National Academies Press: OpenBook
« Previous: 5 Recommended Approach
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 122
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 123
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 124
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 125
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 126
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 127
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 128
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 129
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 130
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 131
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 132
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 133
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 134
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 135
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 136
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 137
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 138
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 139
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 140
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 141
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 142
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 143
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 144
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 145
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 146
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2024. Modernizing Probable Maximum Precipitation Estimation. Washington, DC: The National Academies Press. doi: 10.17226/27460.
×
Page 147

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

References Abbs, D. J. 1999. A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resources Research 35(3):785-796. https://doi.org/10.1029/ 1998WR900013. ACWI (Advisory Committee for Water Information). 2018. Extreme Rainfall Product Needs. Alexander, G. N. 1965. Hydrology of spillway design: Large structures—adequate data. Journal of the Hydraulics Division 91(1):210-219. https://doi.org/10.1061/JYCEAJ.0001183. Ali, H., N. Peleg, and H. J. Fowler. 2021. Global scaling of rainfall with dewpoint temperature reveals considerable ocean-land difference. Geophysical Research Letters 48(15):e2021GL093798. https://doi.org/10.1029/2021GL093798. Allen, M. R., and W. J. Ingram. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419:224-232. https://doi.org/10.1038/nature01092. AMS (American Meteorological Society). 1959. Glossary of Meteorology. Boston: American Meteorological Society. AMS. 2022. Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Welcome. ANS (American Nuclear Society). 2019. Probabilistic Evaluation of External Flood Hazards for Nuclear Facilities. https://www.techstreet.com/ans/standards/ans-2-8-2019?gateway_code=ans&product_id= 2111463. Arizona State University. 2023. World Meteorological Organization Global Weather & Climate Extremes Archive. https://wmo.asu.edu/content/world-meteorological-organization-global-weather-climate- extremes-archive. ASCE (American Society of Civil Engineers). 2018. Climate-Resilient Infrastructure: Adaptive Design and Risk Management. Reston. https://doi.org/10.1061/9780784415191. ASCE. 1988. Evaluation Procedures for Hydrologic Safety of Dams. Reston. ASCE. 2009. Guiding Principles for the Nation’s Critical Infrastructure. Reston. https://doi.org/10.1061/ 9780784410639. Association of State Dam Safety Officials (ASDSO). 2023. Lessons Learned from Incidents and Failures. https://damfailures.org/lessons-learned/. Austin, P. M. 1987. Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review 115(5):1053-1070. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2. AWA (Applied Weather Associates). 2013. Probable Maximum Precipitation Study for Arizona. https://new.azwater.gov/sites/default/files/ArizonaPMPStudyFinalReport.pdf. AWA. 2015. Probable Maximum Precipitation Study for Virginia. https://www.dcr.virginia.gov/dam- safety-and-floodplains/document/pmp-final-report.pdf. AWA. 2016. Probable Maximum Precipitation Study for Texas. https://www.tceq.texas.gov/downloads/ compliance/enforcement/dam-safety/texas-pmp-final-report.zip. AWA. 2018. Colorado – New Mexico Regional Extreme Precipitation Study Summary Report. II. https://www.appliedweatherassociates.com/wp-content/uploads/2023/09/2._co-nm_reps_summary_ report_volume_ii__task_i__final_nov_2018.pdf. AWA. 2019. Regional Probable Maximum Precipitation Study for Oklahoma, Arkansas, Louisiana, and Mississippi, Final Report. https://oklahoma.gov/content/dam/ok/en/owrb/documents/dam-safety/2019 RegionalPMPStudy.pdf. AWA. 2021. Probable Maximum Precipitation Study for North Dakota, Final Report. https://www.swc. nd.gov/pdfs/pmp_study_north_dakota_final_report.pdf. 122 Prepublication copy

References 123 Baeck, M. L., and J. A. Smith. 1998. Rainfall estimation by the WSR-88D for heavy rainfall events. Weather and Forecasting 13(2):416-436. https://doi.org/10.1175/1520-0434(1998)013<0416:/ Rebtwf>2.0.Co;2. Bahls, V. S., and K. D. Holman. 2014. Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study - Part I: Hydrometeorological Model Inputs. 74. Baker, V. R. 1975. Flood hazards along the Balcones Escarpment in Central Texas, alternative approaches to their recognition, mapping, and management. The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 75-5. https://doi.org/10.23867/gc7505D. Ban, N., J. Schmidli, and C. Schär. 2014. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. Journal of Geophysical Research: Atmospheres 119(13):7889-7907. https://doi.org/10.1002/2014JD021478. Ban, N., J. Schmidli, and C. Schär. 2015. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophysical Research Letters 42(4):1165-1172. https://doi.org/ 10.1002/2014GL062588. Ban, N., C. Caillaud, E. Coppola, E. Pichelli, S. Sobolowski, M. Adinolfi, B. Ahrens, A. Alias, I. Anders, S. Bastin, D. Belušić, S. Berthou, E. Brisson, R. M. Cardoso, S. C. Chan, O. B. Christensen, J. Fernández, L. Fita, T. Frisius, G. Gašparac, F. Giorgi, K. Goergen, J. E. Haugen, Ø. Hodnebrog, S. Kartsios, E. Katragkou, E. J. Kendon, K. Keuler, A. Lavin-Gullon, G. Lenderink, D. Leutwyler, T. Lorenz, D. Maraun, P. Mercogliano, J. Milovac, H.-J. Panitz, M. Raffa, A. R. Remedio, C. Schär, P. M. M. Soares, L. Srnec, B. M. Steensen, P. Stocchi, M. H. Tölle, H. Truhetz, J. Vergara-Temprado, H. de Vries, K. Warrach-Sagi, V. Wulfmeyer, and M. J. Zander. 2021. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: Evaluation of precipitation. Climate Dynamics 57(1):275-302. https://doi.org/10.1007/s00382-021-05708-w. Banta, R. M. 1990. The Role of Mountain Flows in Making Clouds. In Atmospheric Processes over Complex Terrain. W. Blumen, eds. Boston: American Meteorological Society. Bao, J., S. C. Sherwood, L. V. Alexander, and J. P. Evans. 2017. Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change 7(2):128-132. https://doi.org/10.1038/nclimate 3201. Barbero, R., H. J. Fowler, G. Lenderink, and S. Blenkinsop. 2017. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophysical Research Letters 44(2):974-983. https://doi.org/10.1002/2016GL071917. Barlage, M., F. Chen, R. Rasmussen, Z. Zhang, and G. Miguez-Macho. 2021. The importance of scale- dependent groundwater processes in land-atmosphere interactions over the central United States. Geophysical Research Letters 48(5):e2020GL092171. https://doi.org/10.1029/2020GL092171. Barros, A. P., and R. J. Kuligowski. 1998. Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Monthly Weather Review 126(10):2648-2672. https://doi.org/10.1175/1520- 0493(1998)126<2648:OEDASW>2.0.CO;2. Battan, L. J. 1973. Radar Observation of the Atmosphere. Chicago: University of Chicago Press. Bedient, P. B., W. C. Huber, and B. E. Vieux. 2019. Hydrology and Floodplain Analysis, 5th Edition. London: Pearson. Ben Alaya, M. A., F. Zwiers, and X. Zhang. 2018. Probable maximum precipitation: Its estimation and uncertainty quantification using bivariate extreme value analysis. Journal of Hydrometeorology 19(4):679-694. https://doi.org/10.1175/JHM-D-17-0110.1. Ben Alaya, M. A., F. Zwiers, and X. Zhang. 2020. An evaluation of block-maximum-based estimation of very long return period precipitation extremes with a large ensemble climate simulation. Journal of Climate 33(16):6957-6970. https://doi.org/10.1175/JCLI-D-19-0011.1. Berg, P., C. Moseley, and J. O. Haerter. 2013. Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience 6(3):181-185. https://doi.org/10.1038/ngeo1731. Bernard, M. 1944. Primary role of meteorology in flood flow estimating. Transactions of the American Society of Civil Engineers 109(1):311-351. https://doi.org/10.1061/TACEAT.0005689. Prepublication copy

124 Modernizing Probable Maximum Precipitation Estimation Berne, A., and W. F. Krajewski. 2013. Radar for hydrology: Unfulfilled promise or unrecognized potential? Advances in Water Resources 51:357-366. https://doi.org/10.1016/j.advwatres.2012.05.005. Billington, D. P., D. C. Jackson, and M. V. Melosi. 2005. The History of Large Federal Dams: Planning, Design, and Construction in the era of Big Dams. U.S. Bureau of Reclamation. https://www.usbr.gov/history/HistoryofLargeDams/LargeFederalDams.pdf. Bolot, M., L. M. Harris, K.-Y. Cheng, T. M. Merlis, P. N. Blossey, C. S. Bretherton, S. K. Clark, A. Kaltenbaugh, L. Zhou, and S. Fueglistaler. 2023. Kilometer-scale global warming simulations and active sensors reveal changes in tropical deep convection. npj Climate and Atmospheric Science 6(1):209. https://doi.org/10.1038/s41612-023-00525-w. Bretherton, C. S., B. Henn, A. Kwa, N. D. Brenowitz, O. Watt-Meyer, J. McGibbon, W. A. Perkins, S. K. Clark, and L. Harris. 2022. Correcting coarse-grid weather and climate models by machine learning from global storm-resolving simulations. Journal of Advances in Modeling Earth Systems 14(2):e2021MS002794. https://doi.org/10.1029/2021MS002794. Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch. 2003. Resolution requirements for the simulation of deep moist convection. Monthly Weather Review 131(10):2394-2416. https://doi.org/10.1175/1520- 0493(2003)131<2394:RRFTSO>2.0.CO;2. Byers, H. R., and R. R. Braham. 1949. The Thunderstorm: Report of the Thunderstorm Project. Washington, DC: U.S. Government Printing Office. Byrne, M. P., and P. A. O’Gorman. 2016. Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. Journal of Climate 29(24):9045-9061. https://doi.org/10.1175/JCLI-D-16-0351.1. Caldwell, R. J., J. F. J. England, and V. L. Sankovich. 2011. Application of Radar-Rainfall Estimates to Probable Maximum Precipitation in the Carolinas. United States Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML2216/ML22165A285.pdf. Cannon, A. J., and S. Innocenti. 2019. Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: Implications for future intensity–duration–frequency curves. Natural Hazards and Earth System Sciences 19(2):421-440. https://doi.org/10.5194/nhess-19-421-2019. Castellarin, A., R. M. Vogel, and N. C. Matalas. 2005. Probabilistic behavior of a regional envelope curve. Water Resources Research 41(6). https://doi.org/10.1029/2004wr003042. Cavanaugh, N. R., A. Gershunov, A. K. Panorska, and T. J. Kozubowski. 2015. The probability distribution of intense daily precipitation. Geophysical Research Letters 42(5):1560-1567. https://doi.org/10.1002/2015GL063238. Chappell, C. F. 1986. Quasi-Stationary Convective Events. In Mesoscale Meteorology and Forecasting. P. S. Ray, eds. Boston, MA: American Meteorological Society. Chen, L.-C., and A. A. Bradley. 2007. How Does the Record July 1996 Illinois Rainstorm Affect Probable Maximum Precipitation Estimates? Journal of Hydrologic Engineering 12(3):327-335. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:3(327). Chen, X., and F. Hossain. 2016. Revisiting extreme storms of the past 100 years for future safety of large water management infrastructures. Earth’s Future 4(7):306-322. https://doi.org/10.1002/2016EF000 368. Chen, X., and F. Hossain. 2019. Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society 100(8):1395-1404. https://doi.org/10.1175/BAMS-D-17- 0150.1. Chen, X., F. Hossain, and L. R. Leung. 2017. Probable maximum precipitation in the U.S. Pacific Northwest in a changing climate. Water Resources Research 53(11):9600-9622. https://doi.org/10.1002/2017WR021094. Chen, Y., W. Li, X. Jiang, P. Zhai, and Y. Luo. 2021. Detectable intensification of hourly and daily scale precipitation extremes across Eastern China. Journal of Climate 34(3):1185-1201. https://doi.org/10.1175/JCLI-D-20-0462.1. Prepublication copy

References 125 Chen, X., L. R. Leung, Y. Gao, Y. Liu, and M. Wigmosta. 2023. Sharpening of cold-season storms over the western United States. Nature Climate Change 13(2):167-173. https://doi.org/10.1038/s41558- 022-01578-0. Cheng, L., and A. AghaKouchak. 2014. Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Scientific Reports 4(1):7093. https://doi.org/10.1038/ srep07093. Chow, V. T., D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. New York: McGraw-Hill. Chow, F. K., C. Schär, N. Ban, K. A. Lundquist, L. Schlemmer, and X. Shi. 2019. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 10(5):274. Ciach, G. J., M. L. Morrissey, and W. F. Krajewski. 2000. Conditional bias in radar rainfall estimation. Journal of Applied Meteorology 39(11):1941-1946. https://doi.org/10.1175/1520-0450(2000)039< 1941:CBIRRE>2.0.CO;2. Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge. 2011. A new dual- polarization radar rainfall algorithm: Application in Colorado precipitation events. Journal of Atmospheric and Oceanic Technology 28(3):352-364. https://doi.org/10.1175/2010JTECHA1488.1. Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. London: Springer. Corrigan, P., D. D. Fenn, D. R. Kluck, and J. L. Vogel. 1999. Hydrometeorological Report No. 59: Probable Maximum Precipitation for California. https://www.weather.gov/media/owp/hdsc_documents/PMP/HMR59.pdf. Cosgrove, B., D. Gochis, T. Flowers, A. Dugger, F. Ogden, T. Graziano, E. Clark, R. Cabell, N. Casiday, Z. Cui, K. Eicher, G. Fall, X. Feng, K. Fitzgerald, N. Frazier, C. George, R. Gibbs, L. Hernandez, D. Johnson, R. Jones, L. Karsten, H. Kefelegn, D. Kitzmiller, H. Lee, Y. Liu, H. Mashriqui, D. Mattern, A. McCluskey, J. L. McCreight, R. McDaniel, A. Midekisa, A. Newman, L. Pan, C. Pham, A. RafieeiNasab, R. Rasmussen, L. Read, M. Rezaeianzadeh, F. Salas, D. Sang, K. Sampson, T. Schneider, Q. Shi, G. Sood, A. Wood, W. Wu, D. Yates, W. Yu, and Y. Zhang. 2024. NOAA's National Water Model: Advancing operational hydrology through continental-scale modeling. JAWRA Journal of the American Water Resources Association 60(2):247-272. https://doi.org/10. 1111/1752-1688.13184. Costa, J. E. 1987. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. Journal of Hydrology 93(3-4):313-338. https://doi.org/10.1016/0022-1694(87)90102-8. Cotton, W. R., R. L. McAnelly, and T. Ashby. 2003. Development of New Methodologies for Determining Extreme Rainfall. Fort Collins, CO. Cotton, W. R., G. Bryan, and S. C. van den Heever. 2010. Storm and Cloud Dynamics. Burlington, MA: Elsevier. Crippen, J. R. 1982. Envelope curves for extreme flood events. Journal of the Hydraulics Division 108(10):1208-1212. https://doi.org/10.1061/JYCEAJ.0005916. Crippen, J. R., and C. D. Bue. 1977. Maximum Floodflows in the Conterminous United States. 56. https://pubs.usgs.gov/publication/wsp1887. Cudworth, A. G. J. 1989. Flood Hydrology Manual. Denver, CO: U.S. Government Printing Office. Dalrymple, T. 1939. Major Texas Floods of 1935. U.S. Geological Survey. Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology and Climatology 33(2):140-158. https://doi.org/10.1175/1520- 0450(1994)033<0140:ASTMFM>2.0.CO;2. Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28(15):2031-2064. https://doi.org/10.1002/joc.1688. Davison, A. C., S. A. Padoan, and M. Ribatet. 2012. Statistical modeling of spatial extremes. Statistical Science 27(2):161-186. https://doi.org/10.1214/1 1-STS376. Prepublication copy

126 Modernizing Probable Maximum Precipitation Estimation de Haan, L., and J. de Ronde. 1998. Sea and wind: Multivariate extremes at work. Extremes 1:7-45. https://doi.org/10.1023/A:1009909800311. DeGaetano, A. T. 2009. Time-dependent changes in extreme-precipitation return-period amounts in the Continental United States. Journal of Applied Meteorology and Climatology 48(10):2086-2099. https://doi.org/10.1175/2009jamc2179.1. DeGaetano, A. T., and H. Tran. 2022. Recent changes in average recurrence interval precipitation extremes in the Mid-Atlantic United States. Journal of Applied Meteorology and Climatology 61(2):143-157. https://doi.org/10.1175/JAMC-D-21-0129.1. DeNeale, S. T., S.-C. Kao, D. Watson, and K. Quinlan. 2021. Considerations for Site-Specific Probable Maximum Precipitation Estimation at Nuclear Power Plants in the United States of America. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc- collections/nuregs/knowledge/km0015/index.html. Deser, C., F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. DiNezio, A. Fiore, C. Frankignoul, J. C. Fyfe, D. E. Horton, J. E. Kay, R. Knutti, N. S. Lovenduski, J. Marotzke, K. A. McKinnon, S. Minobe, J. Randerson, J. A. Screen, I. R. Simpson, and M. Ting. 2020. Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change 10(4):277-286. https://doi.org/10.1038/s41558-020-0731-2. Dilling, L., and M. C. Lemos. 2011. Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Global Environmental Change 21(2):680- 689. https://doi.org/10.1016/j.gloenvcha.2010.11.006. Droegemeier, K. K., K. Kelleher, T. Crum, J. J. Levit, S. A. Del Greco, L. Miller, C. Sinclair, M. Benner, D. W. Fulker, and H. Edmon. Project CRAFT: A test bed for demonstrating the real time acquisition and archival of WSR-88D Level II data. Presented at 18th International Conference on IIPS. Orlando. https://ams.confex.com/ams/annual2002/techprogram/paper_30900.htm. Doesken, N. J., and T. B. McKee. 1998. An Analysis of Rainfall for the July 28, 1997 Flood in Fort Collins, Colorado. Colorado Climate Center Climatology Report 98-1. http://hdl.handle.net/10217/169848. Doswell, C. A., H. E. Brooks, and R. A. Maddox. 1996. Flash flood forecasting: An ingredients-based methodology. Weather and Forecasting 11(4):560-581. https://doi.org/10.1175/1520- 0434(1996)011<0560:Fffaib>2.0.Co;2. Dougherty, E. M., A. F. Prein, E. D. Gutmann, and A. J. Newman. 2023. Future simulated changes in central U.S. mesoscale convective system rainfall caused by changes in convective and stratiform structure. Journal of Geophysical Research: Atmospheres 128(4):e2022JD037537. https://doi.org/10.1029/2022jd037537. Douglas, E. M., and A. P. Barros. 2003. Probable maximum precipitation estimation using multifractals: Application in the Eastern United States. Journal of Hydrometeorology 4(6):1012-1024. https://doi.org/10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2. Dowell, D. C., C. R. Alexander, E. P. James, S. S. Weygandt, S. G. Benjamin, G. S. Manikin, B. T. Blake, J. M. Brown, J. B. Olson, M. Hu, T. G. Smirnova, T. Ladwig, J. S. Kenyon, R. Ahmadov, D. D. Turner, J. D. Duda, and T. I. Alcott. 2022. The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description. Weather and Forecasting 37(8):1371-1395. https://doi.org/10.1175/waf-d-21-0151.1. Eddy, R. L. 1996. Variability of Wet and Dry Periods in the Upper Colorado River Basin and Possible Effects of Climate Change; and Sensitivity of Probable Maximum Precipitation to Climate Change. Department of Interior, Bureau of Reclamation, Global Climate Change Response Program. Eisenlohr, W. S. 1952. Floods of July 18, 1942 in North-Central Pennsylvania. U.S. Geological Survey. https://pubs.usgs.gov/publication/wsp1134B. Emanuel, K. 1994. Atmospheric Convection. New York: Oxford University Press. England, J. F., M. L. Velleux, and P. Y. Julien. 2007. Two-dimensional simulations of extreme floods on a large watershed. Journal of Hydrology 347(1):229-241. https://doi.org/10.1016/j.jhydrol.2007.09.034. Prepublication copy

References 127 England, J. F., P. Y. Julien, and M. L. Velleux. 2014. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds. Journal of Hydrology 510:228-245. https://doi.org/10.1016/j.jhydrol.2013.12.021. England, J. F. J., V. L. Sankovich, and R. J. Caldwell. 2020. Review of Probable Maximum Precipitation Procedures and Databases Used to Develop Hydrometeorological Reports. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML2004/ML20043E110.pdf. England, J. F. J., A. Avance, M. Mika, M. Masek, A. Duren, H. Smith, and B. Skahill. 2023. Extreme Precipitation for Dam and Levee Safety Risk Analysis: Probabilistic and Deterministic Estimates with Uncertainty. Presented at the 37th Conference on Hydrology, American Meteorological Society Annual Meeting, January 10, 2023, Denver. https://ams.confex.com/ams/103ANNUAL/meetingapp.cgi/Paper/421443. Enzel, Y., L. L. Ely, K. P. House, and V. R. Baker. 1993. Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado River Basin. Water Resources Research 29(7):2287-2297. https://doi.org/10.1029/93WR00411. EPRI (Electric Power Research Institute). 1993. Probable Maximum Precipitation study for Wisconsin and Michigan. https://www.osti.gov/biblio/10181274. Extreme Storm Events Work Group. 2018. Extreme Rainfall Product Needs. https://acwi.gov/hydrology/ extreme-storm/product_needs_proposal_20181010.pdf. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5):1937-1958. https://doi.org/10.5194/gmd-9-1937- 2016. Fan, J., D. Rosenfeld, Y. Yang, C. Zhao, L. R. Leung, and Z. Li. 2015. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophysical Research Letters 42(14):6066-6075. https://doi.org/10.1002/2015GL064479. FEMA (Federal Emergency Management Agency). 2004. Federal Guidelines for Dam Safety, Hazard Potential Classification System for Dams. https://www.ferc.gov/sites/default/files/2020-04/fema- 333.pdf. FEMA. 2012. Summary of Existing Guidelines for Hydrologic Safety of Dams. https://www.hsdl.org/c/ view?docid=757604. FEMA. 2013. Selecting and Accommodating Inflow Design Floods for Dams. https://www.hsdl.org/ ?view&did=757389. FEMA. 2015. Federal Guidelines for Dam Safety Risk Management. https://www.fema.gov/sites/default/ files/2020-08/fema_dam-safety_risk-management_P-1025.pdf. FEMA. 2016. South Carolina Dam Failure Assessment and Advisement. https://www.fema.gov/sites/ default/files/2020-08/fema_p-1801_sc_dam_failure_assessment_advisement.pdf. FEMA. 2017. Hurricane Matthew in North Carolina Dam Risk Management Assessment Report. https://www.fema.gov/media-library/assets/documents/131866. Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru. 2016. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nature Communications 7(1):13429. https://doi.org/10.1038/ncomms13429. Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan. 2018. Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection- permitting simulations over the United States. Journal of Advances in Modeling Earth Systems 10(7):1470-1494. https://doi.org/10.1029/2018MS001305. Feng, Z., L. R. Leung, J. Hardin, C. R. Terai, F. Song, and P. Caldwell. 2023. Mesoscale convective systems in DYAMOND global convection‐permitting simulations. Geophysical Research Letters 50(4). https://doi.org/10.1029/2022gl102603. FERC (Federal Energy Regulatory Commission). 2016. Risk-Informed Decision Making (RIDM). https://www.ferc.gov/dam-safety-and-inspections/risk-informed-decision-making-ridm Prepublication copy

128 Modernizing Probable Maximum Precipitation Estimation Fischer, E. M., and R. Knutti. 2016. Observed heavy precipitation increase confirms theory and early models. Nature Climate Change 6(11):986-991. https://doi.org/10.1038/nclimate3110. Förster, K., and L.-B. Thiele. 2020. Variations in sub-daily precipitation at centennial scale. npj Climate and Atmospheric Science 3(1):13. https://doi.org/10.1038/s41612-020-0117-1. Fosser, G., E. J. Kendon, D. Stephenson, and S. Tucker. 2020. Convection‐permitting models offer promise of more certain extreme rainfall projections. Geophysical Research Letters 47(13):e2020GL088151. https://doi.org/10.1029/2020gl088151. Foufoula‐Georgiou, E. 1989a. A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths. Water Resources Research 25(5):799-815. https://doi.org/ 10.1029/WR025i005p00799. Foufoula-Georgiou, E. 1989b. On the accuracy of the maximum recorded depth in extreme rainstorms. Presented at New Directions for Surface Water Modeling, Proceedings of the Baltimore Symposium, IAHS Pub. 181. Friedrich, K., E. A. Kalina, J. Aikins, D. Gochis, and R. Rasmussen. 2016. Precipitation and cloud structures of intense rain during the 2013 Great Colorado Flood. Journal of Hydrometeorology 17(1):27-52. https://doi.org/10.1175/JHM-D-14-0157.1. Fujibe, F. 2013. Clausius–Clapeyron-like relationship in multidecadal changes of extreme short-term precipitation and temperature in Japan. Atmospheric Science Letters 14(3):127-132. https://doi.org/10.1002/asl2.428. Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon. 1998. The WSR-88D rainfall algorithm. Weather and Forecasting 13(2):377-395. https://doi.org/10.1175/1520- 0434(1998)013<0377:TWRA>2.0.CO;2. Galarneau, T. J., and X. Zeng. 2020. The Hurricane Harvey (2017) Texas rainstorm: Synoptic analysis and sensitivity to soil moisture. Monthly Weather Review 148(6):2479-2502. https://doi.org/10.1175/ mwr-d-19-0308.1. Gangrade, S., S. C. Kao, B. S. Naz, D. Rastogi, M. Ashfaq, N. Singh, and B. L. Preston. 2018. Sensitivity of probable maximum flood in a changing environment. Water Resources Research 54(6):3913-3936. https://doi.org/10.1029/2017wr021987. Ganguli, P., and P. Coulibaly. 2019. Assessment of future changes in intensity-duration-frequency curves for Southern Ontario using North American (NA)-CORDEX models with nonstationary methods. Journal of Hydrology: Regional Studies 22:100587. https://doi.org/10.1016/j.ejrh.2018.12.007. Gentine, P., M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis. 2018. Could machine learning break the convection parameterization deadlock? Geophysical Research Letters 45(11):5742-5751. https://doi.org/10.1029/2018GL078202. Gibson, P. B., W. E. Chapman, A. Altinok, L. Delle Monache, M. J. DeFlorio, and D. E. Waliser. 2021. Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Communications Earth & Environment 2(1):159. https://doi.org/10.1038/ s43247-021-00225-4. Gilman, C. S. 1964. Rainfall. Section 9: McGraw-Hill. Giordano, L. A., and J. Michael Fritsch. 1991. Strong tornadoes and flash-flood-producing rainstorms during the warm season in the Mid-Atlantic Region. Weather and Forecasting 6(4):437-455. https://doi.org/10.1175/1520-0434(1991)006<0437:Staffp>2.0.Co;2. Gochis, D., R. Schumacher, K. Friedrich, N. Doesken, M. Kelsch, J. Sun, K. Ikeda, D. Lindsey, A. Wood, B. Dolan, S. Matrosov, A. Newman, K. Mahoney, S. Rutledge, R. Johnson, P. Kucera, P. Kennedy, D. Sempere-Torres, M. Steiner, R. Roberts, J. Wilson, W. Yu, V. Chandrasekar, R. Rasmussen, A. Anderson, and B. Brown. 2015. The Great Colorado Flood of September 2013. Bulletin of the American Meteorological Society 96(9):1461-1487. https://doi.org/10.1175/bams-d-13-00241.1. Groisman, P. Y., R. W. Knight, and T. R. Karl. 2012. Changes in intense precipitation over the central United States. Journal of Hydrometeorology 13(1):47-66. https://doi.org/10.1175/jhm-d-11-039.1. Prepublication copy

References 129 Gründemann, G. J., N. van de Giesen, L. Brunner, and R. van der Ent. 2022. Rarest rainfall events will see the greatest relative increase in magnitude under future climate change. Communications Earth & Environment 3(1):235. https://doi.org/10.1038/s43247-022-00558-8. Gu, H., S. Y. S. Wang, Y. H. Lin, J. Meyer, R. Gillies, E. Taylor, and B. Pokharel. 2022. Historical trend of probable maximum precipitation in Utah and associated weather types. International Journal of Climatology 42(9):4773-4787. https://doi.org/10.1002/joc.7503. Guerreiro, S. B., H. J. Fowler, R. Barbero, S. Westra, G. Lenderink, S. Blenkinsop, E. Lewis, and X.-F. Li. 2018. Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Change 8(9):803-807. https://doi.org/10.1038/s41558-018-0245-3. Guichard, F., and F. Couvreux. 2017. A short review of numerical cloud-resolving models. Tellus A: Dynamic Meteorology and Oceanography 69(1):1373578. https://doi.org/10.1080/16000870.2017. 1373578. Gumbel, E. J. 1941. The return period of flood flows. The Annals of Mathematical Statistics 12(2):163-190. Gutmann, E. D., R. M. Rasmussen, C. Liu, K. Ikeda, C. L. Bruyere, J. M. Done, L. Garrè, P. Friis- Hansen, and V. Veldore. 2018. Changes in hurricanes from a 13-yr convection-permitting pseudo– global warming simulation. Journal of Climate 31(9):3643-3657. https://doi.org/10.1175/JCLI-D-17- 0391.1. Gutowski, W. J., P. A. Ullrich, A. Hall, L. R. Leung, T. A. O’Brien, C. M. Patricola, R. W. Arritt, M. S. Bukovsky, K. V. Calvin, Z. Feng, A. D. Jones, G. J. Kooperman, E. Monier, M. S. Pritchard, S. C. Pryor, Y. Qian, A. M. Rhoades, A. F. Roberts, K. Sakaguchi, N. Urban, and C. Zarzycki. 2020. The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society 101(5):E664-E683. https://doi.org/10. 1175/BAMS-D-19-0113.1. Haerter, J. O., P. Berg, and S. Hagemann. 2010. Heavy rain intensity distributions on varying time scales and at different temperatures. Journal of Geophysical Research: Atmospheres 115(D17). https://doi.org/10.1029/2009JD013384. Hall, B. M., G. S. Karlovits, R. Sasaki, and H. Smith. 2018. Inflow Design Flood Analysis for Whittier Narrows Dam. RMC-TR-2018-10. 66. https://publibrary.planusace.us/document/47765076-c01a- 4e7f-ab19-ddf6c71e7525. Hansen, E. M. 1987. Probable maximum precipitation for design floods in the United States. Journal of Hydrology 96(1):267-278. https://doi.org/10.1016/0022-1694(87)90158-2. Hansen, E. M., D. D. Fenn, P. Corrigan, J. L. Vogel, L. C. Schreiner, and R. W. Stodt. 1994. Hydrometeorological Report No. 57, Probable Maximum Precipitation, Pacific Northwest States: Columbia River (including portions of Canada), Snake River and Pacific coastal drainages. National Weather Service. https://repository.library.noaa.gov/view/noaa/7277. Hansen, E. M., L. C. Schreiner, and J. F. Miller. 1982. Hydrometeorological Report No. 52, Application of Probable Maximum Precipitation Estimates, United States East of the 105th Meridian. National Weather Service. https://www.weather.gov/media/owp/hdsc_documents/PMP/HMR52.pdf. Hansen, E. M., D. D. Fenn, L. C. Schreiner, R. W. Stodt, and J. F. Miller. 1988. Hydrometeorological Report No. 55A, Probable Maximum Precipitation Estimates-United States between the Continental Divide and the 103rd Meridian. National Weather Service. https://repository.library.noaa.gov/view/noaa/7154. Harden, T. M., J. E. O’Connor, D. G. Driscoll, and J. F. Stamm. 2011. Flood-frequency Analyses from Paleoflood Investigations for Spring, Rapid, Boxelder, and Elk Creeks, Black Hills, Western South Dakota. U.S. Geological Survey. https://pubs.usgs.gov/sir/2011/5131/. Harden, T. M., J. E. O’Connor, M. L. Carr, and M. Keith. 2021. Improving Flood-Frequency Analysis with a 4,000-Year Record of Flooding on the Tennessee River near Chattanooga, Tennessee. Reston, VA. https://pubs.usgs.gov/publication/sir20205138. Hardwick Jones, R., S. Westra, and A. Sharma. 2010. Observed relationships between extreme sub‐daily precipitation, surface temperature, and relative humidity. Geophysical Research Letters 37(22). https://doi.org/10.1029/2010gl045081. Prepublication copy

130 Modernizing Probable Maximum Precipitation Estimation Hathaway, G. A. 1939a. Estimating maximum flood-flow as a basis for the design of protective works. Eos, Transactions American Geophysical Union 20(2):195-203. https://doi.org/10.1029/TR020i002’ p00195. Hathaway, G. A. 1939b. The importance of meteorological studies in the design of flood control structures. Bulletin of the American Meteorological Society 20(6):248-253. https://doi.org/10.1175/ 1520-0477-20.6.248. Hathaway, G. A. 1944. Discussion of primary role of meteorology in flood flow estimation: Transactions of the American Society of Civil Engineers. Transactions of the American Society of Civil Engineers 109(1). https://doi.org/10.1061/TACEAT.000570. Heffernan, J. E., and J. A. Tawn. 2004. A conditional approach for multivariate extreme values (with Discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology 66(3):497-546. https://doi.org/10.1111/j.1467-9868.2004.02050.x. Helsen, S., N. P. M. van Lipzig, M. Demuzere, S. Vanden Broucke, S. Caluwaerts, L. De Cruz, R. De Troch, R. Hamdi, P. Termonia, B. Van Schaeybroeck, and H. Wouters. 2020. Consistent scale- dependency of future increases in hourly extreme precipitation in two convection-permitting climate models. Climate Dynamics 54(3):1267-1280. https://doi.org/10.1007/s00382-019-05056-w. Hershfield, D. M. 1961. Estimating the probable maximum precipitation. Journal of the Hydraulics Division 87(5):99-116. https://doi.org/10.1061/JYCEAJ.0000651. Hershfield, D. M. 1965. Method for estimating probable maximum rainfall. Journal AWWA 57(8):965- 972. https://doi.org/10.1002/j.1551-8833.1965.tb01486.x. Hicks, N. S., J. A. Smith, A. J. Miller, and P. A. Nelson. 2005. Catastrophic flooding from an orographic thunderstorm in the central Appalachians. Water Resources Research 41(12). https://doi.org/10.1029/ 2005wr004129. Hiraga, Y., Y. Iseri, M. D. Warner, C. D. Frans, A. M. Duren, J. F. England, and M. L. Kavvas. 2021. Estimation of long-duration maximum precipitation during a winter season for large basins dominated by atmospheric rivers using a numerical weather model. Journal of Hydrology 598:126224. https://doi.org/10.1016/j.jhydrol.2021.126224. Hirschboeck, K. 1987. Hydroclimatically-Defined Mixed Distributions In Partial Duration Flood Series. In Hydrologic Frequency Modeling. V. P. Singh, eds. Dordrecht: Springer. Hitchens, N. M., H. E. Brooks, and R. S. Schumacher. 2013. Spatial and temporal characteristics of heavy hourly rainfall in the United States. Monthly Weather Review 141(12):4564-4575. https://doi.org/10. 1175/MWR-D-12-00297.1. Ho, F. P., and J. T. Riedel. 1980. Hydrometeorological Report No. 53, Seasonal Variation of 10-Square- Mile Probable Maximum Precipitation Estimates: United States, East of the 105th Meridian. National Weather Service. https://repository.library.noaa.gov/view/noaa/6331. Hohenegger, C., P. Korn, L. Linardakis, R. Redler, R. Schnur, P. Adamidis, J. Bao, S. Bastin, M. Behravesh, M. Bergemann, J. Biercamp, H. Bockelmann, R. Brokopf, N. Brüggemann, L. Casaroli, F. Chegini, G. Datseris, M. Esch, G. George, M. Giorgetta, O. Gutjahr, H. Haak, M. Hanke, T. Ilyina, T. Jahns, J. Jungclaus, M. Kern, D. Klocke, L. Kluft, T. Kölling, L. Kornblueh, S. Kosukhin, C. Kroll, J. Lee, T. Mauritsen, C. Mehlmann, T. Mieslinger, A. K. Naumann, L. Paccini, A. Peinado, D. S. Praturi, D. Putrasahan, S. Rast, T. Riddick, N. Roeber, H. Schmidt, U. Schulzweida, F. Schütte, H. Segura, R. Shevchenko, V. Singh, M. Specht, C. C. Stephan, J. S. von Storch, R. Vogel, C. Wengel, M. Winkler, F. Ziemen, J. Marotzke, and B. Stevens. 2023. ICON-Sapphire: Simulating the components of the Earth system and their interactions at kilometer and subkilometer scales. Geoscientific Model Development 16(2):779-811. https://doi.org/10.5194/gmd-16-779-2023. Holman, K. D., and D. P. Keeney. 2020. Olympus Dam: Meteorological Study for Application in Hydrologic Hazard Analysis for Issue Evaluation. Bureau of Reclamation, Denver. Holman, K. D., L. Bearup, and D. Keeney. 2019. Shasta Dam: Rainfall-Runoff Model Inputs for Flood Frequency Technical Memorandum ENV-2020-009. Bureau of Reclamation. Prepublication copy

References 131 Horton, R. E. 1919. Some broader aspects of rain intensities in relation to storm-sewer design. Monthly Weather Review 47(10):721-721. https://doi.org/10.1175/1520-0493(1919)47<721b:SBAORI>2.0. CO;2. Horton, R. E. 1948a. The physics of thunderstorms. Eos, Transactions American Geophysical Union 29(6):810-844. https://doi.org/10.1029/TR029i006p00810. Horton, R. E. 1948b. Statistical distribution of drop size and the occurrence of dominant drop sizes in rain. Eos, Transactions American Geophysical Union 29(5):624-630. https://doi.org/10.1029/TR029 i005p00624. Horton, R. E. 1949. Convectional vortex rings - Hail. Eos, Transactions American Geophysical Union 30(1):29-45. https://doi.org/10.1029/TR030i001p00029. Hosking, J. R. M., and J. R. Wallis. 1997. Regional Frequency Analysis - An Approach based on L- Moments. Cambridge: Cambridge University Press. Hourdin, F., B. Ferster, J. Deshayes, J. Mignot, I. Musat, and D. Williamson. 2023. Toward machine- assisted tuning avoiding the underestimation of uncertainty in climate change projections. Science Advances 9(29):eadf2758. https://doi.org/10.1126/sciadv.adf2758. Houze Jr., R. A. 2004. Mesoscale convective systems. Reviews of Geophysics 42(4). https://doi.org/ 10.1029/2004RG000150. Huang, X., and D. L. Swain. 2022. Climate change is increasing the risk of a California megaflood. Science Advances 8(32):eabq0995. https://doi.org/10.1126/sciadv.abq0995. Huser, R., and J. L. Wadsworth. 2022. Advances in statistical modeling of spatial extremes. WIREs Computational Statistics 14(1). https://doi.org/10.1002/wics.1537. Irizarry-Ortiz, M. M., J. F. Stamm, C. Maran, and J. Obeysekera. 2022. Development of Projected Depth- Duration Frequency Curves (2050–89) for South Florida. Reston, VA: 130. https://pubs.usgs.gov/publication/sir20225093. Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson. 2015. Physically based estimation of maximum precipitation over three watersheds in Northern California: Relative humidity maximization method. Journal of Hydrologic Engineering 20(10):04015014. https://doi.org/10.1061/ (asce)he.1943-5584.0001175. Ishida, K., M. L. Kavvas, Z. Q. R. Chen, A. Dib, A. J. Diaz, M. L. Anderson, and T. Trinh. 2018. Physically based maximum precipitation estimation under future climate change conditions. Hydrological Processes 32(20):3188-3201. https://doi.org/10.1002/hyp.13253. Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen, and A. Goodman. 2014. Observational‐ and model‐based trends and projections of extreme precipitation over the contiguous United States. Earth’s Future 2(2):99-113. https://doi.org/10.1002/2013ef000185. Jarrett, R. D., and J. E. Costa. 1988. Evaluation of the Flood Hydrology in the Colorado Front Range Using Precipitation, Streamflow, and Paleoflood Data for the Big Thompson River Basin. Department of the Interior, U.S. Geological Survey. Jarrett, R. D., and J. F. England Jr. 2002. Reliability of Paleostage Indicators for Paleoflood Studies. In Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology. R. H. W. K. House, V. R. Baker, D. R. Levish, eds. Washington, DC: American Geophysical Union. Jayaweera, L., C. Wasko, R. Nathan, and F. Johnson. 2023. Non-stationarity in extreme rainfalls across Australia. Journal of Hydrology 624:129872. https://doi.org/10.1016/j.jhydrol.2023.129872. Jennings, A. H. 1950. World’s greatest observed point rainfalls. Monthly Weather Review 78(1):4-5. https://doi.org/10.1175/1520-0493(1950)078<0004:Wgopr>2.0.Co;2. Jensen, D. T. 1994. Precipitation Frequencies, Probable Maximum Precipitation and Global Climate Change. Utah Climate Center, Logan, UT. https://www.osti.gov/biblio/210747. Jorgensen, S. K., and J. W. Nielsen-Gammon. 2024. Nonstationarity in extreme precipitation return values along the United States Gulf and Southeastern Coasts. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-22-0157.1. Kanney, J. 2023. NRC Regulatory Perspectives. Presentation to NASEM Modernizing PMP Estimation Committee. Prepublication copy

132 Modernizing Probable Maximum Precipitation Estimation Kao, S.-C., S. T. DeNeale, and D. B. Watson. 2019. Hurricane Harvey highlights: Need to assess the adequacy of probable maximum precipitation estimation methods. Journal of Hydrologic Engineering 24(4):05019005. https://doi.org/10.1061/(asce)he.1943-5584.0001768. Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior. 2014. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change 4(7):570-576. https://doi.org/10.1038/nclimate2258. Kendon, E. J., N. Ban, N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, J. P. Evans, G. Fosser, and J. M. Wilkinson. 2017. Do convection-permitting regional climate models improve projections of future precipitation change? Bulletin of the American Meteorological Society 98(1):79-93. https://doi.org/10.1175/BAMS-D-15-0004.1. Kendon, E. J., A. F. Prein, C. A. Senior, and A. Stirling. 2021. Challenges and outlook for convection- permitting climate modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2195):20190547. https://doi.org/10.1098/rsta.2019.0547. Kendon, E. J., E. M. Fischer, and C. J. Short. 2023. Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes. Nature Communications 14(1):1133. https://doi.org/10.1038/s41467-023-36499-9. Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin. 2018. Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere 9(3):80. Klemeš, V. 1993. Probability of extreme hydrometeorological events – A different approach. Extreme Hydrological Events: Precipitation, Floods and Droughts (Proceedings of the Yokohama Symposium, July 1993). IAHS Publ. no. 213:167-176. Konrad, C. E. 2001. The most extreme precipitation events over the Eastern United States from 1950 to 1996: Considerations of scale. Journal of Hydrometeorology 2(3):309-325. https://doi.org/10.1175/ 1525-7541(2001)002<0309:TMEPEO>2.0.CO;2. Koutsoyiannis, D. 1999. A probabilistic view of Hershfield's method for estimating probable maximum precipitation. Water Resources Research 35(4):1313-1322. https://doi.org/10.1029/1999wr900002. Krajewski, W. F. 1987. Cokriging radar-rainfall and rain gage data. Journal of Geophysical Research: Atmospheres 92(D8):9571-9580. https://doi.org/10.1029/JD092iD08p09571. Krajewski, W. F., and J. A. Smith. 2002. Radar hydrology: rainfall estimation. Advances in Water Resources 25(8-12):1387-1394. https://doi.org/10.1016/s0309-1708(02)00062-3. Kunkel, K. E., T. R. Karl, H. Brooks, J. Kossin, J. H. Lawrimore, D. Arndt, L. Bosart, D. Changnon, S. L. Cutter, N. Doesken, K. Emanuel, P. Y. Groisman, R. W. Katz, T. Knutson, J. O'Brien, C. J. Paciorek, T. C. Peterson, K. Redmond, D. Robinson, J. Trapp, R. Vose, S. Weaver, M. Wehner, K. Wolter, and D. Wuebbles. 2013a. Monitoring and understanding trends in extreme storms: State of knowledge. Bulletin of the American Meteorological Society 94(4):499-514. https://doi.org/10.1175/bams-d-11- 00262.1. Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon. 2013b. Probable maximum precipitation and climate change. Geophysical Research Letters 40(7):1402-1408. https://doi.org/10.1002/grl.50334. Kunkel, K. E., and S. M. Champion. 2019. An assessment of rainfall from Hurricanes Harvey and Florence relative to other extremely wet storms in the United States. Geophysical Research Letters 46(22):13500-13506. https://doi.org/10.1029/2019gl085034. Kunkel, K. E., T. R. Karl, M. F. Squires, X. Yin, S. T. Stegall, and D. R. Easterling. 2020. Precipitation extremes: Trends and relationships with average precipitation and precipitable water in the Contiguous United States. Journal of Applied Meteorology and Climatology 59(1):125-142. https://doi.org/10.1175/jamc-d-19-0185.1. Lee, K., and V. P. Singh. 2020. Analysis of uncertainty and non-stationarity in probable maximum precipitation in Brazos River basin. Journal of Hydrology 590. https://doi.org/10.1016/j.jhydrol. 2020.125526. Prepublication copy

References 133 Lee, C. C., O. Obarein, S. C. Sheridan, E. T. Smith, and R. Adams. 2021. Examining trends in multiple parameters of seasonally-relative extreme temperature and dew point events across North America. International Journal of Climatology 41(S1):E2360-E2378. https://doi.org/10.1002/joc.6852. Lee, O., Y. Park, E. S. Kim, and S. Kim. 2016. Projection of Korean probable maximum precipitation under future climate change scenarios. Advances in Meteorology 2016:1-16. https://doi.org/10.1155/ 2016/3818236. Lehmann, J., D. Coumou, and K. Frieler. 2015. Increased record-breaking precipitation events under global warming. Climatic Change 132(4):501-515. https://doi.org/10.1007/s10584-015-1434-y. Lemos, M. C., and B. J. Morehouse. 2005. The co-production of science and policy in integrated climate assessments. Global Environmental Change 15(1):57-68. https://doi.org/10.1016/j.gloenvcha.2004.09.004. Lenderink, G., D. Belušić, H. J. Fowler, E. Kjellström, P. Lind, E. van Meijgaard, B. van Ulft, and H. de Vries. 2019. Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environmental Research Letters 14(7):074012. https://doi.org/10.1088/1748-9326/ab214a. Lenderink, G., H. de Vries, H. J. Fowler, R. Barbero, B. van Ulft, and E. van Meijgaard. 2021. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection- permitting model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379(2195):20190544. https://doi.org/10.1098/rsta.2019.0544. Lengfeld, K., P.-E. Kirstetter, H. J. Fowler, J. Yu, A. Becker, Z. Flamig, and J. Gourley. 2020. Use of radar data for characterizing extreme precipitation at fine scales and short durations. Environmental Research Letters 15(8):085003. https://doi.org/10.1088/1748-9326/ab98b4. Leopold, L. B., and T. Maddock. 1954. The Flood Control Controversy: Big Dams, Little Dams, and Land Management. https://pubs.usgs.gov/publication/70185465. Leverson, V. H. 1986. Rainfall Characteristics of the Prescott, Arizona, Storm of 23–24 September 1983. Monthly Weather Review 114(12):2344-2351. https://doi.org/10.1175/1520-0493(1986)114<2344: RCOTPA>2.0.CO;2. Li, X., G. Zhao, J. Nielsen-Gammon, J. Salazar, M. Wigmosta, N. Sun, D. Judi, and H. Gao. 2020. Impacts of urbanization, antecedent rainfall event, and cyclone tracks on extreme floods at Houston reservoirs during Hurricane Harvey. Environmental Research Letters 15(12):124012. https://doi.org/ 10.1088/1748-9326/abc4ff. Liang, J., X. Liu, A. AghaKouchak, P. Ciais, and B. Fu. 2023. Asymmetrical precipitation sensitivity to temperature across global dry and wet regions. Earth’s Future 11(9):e2023EF003617. https://doi.org/ 10.1029/2023EF003617. Liu, M., J. A. Smith, L. Yang, and G. A. Vecchi. 2022. Tropical cyclone flooding in the Carolinas. Journal of Hydrometeorology 23(1):53-70. https://doi.org/10.1175/JHM-D-21-0113.1. Liu, Z., Y. Gao, and G. Zhang. 2022. How well can a convection-permitting-modelling improve the simulation of summer precipitation diurnal cycle over the Tibetan Plateau? Climate Dynamics 58(11):3121-3138. https://doi.org/10.1007/s00382-021-06090-3. Liu, M., G. A. Vecchi, J. A. Smith, and T. R. Knutson. 2019. Causes of large projected increases in hurricane precipitation rates with global warming. NPJ Climate and Atmospheric Science 2(1):38. https://doi.org/10.1038/s41612-019-0095-3. Lott, G. A. 1954. The world-record 42-minute Holt, Missouri, rainstorm. Monthly Weather Review 82(2):50-59. https://doi.org/10.1175/1520-0493(1954)082<0050:Twmhmr>2.0.Co;2. Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick. 2019. Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bulletin of the American Meteorological Society 100(12):2473-2490. https://doi.org/10.1175/bams-d-19-0001.1. Lutsko, N. J., and T. W. Cronin. 2018. Increase in precipitation efficiency with surface warming in radiative‐convective equilibrium. Journal of Advances in Modeling Earth Systems 10(11):2992-3010. https://doi.org/10.1029/2018ms001482. Prepublication copy

134 Modernizing Probable Maximum Precipitation Estimation Maddox, R. A., C. F. Chappell, and L. R. Hoxit. 1979. Synoptic and meso-α scale aspects of flash flood events. Bulletin of the American Meteorological Society 60(2):115-123. https://doi.org/10.1175/1520- 0477-60.2.115. Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena. 1978. Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Monthly Weather Review 106(3):375-389. https://doi.org/10.1175/1520-0493(1978)106<0375:Comaot>2.0.Co;2. Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard. 2002. Weather radar coverage over the Contiguous United States. Weather and Forecasting 17(4):927-934. https://doi.org/10.1175/1520- 0434(2002)017<0927:WRCOTC>2.0.CO;2. Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott. 2012. Changes in hail and flood risk in high-resolution simulations over Colorado's mountains. Nature Climate Change 2(2):125-131. https://doi.org/10.1038/nclimate1344. Mahoney, K., M. Alexander, J. D. Scott, and J. Barsugli. 2013. High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates. Journal of Climate 26(21):8671-8689. https://doi.org/10.1175/JCLI-D-12-00744.1. Mahoney, K., D. L. Jackson, P. Neiman, M. Hughes, L. Darby, G. Wick, A. White, E. Sukovich, and R. Cifelli. 2016. Understanding the role of atmospheric rivers in heavy precipitation in the Southeast United States. Monthly Weather Review 144(4):1617-1632. https://doi.org/10.1175/mwr-d-15-0279.1. Mahoney, K., J. Lukas, and M. Mueller. 2018. Considering Climate Change in the Estimation of Extreme Precipitation for Dam Safety. Colorado - New Mexico Regional Extreme Precipitation Study, Summary Report Volume VI. Mahoney, K., C. McColl, D. M. Hultstrand, W. D. Kappel, B. McCormick, and G. P. Compo. 2022. Blasts from the past: Reimagining historical storms with model simulations to modernize dam safety and flood risk assessment. Bulletin of the American Meteorological Society 103(2):E266-E280. https://doi.org/10.1175/bams-d-21-0133.1. Maidment, D. R. 1993. Handbook of Hydrology. New York: McGraw-Hill. Manola, I., B. van den Hurk, H. De Moel, and J. C. J. H. Aerts. 2018. Future extreme precipitation intensities based on a historic event. Hydrology and Earth System Sciences 22(7):3777-3788. https://doi.org/10.5194/hess-22-3777-2018. Marinescu, P. J., P. C. Kennedy, M. M. Bell, A. J. Drager, L. D. Grant, S. W. Freeman, and S. C. van den Heever. 2020. Updraft vertical velocity observations and uncertainties in high plains supercells using radiosondes and radars. Monthly Weather Review 148(11):4435-4452. https://doi.org/10.1175/mwr-d- 20-0071.1. Martel, J.-L., A. Mailhot, and F. Brissette. 2020. Global and regional projected changes in 100-yr subdaily, daily, and multiday precipitation extremes estimated from three large ensembles of climate simulations. Journal of Climate 33(3):1089-1103. https://doi.org/10.1175/jcli-d-18-0764.1. Martel, J.-L., F. P. Brissette, P. Lucas-Picher, M. Troin, and R. Arsenault. 2021. Climate change and rainfall intensity–duration–frequency curves: Overview of science and guidelines for adaptation. Journal of Hydrologic Engineering 26(10):03121001. https://doi.org/10.1061/(asce)he.1943- 5584.0002122. Martinaitis, S. M., B. Albright, J. J. Gourley, S. Perfater, T. Meyer, Z. L. Flamig, R. A. Clark, H. Vergara, and M. Klein. 2020. The 23 June 2016 West Virginia flash flood event as observed through two hydrometeorology testbed experiments. Weather and Forecasting 35(5):2099-2126. https://doi.org/10.1175/WAF-D-20-0016.1. Martinaitis, S. M., S. B. Cocks, A. P. Osborne, M. J. Simpson, L. Tang, J. Zhang, and K. W. Howard. 2021. The Historic rainfalls of Hurricanes Harvey and Florence: A perspective from the multi-radar multi-sensor system. Journal of Hydrometeorology 22(3):721-738. https://doi.org/10.1175/jhm-d-20- 0199.1. Martins, E. S., and J. R. Stedinger. 2000. Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data. Water Resources Research 36(3):737-744. https://doi.org/10.1029/1999wr900330. Prepublication copy

References 135 Mays, L. W. 2001. Water Resources Engineering, 1st Edition. New York: John Wiley & Sons, Inc. McCuen, R. H. 1989. Hydrologic Analysis and Design. Englewood Cliffs, NJ: Prentice Hall. McGraw, D. E. 2023. National Inventory of Dams Data Analysis, U.S. Army Corps of Engineers, Risk Management Center. Meadow, A. M., D. B. Ferguson, Z. Guido, A. Horangic, G. Owen, and T. Wall. 2015. Moving toward the deliberate coproduction of climate science knowledge. Weather, Climate, and Society 7(2):179- 191. https://doi.org/10.1175/WCAS-D-14-00050.1. Miami Conservancy District. 1916. Official Plan for the Protection of the District from Flood Damage. https://books.google.com/books/about/Official_Plan_for_the_Protection_of_the.html?id=l5tBAQAAI AAJ. Micovic, Z., M. G. Schaefer, and G. H. Taylor. 2015. Uncertainty analysis for probable maximum precipitation estimates. Journal of Hydrology 521:360-373. https://doi.org/10.1016/j.jhydrol.2014. 12.033. Miglietta, M. M., and R. Rotunno. 2012. Application of theory to simulations of observed cases of orographically forced convective rainfall. Monthly Weather Review 140(9):3039-3053. https://doi.org/10.1175/MWR-D-11-00253.1. Miller, D. L., C. E. Everson, J. A. Mumford, and F. A. Bertle. 1978. Peak Discharge Estimates Used in Refinement of the Big Thompson Storm Analysis. Presented at Conferences on Flash Floods: Hydrometeorological Aspects and Human Aspects, Los Angeles, CA. Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold. 2012. Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Monthly Weather Review 140(2):358-378. https://doi.org/10.1175/mwr-d-11-00126.1. Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill. 2015. Climatology and environmental characteristics of extreme precipitation events in the Southeastern United States. Monthly Weather Review 143(3):718-741. https://doi.org/10.1175/MWR-D-14-00065.1. Morgan, A. E. 1917. The Miami Valley Flood-Protection Work: Fixing Maximum Flood Limits. Morrison, J. E., and J. A. Smith. 2002. Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resources Research 38(12):41-41-41-12. https://doi.org/10.1029/2001WR 000502. Mukhopadhyay, B., and W. D. Kappel. 2017. Probable maximum precipitation. In Handbook of Applied Hydrology, 2nd Edition. V. P. Singh, ed. New York: McGraw-Hill Education. Muller, C. 2013. Impact of convective organization on the response of tropical precipitation extremes to warming. Journal of Climate 26(14):5028-5043. https://doi.org/10.1175/JCLI-D-12-00655.1. Mure-Ravaud, M., A. Dib, M. L. Kavvas, E. Yegorova, and J. Kanney. 2019a. Physically based storm transposition of four Atlantic tropical cyclones. Science of The Total Environment 666:252-273. https://doi.org/10.1016/j.scitotenv.2019.02.141. Mure-Ravaud, M., K. Ishida, M. L. Kavvas, E. Yegorova, and J. Kanney. 2019b. Numerical reconstruction of the intense precipitation and moisture transport fields for six tropical cyclones affecting the eastern United States. Science of the Total Environment 665:1111-1124. https://doi.org/10.1016/j.scitotenv.2019.02.185. Myers, V. A. 1966. Criteria and Limitations for the Transposition of Large Storms Over Various Size Watersheds. Presented at Symposium on Consideration of Some Aspects of Storms and Floods in Water Planning. Myers, V. A. 1967. Meteorological Estimation of Extreme Precipitation for Spillway Design Floods. United States Weather Bureau. https://www.weather.gov/media/owp/oh/hdsc/docs/TM5.pdf. Myhre, G., K. Alterskjær, C. W. Stjern, Ø. Hodnebrog, L. Marelle, B. H. Samset, J. Sillmann, N. Schaller, E. Fischer, M. Schulz, and A. Stohl. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports 9(1):16063. https://doi.org/10.1038/s41598-019-52277-4. Prepublication copy

136 Modernizing Probable Maximum Precipitation Estimation NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press. NASEM. 2019. Framing the Challenge of Urban Flooding in the United States. Washington, DC: The National Academies Press. Nathan, R., and E. Weinmann. 2019. Book 8 - Estimation of Very Rare to Extreme Floods. Commonwealth of Australia: Geoscience Australia. Nathan, R., P. Jordan, M. Scorah, S. Lang, G. Kuczera, M. Schaefer, and E. Weinmann. 2016. Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology 543:706-720. https://doi.org/10.1016/j.jhydrol.2016.10.044. Neelin, J. D., C. Martinez-Villalobos, S. N. Stechmann, F. Ahmed, G. Chen, J. M. Norris, Y.-H. Kuo, and G. Lenderink. 2022. Precipitation extremes and water vapor. Current Climate Change Reports 8(1):17-33. https://doi.org/10.1007/s40641-021-00177-z. Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib. 2016. Assessment and implications of NCEP stage IV quantitative precipitation estimates for product intercomparisons. Weather and Forecasting 31(2):371-394. https://doi.org/10.1175/WAF-D-14-00112.1. Nielsen, E. R., and R. S. Schumacher. 2018. Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. Journal of the Atmospheric Sciences 75(9):2983-3009. https://doi.org/10.1175/JAS-D-17-0385.1. Nielsen, E. R., and R. S. Schumacher. 2020. Observations of extreme short-term precipitation associated with supercells and mesovortices. Monthly Weather Review 148(1):159-182. https://doi.org/10.1175/MWR-D-19-0146.1. Nielsen, E. R., R. S. Schumacher, and A. M. Keclik. 2016. The effect of the Balcones Escarpment on three cases of extreme precipitation in Central Texas. Monthly Weather Review 144(1):119-138. https://doi.org/10.1175/mwr-d-15-0156.1. NOAA (National Oceanic and Atmospheric Administration). 2018. Application of Dynamical Model Approaches Using the NOAA High Resolution Rapid Refresh and Weather Research and Forecast Models. NOAA Earth Systems Research Laboratory. https://hdl.handle.net/11629/co:33504_nr5102p41201831internet.pdf. NRC (National Research Council). 1985. Safety of Dams: Flood and Earthquake Criteria. Washington, DC: The National Academies Press, 294. https://nap.nationalacademies.org/catalog/288/safety-of- dams-flood-and-earthquake-criteria. NRC. 1994. Estimating Bounds on Extreme Precipitation Events: A Brief Assessment. Washington, DC: The National Academies Press. https://nap.nationalacademies.org/catalog/9195/estimating-bounds- on-extreme-precipitation-events-a-brief-assessment. NRC. 2012. Dam and Levee Safety and Community Resilience: A Vision for Future Practice. Washington, DC: The National Academies Press, 172. https://nap.nationalacademies.org/catalog/ 13393/dam-and-levee-safety-and-community-resilience-a-vision-for. NWS (National Weather Service). 2020. Comparison of Probable Maximum Precipitation (PMP) and Atlas 14 Precipitation Frequency (PF). O’Gorman, P. A., and C. J. Muller. 2010. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environmental Research Letters 5(2):025207. https://doi.org/10.1088/1748-9326/5/2/025207. Obeysekera, J., and J. D. Salas. 2014. Quantifying the uncertainty of design floods under nonstationary conditions. Journal of Hydrologic Engineering 19(7):1438-1446. https://doi.org/10.1061/(asce)he. 1943-5584.0000931. Obeysekera, J., and J. D. Salas. 2016. Frequency of recurrent extremes under nonstationarity. Journal of Hydrologic Engineering 21(5):04016005. https://doi.org/10.1061/(asce)he.1943-5584.0001339. O’Connor, J., B. F. Atwater, T. A. Cohn, T. M. Cronin, M. K. Keith, C. G. Smith, and J. R. R. Mason. 2014. Assessing Inundation Hazards to Nuclear Powerplant Sites Using Geologically Extended Histories of Riverine Floods, Tsunamis, and Storm Surges. Reston, VA: 76. https://pubs.usgs.gov/publication/sir20145207. Prepublication copy

References 137 Ødemark, K., M. Müller, and O. E. Tveito. 2021. Changing lateral boundary conditions for probable maximum precipitation studies: A physically consistent approach. Journal of Hydrometeorology 22(1):113-123. https://doi.org/10.1175/jhm-d-20-0070.1. O’Gorman, P. A., and T. Schneider. 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences 106(35):14773-14777. https://doi.org/10.1073/pnas.0907610106. Ohara, N., M. L. Kavvas, S. Kure, Z. Q. Chen, S. Jang, and E. Tan. 2011. Physically based estimation of maximum precipitation over American River Watershed, California. Journal of Hydrologic Engineering 16(4):351-361. https://doi.org/10.1061/(asce)he.1943-5584.0000324. Pall, P., M. R. Allen, and D. A. Stone. 2007. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dynamics 28(4):351-363. https://doi.org/10.1007/ s00382-006-0180-2. Papalexiou, S. M., and D. Koutsoyiannis. 2006. A probabilistic approach to the concept of probable maximum precipitation. Advances in Geosciences 7:51-54. https://doi.org/10.5194/adgeo-7-51-2006. Papalexiou, S. M., and D. Koutsoyiannis. 2013. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resources Research 49(1):187-201. https://doi.org/10.1029/2012WR01 2557. Papalexiou, S. M., A. AghaKouchak, and E. Foufoula-Georgiou. 2018. A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resources Research 54(9):6725-6738. https://doi.org/10.1029/2018WR022732. Parzybok, T. W., and E. M. Tomlinson. 2006. A new system for analyzing precipitation from storms. Hydro Review 25(3):58. Patricola, C. M., and M. F. Wehner. 2018. Anthropogenic influences on major tropical cyclone events. Nature 563(7731):339-346. https://doi.org/10.1038/s41586-018-0673-2. Paulhus, J. L. H., and C. S. Gilman. 1953. Evaluation of probable maximum precipitation. Eos, Transactions American Geophysical Union 34(5):701-708. https://doi.org/10.1029/TR034i005p00701. PCAST (President’s Council of Advisors on Science and Technology). 2023. Extreme Weather Risk in a Changing Climate: Enhancing Prediction and Protecting Communities. https://www.whitehouse.gov/ wp-content/uploads/2023/04/PCAST_Extreme-Weather-Report_April2023.pdf. Pendergrass, A. G. 2018. What precipitation is extreme? Science 360(6393):1072-1073. https://doi.org/ 10.1126/science.aat1871. Pendergrass, A. G., and D. L. Hartmann. 2014. Changes in the distribution of rain frequency and intensity in response to global warming. Journal of Climate 27(22):8372-8383. https://doi.org/10.1175/JCLI- D-14-00183.1. Pérez Bello, A., A. Mailhot, and D. Paquin. 2021. The response of daily and sub-daily extreme precipitations to changes in surface and dew-point temperatures. Journal of Geophysical Research: Atmospheres 126(16):e2021JD034972. https://doi.org/10.1029/2021JD034972. Perica, S., S. Pavlovic, M. St. Laurent, C. Trypaluk, D. Unruh, and O. Wilhite. 2018. NOAA Atlas 14: Precipitation-Frequency Atlas of the United States Volume 10: Northeastern States. https://www.weather.gov/media/owp/hdsc_documents/Atlas14_Volume10.pdf. Petersen, W. A., L. D. Carey, S. A. Rutledge, J. C. Knievel, R. H. Johnson, N. J. Doesken, T. B. McKee, T. Vonder Haar, and J. F. Weaver. 1999. Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bulletin of the American Meteorological Society 80(2):191-216. https://doi.org/10.1175/1520-0477(1999)080<0191:Maroot>2.0.Co;2. Pfahl, S., P. A. O’Gorman, and E. M. Fischer. 2017. Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change 7(6):423-427. https://doi.org/10.1038/nc limate3287. Pontrelli, M. D., G. Bryan, and J. M. Fritsch. 1999. The Madison County, Virginia, flash flood of 27 June 1995. Weather and Forecasting 14(3):384-404. https://doi.org/10.1175/1520-0434(1999)014<0384: Tmcvff>2.0.Co;2. Prepublication copy

138 Modernizing Probable Maximum Precipitation Estimation Prasad, R., L. F. Hibler, A. F. Coleman, and D. L. Ward. 2011. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America. Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7046/index.html. Prein, A. F., W. Langhans, G. Fosser, A. Ferrone, N. Ban, K. Goergen, M. Keller, M. Tölle, O. Gutjahr, F. Feser, E. Brisson, S. Kollet, J. Schmidli, N. P. M. van Lipzig, and R. Leung. 2015. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics 53(2):323-361. https://doi.org/10.1002/2014RG000475. Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark. 2017a. Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dynamics 55:95-110. https://doi.org/10.1007/s00382-017-3993-2. Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark. 2017b. Increased rainfall volume from future convective storms in the US. Nature Climate Change 7(12):880-884. https://doi.org/10.1038/s41558-017-0007-7. Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland. 2017c. The future intensification of hourly precipitation extremes. Nature Climate Change 7(1):48-52. https://doi.org/ 10.1038/nclimate3168. Qin, P., Z. Xie, J. Zou, S. Liu, and S. Chen. 2021. Future precipitation extremes in China under climate change and their physical quantification based on a regional climate model and CMIP5 model simulations. Advances in Atmospheric Sciences 38(3):460-479. https://doi.org/10.1007/s00376-020- 0141-4. Qin, H., S. A. Klein, H.-Y. Ma, K. Van Weverberg, Z. Feng, X. Chen, M. Best, H. Hu, L. R. Leung, C. J. Morcrette, H. Rumbold, and S. Webster. 2023. Summertime near-surface temperature biases over the Central United States in convection-permitting simulations. Journal of Geophysical Research: Atmospheres 128(22):e2023JD038624. https://doi.org/10.1029/2023JD038624. Rahimi, S., W. Krantz, Y.-H. Lin, B. Bass, N. Goldenson, A. Hall, Z. J. Lebo, and J. Norris. 2022. Evaluation of a reanalysis-driven configuration of WRF4 over the Western United States from 1980 to 2020. Journal of Geophysical Research: Atmospheres 127(4):e2021JD035699. https://doi.org/10.1029/2021JD035699. Rai, P. K., C. Sarangi, N. Arun, S. N. Kuiry, and L. R. Leung. 2023. The Dichotomy of wet and dry trends over India by aerosol indirect effects in CMIP5 models. Earth’s Future 11(8):e2022EF003266. https://doi.org/10.1029/2022EF003266. Ralph, F. M., and M. D. Dettinger. 2011. Storms, floods, and the science of atmospheric rivers. Eos, Transactions American Geophysical Union 92(32):265-266. https://doi.org/10.1029/2011eo320001. Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White. 2006. Flooding on California's Russian River: Role of atmospheric rivers. Geophysical Research Letters 33(13). https://doi.org/10.1029/2006gl026689. Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu. 2017. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics 55(1):383-408. https://doi.org/10.1007/s00382-017-4000-7. Rasmussen, R. M., F. Chen, C. H. Liu, K. Ikeda, A. Prein, J. Kim, T. Schneider, A. Dai, D. Gochis, A. Dugger, Y. Zhang, A. Jaye, J. Dudhia, C. He, M. Harrold, L. Xue, S. Chen, A. Newman, E. Dougherty, R. Abolafia-Rosenzweig, N. D. Lybarger, R. Viger, D. Lesmes, K. Skalak, J. Brakebill, D. Cline, K. Dunne, K. Rasmussen, and G. Miguez-Macho. 2023. CONUS404: The NCAR–USGS 4- km long-term regional hydroclimate reanalysis over the CONUS. Bulletin of the American Meteorological Society 104(8):E1382-E1408. https://doi.org/10.1175/bams-d-21-0326.1. Rastogi, D., S. C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, N. Singh, and V. G. Anantharaj. 2017. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama‐Coosa‐Tallapoosa River Basin. Journal of Geophysical Research: Atmospheres 122(9):4808-4828. https://doi.org/10.1002/2016jd026001. Prepublication copy

References 139 Reed, K. A., M. F. Wehner, and C. M. Zarzycki. 2022. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nature Communications 13(1):1905. https://doi.org/ 10.1038/s41467-022-29379-1. Reed, K. A., A. M. Stansfield, W. C. Hsu, G. J. Kooperman, A. A. Akinsanola, W. M. Hannah, A. G. Pendergrass, and B. Medeiros. 2023. Evaluating the simulation of CONUS precipitation by storm type in E3SM. Geophysical Research Letters 50(12):e2022GL102409. https://doi.org/10.1029/ 2022gl102409. Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe. 2016. CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. Bulletin of the American Meteorological Society 97(10):1831-1846. https://doi.org/10.1175/BAMS-D-14-00213.1. Rhea, J. O. 1978. Orographic Precipitation Model for Hydrometeorological Use. Atmospheric Science Paper No. 287. Fort Collins, CO. http://hdl.handle.net/10217/169958. Riedel, J. T., and L. C. Schreiner. 1980. Comparison of Generalized Estimates of Probable Maximum Precipitation with Greatest Observed Rainfalls. National Weather Service. https://www.weather.gov/media/owp/oh/hdsc/docs/TR25.pdf. Riedel, J. T., J. F. Appleby, and R. W. Schloemer. 1956. Hydrometeorological Report no. 53, Seasonal Variation the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24 and 48 Hours. National Weather Service. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR33.pdf. Risser, M. D., and M. F. Wehner. 2017. Attributable human‐induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophysical Research Letters 44(24):12,457-412,464. https://doi.org/10.1002/2017gl075888. Risser, M. D., C. J. Paciorek, T. A. O’Brien, M. F. Wehner, and W. D. Collins. 2019a. Detected changes in precipitation extremes at their native scales derived from in situ measurements. Journal of Climate 32(23):8087-8109. https://doi.org/10.1175/jcli-d-19-0077.1. Risser, M. D., C. J. Paciorek, M. F. Wehner, T. A. O’Brien, and W. D. Collins. 2019b. A probabilistic gridded product for daily precipitation extremes over the United States. Climate Dynamics 53(5):2517-2538. https://doi.org/10.1007/s00382-019-04636-0. Risser, M. D., W. D. Collins, M. F. Wehner, T. A. O’Brien, H. Huang, and P. A. Ullrich. 2024. Anthropogenic aerosols mask increases in US rainfall by greenhouse gases. Nature Communications 15(1):1318. https://doi.org/10.1038/s41467-024-45504-8. Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur. 2005. Rainfall estimation with a polarimetric prototype of WSR-88D. Journal of Applied Meteorology 44(4):502-515. https://doi.org/10.1175/ JAM2213.1. Ryzhkov, A. V., J. Snyder, J. T. Carlin, A. Khain, and M. Pinsky. 2020. What polarimetric weather radars offer to cloud modelers: Forward radar operators and microphysical/thermodynamic retrievals. Atmosphere 11(4):362. https://doi.org/10.3390/atmos11040362. Ryzhkov, A., P. Zhang, P. Bukovčić, J. Zhang, and S. Cocks. 2022. Polarimetric radar quantitative precipitation estimation. Remote Sensing 14(7):1695. https://doi.org/10.3390/rs14071695. Sakaguchi, K., L. R. Leung, C. Zhao, Q. Yang, J. Lu, S. Hagos, S. A. Rauscher, L. Dong, T. D. Ringler, and P. H. Lauritzen. 2015. Exploring a multiresolution approach using AMIP simulations. Journal of Climate 28(14):5549-5574. https://doi.org/10.1175/JCLI-D-14-00729.1. Sakaguchi, K., J. Lu, L. R. Leung, C. Zhao, Y. Li, and S. Hagos. 2016. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations. Journal of Advances in Modeling Earth Systems 8(4):1786-1805. https://doi.org/10.1002/2016MS000 743. Salas, J. D., G. Gavilan, F. R. Salas, P. Y. Julien, and J. Abdullah. 2014. Uncertainty of the PMP and PMF. In Handbook of Engineering Hydrology. S. Eslamian, ed. Boca Raton: Taylor and Francis. Salas, J. D., M. L. Anderson, S. M. Papalexiou, and F. Frances. 2020. PMP and climate variability and change: A review. Journal of Hydrologic Engineering 25(12):03120002. https://doi.org/10.1061/ (asce)he.1943-5584.0002003. Prepublication copy

140 Modernizing Probable Maximum Precipitation Estimation Saltikoff, E., K. Friedrich, J. Soderholm, K. Lengfeld, B. Nelson, A. Becker, R. Hollmann, B. Urban, M. Heistermann, and C. Tassone. 2019. An overview of using weather radar for climatological studies: Successes, challenges, and potential. Bulletin of the American Meteorological Society 100(9):1739- 1752. https://doi.org/10.1175/bams-d-18-0166.1. Sankovich, V., R. J. Caldwell, and K. Mahoney. 2012. Green Mountain Dam Climate Change, Dam Safety Technology Development Program Report DSO-12-03. https://www.usbr.gov/ssle/damsafety/TechDev/DSOTechDev/DSO-12-03.pdf. Sasaki, R., and D. Margo. 2021. Prado Dam Probable Maximum Flood. RMC-TR-2021-03. Satoh, M., B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Düben. 2019. Global cloud-resolving models. Current Climate Change Reports 5(3):172-184. https://doi.org/10.1007/s40 641-019-00131-0. Schaefer, M. G. 1994. PMP and Other Extreme Storms: Concepts and Probabilities. In Proc. Association State Dam Safety Officials National Conference, Baltimore, Maryland. Schaefer, M. G. 2023. Stakeholders Needs: Perspectives from PMP Users, Regulators, and PMP Data Developers. Presentation to the committee, May 3, 2023. Schär, C., C. Frei, D. Lüthi, and H. C. Davies. 1996. Surrogate climate-change scenarios for regional climate models. Geophysical Research Letters 23(6):669-672. https://doi.org/10.1029/96GL00265. Scheff, J., and J. C. Burroughs. 2023. Diverging trends in US summer dewpoint since 1948. International Journal of Climatology 43(9):4183-4195. https://doi.org/10.1002/joc.8081. Schlef, K. E., K. E. Kunkel, C. Brown, Y. Demissie, D. P. Lettenmaier, A. Wagner, M. S. Wigmosta, T. R. Karl, D. R. Easterling, K. J. Wang, B. François, and E. Yan. 2023. Incorporating non-stationarity from climate change into rainfall frequency and intensity-duration-frequency (IDF) curves. Journal of Hydrology 616:128757. https://doi.org/10.1016/j.jhydrol.2022.128757. Schoolmeesters, R. 2023. Lesson Learned: The Hazard Classification of a Dam Can Change Over Time (Hazard Creep). https://damfailures.org/lessons-learned/the-hazard-classification-of-a-dam-can- change-over-time-hazard-creep/. Schreiner, L. C., and J. T. Riedel. 1978. Hydrometeorological Report No. 51, Probable Maximum Precipitation Estimates, United States East of the 105th Meridian. National Weather Service. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR51.pdf. Schumacher, R. S. 2017. Heavy rainfall and flash flooding. Oxford Research Encyclopedia of Natural Hazard Science. https://doi.org/10.1093/acrefore/9780199389407.013.132. Schumacher, R. S., and R. H. Johnson. 2005. Organization and environmental properties of extreme-rain- producing mesoscale convective systems. Monthly Weather Review 133(4):961-976. https://doi.org/ 10.1175/mwr2899.1. Schumacher, R. S., and R. H. Johnson. 2006. Characteristics of U.S. extreme rain events during 1999– 2003. Weather and Forecasting 21(1):69-85. https://doi.org/10.1175/WAF900.1. Schumacher, R. S., and J. M. Peters. 2017. Near-surface thermodynamic sensitivities in simulated extreme-rain-producing mesoscale convective systems. Monthly Weather Review 145(6):2177-2200. https://doi.org/10.1175/MWR-D-16-0255.1. Schumacher, R. S., and K. L. Rasmussen. 2020. The formation, character and changing nature of mesoscale convective systems. Nature Reviews Earth & Environment 1(6):300-314. https://doi.org/10.1038/s43017-020-0057-7. Scott Eaton, L., B. A. Morgan, R. Craig Kochel, and A. D. Howard. 2003. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia. Geomorphology 56(1):139-154. https://doi.org/10.1016/S0169-555X(03)00075-8. Serinaldi, F., and C. G. Kilsby. 2014. Rainfall extremes: Toward reconciliation after the battle of distributions. Water Resources Research 50(1):336-352. https://doi.org/10.1002/2013WR014211. Shands, A. 1947. Maximum observed rainfalls in the United States for durations to 72 hours and areas to 100,000 square miles. Bulletin of the American Meteorological Society 28(5):233-236. Prepublication copy

References 141 Sharif, H. O., A. A. Hassan, S. Bin-Shafique, H. Xie, and J. Zeitler. 2010. Hydrologic modeling of an extreme flood in the Guadalupe River in Texas. JAWRA Journal of the American Water Resources Association 46(5):881-891. https://doi.org/10.1111/j.1752-1688.2010.00459.x. Showalter, A. K. 1944a. An approach to quantitative forecasting of precipitation. Bulletin of the American Meteorological Society 25(4):137-142. https://doi.org/10.1175/1520-0477-25.4.137. Showalter, A. K. 1944b. An approach to quantitative forecasting of precipitation (II): 2. Formulas for quantitative rainfall forecasting. Bulletin of the American Meteorological Society 25(7):276-288. https://doi.org/10.1175/1520-0477-25.7.276. Showalter, A. K., and Solot, S.B. 1942. Computation of maximum possible precipitation. Eos, Transactions American Geophysical Union 23(2):258-274. https://doi.org/10.1029/TR023i002p00 258. Shuttleworth, W. J. 2012. Terrestrial Hydrometeorology. Oxford: Wiley. Siler, N., and G. Roe. 2014. How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophysical Research Letters 41(7):2606-2613. https://doi.org/10.1002/ 2013GL059095. Smith, H., G. S. Karlovits, D. Moses, and A. Nelson. 2015. Herbert Hoover Dike hydrologic risk assessment. Smith, H., R. Sasaki, G. S. Karlovits, B. M. Hall, and A. Parola. 2018. Hydrologic Hazard Curve Analysis for Whittier Narrows Dam. U.S. Army Corps of Engineers. https://www.iwrlibrary.us/#/document/a3cfc93e-21c0-4206-ce18-c6c6cef36b51. Smith, J. A. 1993. Precipitation. In Handbook of Hydrology. D. R. Maidment, ed. New York: McGraw- Hill. Smith, J. A., M. L. Baeck, M. Steiner, and A. J. Miller. 1996. Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan Storm of June 27, 1995. Water Resources Research 32(10):3099-3113. https://doi.org/10.1029/96wr02107. Smith, J. A., M. L. Baeck, J. E. Morrison, and P. Sturdevant-Rees. 2000. Catastrophic rainfall and flooding in Texas. Journal of Hydrometeorology 1(1):5-25. https://doi.org/10.1175/1525- 7541(2000)001<0005:Crafit>2.0.Co;2. Smith, J. A., M. L. Baeck, Y. Zhang, and C. A. Doswell. 2001. Extreme rainfall and flooding from supercell thunderstorms. Journal of Hydrometeorology 2(5):469-489. https://doi.org/10.1175/1525- 7541(2001)002<0469:Eraffs>2.0.Co;2. Smith, J. A., P. Sturdevant‐Rees, M. L. Baeck, and M. C. Larsen. 2005. Tropical cyclones and the flood hydrology of Puerto Rico. Water Resources Research 41(6). https://doi.org/10.1029/2004wr003530. Smith, J. A., A. A. Cox, M. L. Baeck, L. Yang, and P. Bates. 2018. Strange floods: The upper tail of flood peaks in the United States. Water Resources Research 54(9):6510-6542. https://doi.org/10.1029/2018wr022539. Smith, J. A., M. L. Baeck, L. Yang, J. Signell, E. Morin, and D. C. Goodrich. 2019. The paroxysmal precipitation of the desert: Flash floods in the Southwestern United States. Water Resources Research 55(12):10218-10247. https://doi.org/10.1029/2019wr025480. Smith, J. A., M. L. Baeck, Y. Su, M. Liu, and G. A. Vecchi. 2023. Strange storms: Rainfall extremes from the remnants of Hurricane Ida (2021) in the Northeastern US. Water Resources Research 59(3):e2022WR033934. https://doi.org/10.1029/2022wr033934. Smith, J. A., M. L. Baeck, A. J. Miller, and E. L. Claggett. 2024. Rainfall frequency analysis based on long-term high-resolution radar rainfall fields: Spatial heterogeneities and temporal nonstationarities. Water Resources Research 60(3):e2023WR035640. https://doi.org/10.1029/2023WR035640. State of Colorado. 2020. Rules and Regulations for Dam Safety and Dam Construction. 2-CCR 402-1. Rules and Regulations for Dam Safety and Dam Construction. 2-CCR 402-1. Steiner, M., J. A. Smith, S. J. Burges, C. V. Alonso, and R. W. Darden. 1999. Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resources Research 35(8):2487-2503. https://doi.org/10.1029/1999WR900142. Prepublication copy

142 Modernizing Probable Maximum Precipitation Estimation Stephens, G. L., T. L’Ecuyer, R. Forbes, A. Gettelmen, J.-C. Golaz, A. Bodas-Salcedo, K. Suzuki, P. Gabriel, and J. Haynes. 2010. Dreary state of precipitation in global models. Journal of Geophysical Research: Atmospheres 115(D24). https://doi.org/10.1029/2010JD014532. Stevens, B., M. Satoh, L. Auger, J. Biercamp, C. S. Bretherton, X. Chen, P. Düben, F. Judt, M. Khairoutdinov, D. Klocke, C. Kodama, L. Kornblueh, S.-J. Lin, P. Neumann, W. M. Putman, N. Röber, R. Shibuya, B. Vanniere, P. L. Vidale, N. Wedi, and L. Zhou. 2019. DYAMOND: the DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science 6(1). https://doi.org/10.1186/s40645-019-0304-z. Stevenson, S. N., and R. S. Schumacher. 2014. A 10-year survey of extreme rainfall events in the Central and Eastern United States using gridded multisensor precipitation analyses. Monthly Weather Review 142(9):3147-3162. https://doi.org/10.1175/mwr-d-13-00345.1. Stratz, S. A., and F. Hossain. 2014. Probable maximum precipitation in a changing climate: Implications for dam design. Journal of Hydrologic Engineering 19(12):06014006. https://doi.org/10.1061/(asce) he.1943-5584.0001021. Su, Y., and J. A. Smith. 2021. An atmospheric water balance perspective on extreme rainfall potential for the Contiguous US. Water Resources Research 57(4):e2020WR028387. https://doi.org/10.1029/2020 wr028387. Sun, Q., F. Zwiers, X. Zhang, and G. Li. 2020. A comparison of intra-annual and long-term trend scaling of extreme precipitation with temperature in a large-ensemble regional climate simulation. Journal of Climate 33(21):9233-9245. https://doi.org/10.1175/JCLI-D-19-0920.1. Sun, Q., X. Zhang, F. Zwiers, S. Westra, and L. V. Alexander. 2021. A global, continental, and regional analysis of changes in extreme precipitation. Journal of Climate 34(1):243-258. https://doi.org/10./ 1175/jcli-d-19-0892.1. Swain, R. E., J. F. J. England, K. L. Bullard, and D. A. Raff. 2006. Guidelines for Evaluating Hydrologic Hazards. U.S. Bureau of Reclamation. Tarouilly, E., F. Cannon, and D. P. Lettenmaier. 2023. Improving confidence in model-based probable maximum precipitation: How important is model uncertainty in storm reconstruction and maximization? Journal of Hydrometeorology 24(2):257-267. https://doi.org/10.1175/JHM-D-22-0044.1. Taylor, M., P. M. Caldwell, L. Bertagna, C. Clevenger, A. Donahue, J. Foucar, O. Guba, B. Hillman, N. Keen, and J. Krishna. 2023. The Simple Cloud-Resolving E3SM Atmosphere Model Running on the Frontier Exascale System. Presented at Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Tomlinson, E. M., Kappel, W.D., Parzybok, T., Hulstrand, D. and Muhlstein, G. 2008. Site-Specific Probable Maximum Precipitation (PMP) Study for Nebraska. Applied Weather Associates. https://dnr.nebraska.gov/sites/dnr.nebraska.gov/files/doc/dam-safety/resources/Nebraska-PMP- Study.pdf. Toride, K., D. L. Cawthorne, K. Ishida, M. L. Kavvas, and M. L. Anderson. 2018. Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of the Total Environment 626:244-254. https://doi.org/10.1016/j.scitotenv.2018.01.004. Toride, K., Y. Iseri, M. D. Warner, C. D. Frans, A. M. Duren, J. F. England, and M. L. Kavvas. 2019. Model-based probable maximum precipitation estimation: How to estimate the worst-case scenario induced by atmospheric rivers? Journal of Hydrometeorology 20(12):2383-2400. https://doi.org/10. 1175/JHM-D-19-0039.1. Tradowsky, J. S., S. Y. Philip, F. Kreienkamp, S. F. Kew, P. Lorenz, J. Arrighi, T. Bettmann, S. Caluwaerts, S. C. Chan, L. De Cruz, H. de Vries, N. Demuth, A. Ferrone, E. M. Fischer, H. J. Fowler, K. Goergen, D. Heinrich, Y. Henrichs, F. Kaspar, G. Lenderink, E. Nilson, F. E. L. Otto, F. Ragone, S. I. Seneviratne, R. K. Singh, A. Skålevåg, P. Termonia, L. Thalheimer, M. van Aalst, J. Van den Bergh, H. Van de Vyver, S. Vannitsem, G. J. van Oldenborgh, B. Van Schaeybroeck, R. Vautard, D. Vonk, and N. Wanders. 2023. Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021. Climatic Change 176(7):90. https://doi.org/10.1007/s10584-023- 03502-7. Prepublication copy

References 143 Trenberth, K. E. 1999. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42(1):327-339. https://doi.org/10.1023/a:1005488920935. Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons. 2003. The changing character of precipitation. Bulletin of the American Meteorological Society 84(9):1205-1218. https://doi.org/ 10.1175/BAMS-84-9-1205. Trinh, T., A. Diaz, Y. Iseri, E. Snider, M. L. Anderson, K. J. Carr, and M. L. Kavvas. 2022a. A numerical coupled atmospheric–hydrologic modeling system for probable maximum flood estimation with application to California's southern Sierra Nevada foothills watersheds. Journal of Flood Risk Management 15(3):e12809. https://doi.org/10.1111/jfr3.12809. Trinh, T., Y. Iseri, A. J. Diaz, E. D. Snider, M. Anderson, and M. L. Kavvas. 2022b. Maximization of historical storm events over seven watersheds in central/southern Sierra Nevada by means of Atmospheric Boundary Condition shifting and relative humidity optimization methods. Journal of Hydrologic Engineering 27(3). https://doi.org/10.1061/(ASCE)HE.1943-5584.0002159. TVA (Tennessee Valley Authority). 2018. Topical Report TVA-NPG-AWA16-A, TVA Overall Basin Probable Maximum Precipitation and Local Intense Precipitation Analysis, Calculation CDQ0000002016000041, Revision 1, Appendix K. https://www.nrc.gov/docs/ML1915/ML19155 A045.pdf. Ullrich, P. A., C. M. Zarzycki, E. E. McClenny, M. C. Pinheiro, A. M. Stansfield, and K. A. Reed. 2021. TempestExtremes v2.1: A community framework for feature detection, tracking, and analysis in large datasets. Geoscientific Model Development 14(8):5023-5048. https://doi.org/10.5194/gmd-14-5023- 2021. USACE (U.S. Army Corps of Engineers). 1945. Storm Rainfall in the United States. https://usace.cont entdm.oclc.org/digital/collection/p266001coll1/id/7347/. USACE. 1973. Sheets for Insertion in the Report Entitled “Storm Rainfall in the United States”. https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/7347. USACE. 1991. Inflow Design Floods for Dams and Reservoirs. https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1110-8- 2_FR.pdf. USACE. 2014. Safety of Dams—Policy and Procedures. https://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/er_1110-2- 1156.pdf. USACE. 2016. Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies, Designs, and Projects. https://www.wbdg.org/FFC/ARMYCOE/COEECB/ARCHIVES/ecb_ 2016_25.pdf. USACE. 2019a. Best Practices—Chapter B-1 Hydrologic Hazard Analysis. https://publibrary.planusace. us/document/208cbbde-8e08-429e-9897-190f94da53a5. USACE. 2019b. Best Practices—Chapter D-3 Flood Overtopping Failure of Dams and Levees. https://publibrary.planusace.us/#/document/c5f3c542-0801-4244-892c-c73fc7a6252d. USACE. 2020. Developing Paleoflood Information for Flood Frequency Analysis. ETL 1100-2-4. https://www.publications.usace.army.mil/Portals/76/ETL%201100-2-4.pdf. USACE. 2023. Hydrologic Hazard Analysis. https://www.iwrlibrary.us/#/series/DLS104%20Best%20 Practices%20in%20Dam%20and%20Levee%20Safety%20RA. USBR (United States Bureau of Reclamation). 2013. Appurtenant Structures for Dams (Spillways and Outlet Works) Chapter 2: Hydrologic Considerations. https://www.usbr.gov/tsc/techreferences/ designstandards-datacollectionguides/finalds-pdfs/DS14-2.pdf. USBR. 2022. Public Protection Guidelines: A Risk Informed Framework to Support Dam Safety Decision Making. https://www.usbr.gov/damsafety/documents/ReclamationublicProtectionGuidelines2022.pdf. USNRC (U.S. Nuclear Regulatory Commission). 1977. Design Basis Floods for Nuclear Power Plants, Regulatory Guide. https://www.nrc.gov/docs/ML0037/ML003740388.pdf. USWB (United States Weather Bureau). 1939. Hydrometeorological Report No. 10, Maximum Possible Rainfall over the Arkansas River Basin above Caddoa, Colorado (with Supplement). Prepublication copy

144 Modernizing Probable Maximum Precipitation Estimation USWB. 1943a. Hydrometeorological Report No. 2, Maximum Possible Precipitation over the Ohio River Basin above Pittsburgh, Pennsylvania. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR2.pdf. USWB. 1943b. Hydrometeorological Report no. 3, Maximum Possible Precipitation over the Sacramento Basin of California. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR3.pdf. USWB. 1945. Hydrometeorological Report No. 21B, Revised Report on Maximum Probable Precipitation, Los Angeles Area, California. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR21B.pdf. USWB. 1947a. Hydrometeorological Report No. 5, Thunderstorm Rainfall. https://www.weather.gov/ media/owp/oh/hdsc/docs/HMR5.pdf. USWB. 1947b. Hydrometeorological Report No. 23, Generalized Estimates of Maximum Possible Precipitation Over the United States East of the 105th Meridian for Areas from 10, 200 and 500 Square Miles. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR23.pdf. USWB. 1947c. Hydrometeorological Report No. 24, Maximum Possible Precipitation, San Joaquin Basin, California. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR24.pdf. USWB. 1960. Generalized Estimates of Probable Maximum Precipitation for the United States West of the 105th Meridian for Areas to 400 Square Miles and Durations to 24 Hours. https://www.weather. gov/media/owp/oh/hdsc/docs/TP38.pdf. USWB. 1961. Hydrometeorological Report No. 36, Interim Report—Probable Maximum Precipitation in California. U.S. Department of Commerce, Weather Bureau, Washington, D.C. https://www.weather. gov/media/owp/oh/hdsc/docs/HMR36.pdf. USWB. 1966. Hydrometeorological Report No. 43, Probable Maximum Precipitation, Northwest States. van der Wiel, K., S. B. Kapnick, G. A. Vecchi, W. F. Cooke, T. L. Delworth, L. Jia, H. Murakami, S. Underwood, and F. Zeng. 2016. The resolution dependence of Contiguous U.S. precipitation extremes in response to CO2 forcing. Journal of Climate 29(22):7991-8012. https://doi.org/10.1175/JCLI-D-16- 0307.1. van Oldenborgh, G. J., K. van der Wiel, A. Sebastian, R. Singh, J. Arrighi, F. Otto, K. Haustein, S. Li, G. Vecchi, and H. Cullen. 2017. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters 12(12):124009. https://doi.org/10.1088/1748-9326/aa9ef2. Vergara-Temprado, J., N. Ban, and C. Schär. 2021. Extreme sub-hourly precipitation intensities scale close to the Clausius-Clapeyron rate over Europe. Geophysical Research Letters 48(3):e2020GL089 506. https://doi.org/10.1029/2020GL089506. Viessman, W., and G. L. Lewis. 2002. Introduction to Hydrology, 5th Edition. Pearson. Viessman, W., G. L. Lewis, and J. W. Knapp. 1989. Introduction to Hydrology, 3rd Edition. New York: Harper & Row. Villarini, G., and J. A. Smith. 2010. Flood peak distributions for the eastern United States. Water Resources Research 46(6). https://doi.org/10.1029/2009wr008395. Vimal, S., and V. P. Singh. 2022. Rediscovering Robert E. Horton’s lake evaporation formulae: New directions for evaporation physics. Hydrology and Earth Systems Science 26(2):445-467. https://doi.org/10.5194/hess-26-445-2022. Visser, J. B., C. Wasko, A. Sharma, and R. Nathan. 2021. Eliminating the “Hook” in precipitation– temperature scaling. Journal of Climate 34(23):9535-9549. https://doi.org/10.1175/JCLI-D-21- 0292.1. Visser, J. B., S. Kim, C. Wasko, R. Nathan, and A. Sharma. 2022. The impact of climate change on operational probable maximum precipitation estimates. Water Resources Research 58(11):e2022WR032247. https://doi.org/10.1029/2022wr032247. Vogel, R. M., N. C. Matalas, J. F. England, and A. Castellarin. 2007. An assessment of exceedance probabilities of envelope curves. Water Resources Research 43(7). https://doi.org/10.1029/2006wr 005586. Wang, Q. J. 1990. Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. Journal of Hydrology 120(1):103-114. https://doi.org/10.1016/0022- 1694(90)90144-M. Prepublication copy

References 145 Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, Michael G. Bosilovich, and D. T. Parr. 2017. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change 7(4):268-274. https://doi.org/10.1038/nclimate3239. Wasko, C., W. T. Lu, and R. Mehrotra. 2018. Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environmental Research Letters 13(7):074031. Wasko, C., S. Westra, R. Nathan, A. Pepler, T. H. Raupach, A. Dowdy, F. Johnson, M. Ho, K. L. McInnes, D. Jakob, J. Evans, G. Villarini, and H. J. Fowler. 2024. A systematic review of climate change science relevant to Australian design flood estimation. Hydrology and Earth Systems Science 28(5):1251-1285. https://doi.org/10.5194/hess-28-1251-2024. Watt-Meyer, O., N. D. Brenowitz, S. K. Clark, B. Henn, A. Kwa, J. McGibbon, W. A. Perkins, L. Harris, and C. S. Bretherton. 2024. Neural network parameterization of subgrid-scale physics from a realistic geography global storm-resolving simulation. Journal of Advances in Modeling Earth Systems 16(2):e2023MS003668. https://doi.org/10.1029/2023MS003668. Weaver, R. L. 1962. Hydrometeorological Report 37: Meteorology of Hydrologically Critical Storms in California. https://www.weather.gov/media/owp/oh/hdsc/docs/HMR37.pdf. Webb, R. H., J. E. O’Connor, and V. R. Baker. 1988. Paleohydrologic reconstruction of flood frequency on the Escalante River, south-central Utah. In Flood Geomorphology. R. C. K. V.R. Baker, P. C. Patton, eds. New York: John Wiley. Westra, S., and S. A. Sisson. 2011. Detection of non-stationarity in precipitation extremes using a max- stable process model. Journal of Hydrology 406(1):119-128. https://doi.org/10.1016/j.jhydrol.2011.06.014. Westra, S., L. V. Alexander, and F. W. Zwiers. 2013. Global increasing trends in annual maximum daily precipitation. Journal of Climate 26(11):3904-3918. https://doi.org/10.1175/jcli-d-12-00502.1. Westra, S., H. J. Fowler, J. P. Evans, L. V. Alexander, P. Berg, F. Johnson, E. J. Kendon, G. Lenderink, and N. M. Roberts. 2014. Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics 52(3):522-555. https://doi.org/10.1002/2014rg000464. Wiesner, C. J. 1970. Hydrometeorology. London: Chapman and Hall. Wilson, A. M., and A. P. Barros. 2014. An investigation of warm rainfall microphysics in the Southern Appalachians: Orographic enhancement via low-level seeder–feeder interactions. Journal of the Atmospheric Sciences 71(5):1783-1805. https://doi.org/10.1175/JAS-D-13-0228.1. WMO (World Meteorological Organization). 1973. Manual for Estimation of Probable Maximum Precipitation, First Edition. Geneva, Switzerland: World Meteorological Organization. WMO. 1986. Manual for Estimation of Probable Maximum Precipitation, Second Edition. Geneva, Switzerland: World Meteorological Organization. WMO. 2009. Manual on Estimation of Probable Maximum Precipitation, 3rd Edition. Geneva, Switzerland: World Meteorological Organization. Wood, R. R., and R. Ludwig. 2020. Analyzing internal variability and forced response of subdaily and daily extreme precipitation over Europe. Geophysical Research Letters 47(17):e2020GL089300. https://doi.org/10.1029/2020GL089300. Wright, D. B., and K. D. Holman. 2019. Rescaling transposed extreme rainfall within a heterogeneous region. Journal of Hydrologic Engineering 24(6):06019001. https://doi.org/10.1061/(ASCE)HE. 1943-5584.0001781. Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck. 2013. Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. Journal of Hydrology 488:150-165. https://doi.org/10.1016/j.jhydrol.2013.03.003. Wright, D. B., J. A. Smith, and M. L. Baeck. 2014. Flood frequency analysis using radar rainfall fields and stochastic storm transposition. Water Resources Research 50(2):1592-1615. https://doi.org/10. 1002/2013wr014224. Prepublication copy

146 Modernizing Probable Maximum Precipitation Estimation Wright, D. B., C. D. Bosma, and T. Lopez‐Cantu. 2019. U.S. Hydrologic design standards insufficient due to large increases in frequency of rainfall extremes. Geophysical Research Letters 46(14):8144- 8153. https://doi.org/10.1029/2019gl083235. Wright, D. B., G. Yu, and J. F. England. 2020. Six decades of rainfall and flood frequency analysis using stochastic storm transposition: Review, progress, and prospects. Journal of Hydrology 585:124816. https://doi.org/10.1016/j.jhydrol.2020.124816. Yang, L., and J. Smith. 2018. Sensitivity of extreme rainfall to atmospheric moisture content in the arid/semiarid Southwestern United States: Implications for probable maximum precipitation estimates. Journal of Geophysical Research: Atmospheres 123(3):1638-1656. https://doi.org/ 10.1002/2017jd027850. Yang, L., J. Smith, M. Liu, and M. L. Baeck. 2019. Extreme rainfall from Hurricane Harvey (2017): Empirical intercomparisons of WRF simulations and polarimetric radar fields. Atmospheric Research 223:114-131. https://doi.org/10.1016/j.atmosres.2019.03.004. Yang, Y., L. Ren, M. Wu, H. Wang, F. Song, L. R. Leung, X. Hao, J. Li, L. Chen, H. Li, L. Zeng, Y. Zhou, P. Wang, H. Liao, J. Wang, and Z.-Q. Zhou. 2022. Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature Communications 13(1):959. https://doi.org/10.1038/s41467-022-28537-9. Yevjevich, V. 1968. Misconceptions in hydrology and their consequences. Water Resources Research 4(2):225-232. https://doi.org/10.1029/WR004i002p00225. Yu, G., D. B. Wright, and K. D. Holman. 2021. Connecting hydrometeorological processes to low‐ probability floods in the mountainous Colorado Front Range. Water Resources Research 57(4):1-20. https://doi.org/10.1029/2021wr029768. Yuval, J., and P. A. O’Gorman. 2020. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nature Communications 11(1):3295. https://doi.org/ 10.1038/s41467-020-17142-3. Zeder, J., and E. M. Fischer. 2020. Observed extreme precipitation trends and scaling in Central Europe. Weather and Climate Extremes 29:100266. https://doi.org/10.1016/j.wace.2020.100266. Zhang, J., K. Howard, C. Langston, B. Kaney, Y. Qi, L. Tang, H. Grams, Y. Wang, S. Cocks, S. Martinaitis, A. Arthur, K. Cooper, J. Brogden, and D. Kitzmiller. 2016. Multi-radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bulletin of the American Meteorological Society 97(4):621-638. https://doi.org/10.1175/BAMS-D-14-00174.1. Zhang, L., and B. A. Shaby. 2022. Uniqueness and global optimality of the maximum likelihood estimator for the generalized extreme value distribution. Biometrika 109(3):853-864. https://doi.org/10.1093/biomet/asab043. Zhang, Q., R. Li, J. Sun, F. Lu, J. Xu, and F. Zhang. 2023. A review of research on the record-breaking precipitation event in Henan Province, China, July 2021. Advances in Atmospheric Sciences 40(8):1485-1500. https://doi.org/10.1007/s00376-023-2360-y. Zhang, X., F. W. Zwiers, G. Li, H. Wan, and A. J. Cannon. 2017. Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience 10(4):255-259. https://doi.org/10.1038/ngeo2911. Zhao, W., J. A. Smith, and A. A. Bradley. 1997. Numerical simulation of a heavy rainfall event during the PRE‐STORM Experiment. Water Resources Research 33(4):783-799. https://doi.org/10.1029/96wr 03036. Zhou, W., L. R. Leung, and J. Lu. 2023. The role of interactive soil moisture in land drying under anthropogenic warming. Geophysical Research Letters 50(19):e2023GL105308. https://doi.org/ 10.1029/2023GL105308. Zhu, Y., and R. E. Newell. 1998. A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review 126(3):725-735. https://doi.org/10.1175/1520-0493(1998)126<0725: Apafmf>2.0.Co;2. Zipser, E. J., and C. Liu. 2021. Extreme convection vs. extreme rainfall: A global view. Current Climate Change Reports 7(4):121-130. https://doi.org/10.1007/s40641-021-00176-0. Prepublication copy

References 147 Zrnic, D. S., J. F. Kimpel, D. E. Forsyth, A. Shapiro, G. Crain, R. Ferek, J. Heimmer, W. Benner, F. T. J. McNellis, and R. J. Vogt. 2007. Agile-beam phased array radar for weather observations. Bulletin of the American Meteorological Society 88(11):1753-1766. https://doi.org/10.1175/bams-88-11-1753. Zscheischler, J., B. Van Den Hurk, P. J. Ward, and S. Westra. 2020. Multivariate extremes and compound events. In Climate Extremes and Their Implications for Impact and Risk Assessment. J. Sillmann, S. Sippel, and S. Russo, eds. Amsterdam: Elsevier. Prepublication copy

Next: Appendix A: Committee Member and Staff Biographical Sketches »
Modernizing Probable Maximum Precipitation Estimation Get This Book
×
 Modernizing Probable Maximum Precipitation Estimation
Buy Paperback | $40.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

For more than 75 years, high-hazard structures in the U.S., including dams and nuclear power plants, have been engineered to withstand floods resulting from the most unlikely but possible precipitation, termed Probable Maximum Precipitation (PMP). Failure of any one of the more than 16,000 high-hazard dams and 50 nuclear power plants in the United States could result in the loss of life and impose significant economic losses and widespread environmental damage, especially under the pressures of climate change. While PMP estimates have provided useful guidance for designing critical infrastructure, weaknesses in the scientific foundations of PMP, combined with advances in understanding, observing, and modeling extreme storms, call for fundamental changes to the definition of PMP and the methods used to estimate it.

Modernizing Probable Maximum Precipitation Estimation recommends a new definition of PMP and presents a vision for a methodology relevant for design, operation, and regulation of critical infrastructure. The new definition targets precipitation depths with an extremely low exceedance probability instead of assuming rainfall is bounded, and considers specified climate periods so that PMP estimates can change as the climate changes. Near-term enhancements to PMP include improved data collection, model-based storm reconstructions, and strengthened scientific grounding for PMP methods. Long-term model-based PMP estimation will employ kilometer-scale climate models capable of resolving PMP storms and producing PMP-magnitude precipitation. A Model Evaluation Project will provide scientific grounding for model-based PMP estimation and determine when transition to a model-based PMP estimation should occur. Scientific and modeling advances along this front will contribute to addressing the societal challenges linked to the changes in extreme storms and precipitation in a warming climate, which are critical steps to ensuring the safety of our infrastructure and society.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!