemma 3 (Production Function Estimation). For any input Z ∈ {L,M,K}, and firm i,

αj(i),Z =

(
1− 1

ε

)−1 qj(i),Z,tZit
qitxit

exp
(
−mit

ε

)
(122)

Proof. This can be calculated directly using the results of Lemmas 1 and 2. We work

backwards starting from the result and substitute input demand from Equation 120 and

calculate.

αj(i),Z =

(
1− 1

ε

)−1 qj(i),Z,tZit
qitxit

exp
(
−mit

ε

)
=

(
1− 1

ε

)−1 exp
(
log qi,T,t + log xit + logαj(i),Z,t

)
exp (log qit + log xit)

exp
(
−mit

ε

)
=

(
1− 1

ε

)−1

exp
(

log qi,T,t − log qit + logαj(i),Z,t −
mit

ε

)
(123)

where the third line cancels out xit in the fraction. We take the demand curve log qit =

γi− 1
ε
(log xit−logXt) and observe that, using the expression for the unconstrained optimal

output in Equation 114 and the fact that log xit = log x∗it +mit:

log qit = γi +
1

ε
logXt −

1

ε

(
ε log

(
1− 1

ε

)
+ εγi + logXt − ε log qi,T,t + logmit

)
= − log

(
1− 1

ε

)
+ log qi,T,t −

mit

ε

(124)
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We then substitute the above back into Equation 123 to get

αj(i),Z =

(
1− 1

ε

)−1

exp

(
log qi,T,t −

(
− log

(
1− 1

ε

)
+ log qi,T,t −

mit

ε

)
+ logαj(i),Z −

mit

ε

)
=

(
1− 1

ε

)−1

exp

(
(log qi,T,t − log qi,T,t) + log

(
1− 1

ε

)
+ logαj(i),Z +

(mit

ε
− mit

ε

))
= αj(i),Z

(125)

as desired.

In words, this result says that the ratio of expenditures on input Z to total sales,

multiplied by the markup and a correction factor related to the mistake, equals the pro-

duction elasticity. In principle, we could simultaneously estimate the production function

and the statistical properties of mistakes to correct for the fact that the term exp
(
−mit

ε

)
is not zero on average. In practice, our mistakes are zero mean by construction and have

a variance of about 0.08 in sample. Using a log-linear calculation, and our standard value

of ε = 4, this implies an average correction factor of exp
(

1
2·42 · 0.08

)
= 1.0025 which is

essentially negligible.

We finally show, in the theory, how the calculation of Equation 112, net of fixed effects,

recovers a re-scaling of TFP. In this subsection’s language, that calculation is

log θ̃it = log xit + log qit −
1

µ

(∑
Z

αZ,j(i)(log qj(i),Z,t + logZit)

)
(126)

Substituting in the demand curve log qit = γi − 1
ε
(log xit − logXt)

log θ̃it =

(
1− 1

ε

)
log xit + γi +

1

ε
logXt −

1

µ

(∑
Z

αZ,j(i)(log qj(i),Z,t + logZit)

)
(127)

We next observe that µ = 1− 1
ε

and that log θit = log xit −
(∑

Z αZ,j(i) logZit
)
. Thus,

log θ̃it =
1

µ
log θit + γi +

1

ε
logXt −

1

µ

(∑
Z

αZ,j(i) log qj(i),Z,t

)
(128)

Grouping terms into fixed effects, this is

log θ̃it =
1

µ
log θit + τj(i),t + γi (129)

where τj(i),t = 1
ε

logXt− 1
µ

(∑
Z αZ,j(i) log qj(i),Z,t

)
is the industry-by-time fixed effect cap-

turing aggregate demand and factor prices. and γi is the firm fixed effect from the demand

curve. Thus, net of fixed effects, we recover 1
µ

log θit.
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C Additional Empirical Results

C.1 Macro Attention With Conference Calls

In this Appendix, we describe an alternative construction of Macro Attention measure

using textual information from sales and earnings conference.

Measurement. We obtain data from the Fair Disclosure (FD) Wire service, which

records transcripts of sales and earnings conference calls for public companies around the

world. We obtain an initial sample of 294,900 calls which cover 2003 to 2014. We subset

to documents that have reported firm names and stock tickers, which are automatically

associated with documents by Lexis Nexis. When matches are probabilistic, we use the

first (highest probability) match. We finally restrict to firms that are listed on one of

three US stock exchanges: the NYSE, the NASDAQ, or the NYSE-MKT (Small Cap).

We finally connect tickers to firm identifiers (GVKEY) using the master cross-walk avail-

able on Wharton Research Data Services (WRDS). These operations together reduce the

sample size to 164,805 calls. We finally restrict to conference calls that are sales or earn-

ings reports. This further reduces the sample to 158,810 total observations, by removing

conference calls related to other activities (e.g., mergers). All in all, this sample is about

3,600 firm observations per quarter, or about 60% of the per-quarter observations we

obtained via the SEC filings. Using these data, we replicate the exact methodology of

Section 3.2 to measure macroeconomic attention. The procedure yields a new list of 73

macroeconomic words.

Results. Figure A10 plots the conference-call-derived measure alongside the US unem-

ployment rate. Conference-call-derived macro attention, like our main measure derived

from forms 10-Q/K, is cyclical and persistent. To benchmark these facts in the same

way we did in the main text, we first run linear regressions on unemployment and the

detrended S&P 500. The first two columns of Table A9 show the coefficients, which are

slightly larger in absolute value than their equivalents with our 10K/Q measure (1.529

and -0.104, respectively).

Casual comparison of Figure A10 and Figure 4 suggests that, while our two measures

of attention have similar cyclical patterns, they do not closely track each other at the

aggregate level. Conference-call-derived attention is more sharply peaked around the

onset of the Great Recession while 10-K/Q-derived attention remains elevated for several
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subsequent years. The correlation between the two measures on a common sample is a

(statistically insignificant) 0.091. The relationship is closer, however, at the firm level.

Columns 4-6 of Table A9 show the results of regressing the conference-call-derived measure

10K/Q-derived measure at the firm level, with increasingly more stringent fixed effects.

The correlation is consistently positive, though strongest in terms of cross-firm differences

as opposed to within-firm differences. Moreover, as indicated in column 1 of Table A7,

our finding linking firm-level misoptimization with firm-level attention is robust to using

the conference call measure.

C.2 Macro Attention With Word Stemming

Measurement. Our main method for constructing Macro Attention treats individual

words as the unit of measurement. For this reason, words like “unemployment” and

“unemployed” are counted separately despite likely communicating the same meaning

in all contexts. This method, while appealingly simple, may systematically under-count

words that have a number of different forms or tenses, while allowing the multiple forms

of certain ubiquitous words to crowd out other distinct concepts.

As an alternative method, which allays some of these concerns, we re-do our calculation

of macroeconomic language using word stems. For each word w in the macroeconomics

references and/or regulatory filings, we use the Porter Stemmer implemented in Python’s

nltk software to determine a stem s(w). Stemming is an algorithmic and imperfect pro-

cess. In examples relevant to our context, the Porter Stemmer associates “unemployment”

and “unemployed” with the common stem “unemploy.” But it also, employing the same

logic, associates “nominal” with “nomin,” a stem which may match to words less often

used to describe aggregate prices (e.g., “nominate”).

We adapt our tf-idf calculation to the stem level by calculating, for each stem s that

appears in the regulatory filings,

tf-idf(s)it := tf(s)it · log

(
1

df(s)

)
(130)

where tf(s) is the total term frequency of all words mapped to stem s, and df(s) is the

minimum document frequency among words associated with the stem.34 We calculate the

top macro stems using the approach described in the main text (Section 3.2); construct

34We use the minimum instead of the overall frequency due to a data limitation of having document
frequencies at the word, not stem, level. We expect either method to produce broadly similar results.
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the set of macro words WM as the set of all words associated with a macro stem; and

proceed in the standard way to calculate firm-level and aggregate macro attention.

Results. Table A10, in analogy to Table A9, presents a summary of the cyclical patterns

of the stemmed Macro Attention measure as well as its relationship to our main measure.

The two measures behave very similarly in the time series and are tightly connected at

the firm level. Moreover, when we replicate our main model linking firm-level Macro

Attention to firm-level misoptimization as in Table A7, we estimate a coefficient of -0.020

(SE: 0.004), which is comparable within error bars to our baseline estimate of -0.009 (SE

0.003).

C.3 Dispersion in TFPR and Value Marginal Products

In this Appendix, we theoretically and empirically study the behavior of revenue-TFP

(TFPR) dispersion in our analysis. This analysis builds a bridge between our findings

and those of Kehrig (2015), who shows that cross-firm variance in revenue total-factor-

productivity, or the product of prices and physical productivity, is counter-cyclical for the

US durable manufacturing sector between 1972 and 2007.

Definitions and Theoretical Context. In our model, with a three-input production

function, log physical TFP is defined as

log θit = log xit − (αj(i),M logMit + αj(i),K logKit + αj(i),L logLit) (131)

where xit is physical sales, in quantity units; (Mit, Kit, Lit) are materials, capital, and

labor; and (αj(i),M , αj(i),K , αj(i),L) are (industry-specific) weights on these inputs, which

sum to one. Prices are defined by the demand curves log pit = 1
ε
(logXt − log xit) and

revenue-based TFP is therefore

log θRit = log θit + pit = log Salesit − (αj(i),M logMit + αj(i),K logKit + αj(i),L logLit) (132)

where Salesit = pitxit. We can calculate exactly what TFPR is in our empirical model

with inattentive firms, introduced in Appendix B.3, by combining this definition with the

input-choice policy functions derived in Lemma 2:

Lemma 4. TFPR in our model is given by

log θRit = γ̃i + Ξj(i),t −
1

ε
mit (133)

where γ̃i is a constant at the firm level and Ξj(i),t is a constant that varies at the industry-

by-time level.
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Thus, the only sources of within-industry variation in revenue-based TFP in our model

are the firm fixed effects and misoptimizations. This is another way of stating our theoret-

ical result that misoptimizations matter for aggregate output and productivity via their

effects on “misallocation,” as TFPR measures the value marginal product of the (minimal

cost) input bundle. A simple corollary, under our assumption of cost minimization, is that

the value marginal product log θZit = log Salesit
Zit

, for any of the three inputs, can also be

written as log θZit = γ̃Z,i + Ξj(i),Z,t − 1
ε
mit with now input-specific fixed effects (firm-level

and industry-by-time level).

In our model, therefore, the presence of TFPR dispersion or value-marginal-product

dispersion indicates that there is non-zero misoptimization. The monotonicity of TFPR

or value-marginal-product dispersion over the business cycle, once we project out firm

and industry-by-time fixed effects, therefore provides an alternative test of the model’s

prediction of procyclical misoptimization dispersion.

TFPR Dispersion and VMPL Dispersion. We calculate log TFPR in our data by

first calculating

log θ̃Rit = log Salesit−
(
αM,j(i) · log MatExpit − αL,j(i) · log Emplit − αK,j(i) · log CapStockit

)
(134)

where variable definitions follow the convention of Appendix B. We then remove industry-

by-time fixed effects and firm fixed effects to remove factor prices, as suggested by Lemma

4, to generate the variable log θ̂Rit .
35 We also calculate the log value marginal product of

labor (VMPL) by first calculating

log θ̃Lit = log Salesit − logLit (135)

and removing industry-by-time and firm fixed effects to generate the final measure log θ̂Lit.

Appendix Figure A11 shows the cyclical behavior of TFPR dispersion, the variance

of log θ̂Rit , and VMPL dispersion, the variance of log θ̂Lit. In line with our earlier results,

VMPL dispersion is markedly pro-cyclical with respect to both the unemployment rate

and the return on the S&P500. TFPR dispersion has no significant relationship with

either unemployment or the S&P500. Taken together, these exercises suggest that value-

marginal-product-based measures of misallocation give results consistent with our main

finding of pro-cyclical misoptimization.

35Compare with Equation 112, which resembles Equation 134 but for deflating the input shares by the
markup. This is exactly the within-model adjustment for prices pit.
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D Extended Model

In this appendix, we formally develop the extension of the baseline model from Section

1 to include multiple inputs and market clearing wages. In the process, we will provide

more direct model micro-foundations for the wage rule and the stock return regression

analysis in Section 4.3.

D.1 Set-up

Time is discrete, and indexed by t ∈ N. There are three kinds of firms: perfectly compet-

itive materials firms who use labor to produce materials; intermediate goods producers

who differ in their productivity and who use labor and materials to produce a monopolistic

variety indexed by i ∈ [0, 1]; and final goods firms who produce consumption goods as a

constant elasticity of substitution aggregate of intermediate goods. There are two types of

households: capitalists who own the firms in the economy, do not work and have constant

relative risk aversion (CRRA) preferences over consumption; workers who supply labor,

are hand-to-mouth (consuming all of their labor income in each period), and have GHH

preferences over consumption and labor. Finally, as in our baseline model, the stochastic

choice friction is embedded in the production of intermediate goods: intermediate goods

producers perfectly cost-minimize but find it hard to produce the optimal amount.

Firms. Materials are produced by perfectly competitive firms with linear production

technology in labor so that aggregate production of materials Mt is given by:

Mt = θMt L
M
t (136)

where θMt is the productivity of the materials sector and LMt is its labor input.

Intermediate goods producers of variety i are the monopoly producers of that variety.

They have firm-specific productivity θit and use materials mit and labor Lit to produce

output xit with Cobb-Douglas production technology:

xit = θitL
α
itm

1−α
it (137)

where α ∈ (0, 1). To the extent that other intermediate goods (e.g. capital) exist and are

combined in a CRS Cobb-Douglas production function with labor, this is fully general.

The stochastic process of productivity is exactly as described in Section 1.2. There

is an aggregate productivity state θt ∈ Θ, which follows a first-order Markov process

with transition density given by h(θt | θt−1). The cross-sectional productivity distribution
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is given in state Θ by the mapping G : Θ → ∆(Θ), where we denote the productivity

distribution in any state θt by Gt = G(θt) with corresponding density gt. We assume

that the total order on θt ranks distributions Gt by first-order stochastic dominance, or

θ ≥ θ′ implies G(θ) %FOSD G(θ′). Finally, materials productivity θMt is determined as an

increasing function of the overall productivity state θt.

Intermediate goods producers perfectly cost-minimize facing wages wt and intermedi-

ate goods prices pMt . That is, for given production level xit, they always choose the cost-

minimizing input bundle. We define the firm-level decision state zit = (θit, Xt, wt, p
M
t ) ∈ Z

as the concatenation of all decision-relevant variables that the firm takes as given; unlike

in the baseline model, this definition includes the materials price. All firms believe that

the vector zit follows a first-order Markov process with transition densities described by

f : Z → ∆(Z), with f(zit|zi,t−1) being the density of zit conditional on last period’s state

being zi,t−1. At time t, each firm i knows the sequence of previous {zis}s<t but not the

contemporaneous value zit.

Given this firms have risk-adjusted profits given by Π(xit, zit). They then choose

stochastic choice rules to maximize expected profits net of control costs, as captured by

the following program which is identical to Equation 9 in the main model, with a different

definition of the decision state and profits function:

max
p∈P

∫
Z

∫
X

Π(x, zit) p(x | zit) dx f(zit | zi,t−1) dz − c (p, λi, zi,t−1, f) (138)

Intermediate goods firms generate profits in units of consumption goods given by πit.

The firms store these consumption goods and pay them out as dividends dit to their

owners in the following period, or dit+1 = πit. A unit supply of stock in the firm, which

confers the right to the dividend stream, is available at price Pit.

The outputs of intermediate goods firms are combined to produce consumption goods

with a CES production technology. Thus, if the intermediate producers produce {xit}i∈[0,1],

then the aggregate supply of consumption goods is:

Xt = X({xit}i∈[0,1]) =

(∫
[0,1]

x
ε−1
ε

it

) ε
ε−1

(139)

Households. There are two types of households: capitalists and workers. Capitalists

own all firms in the economy and workers are hand-to-mouth. Capitalists have preferences
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over streams of consumption {Ct+j}j∈N given by:

UC({Ct+j}j∈N) = Et
∞∑
j=0

βjC
C1−γ
t+j

1− γ
(140)

where βC ∈ [0, 1), γ ≥ 0. The dynamic budget constraint of capitalists is given by:

Ct + At+1 +

∫
[0,1]

PitSit+1 di ≤
∫

[0,1]

ditSit di+ (1 + rt)At +

∫
[0,1]

PitSit di (141)

where Sit is their stock-holding in firm i at time t and At is their bond-holding at time t.

Workers have preferences over streams of consumption and labor given by:

UW ({CW
t+j, Lt+j}j∈N) = Et

∞∑
j=0

βjWU

(
CW
t −

L1+ψ
t+j

1 + ψ

)
(142)

where U ′ > 0, U ′′ < 0, ψ > 0, βW ∈ [0, 1). Workers are hand-to-mouth and they supply

labor Lt at wage wt, meaning that they consume:

CW
t = wtLt (143)

Equilibrium. An equilibrium is a set of all endogenous variables:

{LMt ,Mt, p
M
t , p

∗
t , wt, {xit, Lit,mit, πit, dit, Pit, Sit}i∈[0,1], Xt, Lt, Ct, At} (144)

such that all agents optimize as described above and markets clear given the exogenous

process {θt, θMt , {θit}i∈[0,1]}t∈N. We will be interested, as in the main text, in linear-

quadratic equilibria where Π is approximated around its optimal level and the CES ag-

gregator is approximated as described in Section 1.5.

D.2 Characterizing Equilibrium

We now reduce the description of equilibrium to a scalar fixed-point equation that can

equivalently be formulated in terms of total production or capitalist consumption. This

simplifies the analysis of the model and allows us to establish some equilibrium properties.

Production by Intermediate Goods Firms. Owing to CES aggregation, intermedi-

ate goods firms face an following iso-elastic demand curve, qit = X
1
ε
t x
− 1
ε

it . They moreover

perfectly cost-minimize. As a result, given production level xit their unit input choices

solve the following program:

min
Lit,mit

wtLit + pMt mit s.t. xit = θitL
α
itm

1−α
it (145)

25



Taking the ratio of the two FOCs and rearranging, we obtain mit = 1−α
α

wt
pMt
Lit. Thus,

given xit, the optimal labor and materials choices are given by:

Lit =
1

θit

(
α

1− α

)1−α(
pMt
wt

)1−α

xit, mit =
1

θit

(
α

1− α

)−α(
pMt
wt

)−α
xit (146)

It follows that the cost of producing xit is given by:

wtLit + pMt mit =
qt
θit
xit (147)

where we define the unit marginal cost up to constant cα > 0:

qt :=

[(
α

1− α

)−α
1

1− α

]
wαt (pMt )1−α = cαw

α
t (pMt )1−α (148)

We now turn to solving the firm’s stochastic choice problem. From the above, firm

dollar profits are given by:

πit = X
1
ε
t x

1− 1
ε

it − qt
θit
xit (149)

Recall that this is paid out as a dividend at period t + 1, dit+1 = πit. Note moreover in

equilibrium by market clearing that At = 0 and Sit = 1 for all i ∈ [0, 1] and t ∈ N. Thus,

Ct+1 =
∫

[0,1]
dit+1 di =

∫
[0,1]

πit di. The firm’s risk-adjusted profit is then given by:

Πit = C−γt+1πit (150)

where the firm takes Ct+1 as given.

As in the main text, we define the optimal production level x∗(Λ, θ) which solves:

x∗(Λ, θit) := arg max
x∈X

Π(x; Λ, θit) (151)

and Π̄(Λ, θit) as the maximized objective. Now let Πxx(Λ, θit) denote the second derivative

of the profits function in x, evaluated at x∗:

Πxx(Λ, θit) :=
∂2Π

∂x2

∣∣∣∣
x∗(Λ,θit);Λ,θ

(152)

The approximate objective of the intermediate goods firm is:

Π̃(x; Λ, θit) := Π̄(Λ, θit) +
1

2
Πxx(Λ, θit)(x− x∗(Λ, θit))2 (153)

Under this approximate objective, it follows by a slight algebraic variation of the argu-

ments in Proposition 1 that optimal choices follow:

xit ∼ N

(
x∗it,

λ

|Πxx,it|

)
x∗it =

(
1− 1

ε

)ε
Xtθ

ε
itq
−ε
t

|Πxx,it| = (ε− 1)−εεε−1C−γt+1X
−1
t θ−1−ε

it q1+ε
t

(154)
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These expressions mirror those in the main model, with C−γt+1 replacing X−γt as the

marginal utility and qt replacing wt as the marginal cost.

Finding Materials Prices and Wages. Materials producers maximize their profits,

pMt θ
M
t L

M
t − wtLMt . Thus, in equilibrium, it follows that pMt = 1

θMt
wt. The worker’s labor

supply condition is wt = Lψt . Moreover, we know that aggregate labor is equal to the sum

of labor used to produce intermediates and materials:

Lt =

∫
[0,1]

Litdi+ LMt =

∫
[0,1]

Litdi+
1

θMt

∫
[0,1]

mitdi (155)

where the second equality follows by market clearing for intermediates as
∫

[0,1]
mitdi =

Mt = θMt L
M
t . We next substitute our expression of materials demand as a function of

labor demand for intermediate goods firms to simplify the labor supply condition further:

Lt =

∫
[0,1]

Litdi+
1

θMt

∫
[0,1]

mitdi =

∫
[0,1]

Lit di+
1

θMt

∫
[0,1]

1− α
α

wt
pMt

Lit di

=

(
1 +

1

θMt

1− α
α

wt
pMt

)∫
[0,1]

Lit di =
1

α

∫
[0,1]

Litdi

(156)

Where the final equality follows from the fact that the material input is priced at marginal

cost. We now write this in terms of prices and output choices by substituting in, from

the intermediate goods firm’s cost-minimization, Lit = 1
θit

(
α

1−α

)1−α
(
pMt
wt

)1−α
xit. Thus:

Lt =
1

α

(
α

1− α

)1−α(
pMt
wt

)1−α ∫
[0,1]

xit
θit

di (157)

We can then use our earlier characterization of the solution to the intermediate goods

producers’ stochastic choice problem to compute:∫
[0,1]

xit
θit

di = E
[
xit
θit

]
= E

[
E
[
xit
θit
|θit
]]

= E
[

1

θit
x∗it

]
= E

[
1

θit

(
1− 1

ε

)ε
Xtq

−ε
t θεit

]
=

(
1− 1

ε

)ε
Xtq

−ε
t θε−1

(158)

where we use the definition θ =
(
Eθi [θε−1

i | θ]
) 1
ε−1 . By combining the previous two equa-

tions, we derive that total labor demand is given by:

Lt =
1

α

(
α

1− α

)1−α(
pMt
wt

)1−α(
1− 1

ε

)ε
Xtq

−ε
t θε−1 (159)
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Substituting this into the workers’ intratemporal Euler equation, and using Equation 148

to write the marginal cost in terms of materials prices and wages, we obtain:

w
1
ψ

t =
1

α

(
α

1− α

)1−α(
1

θMt

)1−α(
1− 1

ε

)ε
θε−1
t c−εα Xt

(
wt

(
pMt
wt

)1−α
)−ε

=
1

α

(
α

1− α

)1−α (
θMt
)(ε−1)(1−α)

(
1− 1

ε

)ε
θε−1c−εα Xtw

−ε
t

(160)

Moreover, we can write the marginal cost for the firm as

qt = cαw
α
t (pMt )1−α = q̄tX

χ
t (161)

where we define coefficient χ = ψ
1+εψ

and intercept

q̄t =

[(
α

1− α

)−α
1

1− α

]1−α(
1

α

(
α

1− α

)1−α (
θMt
)(ε−1)(1−α)

(
1− 1

ε

)ε
θε−1c−εα

)χ

(θMt )−1+α

(162)

Marginal costs, holding fixed productivity, increase in output due to upward-sloping labor

supply or convex disutilty of effort. The intercept of this “cost rule” varies as a function

of productivity in the intermediate-goods and materials sectors. Observe that Equation

161 is the “fully Neoclassical” analog to our wage rule Equation 3; indeed, when α = 1

or there is no materials factor, it reduces to a wage rule

wt = w̄tX
α
t (163)

where w̄t = q̄t|α=1. This verifies our claim in the main text that the wage rule can be

micro-founded in the simple model. Indeed, in a model with materials or α < 1, we obtain

exactly the wage rule studied in the main text if θMt = θβt where β = χ(ε−1)
(1−χ(ε−1))(1−α)

> 0,

thereby canceling out the direct effect of productivity on the intercept of the wage rule.

Finding Equilibrium Output. We have characterized all endogenous objects in pe-

riod t in terms of output Xt and capitalists’ consumption Ct+1. It remains only to char-

acterize these variables.

To this end, we approximate as we have throughout:

X =

(∫ 1

0

x∗(zi)
1− 1

ε di

) ε
ε−1

− 1

2ε

∫ 1

0

(xi − x∗(zi))2

(X∗)−
1
ε (x∗(zi))

1+ 1
ε

di (164)

where the mean and variance are taken over the realizations of θit, conditional on the

aggregate state θt. Substituting in Equation 154, this provides one equation in terms of

(Xt, Ct+1). Consider first the computation of X∗t . Observe that we can write:

x∗it = δtX
1−χε
t θεit (165)
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where:

δt =

(
1− 1

ε

)ε(
cαw̄t

(
1

θMt

)1−α
)−ε

(166)

Substituting this into the expression for X∗t , we obtain:

X∗t =
(
δ
ε−1
ε

t X
ε−1
ε

(1−χε)
t θε−1

t

) ε
ε−1

= δtX
1−χε
t θεt (167)

Now consider the computation of the dispersion term. See that we can write:

E

[
(xit − x∗(zi))2

(X∗)−
1
ε (x∗(zi))

1+ 1
ε

]
= (X∗t )

1
εE
[
x∗(zit)

−1− 1
εE[(xit − x∗(zit))2|zit]

]
= (X∗t )

1
εE
[
x∗(zit)

−1− 1
ε

λ

|Πxx,it|

] (168)

To simplify this, observe that we can write:
1

|Πxx,it|
= ζ−1

t Cγ
t+1X

1−χ(ε+1)
t θ1+ε

it (169)

where:

ζt = (ε− 1)−εεε−1

(
cαw̄t

(
1

θMt

)1−α
)1+ε

(170)

So we may express:

E

[
(xit − x∗(zi))2

(X∗)−
1
ε (x∗(zi))

1+ 1
ε

]
= (X∗t )

1
εE
[
δ
−1− 1

ε
t X

−(1+ 1
ε
)(1−χε)

t θ−1−ε
it λζ−1

t Cγ
t+1X

1−χ(ε+1)
t θ1+ε

it

]
= λζ−1

t δ−1
t Cγ

t+1X
−χ
t

(171)

Putting all of the above together we have that:

Xt = δtX
1−χε
t θεt −

λ

2ε
ζ−1
t δ−1

t Cγ
t+1X

−χ
t θt (172)

The final equation we require comes from equating capitalists’ consumption with the

previous period’s dividends, which is implied by market clearing in the securities market

and the fact that workers are hand-to-mouth. Thus:

Ct+1 =

∫
[0,1]

πit di (173)

Using our running approximation:

πit = πit(x
∗
it) +

1

2
πxx,it(xit − x∗it)2 (174)
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we obtain:

Ct+1 =

∫
[0,1]

πitdi = E
[
E
[
πit(x

∗
it) +

1

2
πxx,it(x

∗
it)(xit − x∗it)2 | x∗it

]
| δt, θt

]
= E

[
E
[
πit(x

∗
it) +

1

2
πxx,it(x

∗
it)

λ

|Πxx,it|
| x∗it

]
| δt, θt

]
= E [πit(x

∗
it) | δt, θt]−

λ

2
Cγ
t+1

= (ε− 1)−1δtθ
ε−1
t X

1−χ(ε−1)
t − λ

2
Cγ
t+1

(175)

We can therefore solve for Xt as a function of Ct+1:

Xt =

(
Ct+1 + λ

2
Cγ
t+1

(ε− 1)−1δtθ
ε−1
t

) 1
1−χ(ε−1)

(176)

Plugging this into the scalar fixed point equation for output then boils down the equi-

librium of the model to a scalar fixed-point equation for the consumption of capitalists:

(
Ct+1 + λ

2
Cγ
t+1

(ε− 1)−1δtθ
ε−1
t

) 1
1−χ(ε−1)

= δt

(
Ct+1 + λ

2
Cγ
t+1

(ε− 1)−1δtθ
ε−1
t

) 1−χε
1−χ(ε−1)

θεt

− λ

2ε
ζ−1
t δ−1

t Cγ
t+1

(
Ct+1 + λ

2
Cγ
t+1

(ε− 1)−1δtθ
ε−1
t

) −χ
1−χ(ε−1)

θt

(177)

The above can be summarized in the following result:

Proposition 5. Equilibria are characterized by the solutions to Equation 177.

D.3 Existence, Uniqueness, and Monotonicity of Equilibrium

To establish existence of equilibrium, all we require is that the above equation has a solu-

tion. As there is always a trivial equilibrium with Ct+1 = 0, we will focus on when there

exists an equilibrium with positive output, when it is unique, and when it is monotone.

In this more general setting, we show that so long as cognitive frictions are not too large,

these properties apply.

Proposition 6. Suppose χ(ε − 1) < 1. There exists λ̄ > 0 such that there exists a

unique equilibrium with positive output whenever λ < λ̄. Moreover, equilibrium output is

monotone increasing in aggregate productivity θ.
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Proof. Following Equation 177, define:

gλ(C) =

(
C + λ

2
Cγ

(ε− 1)−1δθε−1

) 1
1−χ(ε−1)

−

[
δ

(
C + λ

2
Cγ

(ε− 1)−1δθε−1

) 1−χε
1−χ(ε−1)

θε

− λ

2ε
ζ−1δ−1Cγ

(
C + λ

2
Cγ

(ε− 1)−1δθε−1

) −χ
1−χ(ε−1)

θ

] (178)

Observe that gλ is continuous in λ in the sup-norm. Thus, if we can show that there is

a unique value of C ∈ R++ such that g0(C) = 0 and g′0(C) 6= 0, then there exists λ such

that for all λ < λ̄ there will be a unique C ′ ∈ R++ such that gλ(C
′) = 0.

To prove the result, it remains to show that there is a unique value of C ∈ R++ such

that g0(C) = 0 and g′0(C) 6= 0 when χ(ε − 1) < 1. To this end, define C̃ = C
(ε−1)−1δθε−1

and see that:

g0(C̃) = C̃
1

1−χ(ε−1) − bC̃C̃
1−χε

1−χ(ε−1) (179)

where bC̃ = δθε. We can then compute:

g′0(C̃) =
1

1− χ(ε− 1)
C̃

χ(ε−1)
1−χ(ε−1) − bC̃

1− χε
1− χ(ε− 1)

C̃
−χ

1−χ(ε−1)

g′′0(C̃) =
χ(ε− 1)

(1− χ(ε− 1))2
C̃

χ(ε−1)
1−χ(ε−1)

−1 + bC̃
χ(1− χε)

(1− χ(ε− 1))2
C̃

−χ
1−χ(ε−1)

−1
(180)

From which we observe the following when χ(ε− 1) < 1:

lim
C̃→0

g′0(C̃) = −∞ lim
C̃→∞

g′0(C̃) =∞ g′′0(C̃) > 0 for all C̃ ∈ R++ (181)

We now establish monotonicity. If we can show that the unique value of C ∈ R++ such

that g0(C) = 0 and g′0(C) 6= 0 is monotone increasing in θ, then there exists λ̄ such that

for all λ < λ̄ the same will be true of the unique C ′ ∈ R++ such that gλ(C
′) = 0.

To this end, see that the solution when λ = 0 is given by:

ln C̃ =
(1− χ(ε− 1))

χε
ln bC̃ (182)

We also know that ln C̃ = lnC + ln(ε− 1)− ln δ − (ε− 1) ln θ. Thus, we have that:

lnC =
(1− χ(ε− 1))

χε
(ln δ + ε ln θ)− ln(ε− 1) + ln δ + (ε− 1) ln θ (183)

As ε > 1 and 1 > χ(ε− 1) by hypothesis, and δ is increasing in θ, the result follows.

D.4 Attention and Misoptimization Cycles in the Extended Model

Having shown that equilibrium output is monotone and increasing in the extended model,

we now provide conditions under which the analog of Proposition 3 that establishes mono-
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tonicity of attention and mistakes holds in this setting:

Proposition 7. Assume χε < 1 and 1 > χ(ε+ 1). There exists λ̄ such that when λ < λ̄,

intermediate goods firms pay more attention and misoptimize less in lower-productivity,

lower-output states.

Proof. Recall that:

m(zit) =
λi
|Πxx,it|

= λiζ
−1
t Cγ

t+1X
1−χ(ε+1)
t θ1+ε

it (184)

Thus, the average extent of misoptimization in aggregate state θ is:

m(θ) = λζ(θ)−1C(θ)γX(θ)1−χ(ε+1)E[θ1+ε
it | θ] (185)

See that 1 > χ(ε+ 1) implies 1 > χ(ε− 1). As we assumed χε < 1, Proposition 6 implies

that C and X are both increasing in θ. By the assumed FOSD ordering on θ, we have

that E[θ1+ε
it | θ] is monotone increasing in θ. We moreover have that ξ ∝ δ−

1+ε
ε . Thus,

as δ is increasing in θ, we have that ξ−1 is increasing in θ. This establishes that m(θ)

is increasing in θ, and therefore that intermediate goods firms misoptimize less in lower

productivity and lower output states. By the same arguments as in Proposition 3, it is

immediate that the opposite pattern holds for attention.

D.5 Macroeconomic Dynamics in the Extended Model

We can moreover derive an analogous representation of the impact of inattention on

macroeconomic dynamics through an attention wedge that depresses output relative to

the fully-attentive benchmark. Formally:

Proposition 8. Output can be written in the following way:

logX(log θ, λ) =
1

χ
log θ̃ + logW (log θ, λ) (186)

where θ̃ = θδ
1
ε and logW (log θ, 0) = 0 for all θ ∈ Θ.

Proof. The representation follows immediately by combining Equations 182 and 176. That

the wedge is 0 when λ = 0 follows immediately from the same equations.

This formula differs from Proposition 4 only in so far as θ is replaced by θ̃ which

captures the effect of the inclusion of other factors of production and the endogenous

labor supply of agents. Note that this result does not establish any properties of the

wedge in this case, as the fixed point equation is challenging to manipulate. The nature
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of the wedge is then a quantitative question. Similarly to the main text, a concave

attention wedge implies higher shock responsiveness in low states, greater responsiveness

to negative than positive shocks, and volatility of output that is greater in low states.

D.6 Micro-foundation and Interpretation of the Stock Return Regressions

In Section 4.3, we showed that mistakes of the same size by firms lead to more adverse

impacts on stock returns when the aggregate stock market return is low. We interpreted

this as direct evidence in favor of our mechanism that risk-pricing is a key determinant

of attention cycles. The simple model of Section 1 is too stylized to formally map to

this regression. However, in the extended model developed in this section, we can derive

exactly the regression we run from the theory and show how the estimated regression

coefficients map to the risk-pricing channel in the theory.

First, from the Euler equation of capitalists, the equilibrium price of firm i at time t,

Pit solves:

u′(Ct)Pit = Et[βu′(Ct+1)(Pit+1 + dit+1)] (187)

where dit+1 = πit. Thus we may write:

u′(πt−1)Pit = βu′(πt)πit + βu′(πt)Et[Pit+1] (188)

where πt =
∫

[0,1]
πit di. It follows that:

Pit = β
u′(πt)

u′(πt−1)
πit + β

u′(πt)

u′(πt−1)
Et[Pit+1] (189)

A mistake mit ≡ xit − x∗it leads to profits (under our quadratic approximation) of:

πit = πit(x
∗
it) + πxx,itm

2
it (190)

Thus, the firm’s stock price follows:

Pit = β
u′(πt)

u′(πt−1)

(
πit(x

∗
it) + πxx,itm

2
it

)
+ β

u′(πt)

u′(πt−1)
Et[Pit+1] (191)

Thus:
∂Pit
∂m2

it

= β
u′(πt)

u′(πt−1)
πxx,it

∂Pit
∂πit

= β
u′(πt)

u′(πt−1)
(192)

To simplify this further, observe by the Euler equation for trading an equally weighted

portfolio of all intermediate goods firms must satisfy, where Pt is the price of this portfolio

(the stock market):

u′(Ct)Pt = Et[βu′(Ct+1)(Pt+1 + πt)] (193)
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Or:

β
u′(πt)

u′(πt−1)
=

Pt
Et[Pt+1] +Dt+1

=
1

Rt

(194)

Which is the inverse aggregate return on equity between period t and period t + 1, Rt.

Therefore:

Proposition 9. The equilibrium effect of mistakes on stock returns is given by:
∂Pit
∂m2

it

= − 1

Rt

|πxx,it| (195)

If a mistake is measured in terms of its impact in profit units, then one obtains the simpler:

∂Pit
∂πit

= − 1

Rt

(196)

Proof. Given in the text above.

Of course, it is trivial to reformulate the above comparative statics in terms of firm

level returns as Pit−1 is invariant to innovations in mit.

When equity returns are high, mistakes should (all else equal) have a lower price

impact. Mapping this slightly more formally to our exact regression analysis: when we

instrument for profits with mistakes, we should obtain a negative and significant coefficient

on the interaction between profits and the aggregate stock market return. This is exactly

what we find. The OLS regressions of returns on mistakes retain a similar structure but

are intermediated by the curvature of dollar profits across firms. These regression models

therefore provide a less sharp test of the risk-pricing channel, although empirically they

produce entirely consistent results.

E Additional Numerical Results

In this Appendix, we discuss robustness of our numerical findings as well as how the

macroeconomic implications of attention cycles change under counterfactual scenarios.

E.1 Sensitivity of Main Results

Parameter Choice. To probe robustness to our choice of elasticity of substitution ε

and the wage rule slope χ, we re-calibrate the model for alternative choices. We summa-

rize these experiments by considering “high” and “low” deviations for each parameter,

holding fixed the others at baseline values, and present the proportional difference from
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the baseline in three summary statistics introduced in Section 5.2: (i) the relative out-

put effect of negative and positive shocks, normalized in log θ units such that the latter

increases output by 3%; (ii) the relative output effect of a “double dip” versus positive

shock, holding fixed the size of the shock to productivity as above; and (iii) the ratio of

output-growth volatility from the 10th to the 90th percentile of the output distribution.

We present our results in Figure A12. Lowering the elasticity of substitution or increas-

ing the implied average markups can have ambiguous effects because it simultaneously

increases the bite of a fixed level of misoptimization on misallocation, productivity, and

output, while decreasing the bite of the profit-curvature channel toward cyclical attention.

We find numerically that increasing markups or decreasing ε, toward the level implied by

De Loecker et al. (2020), significantly increases the extent of our predicted asymmetries

(≈ 1.75x), while decreasing markups or increasing ε, toward the level implied by Edmond

et al. (2018), modestly increases the extent of our predicted asymmetries. Increasing

the slope of the wage rule dampens our predictions, due to its dampening the economy’s

Keynesian-cross feedback. Decreasing the slope increases the bite of our predictions sub-

stantially by amplifying the same general-equilibrium effects.

Classical Labor Markets. For tractability, we assumed a wage rule rather than a

micro-founded labor supply curve. As an alternative, we use the preferences of Greenwood

et al. (1988) which replace Equation 1 with the following:

U({Ct+j, Lt+j}j∈N) = Et
∞∑
j=0

βj

(
Ct+j − Lt+j

1+φ

1+φ

)1−γ

1− γ
(197)

and remove the wage rule, Equation 3. These preferences generate a labor supply curve

wt = Lφt which closely resembles our reduced-form wage rule, but also takes seriously the

implications for risk-pricing by making marginal utility a function of hours worked. We

choose a parameterization of φ = χ
1−χε = 0.153, where χ and ε take our benchmark values

indicated in Table 4. As indicated in the richer model of Appendix D, this calibration

replicates an elasticity of χ = 0.095 between real wages and real output.

Figure A13 is this model’s analog to panels (a)-(c) of Figure 5, showing output, the

attention wedge, and labor productivity. We find comparable behavior of the attention

wedge and losses from misoptimization and inattention. Figure A14 is this model’s analog

to Figure panels (d) and (e) of Figure 5, showing state-dependent shock response and

stochastic volatility. Our results are quantitatively similar to our baseline calibration.
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These results demonstrate that classical labor markets do not undermine our main results

in calibrations that are consistent with our calibrated wage rigidity.

E.2 Attention Cycles Under Counterfactual Scenarios

Because the main amplification mechanism in our model, the reallocation of attention,

is endogenous to economic conditions, we can use our framework to study how attention

cycles and all associated macro phenomena would behave under counterfactual conditions.

The Rise of Markups, via Lower Substitutability. A large recent literature docu-

ments a secular increase in markups charged by US public firms over the last half century

(see, e.g., De Loecker et al., 2020; Edmond et al., 2018; Demirer, 2020). In our empirical

calibration, we targeted “modern” average markups as informed by this literature. Our

framework would interpret any trends in aggregate markups as arising from changes in

the elasticity of substitution ε between products, which would need to have been higher

in the previous, low-markup era than it is today. In our model, a lower elasticity of sub-

stitution or higher markup increases the output cost of a fixed amount of misoptimization

dispersion, as it intuitively makes each individual product more essential to the consumed

good; and it has a priori ambiguous effects on the extent of equilibrium attention cycles.

In our model, we run the following simple experiment. First, we adjust ε upward to

simulate a 15 percentage point decrease in the aggregate markup, to match the estimate

of Demirer (2020) for markups since the 1960s; and second, we adjust ε downward to

match a 15 percentage point increase. We find that lower markups correspond to more

severe effects of attention cycles on business cycles, as summarized by the asymmetry and

state-dependence of dynamics (second and third panel of Figure A15).

More Rigid Real Wages. The relationship between wage inflation and real growth

has proved elusive in modern data, particularly since the financial crisis (see, e.g., Gaĺı

and Gambetti, 2019). In our model, more rigid real wages corresponded to a steeper

Keynesian cross, and a steeper incentive toward high attention in low states of the world.

For this reason, we may expect that the growing disconnect between factor prices and

real conditions contributes toward the severity of our estimated macro effects.

In parallel to the previous experiment, we simulate both a “calibrated past” and “ex-

trapolated future.” For the former, we plug in the estimate of Gaĺı and Gambetti (2019)

that the wage Phillips curve has flattened by a factor of 1.9 over the last half century;
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for the latter, we extrapolate the same multiplicative trend as additional flattening.36 We

find, as shown in panels four and five of Figure A15, stronger effects of attention cycles

in the regime with more rigid wages. This underscores the complementarity between at-

tention cycles and the steepness of the Keynesian cross, and suggests a novel pathway by

which factor price rigidity can influence patterns of macroeconomic volatility.

Elevated Uncertainty. Spikes in uncertainty around exceptional economic and polit-

ical events have large documented effects on financial markets and firm decisionmaking

(Bloom, 2009). Moreover, large, disorienting shocks are often either a natural consequence

of poor economic performance (e.g., policy surprises during the 2007-2009 financial cri-

sis) or their root cause (e.g., the Covid-19 pandemic). For this reason it is natural to

study how changes in the “level of uncertainty,” formalized in our model as variation in

the attention cost λ, might interact with our main business cycle predictions. Proposi-

tion 4 showed that increases in uncertainty depress output in our model. These shocks

also, according to the results of Proposition 1, increase the sensitivity of dispersion to

macroeconomic conditions and hence, based on extrapolation of this partial-equilibrium

logic, may amplify the extent of misoptimization cycles. For this reason, we might predict

that elevated uncertainty is also complementary to the asymmetry and state-dependence

generated at the macro level.

We explore this relationship by solving for the model equilibrium under scenarios with

depressed and elevated attention costs, and numerically verify the predicted complemen-

tarity (panels six and seven of Figure A15). Thus our theory predicts that business cycles

caused and/or amplified by background uncertainty-inducing events may induce sharper

fluctuations in aggregate volatility due to endogenous reallocation of attention.

F Alternative Specifications of Stochastic Choice

In this section, we extend our basic class of cost function to allow for persistent mistakes

as in the empirical analysis. In particular, we micro-found the AR(1) structure of mistakes

that we uncovered in the data but abstracted from in the simple model. Further, we show

how the core logic of attention cycles carries over to settings with alternative foundations

for stochastic choice in terms of information acquisition of two forms: Gaussian signal

36In particular, we use the ratio of the 1964-2007 estimate and 2007-2017 estimates in Table 3A of Gaĺı
and Gambetti (2019).
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extraction, and optimal signal processing with mutual information costs.

F.1 Persistent Mistakes

The basic model we have developed, however, places no restrictions on the auto-correlation

of mistakes across time within a firm. In this section, we introduce a more general class

of cost functional that allows us to place restrictions on the within-firm correlation of

mistakes across time and, in particular, to derive the AR(1) formulation of mistakes that

we use in the empirical analysis.

We have so far considered state-separable cost functions c : P ×Z → R of the form:

c(p; θt−1) =

∫
Θ

∫
X
φ(p(x|θ)) dx f(z|zt−1) dz (198)

for some convex φ that we take to be φ(y) = y log y. To allow for persistent mistakes we

now allow the cost functional to depend on the previous period’s mistake vt−1 and today’s

optimal action c : P × Z × R→ R of the form:

c(p; zt−1, vt−1) =

∫
Θ

∫
X
φ(p(x|θ); vt−1, x

∗, x) dx f(z|zt−1) dz (199)

for φ convex in its first argument. In this formulation, the full non-parametric distribution

of mistakes now depends on the previous period’s mistake and today’s optimal action.

To derive the Gaussian AR(1) formulation of mistakes, we now suppose that:

φ(y;m,x∗, x) = λy log y + ωy((x− x∗)−m)2 (200)

Concretely, this leads to the following cost functional:

c(p; zt−1, vt−1) =

∫
Θ

[
λ

∫
X
p(x|θ) log p(x|θ) dx

+ ω

∫
X

((x− x∗(θ))− vt−1)2p(x|θ) dx

]
f(z|zt−1) dz

(201)

which penalizes sharply peaked distributions and those where average mistakes differ

greatly from the previous period’s mistake. If we moreover suppose that firm risk-adjusted

profits are of their quadratic form:

Π̃(x, z) := Π̄(z) +
1

2
Πxx(z)(x− x∗(z))2 (202)

and we suppose that firms solve the problem:

max
p∈P

∫
Θ

∫
X

Π(x, z) p(x | θ) dx f(z|zt−1) dz − c (p; zt−1, vt−1) (203)

Solving this problem yields the AR(1) structure for mistakes, with Gaussian innova-

tions.
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Proposition 10. The optimal stochastic choice pattern is given by x = x∗(z) + v, where

v = ρvt−1 + u and ρ = ρ(z) = ω
1
2
|Πxx(z)|+ω and u ∼ N

(
0, 2λ

1
2
|Πxx(z)|+ω

)
.

Proof. We will denote x∗(z) by γ and 1
2
|Πxx(z)| by β to simplify notation. We observe

that the FOC characterizing optimal stochastic choice is given by:

−β(x− γ)2 − λ [1 + log p(x|z)]− ω(x− γ −m)2 + µ(z) + κ(x, z) = 0 (204)

where µ(z) is the Lagrange multiplier on the constraint that p(x|z) integrates to unity

and κ(x, z) is the Lagrange multiplier on the non-negativity constraint that p(x|z) ≥ 0.

We can then observe that this has solution:

p(x|z) =
exp
(
−β̃(x− z̃)2

)
∫
X exp

(
−β̃(x′ − z̃)2

)
dx′

(205)

where β̃ = β+ω
λ

and γ̃ = γ + ω
β+ω

vt−1. It follows that:

x|z ∼ N

(
γ +

ω

β + ω
vt−1,

2λ

β + ω

)
(206)

Putting this in more explicit terms, and substituting for γ and β, we obtain the desired

representation.

F.2 Transformed Gaussian Signal Extraction

In this section, we analyze attention cycles in a setting with Gaussian signal extraction

and show how the basic logic of our main model carries over to this setting. For nota-

tional simplicity, we describe this alternative model under the assumption that there is a

common, scalar state variable θ, which represents each firm’s productivity.

Set-up. When the state of the world is θ, the previous state is θ−1, agents have priors

πθ−1 ∈ ∆(Θ), and the equilibrium level of output is X(θ, θ−1), intermediates goods firms

have payoffs given by:

Π̃(x,X(θ, θ−1), θ) = α(X(θ, θ−1), θ)− β(X(θ, θ−1), θ)(x− γ(X(θ, θ−1), θ))2 (207)

where we will write β(θ, θ−1) = β(X(θ, θ−1), θ) and similarly for α and γ, and as we

micro-found via a second-order approximation of their true profit functions around the

unconditionally optimal level of production in the main text.

Suppose moreover that agents receive a private Gaussian signal regarding their stakes-

adjusted optimal action given by:

si =
β(θ, θ−1)∫

Θ
β(θ, θ−1)dπ(θ|θ−1)

γ(θ, θ−1) +
1

τ(θ−1)
εi (208)
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where εi is a N(0, 1) variable, independent across agents and time periods; τ(θ−1) is the

(soon-to-be endogenized) square-root precision; and the agents’ prior πθ−1 is such that:

β(θ, θ−1)∫
Θ
β(θ, θ−1)dπ(θ|θ−1)

γ(θ, θ−1) ∼ N
(
µ(θ−1), σ2(θ−1)

)
(209)

This model incorporates the tractability of linear signal extraction into our non-quadratic

tracking problem.

Conditional on such a signal s, the best reply of any firm is equal to the conditional

expectation of the stakes-adjusted optimal action:

x(s) = Eπθ−1

[
β(θ, θ−1)∫

Θ
β(θ, θ−1)dπ(θ|θ−1)

γ(θ, θ−1)|s
]

= λ(θ−1)s+ (1− λ(θ−1))µ(θ−1)

(210)

where λ(θ−1) = τ2(θ−1)

τ2(θ−1)+ 1
σ2(θ−1)

is the appropriate signal-to-noise ratio. Thus, the cross-

sectional distribution of actions is given by:

x|θ, θ−1 ∼ N

(
λ(θ−1)

β(θ, θ−1)∫
Θ
β(θ, θ−1)dπ(θ|θ−1)

γ(θ, θ−1)

+ (1− λ(θ−1))Eπθ−1

[
β(θ, θ−1)∫

Θ
β(θ, θ−1)dπ(θ|θ−1)

γ(θ, θ−1)

]
,
λ2(θ−1)

τ 2(θ−1)

) (211)

Say we empirically estimate an equation of the form:

xit = γi + χj(i),t + ft(θit, θi,t−1) + εit (212)

which differs from our baseline specification in controlling flexibly for observed and lagged

productivity.37 The fitted values span E[x | θ, θ−1] and capture state-dependent anchoring

toward the prior mean. The residual εit captures the noise in the firm’s action coming

from the noise in the signal. The fact that the average action is no longer the uncondi-

tionally optimal action is an important departure from our baseline models in Section 1

and Appendix D. In the signal extraction model, the behavior of the stochastic residual

captures some, but not all, of the effects of the “cognitive friction,” since it does not

directly speak to anchoring.

Interpreting Monotone Misoptimization. We now discuss the interpretation of our

empirical exercise of studying stochastic volatility in εit. The variance of the residual is:

Vt[εit] =
λ2(θt−1)

τ 2(θt−1)
=

τ 2(θt−1)(
τ 2(θt−1) + 1

σ2(θt−1)

)2 (213)

37In our main analysis, we have experimented with such specifications and found similar results.
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Our empirical findings are consistent with θt−1 7→ Vt[εit] being an increasing function.38

This holds in this model exactly when:

∂τ 2(θ−1)

∂θ−1

(
1

2λ(θ−1)
− 1

)
>
∂ 1
σ2(θ−1)

∂θ−1

(214)

for all θ−1 ∈ Θ. Our own regression analysis in Section 4.7, as well as comprehensive

studies of manufacturing establishments by Bloom et al. (2018) and Kehrig (2015), sug-

gests that there is less fundamental dispersion in higher aggregate productivity states

of the world. As a result, the right-hand-side of this condition must be positive. Thus,

there are two potential conditions under which this variant of our model is consistent with

pro-cyclical misoptimization and counter-cyclical fundamentals dispersion:

1. Firms acquire sufficiently less precise signals in higher states ∂τ2(θ−1)
∂θ−1

< 0 and the

signal to noise ratio is always such that λ(θ−1) > 1
2

2. Firms acquire sufficiently more precise signals in lower states ∂τ2(θ−1)
∂θ−1

> 0 and the

signal to noise ratio is always λ(θ−1) < 1
2

In the former case, “high attention” measured by high signal precision correlates with

low residual variance. In the latter case, “low attention” measured by low precision cor-

relates with low residual variance. An important difference between the signal-extraction

model from our baseline, then, is that additional information is required to separately

identify patterns in attention and residual variance. In both models, “misoptimization”

in payoff terms and attention are perfectly correlated by construction. But residual vari-

ance is monotone in misoptimization in our baseline model, but not in the signal extraction

model due to the role of anchoring.

We interpret our finding of counter-cyclical attention in language (Fact 5) as qual-

itatively inconsistent with model case 2, and therefore an identifying piece of evidence

for case 1. Elsewhere in the literature, Coibion et al. (2018) find that firms have higher

demand for information when presented with bad macroeconomic news. Chiang (2023)

also finds evidence of higher attention (interpreted as precision of signals) in downturns.

And Kuang et al. (2024) finds a similar result, via structural recovery of signal precision in

the Survey of Professional Forecasters. Thus, our preferred interpretation of the model is

one in which residual variance inherits the monotonicity of signal precision and attention.

38Our specific empirical specification measured the correlation between contemporaneous output and
contemporaneous dispersion of εit. If output is monotone in the state of nature and, along with the state
of nature, very persistent, the translation to ∂Vt[εit]/∂θt−1 ≥ 0 is immediate.
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Monotone Endogenous Precision. We now extend the model to include endogenous

choice of signal precision and derive conditions under which firms obtain less precise

signals in high productivity states in the model. To this end, suppose that after θ−1 is

realized, but before θ is realized, that the agent can pay a cost φ̃(τ 2) to achieve signal

precision of τ 2, and where φ̃′, φ̃′′ > 0. Concretely, the optimal τ 2(θ−1) solves:

max
τ2(θ−1)∈R+

Eπθ−1

[
−β(θ, θ−1)

(
x∗(s, τ 2(θ−1))− γ(θ, θ−1)

)2
]
− φ̃(τ 2(θ−1)) (215)

We moreover parameterize the scaling of quadratic losses by writing β(θ, θ−1) = κβ̂(θ, θ−1)

for all (θ, θ−1) and some κ ≥ 1. Our first goal will be to derive conditions under which

the optimally chosen τ 2 in Program 215 is monotone increasing in κ. This demonstrates

the natural incentives for firms to choose more precise information when the utility cost

of a fixed posterior variance about the stakes-adjusted optimal action is higher.
Toward this end, we first simplify the agent’s objective function. Using the distribution

of optimal actions condition on τ 2 from in Equation 211, we write

Eπθ−1

[
−β(θ, θ−1)

(
x∗(s, τ2(θ−1))− γ(θ, θ−1)

)2]
= Eπθ−1

[
E
[
−β(θ, θ−1)

(
x∗(s, τ2(θ−1))− γ(θ, θ−1)

)2 |θ]]
= Eπθ−1

[
E
[
−β(θ, θ−1)

(
x∗(s, τ2(θ−1))− x̄(θ, θ−1) + x̄(θ, θ−1)− γ(θ, θ−1)

)2 |θ]]
= Eπθ−1

[
−β(θ, θ−1)E

[(
x∗(s, τ2(θ−1))− x̄(θ, θ−1)

)2
+ (x̄(θ, θ−1)− γ(θ, θ−1))

2 |θ
]]

= Eπθ−1

[
−β(θ, θ−1)

(
λ2(θ−1)

τ2(θ−1)
+

[
λ(θ−1)

β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1) + (1− λ(θ−1))µ(θ−1)− γ(θ, θ−1)

]2
)]
(216)

where x̄(θ, θ−1) is the mean of the distribution in Equation 211 and β̄(θ−1) =
∫

Θ
β(θ, θ−1)dπ(θ|θ−1).

Observe moreover that we simplify the second term as the following:

Eπθ−1

[
−β(θ, θ−1)

(
λ(θ−1)

β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1) + (1− λ(θ−1))µ(θ−1)− γ(θ, θ−1)

)2
]

= Eπθ−1

[
−β(θ, θ−1)

(
(1− λ(θ−1))

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)
+

(
β(θ, θ−1)

β̄(θ−1)
− 1

)
γ(θ, θ−1)

)2
]

(217)

A necessary condition for an interior and optimal τ 2(θ−1) is then the following first-
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order condition:

φ̃′(τ2(θ−1)) = −β̄(θ−1)
∂

∂τ2(θ−1)

[
λ2(θ−1)

τ2(θ−1)

]
+ 2(1− λ(θ−1))

∂λ(θ−1)

∂τ2(θ−1)
Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)2
]

+ 2
∂λ(θ−1)

∂τ2(θ−1)
Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)(
β(θ, θ−1)

β̄(θ−1)
− 1

)
γ(θ, θ−1)

] (218)

which reduces to:

φ̃′(τ2(θ−1)) = −β̄(θ−1)

1
σ2(θ−1) − τ

2(
τ2 + 1

σ2(θ−1)

)3

+ 2

1
σ2(θ−1)

τ2 + 1
σ2(θ−1)

1
σ2(θ−1)(

τ2 + 1
σ2(θ−1)

)2Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)2
]

+ 2

1
σ2(θ−1)(

τ2 + 1
σ2(θ−1)

)2Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)(
β(θ, θ−1)

β̄(θ−1)
− 1

)
γ(θ, θ−1)

]
(219)

We can now ask how τ 2(θ−1) moves with κ. In particular, see that we can write:

φ̃′(τ 2(θ−1)) = ξ(τ 2(θ−1))κ (220)

where:

ξ(τ2(θ−1)) =
1(

τ2 + 1
σ2(θ−1)

)3

[
− β̄(θ−1)

(
1

σ2(θ−1)
− τ2

)

+ 2

(
1

σ2(θ−1)

)2

ξ1(θ−1) + 2
1

σ2(θ−1)

(
τ2(θ−1) +

1

σ2(θ−1)

)
ξ2(θ−1)

]

ξ1(θ−1) = Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)2
]

ξ2(θ−1) = Eπθ−1

[
β(θ, θ−1)

(
µ(θ−1)− β(θ, θ−1)

β̄(θ−1)
γ(θ, θ−1)

)(
β(θ, θ−1)

β̄(θ−1)
− 1

)
γ(θ, θ−1)

]
(221)

Applying the implicit function theorem we then have that:

∂τ 2(θ−1)

∂κ
=

ξ(τ 2(θ−1))

φ̃′′(τ 2(θ−1))− ξ′(τ 2(θ−1))
=

φ̃′(τ 2(θ−1))

φ̃′′(τ 2(θ−1))− ξ′(τ 2(θ−1))
(222)

where the denominator is positive as the marginal cost of precision is always positive.
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Thus, we have that:

∂τ 2(θ−1)

∂κ
> 0 ⇐⇒ φ̃′′(τ 2(θ−1)) > ξ′(τ 2(θ−1)) (223)

A sufficient condition for ∂τ2(θ−1)
∂κ

> 0, therefore, by convexity of the costs of precision

is that ξ′(τ 2(θ−1)) < 0 for all τ 2(θ−1). In words, if the benefit of precision is a concave

function, then optimally set precision is increasing in κ.

Having shown the desired general comparative static, we now return to the context of

our macroeconomic model. Recall that the curvature of firms profits is given by:

β(θ, θ−1) = vΠX(θ, θ−1)−1−γ+χ(1+ε)θ−1−ε (224)

Thus:

β̄(θ−1) = Eπθ−1
[vΠX(θ, θ−1)−1−γ+χ(1+ε)θ−1−ε] (225)

Thus, whenever aggregate output is monotonically increasing in both θ and θ−1 and the

prior πθ−1 is monotone increasing in the FOSD order and γ > χ(1 + ε)− 1, we have that

β̄(θ−1) is monotone decreasing in θ−1. It then follows that τ 2(θ−1) is monotone decreasing

in θ−1 in equilibrium whenever ξ′ < 0. Thus, the core logic of our baseline model translates

exactly over to this setting with Gaussian signal extraction.

F.3 Rational Inattention

We now extend our results to the case of mutual information cost. As in the previous sub-

section, for notational simplicity, we describe this alternative model under the assumption

that there is a uniform, scalar state variable θ, which represents each firm’s productivity.

We first introduce the class of posterior-separable cost functionals. Denti (2020) pro-

vides this formulation as a representation theorem in stochastic choice space of the usual

posterior-based definition of Caplin and Dean (2013):

Definition 3 (Posterior-Separable Cost Functionals). A cost functional c has a posterior-

separable representation if and only if there exists a convex and continuous φ such that:

c(p) =

∫
X
φ̂({p(x|θ)}θ∈Θ) dx (226)

where:

φ̂({p(x|θ)}θ∈Θ) = p(x)φ

({
p(x|θ)π(θ)

p(x)

}
θ∈Θ

)
(227)

whenever p(x) > 0 and φ̂ = 0 otherwise.
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Intuitively, such a cost functional considers the cost to the agent of arriving at any given

posterior and adds that up over the distribution of posteriors that are realized. Important

cost functionals such as the mutual information cost functional considered in the literature

on rational inattention are members of this class. Indeed, mutual information is the special

case of the above where φ returns the entropy of the distribution that is its argument.

The mathematical structure of posterior-separable cost functionals does not admit the

same prior-independence property as state-separable cost functionals. As a result, we will

not be able to carry all of our results over to this setting. Nevertheless, as we will argue,

the key qualitative forces apply.

In the setting with state-separable choice in the single-agent context, we showed that

greater curvature of payoffs leads to more precise actions (Proposition 1). With posterior-

separable choice, the above result does not hold in general. This is because the prior

also influences the states in which the agent would like to learn precisely. In particular,

even if a state features high curvature, if it is unlikely to arise, the agent may not care to

acquire precise information in that state. A particular case where this complication can be

bypassed is when costs are given by mutual information and all actions are exchangeable in

the prior in the sense that all actions are ex ante equally attractive (Matějka and McKay,

2015). This is a natural case to consider and yields a particularly revealing structure to the

optimal policy: the agent’s actions in state θ are given by a normal distribution centered

on the objective optimum and with variance inversely proportional to the curvature of

their objective in that state – a normal mixture model.

Proposition 11. Suppose that u(x, θ) = α(θ) − β(θ)(x − γ(θ))2 and costs are posterior

separable with entropy kernel λφ(·) for some λ > 0. If all actions are exchangeable in the

prior, then in the limit of the support of the action set to infinity, x̂→∞ for x = −x = x̂,

the optimal stochastic choice rule is given by:39

p(x|θ) =
1√
πλ
β(θ)

exp

−1

2

x− γ(θ)√
λ

2β(θ)

2 (229)

Which is to say that the agent’s actions follow a normal mixture model with conditional

39Formally, all actions are exchangeable in the prior if:∫
Θ

exp{β(θ)λ−1(x− γ(θ))2}∫
X exp{β(θ)λ−1(x̃− γ(θ))2}dx̃

π(θ)dθ = 1 ∀x ∈ X (228)
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action density given by:

x|θ ∼ N

(
γ(θ),

λ

2β(θ)

)
(230)

Proof. We first show that mutual information can be written in the claimed stochastic

choice form. These arguments follow closely Matějka and McKay (2015) and Denti (2020).

The agent can design an arbitrary signal space S and choose a joint distribution between

signals and states g ∈ ∆(S × Θ). As in Sims (2003), the mutual information is the

reduction in entropy from having access to this signal relative to the prior:

I(g) =

∫
S

∫
Θ

g(s, θ) log

(
g(s, θ)

π(θ)
∫

Θ
g(s, θ̃) dθ̃

)
dθ ds (231)

We now argue that it is without loss to consider a choice over stochastic choice rules

p : Θ → ∆(X ). Suppose x is an optimal action conditional on receiving any s ∈ Sx.

Suppose that there exist S1
x, S

2
x ∈ Sx of positive measure such that g(θ|s1) 6= g(θ|s2) for

all s1 ∈ S1
x, s2 ∈ S2

x. Now generate a new signal structure g′ such s̃ ∈ S1
x ∪ S2

x is sent

whenever any s ∈ S1
x ∪S2

x was sent under g. Clearly, x is optimal conditional on receiving

s̃. Thus, expected payoffs under g′ are the same as those under g. Moreover, g′ is simply a

garbling of g in the sense of Blackwell. Thus C(g′) < C(g) for any convex cost functional

C. As I is convex, this is a contradiction. Thus, there must be at most one posterior

(realized with positive density) associated with each action. As g(s, θ) = g(s|θ)π(θ), the

choice of g(s, θ) ∈ ∆(S × Θ) is a choice over g(·|·) : Θ → ∆(S). Moreover, there is a

unique posterior µ(θ|s) associated with each (non-dominated) action which is determined

exactly by g(·|·). Hence, the agent directly chooses a mapping p(·|·) : Θ → ∆(X ). The

agent’s problem can then be directly re-written in the claimed stochastic choice form for

some cI :

max
P∈P

∫
Θ

∫
X
u(x, θ) dP (x|θ) dπ(θ)− cI(P ) (232)

Moreover, separating terms, one achieves the following representation of cI :

cI(p) =

∫
Θ

∫
X
p(x|θ) log p(x|θ) dx dπ(θ)−

∫
X
p(x) log p(x) dx (233)

where:

p(x) =

∫
Θ

p(x|θ) dπ(θ) (234)

The stochastic choice problem can now be expressed by the Lagrangian: (κ(x, θ) are

the non-negativity constraints and γ̃(θ) are the constraints that all action distributions
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integrate to unity)

L({p(x|θ), κ(x, θ)}x∈X ,θ∈Θ, {γ(θ̃)}θ∈Θ) =

∫
Θ

∫
X
u(x, θ)p(x|θ) dx dπ(θ)

− λ
(
−
∫
X
p(x) log p(x) dx+

∫
Θ

∫
X
p(x|θ) log p(x|θ) dx dπ(θ)

)
+ κ(x, θ)p(x|θ) + γ̃(θ)

(∫
X
p(x|θ) dx− 1

) (235)

Any time that p(x|θ) > 0, taking the FOC pointwise with respect to p(x|θ) and rearrang-

ing we have that:

p(x|θ) =
p(x) exp{u(x, θ)}∫

X p(x̃) exp{u(x̃, θ)} dx̃
(236)

Moreover, we can plug the above back into the general problem and take the FOC. Re-

arranging we have that for all x such that p(x) > 0:∫
Θ

exp{u(x, θ)}∫
X p(x̃) exp{u(x̃, θ)} dx̃

dπ(θ) = 1 (237)

Up to now we have applied standard techniques from Matějka and McKay (2015). We

now use our utility function and exchangeability assumption to derive our result. In

particular, we take the utility function as:

u(x, θ) = α(θ)− β(θ)(x− γ(θ))2 (238)

And assume exchangeability in the prior such that all actions are ex-ante equally attractive

in the limit: ∫
Θ

exp{−β(θ)λ−1(x− γ(θ))2}∫
X exp{−β(θ)λ−1(x̃− γ(θ))2} dx̃

π(θ) dθ = 1 ∀x ∈ X (239)

Under this condition, in the limit of the support to infinity, the unconditional action

distribution converges to the improper uniform distribution p(x) = p(x′) for all x ∈ X .

The conditional action distribution then becomes:

p(x|θ) =
exp{−β(θ)λ−1(x− γ(θ))2}∫

X exp{−β(θ)λ−1(x̃− γ(θ))2} dx̃
(240)
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The denominator of this expression can be computed:

∫
X

exp{−β(θ)λ−1(x− γ(θ))2} dx =

∫
X

√
2π λ

2β(θ)√
2π λ

2β(θ)

exp

−1

2

x− γ(θ)√
λ

2β(θ)

2
 dx

=

√
2π

λ

2β(θ)

∫
X

1√
2π λ

2β(θ)

exp

−1

2

x− γ(θ)√
λ

2β(θ)

2


=

√
2π

λ

2β(θ)

(241)

It follows that:

p(x|θ) =
1√
πλ
β(θ)

exp

−1

2

x− γ(θ)√
λ

2β(θ)

2 (242)

Thus, X|θ is a Gaussian random variable with mean γ(θ) and variance λ
2β(θ)

.

This result extends the known results on Gaussian optimality of stochastic choice with

mutual information (Sims, 2003) to a domain with a stochastic weight on the deviation

from optimality. For our purposes, the novel and interesting feature is that the variance of

the action distribution in any given state is inversely-proportional to curvature. It follows

that if all actions are exchangeable in the prior when:

γ(θ) = x∗(X(θ), θ)

β(θ) =
1

2
|Πxx(X(θ), θ)|

(243)

where X(θ) is the unique equilibrium level of aggregate production, then the model with

mutual information is exactly equivalent to the model with entropic state-separable cost

that we studied. All results from Section 2 then carry directly.

G State-Dependent Attention in Survey Data

In this Appendix, we test our interpretation of attention and misoptimization cycles using

the dataset of Coibion et al. (2018) (henceforth, CGK), one of the most comprehensive

datasets of firm-level operations and macro backcasts in an advanced economy. These

data were assembled from a detailed survey of the general managers of a representative

panel of firms in New Zealand from 2013 to 2016.
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G.1 Reported Attention and the Business Cycle

Although the CGK survey took place during relatively tranquil times for the New Zealand

economy, it asks two hypothetical questions about how firms’ desire to collect information

would vary with the macroeconomic state:

Suppose that you hear on TV that the economy is doing well [or poorly].

Would it make you more likely to look for more information?

Table A13 reports the percentage of answers in each of five bins, given the conditions of

the economy doing “well” or “poorly.” Self-reported demand for information is higher in

the “bad news” state. This is consistent with our hypothesis that bad conditions increase

the stakes for firms’ decisions and hence make keen attention to macroeconomic conditions

more important, while good news does not have a symmetric effect. It is also consistent

with our findings regarding macroeconomic attention in language (Section 4.5).

G.2 Reported Profit Function Curvature and Attention

A second test possible in the CGK data relates to our prediction that higher curvature

of the firm’s objective, as a function of decision variables, should increase attentiveness

to decision-relevant variables including macroeconomic aggregates. The CGK survey in-

directly elicits information on this shifter via questions about purely hypothetical price

changes and revenue increases to an “optimal point.” In Section G.3, we show exactly

how we use a pair of linked questions about firms’ hypothetical optimal reset price and

the hypothetical percentage increase in profits that would be associated with that change,

to develop an elicited measure of firm profit curvature in non-risk-adjusted units.40

We consider two “macro attention” outcomes. The first is the absolute-value error in

firms’ one-year back-casts for inflation, output growth, and unemployment. The second is

firm managers’ reported (binary) interest in tracking one of the aforementioned variables.

For each of the aforementioned firm-level outcomes Yit, we run the following regression

on the firm-level profit curvature variable ProfitCurvit and a vector of controls Zit:

Yit = α + β · ProfitCurvit + γ′Zit + εit (244)

Our prediction that profit curvature drives stakes for attention corresponds to β < 0 for

back-cast errors and β > 0 for reported attention. We control for five bins in the firms’

total reported output and the firms’ 3-digit ANZ-SIC code industries.

40Curvature is higher for smaller firms with more within-industry competitors (Table A15).
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Table A14 shows the results. For inflation we find strong evidence that higher-

curvature firms make smaller errors, with some of the effect being absorbed by control

variables when added. For GDP growth we find estimates that are much less precise but

have the same signs; and for unemployment, results that are further imprecise and have

the wrong signs. We take this as further evidence consistent with Facts 3, 4, and 5: in

the firm survey, the differential stakes of making mistakes contributes to macro attention.

G.3 Details of Data Construction

Profit Function Curvature. We draw our measure of profit function curvature from

the answers to two questions about hypothetical price changes. These are jointly asked

as Question 17 of Wave 5, Part B:

If this firm was free to change its price (i.e. suppose there was no cost to rene-

gotiating contracts with clients, no costs of reprinting catalogues, etc.) right

now, by how much would it change its price? Please provide a percentage an-

swer. By how much do you think profits would change as a share of revenues?

Please provide a numerical answer in percent.

Denote the answer for prices as ∆pi and the answer for profits as ∆Πi. Under the as-

sumption that the following second-order approximation holds for the deviation of profits

from their frictionless optimum (e.g., a version of Equation 10), the following relationship

holds between the measurable quantities and the profit function curvature ProfitCurvi:

∆Πi = ProfitCurvi ·∆p2
i ⇒ ProfitCurvi =

∆Πi

∆p2
i

(245)

The top panel of Table A15 provides summary statistics of measured profit curvatures

among the 3,153 firms for which we can measure it. The median reported curvature is 0.12,

which means that a one-percentage-point deviation from the optimal price corresponds

to a 0.12-percentage-point deviation from optimal profits as a fraction of revenue.

The bottom panel of Figure A15 shows firm and manager-level correlates for our

measure in the CGK data. The table reports coefficients of the following regression:

̂ProfitCurvi = β · X̂i + eit (246)

where the hat denotes that both variables have been normalized to z-score units (i.e.,

with means subtracted and standard deviation divided out), so the coefficient β is the

standard-deviation-to-standard-deviation effect. Firms with higher profit function curva-

ture are smaller and have more competitors. There is weak evidence that the associated
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managers are more skilled and/or better rewarded. Thus, confounds via manager skill and

firm sophistication (i.e., better managers grow firms larger, and make better forecasts)

are going the “wrong direction” to explain our reduced-form correlations between profit

curvature and forecasting accuracy.

Outcomes: Back-cast Errors. For back-cast errors, we use the following questions.

In survey wave 1, firms are asked the following question:

During the last twelve months, by how much do you think prices changed

overall in the economy?

We follow CGK and interpret this as the annual percent change in CPI, with realized

value 1.6%. Firms are asked a similar question in wave 4, but we prefer the wave 1

version because the sample size is slightly larger. Table A16 recreates Table A14 from the

main text, first for the wave 1 back-cast of inflation (reported for the main text) and next

for the wave 4 back-cast of inflation (not reported in the main text, but quantitatively

very similar).

For GDP growth, we use the following question from wave 4:

What do you think the real GDP growth rate has been in New Zealand during

the last 12 months? Please provide a precise quantitative answer in percentage

terms.

and compare with a realized value of 2.5%. Finally, for unemployment, we use the follow-

ing question also from wave 4:

What do you think the unemployment rate currently is in New Zealand?

Please provide a precise quantitative answer in percentage terms.

and compare with a realized value of 5.7%. All realized values are taken from the repli-

cation files of CGK, to deal with any ambiguity about statistical releases, and ensure

comparability with that study.

Outcomes: Tracking Indicators. We finally use, for the lower panel of Table A14,

the following questions from wave 4 about tracking different variables:

Which macroeconomic variables do you keep track of? Check each variable

that you keep track of. 1. Unemployment rate. 2. GDP. 3. Inflation. 4. None

of these is important to my decisions.
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We code for each variable a binary indicator of whether the firm lists the variable of

interest. We combine GDP in this question (by implication, in levels) with quantitative

forecasts of GDP Growth in Table A14.
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H Supplemental Tables and Figures

Table A1: Misoptimization and Firm Performance

(1) (2) (3) (4) (5) (6) (7) (8)
Outcome: Rit Outcome: πit

û2
it -0.236 -0.230 -0.060 -0.051 -0.316 -0.316 -0.106 -0.105

(0.026) (0.026) (0.032) (0.032) (0.024) (0.024) (0.018) (0.017)

Sector x Time FE X X X X X X X X
Firm FE X X X X

TFP Control X X X X

N 41,578 41,578 41,206 41,206 51,015 51,015 50,966 50,996
R2 0.238 0.261 0.384 0.403 0.117 0.131 0.663 0.681

Notes: Rit is the firm-level log stock return and πit is firm-level profitability. û2
it is the squared firm-level

misoptimization residual, constructed using the methods described in Section 3.1. Standard errors are
double-clustered at the year and firm level.

Table A2: Dynamic Effects of Misoptimization

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Outcome:

∆ log θ̂i,t+k Ri,t+k πi,t+k
Horizon k 0 1 2 0 1 2 0 1 2

û2
it -0.009 0.014 -0.007 -0.236 -0.252 -0.251 -0.316 -0.286 -0.265

(0.007) (0.008) (0.010) (0.026) (0.027) (0.038) (0.024) (0.018) (0.019)

Sector x Time FE X X X X X X X X X

N 50,455 40,671 32,362 41,578 34,643 28,103 51,015 42,014 33,934
R2 0.231 0.245 0.263 0.238 0.241 0.248 0.117 0.123 0.126

Notes: Each column is the estimate of a separate projection regression. The outcomes are TFP growth
∆ log θ̂it (first three columns), log stock returns Rit (second three columns), and profitability πit (last
three columns). û2

it is the squared firm-level misoptimization residual, constructed using the methods
described in Section 3.1. Standard errors are double-clustered at the year and firm level.
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Table A3: Cyclicality of Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Outcome: MisoptimizationDispersiont

Unemploymentt/100 -0.841 -0.439 -0.822 -0.749 -0.501 -0.695 -0.802 -0.813 -0.605 -0.812 -1.034
(0.341) (0.196) (0.336) (0.292) (0.159) (0.280) (0.337) (0.330) (0.293) (0.335) (0.549)

Correlation -0.493 -0.468 -0.485 -0.466 -0.546 -0.505 -0.479 -0.489 -0.494 -0.462 -0.379

Baseline X
Adj. Control X

Leverage Control X
t, t2 Control X

Manufacturing X
Sector Policy Fn. X
t-varying Policy Fn. X
Quadratic Policy Fn. X

Pre-Period TFP X
t-varying Prod. Fn. X

OP (96) TFP X

N 31 31 31 31 31 31 31 31 20 31 31
R2 0.243 0.219 0.235 0.326 0.298 0.255 0.230 0.239 0.244 0.213 0.144

Notes: The first row reports the coefficient from the regression of MisoptimizationDispersiont on Unemploymentt/100, with standard
errors that are HAC-robust with a 3-year Bartlett Kernel. The following row reports the correlation of these variables (in column 4,
conditional on projecting out controls). The “Adjustment Cost” and “Leverage” controls are described in the main text. The “Sector
Policy Fn.” estimates the policy function separately for each sector. The “t-varying Policy Fn.” model interacts all coefficients in the
policy function with time fixed effects. The “Quadratic Policy Fn.” allows for quadratic dependence on TFP. The “Pre-Period TFP”
model uses cost shares from before 1997 to construct the production function, and data after 1998 to estimate the policy function and
misoptimizations. The “t-varying Prod. Fn.” model estimates the Solow residual using industry-by-year-specific cost shares. The “OP
(96)” model estimates productivity using the proxy-variable strategy of Olley and Pakes (1996), as detailed in Appendix B.2.
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Table A4: Pricing of Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Outcome: Rit

û2
it -0.097 -0.239 -0.101 -0.168 -0.090 -0.099 -0.109 -0.062 -0.057 -0.096

(0.034) (0.941) (0.035) (0.045) (0.036) (0.035) (0.034) (0.028) (0.021) (0.034)
û2
it ×Rt 0.443 0.941 0.415 0.680 0.420 0.330 0.447 0.227 0.231 0.417

(0.171) (0.370) (0.169) (0.182) (0.156) (0.163) (0.163) (0.130) (0.098) (0.168)

Sector x Time FE X X X X X X X X X X
Firm FE X X X X X X X X X X

Baseline X
Adj. Control X

Leverage Control X
Manufacturing X

Sector Policy Fn. X
t-varying Policy Fn. X
Quadratic Policy Fn. X

Pre-Period TFP X
t-varying Prod. Fn. X

OP (96) TFP X

N 41,206 35,388 41,016 22,902 41,197 41,203 41,203 26,206 40.078 41,166
R2 0.385 0.387 0.385 0.367 0.385 0.384 0.385 0.429 0.382 0.385

Notes: Rit is the firm-level log stock return. ûit is the firm-level misoptimization residual, constructed using the methods described
in Section 3.1 and the indicated variants described in the main text and the notes of Table A3. Rt is the log return of the S&P 500.
Standard errors are double-clustered at the year and firm level. The scenarios are described in the main text and the notes of Table A3.
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Table A5: Markets Punish Misoptimizations Harder in Low States, Additional Controls

(1) (2) (3) (4) (5) (6)
Outcome: Rit

û2
it ×Rt 0.376 0.378 0.345 0.321 0.330 0.489

(0.123) (0.109) (0.118) (0.173) (0.094) (0.296)

Sector x Time FE X X X X X X
û2
it X X X X X X

TFP and Interaction X
Leverage and Interaction X

Lag Return and Interaction X
Industry FE and Interaction X

Firm FE and Interaction X

N 41,578 41,578 41,429 34,805 41,206 41,206
R2 0.239 0.261 0.246 0.239 0.379 0.498

Notes: Column 1 reports the baseline estimate. Columns 2-6 add additional variables and their interac-
tion with û2

it : the level of log firm TFP, log θ̂it; leverage, Levit; the previous year’s stock return, Ri,t−1;
an industry fixed effect χj(i); and a firm fixed effect γi. Standard errors are double-clustered at the year
and firm level.

Table A6: The Effects of Misoptimization in Levels

(1) (2) (3) (4) (5) (6)
Outcome:

Rit πit m̂2
it

m̂2
it -0.042 -0.076 -0.021 -0.025

(0.028) (0.033) (0.010) (0.011)
m̂2
it ×Rt 0.177 0.038

(0.078) (0.053)
log MacroAttentionit -0.010 -0.020

(0.006) (0.007)

Firm FE X X X X X
Sector x Time FE X X X X X X

N 41,247 41,247 57,646 57,646 34,421 33,841
R2 0.385 0.385 0.656 0.656 0.053 0.488

Notes: m̂it is the firm-level misoptimization. These specifications replicate results in Tables 1, 2, 3, and
A1 with with m̂it in place of ûit. Standard errors are double-clustered at the year and firm level.
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Table A7: Attention and Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Outcome: û2

it

log MacroAttentionit -0.0081 -0.0163 -0.0035 -0.0076 -0.0127 -0.0107 -0.0084 -0.0062 -0.0140 -0.0080 -0.0140
(0.0028) (0.0066) (0.0015) (0.0028) (0.0037) (0.0028) (0.0028) (0.0026) (0.0042) (0.0028) (0.0042)

Sector x Time FE X X X X X X X X X X

Baseline X
Conf. Call X

Adj. Control X
Leverage Control X
Manufacturing X

Sector Policy Fn. X
t-varying Policy Fn. X
Quadratic Policy Fn. X

Pre-Period TFP X
t-varying Prod. Fn. X

OP (96) TFP X

N 28,279 5,997 24,024 28,133 14,891 28,283 28,275 28,275 24,785 28,266 24,785
R2 0.053 0.072 0.060 0.053 0.041 0.054 0.051 0.056 0.046 0.053 0.046

Notes: û2
it is the squared firm-level misoptimization residual, constructed using the methods described in Section 3.1 and the indicated

variants described in the main text and the notes of Table A3. log MacroAttentionit is the measure of firm-level macroeconomic
attention, constructed using the methods described in Section 3.2 and Appendix C.1. Standard errors are double-clustered at the year
and firm level. The scenarios are described in the main text and the notes of Table A3.
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Table A8: Policy Function Estimation

Baseline Adj. Cost Leverage Quadratic

Panel A: Persistence of Misoptimization
Outcome: m̂0

it

m̂0
i,t−1 0.696 0.016 0.696 0.683

(0.021) (0.005) (0.003) (0.003)

Panel B: Quasi-Differenced Policy Function
Outcome: logLit − ρ̂ logLi,t−1

log θ̂it 0.418 0.381 0.419 0.463
(0.024) (0.026) (0.025) (0.029)

log θ̂i,t−1 -0.031 -0.090 -0.026 0.006
(0.018) (0.015) (0.019) (0.020)

log θ̂it × Levit -0.008
(0.003)

log θ̂i,t−1 × Levi,t−1 -0.025
0.006

Levit -0.020
(0.005)

Levi,t−1 -0.050
(0.011)

(log θ̂it)
2 0.045

(0.008)

(log θ̂i,t−1)2 0.031
(0.006)

logLi,t−1 0.811
(0.012)

logLi,t−2 -0.041
(0.010)

N 51,891 44,051 51,664 51,891
R2 0.896 0.990 0.896 0.904

Notes: The four columns correspond to four of our policy-function estimation methods, as described in
the main text. The coefficient on m̂0

i,t−1 in panel A corresponds in the model to parameter ρ. Standard
errors are double clustered by firm and year.
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Table A9: Time-Series and Cross-Sectional Properties of Conference-Call Attention

(1) (2) (3) (4) (5) (6)
Outcome:

log MacroAttnCCt log MacroAttnCCit

Unemploymentt
100

2.481
(0.596)

log SPDetrendt -0.270
(0.056)

log MacroAttnCCt−1 0.949
(0.068)

log MacroAttn10Kit 0.463 0.372 0.121
(0.034) (0.036) (0.028)

Firm FE X
Sector x Time FE X X

N 46 46 45 8,023 7,994 7,670
R2 0.376 0.593 0.873 0.123 0.308 0.804

Notes: The “CC” MacroAttention is constructed using the methods described in Appendix C.1. The
“10K” MacroAttention is our baseline measure from Section 4.5. In the first three columns, standard
errors are HAC robust with a bandwidth (Bartlett kernel) of four quarters. In the second three columns,
standard errors are double-clustered by year and firm ID.
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Table A10: Time-Series and Cross-Sectional Properties of Word-Stemmed Attention

(1) (2) (3) (4) (5) (6)
Outcome:

log MacroAttnStemt log MacroAttnStemit

Unemploymentt
100

0.994
(0.330)

log SPDetrendt -0.062
(0.031)

log MacroAttnStemt−1 0.811
(0.057)

log MacroAttn10Kit 0.553 0.542 0.518
(0.010) (0.010) (0.008)

Firm FE X
Sector x Time FE X X

N 92 92 92 46,612 46,590 45,458
R2 0.118 0.140 0.675 0.561 0.639 0.867

Notes: The “Stem” MacroAttention is constructed using the methods described in Appendix C.2. The
“10K” MacroAttention is our baseline measure from Section 4.5. In the first three columns, standard
errors are HAC robust with a bandwidth (Bartlett kernel) of four quarters. In the second three columns,
standard errors are double-clustered by year and firm ID.
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Table A11: Selected Summary Statistics of Firm Micro-Data

1990 2010 1990 2010

Code Name Sales Employees Sales Employees Code Name Sales Employees Sales Employees

millions share thousands share millions share thousands share millions share thousands share millions share thousands share

11 7935.69 0.22 117.03 0.54 16028.05 0.13 157.12 0.49 322 Paper Manufacturing 80736.02 2.22 485.96 2.26 137924.31 1.11 366.40 1.14

21 143716.64 3.95 557.43 2.59 728283.11 5.88 1020.34 3.18 323 6959.89 0.19 64.35 0.30 17960.41 0.14 98.55 0.31

23 Construction 20221.05 0.56 79.43 0.37 76357.58 0.62 249.05 0.78 324 707106.33 19.44 1054.61 4.90 2666606.41 21.53 1718.55 5.35

42 Wholesale Trade 92141.14 2.53 316.32 1.47 220566.67 1.78 286.52 0.89 325 Chemical Manufacturing 376182.22 10.34 2146.13 9.98 1234732.55 9.97 2362.52 7.36

44 Retail Trade (I) 90746.30 2.49 697.08 3.24 755083.01 6.10 1802.16 5.61 326 23886.12 0.66 206.51 0.96 35081.57 0.28 139.19 0.43

45 Retail Trade (II) 71844.36 1.98 606.25 2.82 103823.53 0.84 393.61 1.23 327 22485.57 0.62 190.56 0.89 72492.53 0.59 242.54 0.76

48 202207.84 5.56 1278.65 5.94 490525.14 3.96 1484.93 4.62 331 Primary Metal Manufacturing 81200.98 2.23 438.98 2.04 308524.32 2.49 883.98 2.75

49 22033.22 0.61 337.61 1.57 60473.08 0.49 505.72 1.57 332 34872.77 0.96 296.50 1.38 51755.70 0.42 172.89 0.54

53 29186.20 0.80 335.31 1.56 97644.47 0.79 414.75 1.29 333 Machinery Manufacturing 126838.80 3.49 823.90 3.83 303757.26 2.45 1060.24 3.30

54 39096.89 1.07 367.54 1.71 142888.17 1.15 878.65 2.74 334 169692.71 4.66 1377.51 6.40 575557.43 4.65 1976.28 6.15

56 30757.47 0.85 1055.62 4.91 97139.76 0.78 1432.94 4.46 335 48369.82 1.33 447.71 2.08 96056.38 0.78 394.72 1.23

61 Educational Services 2830.78 0.08 21.45 0.10 12350.02 0.10 93.87 0.29 336 553821.60 15.22 3359.30 15.62 1210603.25 9.77 3201.16 9.97

62 14676.48 0.40 278.49 1.29 113475.92 0.92 874.35 2.72 337 2516.33 0.07 23.81 0.11 15259.16 0.12 68.65 0.21

71 4299.00 0.12 77.61 0.36 14592.82 0.12 140.96 0.44 339 Miscellaneous Manufacturing 16722.13 0.46 143.46 0.67 63225.24 0.51 259.74 0.81

72 28474.41 0.78 741.09 3.45 126452.99 1.02 1949.83 6.07 511 18829.43 0.52 149.15 0.69 42552.96 0.34 170.81 0.53

81 818.90 0.02 13.61 0.06 6028.48 0.05 71.80 0.22 512 13821.56 0.38 53.44 0.25 36968.97 0.30 112.21 0.35

99 Nonclassifiable Establishments 72587.03 2.00 402.04 1.87 337554.38 2.73 957.49 2.98 515 Broadcasting (except Internet) 23400.47 0.64 187.74 0.87 189150.10 1.53 435.67 1.36

311 Food Manufacturing 89888.93 2.47 393.90 1.83 280503.94 2.26 773.89 2.41 517 Telecommunications 158686.32 4.36 1045.88 4.86 1107220.16 8.94 3041.71 9.47

312 81514.55 2.24 527.06 2.45 323117.33 2.61 1128.77 3.51 518 1032.31 0.03 9.77 0.05 74483.99 0.60 273.40 0.85

313 Textile Mills 8281.43 0.23 109.85 0.51 1698.84 0.01 14.17 0.04 519 Other Information Services 77053.51 2.12 384.84 1.79 45026.66 0.36 168.24 0.52

314 Textile Product Mills 1642.40 0.05 15.52 0.07 6512.22 0.05 31.62 0.10 Total 3637612 100 21512 100 12386570 100 32120 100

315 Apparel Manufacturing 18195.52 0.50 179.87 0.84 50193.90 0.41 204.02 0.64

316 3220.64 0.09 18.56 0.09 8007.68 0.06 26.47 0.08 USA 5963000 125840 14990000 153890

321 Wood Product Manufacturing 17079.99 0.47 94.34 0.44 32329.60 0.26 79.89 0.25 Compustat share of USA 61.00 17.09 82.63 20.87

Agriculture, Forestry, Fishing 
and Hunting
Mining, Quarrying, and Oil and 
Gas Extraction

Printing and Related Support 
Activities
Petroleum and Coal Products 
Manufacturing

Plastics and Rubber Products 
Manufacturing
Nonmetallic Mineral Product 
Manufacturing

Transportation and 
Warehousing (I)
Transportation and 
Warehousing (II)

Fabricated Metal Product 
Manufacturing

Real Estate and Rental and 
Leasing
Professional, Scientific, and 
Technical Services

Computer and Electronic 
Product Manufacturing

Administrative and Support 
and Waste Management and 
Remediation Services

Electrical Equipment, 
Appliance, and Component 
Manufacturing

Transportation Equipment 
Manufacturing

Health Care and Social 
Assistance

Furniture and Related Product 
Manufacturing

Arts, Entertainment, and 
Recreation

Accommodation and Food 
Services

Publishing Industries (except 
Internet)

Other Services (except Public 
Administration)

Motion Picture and Sound 
Recording Industries

Beverage and Tobacco Product 
Manufacturing

Data Processing, Hosting, and 
Related Services

Leather and Allied Product 
Manufacturing
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Table A12: Comparison of TFP Measures

(1) (2) (3)
Outcome: Cost-Share TFP

OP TFP 1.117 1.141 1.025
(0.009) (0.008) (0.006)

Firm FE X X
Sector x Time FE X

N 68,825 68,821 67,395
R2 0.649 0.721 0.977

Notes: “Cost-Share TFP” is our baseline measure of log θ̂it used in the main analysis. “OP TFP” is the
alternative measure based on the method of Olley and Pakes (1996). Standard errors are double-clustered
by year and firm ID.

Table A13: Changing Macro Attention in Response to News

Response Poorly Well

Much more likely 44.96 9.77
Somewhat more likely 30.91 19.42
No change 12.56 8.67
Somewhat less likely 7.16 53.35
Much less likely 4.40 8.79

Total 100.00 100.00

Notes: Data are from the Coibion et al. (2018) survey, as described in Appendix G.
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Table A14: Profit-Function Curvature and Attention to Macro Variables

Panel 1: Back-cast Error (Absolute Value)

Variable Inflation GDP Growth Unemployment

ProfitCurvit -1.172 -0.328 -0.072 -0.042 0.075 0.121
(0.195) (0.091) (0.041) (0.041) (0.072) (0.077)

Controls X X X

R2 0.024 0.457 0.001 0.006 0.001 0.032
N 3,153 3,145 1,257 1,237 1,257 1,256

Panel 2: Keeping Track

Variable Inflation GDP Growth Unemployment

ProfitCurvit 0.170 0.050 0.015 0.019 -0.005 -0.022
(0.039) (0.029) (0.022) (0.028) (0.035) (0.081)

Controls X X X

R2 0.032 0.332 0.000 0.074 0.000 0.065
N 1,255 1,235 1,255 1,235 1,255 1,235

Notes: Standard errors are clustered by three-digit industry. Data are from the Coibion et al. (2018)
survey, as described in Appendix G.
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Table A15: Profit Curvature in the Data

Summary Statistics

Mean Quantiles
5 25 50 75 95

0.280 0.020 0.05 0.12 0.28 1.00

Correlates

Variable Norm. coef. t-stat R2

Firm

Frequency of price review -0.106 -7.80 0.011
log output -0.066 -9.43 0.015
Firm age -0.117 -10.17 0.014

Employment -0.122 -7.19 0.015
Labor share -0.138 -7.98 0.020

Number of competitors 0.130 6.81 0.017

Manager

log income 0.015 0.55 0.000
Some or more college 0.043 1.87 0.002

Tenure at firm -0.117 -5.73 0.014
Tenure in industry -0.058 -2.33 0.003

Manager age -0.091 -3.25 0.008

Notes: The top panel gives summary statistics. The bottom panel gives normalized regression coefficients
for a number of possible correlates. Standard errors, used to calculate the t-statistics, are clustered by
three-digit industry.

Table A16: Curvature and Inflation BCE in Waves 1 versus 4

Outcome: absolute Inflation BCE
Wave 1 4

ProfitCurvit -1.172 -0.328 -0.884 -0.330
(0.195) (0.091) (0.181) (0.126)

Controls X X

R2 0.024 0.457 0.033 0.268
N 3,153 3,145 1,257 1,256

Notes: Standard errors are clustered by three-digit industry.
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Figure A1: Relationship of Misoptimization Dispersion with Other Statistics
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Notes: The blue line, measured by the left axis of each plot, is Misoptimization Dispersion as defined
in Section 4. The black dashed line on the left is the (optimal-sale-weighted) interquartile range of the
distribution of ûit. The black dashed line on the right is the (optimal-sale-weighted) average of |ûit|.

Figure A2: Misoptimization Dispersion is Pro-Cyclical, Long Sample
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Notes: This Figure replicates Figure 2 using our long-sample (1950-2018) calculation of Misoptimization
Dispersion, described in Section 4.2 (“Robustness to Studied Time Period.”). The top two panels plot
Misoptimization Dispersion (blue line, left axis) along with, respectively, unemployment and the linearly
detrended S&P 500 price (black dashed lines, right axis). Because of the composition adjustment, the
metric can be negative. The bottom two panels are scatterplots of Misoptimization Dispersion versus
each macroeconomic aggregate. The black solid line is the linear regression fit. The standard errors are
HAC robust based on a Bartlett kernel with a three-year bandwidth.
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Figure A3: Relationship of Misoptimization Dispersion Across Inputs
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Notes: The blue line, measured by the left axis of each plot, is Misoptimization Dispersion as defined
in Section 4. The black dashed line on the left is Misoptimization Dispersion for total variable cost
expenditures (total labor plus materials expenditure). The black dashed line on the right is the same for
investment rates (log growth rates of the capital stock).

Figure A4: Relationship of TFP Innovation Variance with Macro Variables
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Notes: “TFP Innovations” are the residuals from an AR(1) model for log θit with firm and sector-by-time
fixed effects, as described in Section 4.7 of the main text. We calculate their average, consistent with our
main calculations of Misoptimization Dispersion, using optimal-sales-weights.
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Figure A5: Frequency over Time of Each Word in MacroAttention (Part I)
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Figure A5: Frequency over Time of Each Word in MacroAttention (Part II)
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Figure A6: Correlations with Unemployment by Word
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Notes: Correlations are calculated at the quarterly frequency.

Figure A7: Macroeconomic Attention with “Cleaned” Word List
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Notes: This replicates our main analysis of macroeconomic attention, but with ex post removal of the
following words: answer, argue, chapter, chapters, equation, example, explain, figure, get, happens,
imagine, leads, let, much, people, ply, point, problem, question, rise, rises, run, shift, shifts, shows,
suppose, theory, think, thus, want.
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Figure A8: Industry-Specific Cyclicality of Macro Attention
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Notes: The horizontal axis is the correlation of sectoral and aggregate nominal GDP. The vertical axis
is the regression coefficient of log sectoral macro attention, net of quarterly fixed effects, on the US
unemployment rate. The dashed orange line is the estimate of the same using aggregate Macro Attention.
The dots are sized based on quartiles of total sales in Compustat in 2015. The blue solid line is a cross-
industry linear regression line.

Figure A9: The Attention Wedge and Its Derivatives
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Notes: The panels respectively show the level, first derivative, and second derivative of the log attention
wedge in the log state. The “Partial Equilibrium” thought experiment, plotted in each figure as a dotted
line, is for firms to best-reply to the output and wages of the counterfactual RBC equilibrium.
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Figure A10: Conference-Call Macro Attention and Unemployment
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Notes: The left axis and blue line show our estimate of Macro Attention based on conference-call data,
in log units net of seasonal trends. The right axis and orange line show the US unemployment rate.

Figure A11: The Cyclical Behavior of TFPR and VMPL Dispersion
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Notes: Each half of this Figure replicates Figure 2 using our measures of TFPR Dispersion (top) and
VMPL Dispresion (bottom). Variable construction is defined in Appendix C.3. Because of the composi-
tion adjustment, the variance metrics can be negative. The standard errors for the linear fits are HAC
robust baesd on a Bartlett kernel with a three-year bandwidth.
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Figure A12: Robustness of Numerical Results to Parameter Choices
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Notes: We re-calibrate the model under each indicated parameter choice. The outcomes and their
interpretation are described in Appendix E.1.

Figure A13: Output, Wedge, and Labor Productivity with GHH Preferences
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Notes: This recreates panels (a)-(c) of Figure 5 from the main analysis in the variant model with Green-
wood et al. (1988) preferences, described in Appendix E.

Figure A14: Asymmetric Shock Response and Stochastic Volatility with GHH Prefer-
ences
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Notes: This recreates panels (d) and (e) from Figure 5 from the main analysis in the variant model with
Greenwood et al. (1988) preferences, described in Appendix E.
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Figure A15: Predictions in Counterfactual Scenarios
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Notes: The scenarios are described in the main text. The outcomes are the same as in Figure A12, and
are described in Appendix E.1.
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