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Abstract— In this paper, we propose the first formal privacy
analysis of a data anonymization process known as the synthetic
data generation, a technique becoming popular in the statistics
community. The target application for this work is a mapping
program that shows the commuting patterns of the population
of the United States. The source data for this application were
collected by the U.S. Census Bureau, but due to privacy con-
straints, they cannot be used directly by the mapping program.
Instead, we generate synthetic data that statistically mimic the
original data while providing privacy guarantees. We use these
synthetic data as a surrogate for the original data.

We find that while some existing definitions of privacy are
inapplicable to our target application, others are too conservative
and render the synthetic data useless since they guard against
privacy breaches that are very unlikely. Moreover, the data in
our target application is sparse, and none of the existing solutions
are tailored to anonymize sparse data. In this paper, we propose
solutions to address the above issues.

I. INTRODUCTION

In this paper, we study a real-world application of a privacy
preserving technology known as synthetic data generation. We
present the first formal privacy guarantees (to the best of
our knowledge) for this application. This paper chronicles the
challenges we faced in this endeavour. The target application
is based on data developed by the U.S. Census Bureau’s Lon-
gitudinal Employer-Household Dynamics Program (LEHD).
By combining various Census datasets it is possible to con-
struct a table Commute Patterns with schema (id,origin block,
destination block) where each row represents a worker. The
attribute id is a random number serving as a key for the table,
origin block is the census block in which the worker lives,
and destination block is where the worker works. An origin
block o corresponds to a destination block d if there is a tuple
with origin block o and destination block d. The goal is to plot
points on a map that represent commuting patterns for the U.S.
population. For each destination block, we plot points on the
map representing the corresponding origin blocks. There are
roughly 8 million Census blocks so that the domain is very
large and the data are very sparse.

Information about destination blocks has already been
publicly released; i.e., the query SELECT COUNT(*),
destination block FROM Commute Patterns
GROUP BY destination block is available to any
adversary, thus origin block is treated as the sensitive
attribute. Due to privacy constraints and legal issues,
unanonymized origin block data cannot be used as an input

to such a mapping application. An anonymized version must
be used instead.

The algorithm used to anonymize the data for the above
mapping application is known as the synthetic data generation
[1], which is becoming popular in the statistical disclosure
limitationg community. The main idea behind synthetic data
generation is to build a statistical model from the data and
then to sample points from the model. These sampled points
form the synthetic data, which is then released instead of the
original data. While much research has focused on deriving
the variance and confidence intervals for various estimators
from synthetic data [2], [3], there has been little research on
deriving formal guarantees of privacy for such an approach
(an exception is [4]).

Much recent research has focused on deriving formal cri-
teria for privacy. These include general notions of statistical
closeness [5], variants of the notions of k-anonymity [6] and
�-diversity [7], [8], [9], [10], [11], (ρ1, ρ2)-privacy [12], and
variants of differential privacy [13], [14]. However, we found
that apart from the differential privacy criterion [13], none of
the other privacy conditions applied to our scenario.

Picking an off-the-shelf synthetic data generation algorithm
and tuning it to satisfy the differential privacy criterion was
unsatisfactory for the following reasons. First, in order to
satisfy the differential privacy criterion, the generated synthetic
data contained little or no information about the original data.
We show that this is because differential privacy guards against
breaches of privacy that are very unlikely.

Next, no deterministic algorithm can satisfy differential
privacy. Randomized algorithms can (albeit with a very small
probability) return anonymized datasets that are totally unrep-
resentative of the input. This is a problem, especially, when we
want to publish a single or only a few, anonymous versions of
the whole data. We remedy these two issues by showing that
a revised probabilistic version of differential privacy yields a
practical privacy guarantee for synthetic data.

Finally, the data in our application are very sparse – there
are roughly 8 million blocks on the U.S. map, and only
about a few tens or hundreds of workers commuting to each
destination. Most previous work deals with data where the
number of individuals is typically larger than the size of the
sensitive attribute domain. We identify this important open
research problem and propose our first solutions for solving
the sparsity issue by modifying the synthetic data generation



algorithm.
We present the derivation of our techniques as a case study

of anonymizing data for the novel mapping application. In
this spirit, we discuss the initial selection of an off-the-shelf
privacy definition in Section II and an off-the-shelf anonymiza-
tion algorithm in Section III based on the requirements of the
mapping application. Since these initial choices turn out to
be unsatisfactory, we iteratively refine them to preserve their
strengths while removing their weaknesses: in Section IV we
show that some of our problems are the results of extremely
unlikely events, which leads us to a probabilistic version
of differential privacy; using the new privacy definition, in
Section V we revise our algorithm to improve data quality
and minimize the negative effects of the sparse data and large
domain in the mapping application. In Section VI we present
experiments and discuss the analytic validity of the resulting
synthetic data. We overview related work in Section VII and
present conclusions in Section VIII.

To summarize, our contributions are as follows: we provide
the first formal privacy analysis for a synthetic data generation
method (to the best of our knowledge); we present a case-
study of applying state-of-the-art research in privacy to real
applications; we identify additional challenges for the privacy
research community (such as handling large domains), and we
propose initial solutions for these challenges.

II. STARTING POINT: PRIVACY DEFINITION

To help select an initial privacy definition, we use the
following guideline: the privacy definition should give us
theoretical guarantees about privacy. There are three privacy
definitions that have theoretical guarantees and which we felt
are potentially applicable: �-diversity [7], (d, γ)-privacy [14],
and differential privacy [13].

In its most basic form, �-diversity requires that for each
destination block, the � origin blocks with the most number
of workers with jobs in this destination block, have roughly
equal number of workers residing in them (see [7] for technical
details and variations). Although �-diversity can protect against
adversaries with background knowledge, it does not always
guarantee privacy when there is a semantic relationship be-
tween distinct sensitive values (here the semantic relationship
is physical proximity). That is, �-diversity does not offer the-
oretical guarantees against an adversary who has information
such as “Bob probably lives near Newark and works near New
York City.”

(d, γ)-Privacy is a probabilistic privacy definition in which
an adversary believes in some prior probability P (t) of a
tuple t appearing in the data. After seeing the anonymized
data D, the adversary forms a posterior belief P (t|D). (d, γ)-
Privacy is only designed to protect against adversaries that are
d-independent: an adversary is d-independent if for all tuples t
are considered a priori independent and, the prior belief P (t)
satisfies the conditions P (t) = 1 or P (t) ≤ d. For all such
adversaries, the privacy definition requires that P (t|D) ≤ γ
and P (t|D)/P (t) ≥ d/γ. This privacy definition does not
apply to our scenario for a couple of reasons. First, this

privacy definition does not apply for adversaries that believe
that P (t) = d + ε (no matter how small ε > 0 is) for some t
even though in those cases we would also like to have some
guarantee about privacy. Second, tuple-independence is a very
strong assumption that is not compatible with our application.
In order to be d-independent, an adversary has to consider the
facts “Worker #1234 commutes to Block 12 from Block 34”
and “Worker #1234 commutes to Block 12 from Block 35”
independent. This is not true in our application since, the two
events described above are mutually exclusive.

Differential privacy is a privacy definition that can be mo-
tivated in several ways [13]. If an adversary knows complete
information about all individuals in the data except one, the
output of the anonymization algorithm should not give the ad-
versary too much additional information about the remaining
individual. Alternatively, if one individual is considering lying
about their data to a data collector (such as the U.S. Census
Bureau), the result of the anonymization algorithm will not be
very different if the individual lied or not. Formally,

Definition 1 (ε-Differential Privacy): Let A be a random-
ized algorithm, let S be the set of possible outputs of the
algorithm, and let ε > 1. The algorithm A satisfies ε-
differential privacy if for all pairs of data sets (D1,D2) that
differ in exactly one row,

∀S ∈ S,

∣∣∣∣ln P (A(D1) = S)
P (A(D2) = S)

∣∣∣∣ ≤ ε

Differential privacy has the benefits that we do not have
to assume that tuples are independent or that an adversary
has a prior belief encapsulated by a probability distribution.
However, if the adversary is Bayesian, differential privacy
guarantees that if the adversary has complete information
about all individuals but one and believes in a prior probability
P for the attributes of the remaining individual, then after
seeing the anonymized data D, | ln P (t|D)/P (t)| < ε for all
tuples t [15].

III. STARTING POINT: ANONYMIZATION ALGORITHM

The original data can be viewed as a histogram where each
combination of origin block and destination block is a his-
togram bucket. Histograms can be anonymized by modifying
the counts in each bucket (for example, by adding random
noise). Both [15] and [14] provide randomized anonymization
algorithms for histograms that satisfy ε-differential privacy.
One method is to add an independent Laplace random variable
to each bucket of the histogram [15]. Another is to extract a
Bernoulli subsample from the data and then to add independent
Binomial random variables to each histogram bucket [14].
Intuitively, both methods mix the original data with a dataset
that is generated from independently and identically distributed
noise.

Instead of using one of these approaches, we use synthetic
data generation [1] for protecting privacy. Prior to this work,
synthetic data methods did not have formal privacy guarantees,
despite there being significant work on performing statistical
analyses of and drawing inferences from synthetic data [2], [3]
based on Rubin’s multiple imputation framework [16]. Thus,



our goal is to complement the research on utility for synthetic
data by providing results about its privacy.

The main idea behind synthetic data generation is to build
a statistical model from the data and then to sample points
from the model. These sampled points form the synthetic
data, which is then released instead of the original data. The
motivation behind such statistical modeling is that inferences
made on the synthetic data should be similar to inferences that
would have been made on the real data.

Privacy comes from the fact that noise is added to the data
from two sources: the bias that comes from the creation of
the model, and the noise due to random sampling from the
model. Note that the process of learning in the context of a
model for synthetic data differs significantly from the normal
application of machine learning. In machine learning, it is
imperative not to overfit the data. For synthetic data, we want
to overfit as much as possible (subject to privacy constraints),
so that the synthetic data contain many of the characteristics
of the original data.

For this application, we will use the multinomial model with
dirichlet prior [17] as the initial mechanism for generating
synthetic data. We describe the model below, starting with
some necessary definitions:

Definition 2 (Multinomial distribution): Let −→p =
(p1, . . . , pk) be a vector of non-negative values such
that p1 + · · · + pk = 1. A multinomial distribution of size
m with parameters (p1, . . . , pk), M(−→p ,m), is a probability
distribution over k-dimensional vectors with non-negative
integer coordinates that sum up to m, with

P (m1, . . . ,mk) =
m!

k∏
i=1

mi!

k∏
i=1

pmi
i

Definition 3 (Dirichlet distribution): Let −→α =
(α1, . . . , αk) be a vector of positive values and let
|α| = α1 + · · · + αk. The dirichlet distribution with
parameters (α1, . . . , αk), D(−→α ), is a probability distribution
over all k-dimensional vectors with non-negative coordinates
that sum up to 1, with density1

f(p1, . . . , pk|−→α ) =
Γ(|α|)
k∏

i=1

Γ(αi)

k∏
i=1

pαi−1
i

The vector −→α = (α1, . . . , αk) is known as the prior
sample, |α| is the prior sample size, and the vector
(α1/|α|, . . . , αk/|α|) is the shape of the prior.

Multinomial sampling with a dirichlet prior D(−→α ) proceeds
as follows:

1) Draw a vector −→p = (p1, . . . , pk) from the D(−→α )
distribution.

2) Interpret −→p as a vector of multinomial probabilities
and draw a sample of size n from the multinomial
distribution M(−→p , n,).

1where Γ(t) is the gamma function defined as
∫ ∞
0 xt−1e−xdx

Algorithm 1 Synthesize
for all destination blocks d do

Let
−−→
n(d) be the histogram of origin blocks

Choose prior sample
−−→
α(d) with |α(d)| = O(n(d))

Choose output sample size m = O(n(d))
Sample m points from a multinomial distribution with
prior D((n(d)1 + α1, . . . , n(d)k + αk))

end for

It is well known that if (n1, . . . , nk) was drawn using
multinomial sampling with a dirichlet prior, then the posterior
distribution P (−→p |(n1, . . . , nk)) is the dirichlet distribution
D((α1 + n1, α2 + n2, . . . , αk + nk)). This can be interpreted
informally as first having no information, observing the sample
data (α1, . . . , αk) (note the αi do not have to be integers),
and updating the prior to D((α1, . . . , αk)), then observing the
new data (n1, . . . , nk), and updating the prior once again to
D((α1+n1, . . . , αk+nk)). Thus if we have a D((α1, . . . , αk))
prior, we are acting as if (α1, . . . , αk) was a piece of data we
had already seen. For this reason (α1, . . . , αk) is called the
prior sample.

Now we can describe the initial algorithm for generating
synthetic data. Let k be the number of Census blocks. We
number the blocks from 1 to k and for each destination block
d we form a k-dimensional vector

−−→
n(d) = (n(d)1, . . . , n(d)k)

where n(d)i is the number of people whose origin block is
the Census block i and who commute to destination block d.
For each destination block d we choose a prior sample

−−→
α(d)

with |α(d)| = O(n(d)) (the choice of
−−→
α(d) is discussed in

Sections IV and V), condition on the
−−→
n(d) to get a dirichlet

D((n(d)1 + α(d)1, . . . , n(d)k + α(d)k)) prior and then use
multinomial sampling with this prior to create a vector −→m =
(m1, . . . ,mk) of |m| = O(n(d)) synthetic people such that mi

synthetic people commute to destination block d from origin
block i. This procedure is described in Algorithm 1.

Note that when the destination block d is clear from context,
we will drop the notational dependency on d and abbreviate−−→
n(d) and

−−→
α(d) as −→n = (n1, . . . , nk) and −→α = (α1, . . . , αk),

respectively.

IV. REVISING THE PRIVACY DEFINITION

In this Section we evaluate our initial choice of privacy
definition on the initial choice of anonymization algorithm.
Contrary to intuition, it will turn out that these initial choices
do not give good results for privacy. By analyzing the problem,
we will show where intuition fails, and then we will revise the
privacy definition to account for the discrepancy.

A. Analysis of Privacy

First, we start with an explanation behind the intuition that
synthetic data should preserve privacy. Since the anonymized
data is synthesized, it consists of synthetic people. Thus,
linking real-world individuals to synthetic individuals (as in
[6]) does not make sense. The prior sample

−−→
α(d) controls the



amount of noise we add to the data generator. The larger the
components of

−−→
α(d), the more noise is added. Now, we could

have achieved ε-differential privacy by adding i.i.d. Laplace
random variables with density ε

4 exp(−εx/2) and variance
8/ε2 to the counts in each origin block [15]. For common
values of ε (i.e., ε > 1) this is a relatively small amount of
noise per origin block. So intuitively, we also shouldn’t need
to add too much noise (in terms of a large prior sample) using
the synthetic data generator.

This turns out not to be true. Let
−−→
α(d) be the prior sample

for a destination block d (note that the prior sample does
not depend on the data). Differential privacy requires us to
consider adversaries who have complete information about all
but one of the individuals in the data. Now, a histogram of des-
tination blocks has already been published, so our adversary
can use this information to determine the destination block
d of the remaining individual. Thus we need to determine
how well the individual’s origin block is hidden from the
adversary, and only need to look at the synthetic data generated
for destination block d. There are n individuals with that
destination block, and we will generate m synthetic individuals
for that destination block. To determine if the synthetic data
generation satisfies ε-differential privacy (Definition 1) we
have to find the maximum of

P ((m1, . . . ,mk) | (n1, . . . , nk),−→α )
P ((m1, . . . ,mk) | (n′

1, . . . , n
′
k),−→α )

(1)

over all non-negative integer vectors (m1, . . . ,mk),
(n1, . . . , nk), (n′

1, . . . , n
′
k) with

∑
mi = m,

∑
ni =∑

n′
i = n, ni = n′

i + 1 for some i, nj + 1 = n′
j for some

j �= i, and nh = n′
h for all h /∈ {i, j} (thus the difference

between −→n and
−→
n′ is the origin block of the unknown

individual). If this maximum is less than exp(ε), the the
synthetic data generator satisfies ε-differential privacy.

Theorem 4.1: The maximum of Equation 1 is m+mini(αi)
mini(αi)

and this is at most exp(ε) if and only if each αi ≥ m
exp(ε)−1 .

The effect of Theorem 4.1 can be illustrated with the
following example. Suppose there are one million people in
destination block d and we choose to synthesize one million
data points (i.e. we set m = 1, 000, 000). By setting ε = 7 we
are effectively requiring that the ratio in Equation 1 is at most
exp(ε) ≈ 1096. To achieve this privacy definition, we need
to set αi ≥ 914 for each i. In other words, for destination d,
our prior sample −→α has to have at least 914 people in each
origin block, which in many cases will be more than ni (the
actual number of people in that origin block that commute to
destination block d).

We can analyze where the intuition went wrong by examin-
ing the worst case in Theorem 4.1. The adversary has complete
information about n−1 individuals and is trying to determine
the origin block of the remaining individual. Suppose that
αi achieves its minimum value in origin block i, that the
adversary does not know of any individual in origin block
i, and that all m synthetic data points occur in origin block i.
In this case, Equation 1 is maximized and can be interpreted as
the likelihood that the remaining individual came from origin

block i divided by the likelihood that the remaining individual
did not come from origin block i. Note that this scenario leaks
the most amount of information about the remaining individual
and it is also a scenario where the synthetic data is completely
unrepresentative of the original data – in the original data at
most one person could have come from origin block i, but in
the synthetic data all of the synthetic people came from origin
block i. The probability of such an unrepresentative sample is
at most Γ(n+|α|)Γ(m+αi+1)

Γ(1+αi)Γ(m+n+|α|) . As an example, let m = n = 20
and ε = 7, and let all the αj have their minimum values of
m/(exp(7) − 1) ≈ 0.018. If there are even just k = 2 origin
blocks then the probability of that event is approximately
e−24.9. Thus the worst case is an extremely unlikely event.

B. Bounding the worst case

In Section IV-A we saw that the worst-case privacy breaches
are in outputs of the synthetic data generator that are ex-
tremely unlikely to occur. We say that a function f(x) is
negligible if f(x)/x−k → 0 as x → ∞ for all k > 0.
An output

−−−→
m(d) of the synthetic data generator is negli-

gible if P (
−−−→
m(d) | −−→

n(d),
−−→
α(d)) is negligible in |n(d)| (i.e.

P (
−−−→
m(d) | −−→n(d),

−−→
α(d))/|n(d)|−k → 0 for all k > 0).

Because these outputs are so unlikely, we would like to
exclude them from the analysis of privacy. This leads us to
the following privacy definition [18] which is a relaxation of
differential privacy.

Definition 4 (Indistinguishability): Let ε > 0. Let A be a
randomized algorithm and let S be the space of outputs of
A. Algorithm A satisfies (ε, δ)-indistinguishability if for all
T ⊂ S and all tables X1 and X2 differing in one row,

P (A(X1) ∈ T ) ≤ eεP (A(X2) ∈ T ) + δ(|X2|)
where δ is a negligible function.

Now, for a given destination block d, |m(d)| = O(|n(d)|)
by definition. The number of synthetic data sets for destination
block d is the number of ways to assign |m(d)| people to k

origin blocks and is equal to

( |m(d)| + k − 1
k − 1

)
, which is a

polynomial in |n(d)|, and thus not all outputs are negligible.
We can characterize outputs that have a negligible proba-

bility in terms of entropy by using Theorem 4.2.
Theorem 4.2: If for all destination blocks d we have

α(d)i ∈ O(n) and α(d)i ∈ ω log n for all i then Algo-
rithm 1 satisfies (ε, δ)-indistinguishability for ε ≥ ln(Ξ +
1/min(α(d)i)) (where Ξ > 2) and n ≥ m.

Now, (ε, δ)-indistinguishability is an asymptotic privacy
guarantee and so requires each destination block to have a
large number of people commuting to it. Since our applica-
tion contains many destination blocks with a small amount
of commuters, this asymptotic privacy definition would not
provide usable guarantees. For this reason we developed a
different relaxation of differential privacy. First, we need to
identify which outputs are “bad” in the sense that they leak
too much information.

Definition 5 (Disclosure Set): Let D be a table and D be
the set of tables that differ from D in at most one row. Let A



be a randomized algorithm and S be the space of outputs of
A. The disclosure set of D, denoted by Disc(D, ε) is {S ∈
S | ∃X1,X2 ∈ D, |X1 \ X2| = 1 ∧ | ln P (A(X1)=S)

P (A(X2)=S) | > ε}
Intuitively, the disclosure set for D is constructed as follows.

For each tuple x ∈ D, let D−x be the table D with
tuple x removed. Treat D−x as the adversary’s background
knowledge, so that the adversary is trying to guess the origin
block for x. Now, if our data generator creates the synthetic
data −→m, then there are two likelihoods we are interested: the
maximum likelihood of −→m over all possible origin blocks for
x, the minimum likelihood of −→m over all possible origin blocks
for x. If the ratio of the two likelihoods is greater than eε then−→m is an output that leaks too much information for some
adversary. Consequently −→m is in the disclosure set for D, and
all −→m in the disclosure set for D arise in this way.

Thus, to preserve privacy with high probability, we want the
disclosure set to have a low probability, and so we arrive at
the following privacy definition.

Definition 6 (Probabilistic Differential Privacy (pdp)): Let
A be a randomized algorithm and let S be the set of all
outputs of A. Let ε > 0 and 0 < δ < 1 be constants. We say
that A satisfies (ε, δ)-probabilistic differential privacy (or,
(ε, δ)-pdp) if for all tables D, P (A(D) ∈ Disc(D, ε)) ≤ δ.

Note that in our application, a histogram of destination
blocks has already been made publicly available. Thus the
assumption that the adversary contains full information about
all but one individuals in the data implies that the adversary
knows the destination block of the remaining individual. Only
the identity of the origin block is unknown to the adversary.
For this reason we can partition the origin/destination dataset
by destination block and treat each partition as a disjoint
dataset. Hence, a dataset satisfies (ε, δ)-probabilistic differ-
ential privacy if each partition of the dataset satisfies (ε, δ)-
probabilistic differential privacy. Moreover, in such datasets,
for an adversary with complete information about all but one
individuals in the dataset, the probability that the adversary
gains significant information about the remaining individual
is at most δ.

To state the privacy guarantees for Algorithm 1 in terms of
probabilistic differential privacy, we will need the following
definition:

Definition 7: Given constants n,m,α1, α2, c, define the
function f(x) = min(m, c · (α1 + [x − 1]+)) (where,
[y]+ = max(y, 0)). Then the reference 0-sample, denoted by
ρ(n,m,α1, α2, c) is the quantity:

max
x

Γ(m+1)
Γ(f(x)+1)Γ(m−f(x)+1)

Γ(n+α1+α2)
Γ(x+α1)Γ(n−x+α2)

Γ(m+n+α1+α2)
Γ(x+f(x)+α1)Γ(n−x+m−f(x)+α2)

where the max is taken over all integers x in the range [0, n].
First we need to identify the disclosure set:
Theorem 4.3: For the commuting patterns dataset, a syn-

thetic dataset is not in the disclosure set Disc(D, ε) if for for
every destination block d and every origin block i, m(d)i ≤
(eε − 1)(n(d)i + α(d)i − 1) when n(d)i ≥ 1 and m(d)i ≤
(eε − 1)(n(d)i + α(d)i) when n(d)i = 0

Next we will show that the probability of the disclo-
sure set is bounded by ρ[n(d),m(d),min(α(d)1), |α(d)| −
min(α(d)1), eε − 1] · 2keε/(eε − 2):

Theorem 4.4: Let D be a data set, let ε > ln 3 and
let m(d) = n(d) for each destination block d. Let there
be a total of k Census blocks. Algorithm 1 satisfies (ε, δ)-
probabilistic differential privacy if for each destination block
d, the reference 0-sample ρ(n(d),m(d),min(α(d)1), |α(d)|−
min(α(d)1), eε − 1) is at most δ(eε − 2)/(2keε).

Notice that in probabilistic differential privacy, δ is a
constant while in (ε, δ)-indistinguishability it is a negligible
function. To achieve (ε, δ)-indistinguishability, it was sufficient
for each αi to grow faster than ln n. We can show for
probabilistic differential privacy that it is enough to have
αi ∈ O(f) where f is any function that grows faster than√

n ln n, although we have found that the αi can be very
small. Thus, the amount of noise (the prior sample) is very
small compared to the data and its influence the output reduces
as the amount of real data grows. Thus with probabilistic
differential privacy we satisfy the intuition that synthetic data
generation (Algorithm 1) can achieve privacy with little noise
(as discussed at the beginning of Section IV-A).

V. REVISING THE ALGORITHM

In this section we discuss several problems with the utility
of Algorithm 1 and refine Algorithm 1 to make it produce more
useful synthetic data. The first problem is that the resulting
data may be very unrepresentative of the original data (and
therefore useless). For example, it is possible (albeit with very
small probability) that in the synthetic data, all the workers
commuting to New York city come from Boston (or worse,
from San Francisco) even though this is not the case in the
original data. The second problem is that with a large domain,
the total amount of noise required to guarantee privacy may
swamp most of the signal. These issues are not unique to the
Algorithm 1 and our mapping application, but also to existing
techniques (like [14] and [13]). We show how to ameliorate
these effects by employing the probabilistic differential privacy
as the privacy criterion. In Section V-A we will discuss when
to throw away unrepresentative synthetic data, and in Section
V-B we will discuss how to effectively shrink the size of the
domain.

A. Accept/Reject

Randomized synthetic data generation algorithms produce
unrepresentative outputs with small probability. Although rare,
these events cause problems for data analysis. A simple
technique to avoid unrepresentative outputs, which we call
the accept/reject method, is to choose a “representativeness”
metric and rerun the algorithm until we get an output which
is representative of the input. If the algorithm generates an
unrepresentative output with a probability at most p, then the
expected number of steps before the accept/reject algorithm
halts is at most 1

1−p . However, special care must be taken to
avoid privacy breaches.



Lemma 5.1: Let Good(X) be the set of outputs that are
representative of X . If there exists X1 and X2 that differ in
only one entry and Good(X1) �= Good(X2), then for every
ε > 1, Algorithm 1 combined with the accept/reject method
does not satisfy ε-differential privacy.
We illustrate the above lemma with an example. Intuitively, the
number of people generated in origin block i by the synthetic
data generation process should be proportional to n(d)i +
α(d)i. Hence, consider the following γ-representativeness
metric for a dataset X:

γ-Rep(X) = {S|∀i,∀d,m(d)i ≤ γ(α(d)i + [n(d)i − 1]+)}

where [y]+ is the non-negative part of y (i.e. [y]+ =
max(y, 0)). In fact, we showed in Theorem 4.3 that any output
S which is in γ-Rep(X) is not in Disc(X, ln(γ + 1)). Hence,
one may expect that the synthetic data generator coupled
with the accept/reject method (denoted by Aa/r) guarantees
ε-differential privacy, for ε = ln(γ + 1). On the contrary,
however, this algorithm violates differential privacy because
the probability P (Aa/r(X) = S) is no longer the same as
P (A(X) = S). Consider, a synthetic dataset S with m(d)i =
γ(α(d)i + [n(d)i − 1]+), γ > 1. Let X ′ be a table that differs
from X in one entry such that n′(d)i = n(d)i − 1. Clearly,
S �∈ γ-Rep(X ′). Hence,

P (Aa/r(X) = S)
P (Aa/r(X ′) = S)

= ∞

Despite this result, the accept/reject method is compati-
ble with the (ε, δ)-probabilistic differential privacy approach.
Again, let p denote the probability that the synthetic data gen-
erator outputs a synthetic dataset S that is not representative
of the data (S /∈ γ-Rep(X)). We show, in Lemma 5.2, that the
accept/reject algorithm guarantees privacy with probability at
least (1 − p) when it only rejects synthetic datasets that does
not belong to the set γ-Good, defined as follows:

γ-Good(X) =
⋃

X′ :
|X\X′|≤1,
|X′\X|≤1

γ-Rep(X ′)

Before we prove Lemma 5.2, we remark on the implications
for utility when we accept data from γ-Good(X). We can
easily show that the counts in a good S satisfy the following
condition

S ∈ γ-Good(X) ⇒ ∀i,∀d,m(d)i ≤ γ(n(d)i + 1 + α(d)i)

Lemma 5.2: Let Aa/r denote the synthetic data generator
coupled with an accept/reject method which discards S �∈
γ-Good(X). If p is the maximum probability over all X that
the synthetic data is not in γ-Rep(X), then Aa/r guarantees
(ε, p)-probabilistic differential privacy, where ε = ln (γ+1)

1−p .
For the accept/reject method, there are theorems analogous

to Theorems 4.3 and 4.4 which can be used to select the αi

(details are omitted due to space constraints).

B. Shrinking the Domain

For a randomized algorithm to satisfy differential privacy,
(ε, δ)-indistinguishability, or probabilistic differential privacy,
it must add noise to every origin block so that for every origin
block/destination block pair, there is a chance that the synthetic
data will contain a synthetic individual that commutes from
that origin block to that destination block. On the contrary,
if noise is not added to some origin block, privacy can be
breached as follows. Consider all the workers with jobs in
a destination d (say, in New York). Suppose the adversary
knows the origins of all the workers except one, and suppose
the adversary knows that the last worker commutes from either
o1 (in Albany) or o2 (in Schenectady), and no other worker
commutes from o1 or o2. Now, if noise is added to o1, but
not to o2, and the output synthetic data contains at least one
worker commuting from o2, then it is clear that the last worker
comes from o2 and not from o1, thus breaching his privacy.

For Algorithm 1 to maintain privacy guarantees, for each
destination block d, it needs to set a value c(d) so that
α(d)i ≥ c(d) for all origin blocks i. Since the data is sparse
(i.e. the origin blocks for a destination block d are usually
the surrounding census blocks and also major metropolitan
areas, rather than the whole United States), most of this noise
is concentrated in areas where there are no commuters to
destination block d. In fact, the amount of noise is the sum
of the α(d)i for all blocks i that have no commuters to d.
Thus the data generator may generate many strange fictitious
commuting patterns.

One way to tackle this problem is to reduce the size of
the origin block domain and therefore reduce the number of
blocks with no commuters to d, thus reducing the sum of
α(d)i for such blocks. In this paper we propose two ways of
handling this: coarsening the domain and randomly choosing
which parts of the domain will contain noise.

To coarsen the domain, we partition the origin blocks and
merge together blocks within each partition. A partition must
be chosen with care because it can leak information about
the data. One way to do this is to cluster the data using
a privacy-preserving clustering algorithm that is compatible
with differential privacy, such as the k-means algorithm in
the SULQ framework [19]. One difficulty with this approach
lies in evaluating the quality of the clustering. Despite metrics
that measure the quality of a clustering, numbers do not
tell the whole story and an expert’s subjective judgment is
often necessary. The effect of the expert (the data publisher
generating synthetic data) on privacy is difficult to quantify
and so it lies outside the differential privacy framework.

For this reason, we suggest that the partition be selected
from publicly available data. For our application this is pos-
sible because of a previous release of similar data. Thus for
a given destination block d we can coarsen the domain of
its origin blocks using this partition. To plot (on a map) the
origin of a synthetic individual, we first select the partition
the individual is commuting from (as in Algorithm 1) and
then we choose a specific point inside this partition using a



Algorithm 2 Sample Domain

Require:
−−→
n(d), function fd : {1, . . . , k} → (0, 1]

Select
−−→
α(d) so that Theorem 4.4 is satisfied

New Domain= ∅
for i = 1..k do

if n(d)i > 0 then
New Domain=New Domain

⋃{i}
else

Let X be a binomial(fd(i)) random variable
if X == 1 then

New Domain=New Domain
⋃{i}

else
α(d)i = 0

end if
end if

end for
return New Domain

density function derived from external data (such as publicly
available population density information).

Theorem 5.1: Let A be a randomized algorithm that
satisfies ε-differential privacy, (ε, δ)-indistinguishability,
or (ε, δ)-probabilistic differential privacy for the origin
block/destination block application. If for each destination
block d the domain of origin blocks is coarsened, then A
satisfies the same privacy criterion with the same parameters.

Even after coarsening, the domain may still be large. We
can trade off privacy versus the amount of noise added to
regions with no commuters with the following approach. For
a given destination block d, let fd be a function that assigns to
every origin block a number in the interval (0, 1] (this function
must not depend on the data). For each origin block i that
does not appear in the data, we keep it in the domain with
probability fd(i) and drop it from the domain with probability
1−fd(i). Those blocks that are dropped from the domain have
their αi set to 0 in Algorithm 1. Effectively, we are reducing
the size of the domain by throwing out origin blocks when
creating synthetic data for destination block d. This procedure
is illustrated in Algorithm 2. Note that it is important to choose
the vector

−−→
α(d) (in particular, to determine the minimum value

of any α(d)i) before shrinking the domain (and for those i that
do not belong to the domain, αi is set to 0). Algorithm 1 is then
run using this new domain and

−−→
α(d). We can quantify the loss

in privacy due to applying Algorithm 2 for each destination
block d followed by Algorithm 1 with the following theorem:

Theorem 5.2: Let A be a randomized algorithm for which
the reference 0-sample satisfies the conditions in Theorem 4.4.
Let C be the randomized algorithm that chooses the domain of
origin blocks for each destination block d using Algorithm 2
and then applies A on this new domain. Then C satisfies (ε′, δ)-
probabilistic differential privacy, respectively, where ε′ = ε +
maxi ln(1/fd(i)) + maxi�α(d)i� ln 2.

VI. EXPERIMENTS

The goal of combining probabilistic differential privacy
with synthetic data generation was to develop a system
that can be used for practical distribution of products from
statistical agencies. In order to assess our progress towards
that goal, we applied Algorithms 1 and 2 to public-use
data from the Census Bureau’s OnTheMap (OTM) micro-data
files (http://lehdmap2.did.census.gov/themap/). The versions
of those files that are available for public use are themselves
synthetic data. However, in our experimental evaluation we
treat the Census Bureau’s released file as if it were the ground
truth. Thus we measure the privacy protection and analytical
validity of our experimental synthetic data against the “gold
standard” of the OTM data.

Although much privacy research has focused on answering
range queries [20], [9], [14], [21], in contrast to this work, we
decided to evaluate the quality of the data using a measure
for which we did not explicitly tune our anonymization algo-
rithm. We computed the average commute distance for each
destination block and compared it to the ground truth from
OnTheMap. Note that the domain covers a two-dimensional
surface since the average commute distance is not a linear
statistic.

For our data evaluation, we selected a subset of OTM
Version 2 data such that all destination workplaces are in
Minnesota, yielding 1,495,415 distinct origin/destination block
pairs (O/D pairs) which contain a commuter traveling from the
origin block to the destination block. Many of these O/D pairs
are singletons (i.e., they had only one commuter).

The actual partition of the United States into Census blocks
comes from the Census 2000 Summary File 1, which also
contains information about the block characteristics and pop-
ulation counts. 8,206,261 blocks cover the 50 United States
and the District of Columbia. We also used data from the
previously published Census Transportation Planning Package
(CTPP), which contains data similar to the O/D pairs from
OnTheMap, based on Census 2000. We used CTPP to reduce
the size of the domain for the origin blocks.

A preliminary data analysis using the CTPP data revealed
that in Minnesota, 50% of all O/D work commutes were less
than 6.23 miles, 75% less than 13.1 miles, and 90 percent
less than 21.54 miles. Commutes longer than 200 miles were
beyond the 99th percentile and so we removed from the
domain all origin blocks that were over 200 miles from their
destination (and we also suppressed such O/D pairs in the
data). As a result of this pruning, the maximum size of the
domain of origin blocks in the experiments is 233,726.

We selected the minimum α(d)i values using Theorem 4.4
with ε = 4.6 and δ = 0.00001. Recall that ε represents
the maximum allowed disclosure due to the generation of
synthetic data, and δ represented the maximum probability
of a breach of ε-privacy. We also used Algorithm 2 to
shrink the domain and the probability function fd that is
used in Algorithm 2 was created based on the CTPP data.
The probability function fd was roughly proportional to the



histogram of commute distances as determined by the CTPP
data. The maximum of the �α(d)i� was 1 and the minimum
value of fd(i) was 0.0378. Thus the additional disclosure due
to shrinking the domain was ln(1/0.0378) + ln 2 ≤ 4. The
overall ε for the procedure was 8.6 and disclosure probability
δ was = 0.00001.

The results presented in this section are those of 120
blocks that are selected uniformly at random, averaging 15
primary job holders per destination block. For each block we
computed the length of the average commute to that block,
and compared the corresponding average commute distances
in the OnTheMap data to the synthetic data that we generated.
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In experiment 1, our privacy algorithm added an additional
419 primary job holders to each destination with a min α(d)i

of 0.01245. Figure 1 shows the relation between average com-
mute distance as measured in OTM and in our experimental
data. Each point in the figure corresponds to a particular
destination block. The x-axis is the number of people whose
primary job is in the destination block and the y-axis is

the average commute distance to that destination block. It is
clear that the experimental shape of fd and values of min fd

and min αi admitted too many distant synthetic workers. The
synthetic data overestimated the number of commuters with
long commutes. This effect is strongest when the destination
block has few workers and diminishes as the number of
workers increases.

Figure 2 shows the same plot except that it is restricted to
short commutes (i.e., those commutes that are shorter than the
6.23 miles which is the median commute distance in CTPP).
Here the synthetic data better matches the ground truth. Note
that the synthetic data slightly underestimates the commute
distances (as a result of the fact that long commutes were
overestimated, while the total number of commuters matched
the ground truth). Again, the estimation error diminishes as
the number of workers in a destination block increases.
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To further limit the effect of domain size on the estimation
of commute distances, in our second experiment we restricted
the domain of the origin blocks to be within 100 miles of



the destination, keeping ε and δ values unchanged. Commutes
of more than 100 miles were still beyond the 99th percentile
for CTPP. This reduced the domain size to 120,690. The
overall ε and δ values remained unchanged. In this case,
min α(d)i = 0.039764. Figures 3 and 4 show the results
for all distances and for short commutes, respectively. The
tighter restriction on the domain significantly enhanced data
quality in the moderate commute distances, did not diminish
quality in the short distances, and reduced the bias at all
distances. We can see that the extremely long commutes
are again overestimated, but the destination blocks with long
average commutes have few workers, so accurate estimates
are not expected. This suggests that long commutes should
be modeled separately when creating synthetic data. We leave
this as an interesting avenue for future work.

VII. RELATED WORK

This work builds on a large amount of research on privacy
in both the statistics and the computer science communities.
Though the early privacy aware algorithms on statistical data-
bases had sound intuition [22], most of them lacked formal
privacy guarantees. These algorithms include generalizations
[23], [24], [25], cell and tuple suppression [26], [25], random
perturbation [22], [27], publishing marginals that satisfy a
safety range [28], and data swapping [29] (where attributes
are swapped between tuples so that certain marginal totals are
preserved). Recent research in the statistics community has
focused on generating partial and fully synthetic populations
[1], [30], [3] that preserve some statistics of the original data
using re-sampling and multiple imputation techniques [16].
In this paper we studied the privacy properties of one such
technique and adapted it to meet formal privacy guarantees.

Many recent papers have considerably advanced the state
of the art in defining privacy and giving formal guarantees
for privacy. k-Anonymity [6] is a simple privacy criterion
defined for techniques that use generalization and suppression
to guard against linking attacks. Many algorithms have been
proposed to ensure k-anonymity [31], [24], [23] . However, k-
anonymity does not model sensitive information and attacker
background knowledge. �-Diversity [7] is a privacy criterion
that guards against certain kinds of background knowledge that
an adversary may use to infer sensitive information. It is also
compatible with many k-anonymity algorithms. Subsequent
work [8] characterized the worst case knowledge needed to
break the anonymity of a data-set and extended the work to
releases of multiple views of the data [32]. These privacy
formulations assume a bound on the adversary’s background
knowledge. Many variations on these privacy conditions have
also been proposed [33], [21].

(ρ1, ρ2)-privacy and γ-amplification [12] bound the point-
wise distance between the adversary’s prior belief in a property
and the adversary’s posterior belief in that property after seeing
a randomized version of the data. This definition was applied
in the context of association rule mining. Other approaches
[20] ensure (ρ1, ρ2)-breaches only on some parts of the data.
(d, γ)-privacy [14] is a probabilistic privacy definition for data

publishing in which all tuples are considered independent and
the privacy is guaranteed by bounding the prior P (t) and the
posterior P (t|D) after seeing the published data D.

Differential privacy [13] is a privacy criterion related to γ-
amplification. It requires an anonymization algorithm to be
fairly insensitive to perturbations in the data. Thus, if the
algorithm were run on two datasets that differ in one entry,
the corresponding probabilities of different outputs would be
similar. This privacy condition, however, has mostly been
applied in the context of output randomization [34], [15], [18].
These techniques require the knowledge of the exact set of
queries that need to be answered by the database. However,
this does not fit the exploratory nature of most data analysis.
Recent approaches have tried to apply this framework to the
release of anonymized contingency tables [35]. This technique
adds random noise to the Fourier coefficients of the collection
of tables and the post-processes them so that table entries
are integral and non-negative. Random sampling [36] has also
been analyzed in the differential privacy framework.

In the statistics community, a popular data anonymization
technique is the creation of synthetic data. It was first proposed
by [1]. Subsequently, many techniques have been proposed
for generating synthetic data [30], [37], [38] and creating
statistical inferences from them [2], [3]. On the other hand,
there has been comparatively little research on the privacy of
synthetic methods, with most work only focusing on the ability
of an attacker to determine that an individual is in the data [4].
Hence, the results in this paper complements the work in the
statistics literature.

VIII. CONCLUSIONS

In this paper we showed that, with a little work, state-of-the
art ideas from the privacy research about privacy guarantees
and statistical inference can be combined for a practical
application. One remaining challenge is handling datasets with
large domains because noise must be spread throughout the
domain even if the data are sparse. This is necessary because
if an outlier appears in the synthetic data, it may be more likely
that a similar outlier was present in the real data and less likely
that it was due to random noise. In our application we were
able to use exogenous data and other techniques to help reduce
the domain size. However, such data are not always available.
Furthermore, even though we reduced the domain size, the
data were still sparse and as a result, the addition of noise to
all parts of the reduced domain created many outliers, so that
the distribution of commute distances was reasonable only for
the study of commutes that were not extremely long.

We believe that judicious suppression and separate modeling
of outliers may be the key since we would not have to add
noise to parts of the domain where outliers are expected. For
future work, we are considering methods for incorporating
outlier identification, suppression, and modeling to the privacy
and utility guarantees for the mapping application.
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