
1

The Integration of Computational Thinking in Early Childhood and Elementary Education

Tamara J. Moore, Professor of Engineering Education, Purdue University

Anne T. Ottenbreit-Leftwich, Associate Professor of Instructional Systems Technology, Indiana

University

This paper was commissioned for the Committee on Enhancing Science and Engineering in
Prekindergarten through Fifth Grades, whose work was supported by the Carnegie Corporation
of New York and the Robin Hood Learning + Technology Fund. Opinions and statements
included in the paper are solely those of the individual authors, and are not necessarily adopted,
endorsed, or verified as accurate by the Committee on Enhancing Science and Engineering in
Prekindergarten through Fifth Grades, the Board on Science Education, or the National Academy
of Sciences, Engineering, and Medicine.

2

What is CT/CS?

CT Definitions and Classifications

Commonly considered the article that began the current mainstream focus on

computational thinking, Wing (2006) indicated that computational thinking includes the

following characteristics: (1) conceptualizing, not programming, (2) fundamental, not rote skill,

(3) a way that humans, not computers, think, (4) complements and combines mathematical and

engineering thinking, (5) ideas, not artifacts, and (6) for everyone, everywhere. one of the

seminal authors around computational thinking. In fact, Wing (2006), aggressively

recommended that computational thinking needs to be taught to every student as a way to solve

problems and potentially use computer science logic to solve a myriad of everyday problems. In

2008, Wing (2008) defined CT as “taking an approach to solving problems, designing systems

and understanding human behaviour that draws on concepts fundamental to computing’’ (p.

3717). In general, CT definitions typically seem to encompass the process of identifying a

problem and creating potential solutions so that a computer (whether that be a human or

machine) could potentially implement that solution.

Gretter and Yadav (2016) referred to computational thinking as the ability to “think like a

computer scientist” (p. 511) which utilizes specific problem solving skills focused around

algorithmic thinking, pattern recognition, abstraction, and decomposition. Yadav et al. (2016)

described computational thinking (CT) as “breaking down complex problems into more

familiar/manageable sub-problems (problem decomposition), using a sequence of steps

(algorithms) to solve problems, reviewing how the solution transfers to similar problems

(abstraction), and finally determining if a computer can help more efficiently solve those

problems (automation)” (p. 565). In fact, a new advanced placement course was developed to

specifically focus on these capabilities, as opposed to pure computer science, called Advanced

Placement Computer Science Principles (Gretter & Yadav, 2016). The AP CSP course “focuses

on developing students’ 21st century skills, such as analyzing and representing data,

understanding how the Internet functions, and grasping how computing impacts people and

society” (Gretter & Yadav, 2016, p. 511).

Many have suggested how to discuss and conceptualize computational thinking. Perhaps

the most popular CT framework comes from Brennan and Resnick (2012). They established their

3

CT framework based on their investigations of students’ Scratch projects. They divided CT into

concepts, practices, and perspectives (see Figures 1-3 below).

Figure 1. CT Concepts.

Figure 2. CT Practices.

Figure 3. CT Perspectives.

Policy and State Standards

Global CT Policies

Computational thinking has become an increased interest in K-12 education across the

globe. Balanskat and Engelhardt (2014) surveyed 17 European countries to identify how they

attempted to incorporate CT into the K-12 curriculum. The UK implemented CT into courses

across disciplines (including CS, information technology, and digital citizenship)(Brown,

Sentance, Crick, & Humphreys, 2014). In Australia, a CT course was incorporated into their

primary and secondary school curriculum (Falkner, Vivian, & Falkner, 2014). Poland

implemented a three-stage process for integrating CT courses in their primary and secondary

schools. The final stage required computer science in their high school final examinations (Sysło

& Kwiatkowska, 2015). South Korea has also incorporated more than 34 hours of computer

instruction in each grade K-12. They adopted a national curriculum and textbook around

computer science (Heintz et al., 2016).

4

US CT Policies

In a review of the CS standards policies for all 50 states, Guo and Ottenbreit-Leftwich

(2020) found that 34 states had published computer science standards on their websites as of

January 2020 and one state, Montana, announced on the website that the state plans to publish

the CS standard in 2020 fall semester. However, the US has no universal CS standard accepted

by all states in the U.S., and states designed CS standards for their own sake to coordinate the

whole curriculum. In addition, Guo and Ottenbreit-Leftwich (2020) found that 22 out of 34 states

adopted the Computer Science Teacher Association (CSTA) CS framework, and 12 states

created CS related standards independently. Sometimes CT/CS standards were their own

separate subject area (n=11), and sometimes CT/CS was included into broader computing

standards with digital literacy and citizenship (n=13). The CT/CS standards were also placed in

different areas, such as Indiana, where CS/CT standards were housed within the science

standards subject area (Guo & Ottenbreit-Leftwich, 2020).

The Computer Science framework from k12cs.org was published in 2017 and helped

guide the development of many of the CS standards (K–12 Computer Science Framework, 2016)

The framework identified five core concepts for K-12 Computer Science: (1) Computing

Systems, (2) Networks and the Internet, (3) Data and Analysis, (4) Algorithms and

Programming, and the (5) Impact of Computing. Following this, the Computer Science Teacher

Association (CSTA) established Computer Science standards that were the most commonly used

K-12 CS standards with 22 out of the 34 states directly adopting these standards. Of the 12 states

that did not directly use the national CSTA standards, seven states explicitly mentioned and

included elements of computational thinking in their standards. Five states incorporated ideas

around computational thinking from ISTE standards, which includes one standard called “to be

the computational thinker.” However, other states separated Computational Thinking as an

individual concept. For example, Colorado and Massachusetts organized Computational

Thinking as an important concept in the computer science standards. Arkansas connected

Computational Thinking with Problem Solving in their state-created Computer Science

Standards (Guo & Ottenbreit-Leftwich, 2020). Guo and Ottenbreit-Leftwich (2020) also

identified that 32 out of the 34 states had CS curriculum standards beginning at the kindergarten

level.

CT/CS Integration into Subject Area Standards

5

Computational thinking is described differently across standards and frameworks. For

example, the CS framework did not include computational thinking as a concept, but described

computational thinking as the practices students use in computer science. In some states, they

integrated computational thinking into other subject areas. For example, New Jersey’s standards

featured computational thinking as a key concept of Engineering and Design. In another

example, Michigan adopted the Next Generation Science Standard (NGSS) and computational

thinking was marked as one of the core concepts in the Science and Engineering Practices

dimension. It was common for states to reference teaching computational thinking with other

disciplines (e.g., science, math, engineering) due to the sharing concepts among diverse

disciplines (Guo & Ottenbreit-Leftwich, 2020).

Rationale for CT: 21st Century Skills and Digital Citizenship

Scholars have also expressed the difficulties associated with separating CT/CS concepts

from other computing-related areas, such as computer literacy, information technology,

educational technology, digital citizenship, and computational thinking (Mouza et al., 2018). In

addition, scholars have emphasized that we need to incorporate more concepts related to CS,

such as computational thinking (Wing, 2008) and digital citizenship, as an essential skill of

participating in society (Mossberger et al., 2007).

Moreover, some suggested that the goal of education is to produce strong and

contributing citizens (e.g., Roosevelt, 2008). However, with the fast development of technology,

especially computers and the Internet, the concept of citizenship has expanded to incorporate the

digital world. Scholars have claimed that teaching K-12 digital citizenship will help students

become citizens that will thrive and contribute to our digital society (Ribble, 2015), as well as

provide equal opportunities for all students in the new digital society (Vogel et al., 2017). Gretter

and Yadav (2016) also pointed out that to be prepared for today’s participatory culture, students

need 21st century skills that can enable them to be creators, as opposed to passive receivers of

information. As our society is increasingly shifting towards digital engagement, students need to

develop the ability to deconstruct problems and solve them utilizing the power of computers.

This requires computational thinking skills. Scholars have argued that computational thinking

skills require students to develop both domain-specific and general problem-solving skills

(Yadav, Good, et al., 2017). Yadav, Good, et al. (2017) described the importance of

incorporating CT into compulsory education:

6

“Computational thinking is a broadly applicable competence domain, which is important

for individuals to be successful in today’s technological society…Given that

computational thinking has been highlighted as an ubiquitous twenty-first century skill

and the emphasis placed on the need to embed CT in primary and secondary schooling,

we need to focus on better understanding how computational thinking tools support

learners” (p. 1064).

PreK-5 Strategies for CT Learning

This section provides a look into three areas that need consideration when addressing CT

learning with preK-5 students. In the following subsections, we will provide overviews of

developmental appropriateness for CT learning strategies, using multiple representations in CT

learning, and making CT learning active, hands-on, and minds-on.

Developmental Appropriateness for CT Learning Strategies
Teaching CT to children has been shown to be a good tool for mind development

(Buitrago Flórez et al., 2017). As Bruner (1960) stated, “any subject can be taught effectively in

some intellectually honest form to any child at any stage of development” (p. 33). Conceptual

development in CT will be initially localized in the learning task in which the concept is learned,

then through multiple instances of addressing a concept or skill, students will begin to develop

deeper, more abstract ideas regarding the concepts. CT skills invoke modeling. In regards to

modeling tasks, Lesh and Harel (2003) state, "if we examine a student’s performances across a

series of related activities, it is clear that his or her apparent stage of development often varies

considerably across tasks” (p. 186). Therefore, this would also be true of complex CT tasks that

allow for students to express their CT models in ways that allow for refinement and testing.

Therefore, it is important to consider how to be able to break down a complex topic like

computer science and CT into manageable parts for younger students.

Based on the Brennan and Resnick (2012) framework, Zhang and Nouri (2019) examined

all Scratch-based empirical studies with Kindergarten through ninth-grade students. After

reviewing 55 studies, they developed a progression of CT skills (concepts, practices, and

perspectives) based on students’ ages (see Figure 4 below). This progression, while not yet well

studied as a final product for effectiveness, is a good start to consider which CT skills to

emphasize for different age levels.

7

Lee and Mayn-Smith (2020) investigated CT learning progressions by examining funded

projects at NSF-funded workshops. In K-2, they identified that abstraction (in which they

included patterns and representation) included looking for patterns in works, representing people

with glyphs, and representing shapes and movements; algorithms included instructing Bee-Bot

(see Robotics/Devices Section below) through a maze and instructing humans as if they were

robots; programming and development included what they termed “everyday mechanisms” such

as money exchange and guess my number examples; data collection and analysis included

sorting objects and using tally marks for counting; and finally, modeling and simulation included

running an experiment and comparing solutions. In grades 3-5, they found that abstraction

included making abstract art and storyboarding; algorithms included programming robots or

developing instructions for Lego builds; programming and development included CAD,

animation of clock hands, and Scratch animations; data collection and analysis included

comparing solutions, guessing the rules, design tasks, and simulation to produce data; and

finally, modeling and simulation included developing models – mathematical models,

amusement park rides, invasive species, and ecosystems (Lee & Malyn-Smith, 2020).

Figure 4. Progression of CT skills based on learners’ age (Zhang & Nouri, 2019), p. 19.

Students at any age will have inherent challenges if they are new to CT. These challenges

can include things such as getting to know the intricacies of programming languages or

platforms, learning how to “talk” to a machine with instructions the machine can understand, and

getting unstuck when their program is not working (correctly or at all). If we add in the learning

8

development of elementary age students, these challenges can become increasingly difficult.

Researchers have started to study and build these CT learning trajectories for early grades. Rich

et al. (2018) worked to develop a decomposition learning trajectory for K-8, showing such

dimensions as “code is reusable” and “code can be written in small parts.” This type of work

needs to continue and be developed with greater detail for all of the CT skills. Therefore, as CT

learning is a fairly new area to research with students at this age, pulling from the literature on

learning progressions/trajectories for elementary students, particularly in mathematics and

literacy, may help with addressing some of the challenges that students will face as they begin to

develop CT skills.

Using Multiple Representations in CT Learning

The purpose of teaching computational thinking is ultimately geared toward machine

automation (Yadav, Goode et al., 2017). The ideas behind coding a machine to perform certain

tasks require very abstract concepts. As stated in the developmentally appropriate strategies

section, students in early grades need to start with more concrete ideas then progress toward

more abstract ones. As students are developing ideas around computational thinking, helping

students make the transitions among coding concepts is key. Multiple representations are a good

way to do this.

Generally, coding in secondary and postsecondary classrooms involve multiple

representations of code. These multiple representations can include real life examples, everyday

language, pseudocode, flowcharts, code tracing/tracking charts and tables, coding languages, etc.

(Malik et al., 2019). Most of these representations of algorithms and debugging within coding

are much too abstract for children to begin with (Fessakis et al., 2013). Therefore, it is important

that students, especially K-5 students, are introduced to computational concepts using multiple

representations starting with more concrete ideas and then progressing to more abstract.

However, during this learning process, students need to be making translations between and

among these representations (Moore, Brophy et al., 2020). As students are developing

computational concepts, they will use concrete, pictorial, motor, language, and symbolic

representations (Bers, 2018b; Lesh & Doerr, 2003; Nathan et al., 2013). These representations

should be developmentally appropriate approximations of the processes of coding. For example,

Moore, Brophy et al. (2020) set up purposeful analogous representations for processes of coding

9

to test the developmental appropriateness of these representations and the translation between

them in a study of second-grade students using a computing device (see Robot Mouse in

Robotics/Devices Section below). In this study, directional coding cards represented flow charts

of coding and these cards could also be used for code tracing and debugging, coding with

directional buttons were a representation of coding language, and students used language and

gesture as pseudocode for planning. For second-grade students, translation between these

representations often involved high cognitive demand. Therefore, students were seen developing

intermediary representations to help manage their cognitive load and make the needed

translations between representations to accomplish the CT tasks being asked of them (Moore,

Brophy et al., 2020).

But as students develop, it is important to use concrete manipulatives purposefully and

with care. Aggarwal et al. (2017) compared 3rd-5th grade students using physical manipulatives

to develop code within the Kodu curriculum to students who did not use the manipulatives. The

students were divided into groups that used flashcards and tiles before entering code into the

Kodu Game Lab or just paper and pencil representations before entering code into the Kodu

Game Lab. Here the two groups overall performed similarly content-wise, but the group with the

manipulatives did better on tasks that involved syntax but this was time consuming while the

group without the manipulatives did better at completing the tasks in a timely, iterative manner

getting immediate feedback from the software. The authors suggest that manipulatives may have

diminishing returns and therefore should be scaffolded carefully (Aggarwal et al., 2017). These

studies shed light on how representations can be used to develop CT competencies and how

students learn with multiple representations. However, much more research is needed to

understand which practices are most effective in helping students progress towards high-quality

CT learning.

Making CT Learning Active, Hands-on, and Minds-on

CT is more than just coding. CT offers broad opportunities for students to engage in

physical manipulations, movement, and motor skills (Bers, 2018b; Byers & Walker, 1995). CT

learning also requires students to solve problems algorithmically and develop technological

fluency and language (Bers, 2010; Papert, 1980). Students must learn the language of coding

10

through “learning about” it as well as “using” it (Bers, 2018a). These ideas suggest that students

need to engage with the CT content in multiple hands-on and minds-on ways.

Curricular innovations such as those described by Aggarwal et al. (2017) above that

involve physical manipulatives provide an entry point for learners. Other curricular innovations

involve whole body movement and large-scale concrete manipulation of objects that encourage

CT. The Puppy Playground (Ehsan et al., 2019) engages children in engineering design to

develop a play space for a dog using “Big Blue Blocks.” This activity could be implemented in

any learning environment that can handle the size of the blocks, but also could be scaled using

smaller blocks. In small groups, students worked together for a client (a kindergarten student

who wants to let her puppy play in the yard). The criteria for the design was to keep the puppy

from escaping, allow for play and exercise, and make the playground aesthetically pleasing by

including patterns in the design. The physical nature of this task with the larger blocks allows

students to think through the problem from the end-user’s perspective - that of the puppy. The

studies of this task show the students participating in the CT concepts of problem decomposition,

pattern recognition, debugging, algorithm and procedure, simulation, and abstraction (Ehsan et

al., 2019; 2020). But the active, hands-on nature of the task helps students with connection

between very characteristic engineering concepts such as user-centered design and the CT

principles the activity was designed to elicit.

In a more complex museum or science center exhibit, Computing for the Critters, was

also designed to integrate engineering and CT through the context of designing an automated

way to deliver medicine to all of the animals in a veterinary hospital. The exhibit has five

interconnected sections: (1) a place to learn about CT and the context of the rest of the exhibit,

(2) a physical maze for children to climb and act out the scenario, (3) a station to plan and test

routes through the maze, (4) panels with details of different types of engineering, and (5) an

interactive coding video game (Ehsan, Ohland et al., 2018). The CT in this exhibit is elicited as

the students interacted with the different exhibit elements. For example, problem decomposition,

patterns, parallelization, and simulation were elicited in the physical maze when children worked

to physically get the medicine to all of the animals, whereas, algorithms and procedures,

debugging, were elicited during the interactive coding game (Fagundes et al., 2020). These

examples represent a variety of different ways hands-on, minds-on CT can be incorporated into

11

learning experiences. The examples throughout the remainder of this paper also include rich

active learning ideas for CT learning and integration.

Tools for Teaching Elementary Computational Thinking/Computer Science

There are many great tools that can be used to develop computational thinking. Studies

have shown that elementary teachers find computer programs such as Scratch and other CS-

focused devices to be both valuable (Clark et al., 2013) and accessible to both teachers and

students (Lee, 2011). Israel et al. (2015) specifically indicated that even skeptical or reluctant

teachers found value in teaching CS when provided with certain pedagogical tools. We have

organized these into five categories (unplugged, plugged, tools, robotics/devices, curriculum, and

books). We will briefly discuss examples here, but a more detailed description and coverage of

additional tools can be found in the Appendix, which was developed by Guo and Fagundes

(2020).

Unplugged Activities

Educators and parents often turn to unplugged CT activities when access to digital

resources is difficult or there is a desire to focus on the content rather than a gadget or object.

Unplugged CT activities lack a digital component and typically come in the form of games and

activities or as curricular teaching materials. Curzon et al. (2018) described unplugged

computing as “physical objects and role play are used to illustrate computing concepts” (p. 514).

It seems that many of the early childhood educational experiences with computational thinking

incorporated unplugged activities. The purpose of these seemed to be the intent to make abstract

concepts more concrete (see Figure 5).

12

Figure 5. Example of a Kindergarten Unplugged Activity from CS for All in SF.

Researchers have examined the effectiveness of unplugged activities at the PreK-5 grade

levels. In one example, Faber et al. (2017) implemented six 90-minute unplugged lessons around

programming concepts (algorithms, variables, repetition, conditionals, and binary) in 26 primary

schools in the Netherlands. Based on observations and interviews, they asserted that the

unplugged games made the lesson more engaging for students. In a quasi-experimental study of

84 second-graders in Spain, del Olmo-Muñoz et al. (2020) explored the differences between

unplugged and plugged CT activities. The control group of 42 students completed 3 unplugged

CT activities and 3 plugged activities, whereas the experimental group completed 6 plugged

activities. The results showed that those students who completed unplugged and plugged

activities significantly outperformed students that had only completed plugged activities.

In general, it seems that unplugged activities are particularly successful for early

childhood and primary students. Some of the most popular elementary CS curriculums at this

point (Code.org’s CS Fundamentals, Project Lead the Way’s CS Launch, and Computer Science

for All in SF) use both unplugged and plugged activities for CT/CS concepts. In a quasi-

experimental study of 35 elementary students, Hermans and Aivaloglou (2017) provided one half

of the students with four plugged lessons and the other half four unplugged lessons. Afterwards,

13

both groups participated in four weeks of Scratch lessons. After eight weeks, there was no

difference between the two groups with regards to their knowledge of programming concepts.

However, the unplugged group was more confident of their ability and used a wider selection of

Scratch blocks. This may show the importance of utilizing both unplugged and plugged activities

to encourage students’ confidence and creativity.

Typically, CS curriculum uses unplugged activities first, and then moves on to utilizing

computational toys or visual block-based programming. Wohl et al. (2015) conducted a quasi-

experimental study over three groups of 28 students aged five to seven. They explored the

differences between the order of three different approaches to teaching CS concepts: unplugged

computing, tangible computing (with Cubelets) and visual block-based programming (Scratch).

Based on their observations, Wohl et al. (2015) found that after the unplugged sessions, students

were the most engaged in CS concepts. They suggested that the “unplugged session seemed to

demonstrate that young children can be introduced to and engaged in relatively complex ideas”

(p. 5). This seems to be a developmentally appropriate way to build students' understanding, and

then apply it with an external device.

Plugged Activities

Plugged activities consist of online puzzles or games that students can explore. They are

often very tailored and heavily guided. Some of these include Code.org, Hour of Code activities,

Kodables, and Tynker. These plugged activities guide students through a set of graded

exercises/puzzles to move characters through a scene (for example, a red Angry Bird going after

a Green Pig). Through these experiences, students learn some of the basics concepts around

programming such as sequencing, loops, and conditionals by using command blocks like “move

forward” or “turn left.” These activities are less open-ended than other visual block-based

programming environments like Scratch or Blockly.

Figure 6. Retrieved from Code.org: https://studio.code.org/s/express-2020/stage/2/puzzle/2

14

Studies have shown that these plugged activities seem to increase young students’ interest

and conceptual understanding of coding (Pila et al., 2019). However, studies have also shown

that young students were still unable to verbally explain coding (Pila et al., 2019). In a study

various implementations of CT in math with preschool children, Lavigne et al. (2020) found that

activity sessions with digital apps took longer than hands-on activities (17 mins as compared to

11 mins). In addition, teachers and students both spent the majority of their time focused on the

learning goal 65% when working on unplugged activities and 71% when working on plugged

activities (Lavigne et al., 2020).

Curriculum Example of Unplugged and Plugged Activities: Code.org

Perhaps one of the most common ways elementary teachers are teaching CS is through

Code.org’s CS Fundamentals curriculum. This curriculum incorporates both unplugged and

plugged activities, typically introducing a concept with an unplugged activity and following with

a plugged activity where the student applies and practices the new concept. The concepts are

heavily focused on computer science, but the detailed lesson plans also provide links to potential

literacy, math, and other relevant K-5 national content area standards. There have been several

studies conducted to investigate the impact of the Code.org curriculum. Kalelioğlu (2015)

investigated the impact of Code.org on 32 4th year Turkish students’ reflective thinking skills

through a quasi-experimental design. Although there were no significant differences in students’

reflective thinking skills, students developed a positive attitude towards programming and female

students were as successful as their male counterparts. In another study, Lambić et al. (2020)

examined the impact of Code.org’s second course on 293 seven to ten year-olds. They found that

older students reported a significantly more positive attitude towards programming than younger

students. The authors observed that many of the younger students were unable to solve many of

the programming tasks, which resulted in a negative attitude towards programming. Therefore,

selecting appropriately challenging materials is critical to students developing positive attitudes

towards CS.

One of the authors of this paper is a Code.org CS Fundamentals trainer for the state of

Indiana. Although there are some exceptional pieces of Code.org’s work (including wonderfully

detailed lessons plans, videos, widgets and materials), one of the challenges I have noticed is that

K-5 teachers often only use Code.org’s plugged lessons. Without implementing the unplugged

lessons, students are lacking the stronger introduction to concepts and CS becomes equated to

15

playing games and solving puzzles online. Elementary teachers often describe the challenges of

fitting CS into the school day (Ozturk et al., 2018). Therefore, Century et al. (2020) worked to

embed Code.org into one school district’s non-negotiable elementary literacy block. They

developed “Time for CS” (Time4CS) modules that included science, ELA, and social studies

lessons and associated Code.org lessons connected with a problem-based theme. During the

2016-2017 academic year, 157 teachers implemented two modules for each grade (3rd – 5th)

during existing 180-minute literacy blocks. The teachers who used Time4CS modules

implemented more CS lessons than other in their district. In addition, the study found that these

higher amounts of interdisciplinary teaching practices were associated with higher student

achievement, specifically students’ state assessment ELA scores. Finally, the approach of

incorporating Code.org Fundamentals within existing curriculum seemed to present a more

feasible way to provide more CS opportunities to 3rd – 5th grade students. They stressed that this

study proves that “it is possible to make time in the elementary school day for CS, and that there

are no negative consequences for core subjects (e.g., ELA and mathematics)” (Century et al.,

2020, p. 1). Based on our engagement with this curriculum, we recommend this as an excellent

starting point for teachers, but stress the importance of reading the lesson plans and

implementing unplugged lessons before having students begin the plugged sessions.

Robotics/Devices

There are a wide range of robotics/devices that have been utilized to incorporate

computational thinking into elementary classrooms. Some robotics have been designed to feature

push button coding, claiming that this process enables younger students who may not have the

capacity to utilize coding apps to engage in simple commands structures and coding.

Bee-Bots

One of the more popular push-button coding devices for younger children is Bee-Bot

(Figure 7). Bee-Bot is a friendly looking bumblebee that has four arrows on its back enabling it

to move forward 6 inches, backwards 6 inches, and turning to the left or right. PreK-5 teachers

have students use Bee-Bot with a large grid mat. Students must code the Bee-Bot to arrive on

certain numbers, letters, or shapes. This activity enables teachers to integrate computational

thinking into their other subject areas and make it engaging for students. A few studies have

shown that early childhood students (preschool and kindergarten) show increase CT skills after

16

using Bee-Bots (e.g., Caballero-González, Moñoz, & Muñoz-Repiso, 2019; Papadakis &

Kalogiannakis, 2020).

Picture from Bee-

Bot website.

Picture from Bee-Bot

website.

Picture from @anneleftwich

Figure 7. Example of Bee-Bot robots and an activity for kindergarten students.

Robot Mouse

Another popular robotic device that is used with early elementary students to develop CT

skills is the Robot Mouse. The robot mouse is sold separately or within the Code and Go™

Robot Mouse Activity Set developed by Learning Resources. The entire activity is a game in

which the player sets up steps for the robot mouse to follow through a physical maze to arrive at

the cheese. The set include Colby, the programmable battery-operated robot mouse, a wedge of

cheese that when Colby touches it, his nose lights up and he makes a cooing noise, 16 square

tiles that can be interlocked to make the floor of the physical maze, gates and tunnels to add to

the maze, code cards printed with directional arrows or action symbols, and maps of maze

puzzles for the player to solve. Figure 8 shows children playing with the Code and Go Robot

Mouse activity set. Moore, Brophy et al. (2020) used the robot mouse game as a way to study

students ability to translate between coding representations.

17

Figure 8. Students coding the robot mouse to navigate the maze in order to get to the cheese.

 This particular robot has an add-on expansion set to specifically target early math

concepts. The kit includes number and coding cards, dice, and a playmat to introduce coding

lessons with addition, subtraction, and number sequencing. The activity guide includes lessons

and games to integrate the coding mouse into a range of math lessons (e.g., even and odd

numbers).

Robots and robotic devices are popular STEM toys for kids. These devices have a lot to

offer as both free-choice play and devices to help scaffold learning in more formal environments.

Furthermore, robotics can also include “the learning of computer programming concepts such as

iteration, input/ process/output, and control structures (procedural flow)” (Sullivan & Heffernan,

2012, p. 107). There are many additional robotic devices that we have not had a chance to review

for this paper. See the Appendix for a more comprehensive list of robotic devices.

Robots and robotic devices have potential to capture the imagination of young learners.

However, the context in which robotics is introduced can impact who will be engaged. Studies

have shown that robotics may not appeal to female students at the secondary levels, and female

students may need more support and be less confident (Sullivan & Bers, 2019). There is a lack of

research on whether this also applies at the elementary levels. Therefore, special attention should

be dedicated to ensure all students are being engaged by robotics inspired learning experiences.

18

Open-Ended Tools

The resources mentioned in this category employ open-ended apps that students can use

and explore in a wide range of ways. Perhaps the most common is visual block-based coding

applications/software. The most popular visual block-based coding applications are ScratchJr

and Scratch. According to Bers (2018a), Scratch was designed to “provide easy ways for novices

to get started (low floor), ways for them to work on increasingly sophisticated projects over time

(high ceiling) and multiple pathways for engagement for all children with diverse interests (wide

walls)” (p. 2). In a review of CT education studies, Lye and Koh (2014) identified nine studies

that examined how programming was incorporated into the K-12 curriculum. Most (n=8) of

these studies utilized Scratch or Logo.

Scratch

Scratch is an open-ended coding tool that utilizes visual blocks to enable students to

program a character. It can incorporate media and can be interactive. Students have used Scratch

to create a wide range of projects including animated stories, news shows, music/arts projects,

simulations, tutorials, book reports, and much more. Scratch was designed to support students

(ages 8-16). Scratch is available in many different languages. Blocks are organized into

categories based on actions and color-coded to make things easier to find on the far left-hand

side. The middle is where students build the code using blocks and the stage on the right-hand

side where the characters enact the coded program (Maloney, 2010)(see Figure 9).

19

Figure 9. Example of Current Scratch Interface. Screenshot taken from

https://scratch.mit.edu/projects/editor/?tutorial=getStarted

Zhang and Nouri (2019) reviewed all empirically based Scratch articles at the K-9 grade

levels between 2007 and 2018. They applied the Brennan and Resnick (2012) CT framework to

analyze and identify what concepts were being researched. They found that out of 55 articles, the

CT concepts that were most commonly addressed were loops (n=28 studies), sequences (n=26),

and conditionals (n=24). These have been identified as the basic control structures in all

programming languages (Zhang & Nouri, 2019). There were at least ten studies that also

investigated the CT concepts of variables, coordination, reading code, Boolean logic/operators,

parallelism, events, and abstraction. In addition, nine studies focused on the CT practices

abstracting and modularizing, while eight studies focused on debugging and testing. Zhang and

Nouri (2019) found that K-9 students’ uses of Scratch which typically fall into games (n=21),

animation (n=5), or storytelling (n=4). When examining the subject concepts, Zhang and Nouri

(2019) found that 64% of the 55 K-9 Scratch studies were situated within computer science, 12%

in arts/music/crafting, 11% in language, 9% in math, and 4% in science.

Studies have shown that Scratch has enabled primary students to build CT skills (Zhang

& Nouri, 2019), increase students' attitudes and interest in computer science (Sáez-López et al.,

2016) and even digital competencies and 21st century skills (Nouri et al., 2020). Sáez-López et

al. (2016) implemented a two-year long intervention where 107 5th and 6th grade students used

20

Scratch within art and social science contexts (see evidence here:

https://scratch.mit.edu/studios/804018/). The lessons were based on the Creative Computing

Curriculum for Scratch created by the Creative Computing Lab at the Harvard Graduate School

of Education. Sáez-López et al. (2016) stated that this interdisciplinary approach seemed to

motivate students. They recommend that this approach to develop students’ computational

thinking within a curricular context can impact students’ CT skills, art and history skills, and

motivation for participating in more active styles of learning.

Wohl et al. (2015) conducted a quasi-experimental study over three groups of 28 students

aged five to seven. They explored the differences between the order of three different approaches

to teaching CS concepts: unplugged computing, tangible computing (with Cubelets) and visual

block-based programming (Scratch). Based on their observations, after the Scratch sessions, the

students encouraged the students’ creativity, although it was difficult for the students to use.

This was likely due to the fact that Scratch was too difficult for younger students to work with.

ScratchJr

ScratchJr programming software was created by the authors of Scratch for younger

students in kindergarten to second grade. Design considerations included developmentally

appropriate interface and methods of interaction. Specifically, the authors mentioned creating

software that had a “low floor and (appropriately) high ceiling, wide walls, tinkerability, …and

conviviality” (Flannery et al., 2013). Flannery et al. (2013) examined how younger students

engaged with Scratch in a small pilot study of kindergarteners through second graders.

Kindergarteners through second graders struggled to use Scratch due to literacy capabilities

(unable to read Scratch block), lack of understanding measurements (grid patterning was

difficult), and lack of ability to think abstractly and predict the results of blocks. Therefore, they

set out to develop a version that could meet younger students’ needs.

After designing Scratch Jr, Flannery et al. (2013) tested the software with 100

kindergarten through second grade students in nine sessions. Although all students were able to

use the software to create programs, kindergarteners seemed to struggle with the interface. One

kindergarten project used Scratch Jr to talk about basic motions (over, under, etc.) while the first

and second grade students often used it for retelling stories, utilizing multiple characters and

actions. Flannery et al. (2013) also discussed the importance of building curriculum guides that

could be integrated into math and literacy at the K-2 levels. They developed an online

21

community where early childhood educators could post and share materials and lessons

(Flannery et al., 2013).

Bers (2018a) described that the programming blocks were organized into six categories,

signified by different colors, to describe overall coding constructs: “yellow Trigger blocks, blue

Motion blocks, purple Looks blocks, green Sound blocks, orange Control flow blocks, and red

End blocks” (p. 2). Students are able to connect blocks together to control the characters. They

can create their own characters and background. The program was designed to be used like a

narrative structure with different pages established to mimic the creation of a book by

establishing pages and containing a beginning, middle, and end. In addition, students can

integrate text and speech bubbles into their projects.

The authors of ScratchJr wanted to create a digital playground with this app. They have

pointed out that the application lacks the collaborative elements that are typically found on a

playground between children. Therefore, they organized a DevTech Research Group that has

created a Collaborative ScratchJr Projects Guide. This guide supports teachers in collaborative

projects for students that can incorporate moving characters across multiple screens and iPads

(Bers, 2018a)(see Figure 10 for example of collaborative Scratch Jr projects).

Figure 10. Example of Scratch Jr Collaboration Project from Bers (2018a).

LEGO WeDo 2.0

Other tools/resources in this category include other robotics that utilize block-based

coding. These include, but are not limited to Qubo, LEGO WeDo 2.0, WonderWorkshop’s Dash

‘n Dot, LEGO Boost, Artie 3000, and VEX Robotics. LEGO WeDo 2.0 has a connected

curriculum that integrates CS into engineering and science concepts. For example, one activity

has students investigating pollination. Students build and program a pollination model using

22

LEGOs and a block-based coding app (see Figure 11 for example from LEGO WeDo 2.0’s

website).

Figure 11. LEGO WeDo 2.0 Examples. (https://education.lego.com/en-us/lessons/wedo-2-

science/plants-and-pollinators#3-create-phase)

Chalmers (2018) examined how UK teachers in grades one through six implemented

LEGO WeDo 2.0 activities. Teachers implemented lessons around pulling (investigating

balanced and unbalanced forces), speed (investigating factors that make a car accelerate),

structures (investigating characteristics to make buildings earthquake resistant), and plants and

pollinators (modeling the relationship between pollinators and flowers). Based on these

implementations, teachers reported that students seemed to develop computational thinking

concepts (sequencing, loop, and pattern recognition) and practices (problem solving and

debugging). Teachers also reported that students seemed to develop CT perspectives, such as

persistence and iterating on designs, as well as collaborating and sharing ideas with their

classmates (Chalmers, 2018).

 LEGO WeDo 2.0 seems to be a good introduction to CT/CS ideas that are integrated into

a problem-based situation. Like many existing curriculums, it is important to show how all these

concepts build on each other. Otherwise, it can often seem like small STEM activities, rather

than a curriculum. We could envision this as an introduction project to a science idea/topics like

investigating forces, or as a culminating activity to apply concepts they have already learned.

Cozmo

 One of the more sophisticated robots is Cozmo. Cozmo is a robot that develops as you

play with it. It has been used as an introduction to artificial intelligence for elementary-aged

23

students. The Cozmo robot uses Calypso (a scaffolded robot programming environment). The

programming environment allows students to program Cozmo with advanced features such as

“visual recognition of objects and faces, simultaneous localization and mapping (SLAM),

landmark-based navigation, and speech input” (Touretzky & Gardner-McCune, 2018, p. 1). In

one study, Ehsan, Cardella, and Hynes (2020) examined two children with autism (8-10 years

old) that tried Cozmo’s Ambulance activity with their mothers. Although both were able to code

the robot and showcased multiple CT competencies, their experiences were different based on

the interactions with their mothers. One mother/child interaction resulted in the child’s CT

problem-solving and completion of the given challenges. The other mother/child interaction was

less successful as the mother tended to focus on the child’s deficits. Ehsan et al. (2020)

concluded that “All children can engage in CT competencies if the adults working with them

focus on their strengths and potential rather than their deficits, and accordingly appropriate

guiding strategies and learning opportunities are provided” (p. 7).

Curricula

There are a wide range of CS-focused curricula available for PreK-5. Throughout the

paper, we have brought in many examples of curricular innovations that highlight CT in different

ways. To supplement these examples, we also bring forth one additional fairly comprehensive

resource. According to CSforAll’s content provider membership, there are currently 152

different curriculum providers for PreK-5th grade (http://bit.ly/CSforAllPreK5). These range

from CS specific (i.e., Codelicious), to robotics (e.g., Exploring Robotics), to AI-focused (e.g.,

AInspire), to STEAM integrated CS (e.g., SAM Labs). There are also resources for teachers such

as “No Fear Coding K-5”. In this resource, the author walks teachers through integrating Bee-

Bots, Code.org lesson, and Scratch across the curriculum. One of the most commonly used CS-

focused curriculum is Code.org’s CS Fundamentals curriculum (described earlier). While we did

not survey the majority of curricular resources, we are happy to see that more and more

resources that integrate CT in meaningful ways are available to teachers and students.

Books

There have also been a range of different children’s books focusing on computer science

within the past few years. Specifically, these books tend to focus on using literacy to teach

CS/CT ideas and principles. Haroldson and Bellard (2020) reviewed 45 picture books and

graphic novels published between 2015 and 2019 that focused on CS at the K-8 grade levels (see

24

below for the list from p. 7-8). The authors investigated what the computer science practices that

the characters in the books engage in. Using the four main CS practices established in the K-12

CS Framework, the authors reviewed the books for evidence of one of the four CS practices.

They found that 70% of the books contained at least three of the seven practices, with only two-

percent of the books covering all seven practices. The most common practices addressed were

Creating Computational Artifacts (80%), Developing and Using Abstractions (67%), and

Recognizing and Defining Computational Problems (58%). The least frequently addressed

practice was Fostering an Inclusive Computing Culture (9%). Books to support CT/CS

integration will be discussed more in the literacy integration section.

Integration of CT/CS into Other Elementary Subjects

Scholars have argued that computational thinking is intrinsic to all subject areas,

describing it as the core of all modern disciplines (Henderson et al., 2007). Lavigne et al. (2020)

suggested that “developing computational thinking (CT) skills at a young age is critical for

preparing preschool children to engage with the technologies that have become central to nearly

every occupation and for improving achievements in STEM, literacy, and other disciplines” (p.

63). Some scholars have pointed out that computer science shares similar content and inquiry

methods with science (Fluck et al., 2016) or math (Rich et al., 2019). In science, Fluck et al.

(2016) described that the concept of data and analysis in CS overlaps with the concepts of

observing phenomena and proposing hypotheses in the scientific method. In math, Rich et al.

(2018) explained that terms embedded in computational thinking (e.g., algorithm) and

programming (e.g., variables) share similar terms embedded in mathematics.

Some have claimed that by integrating computer science concepts with the other

disciplines, it could promote the innovation of computer science curricula (Sahami et al., 2013)

or could help with problem-solving by opening multiple ways of thinking (Denning et al., 2017).

However, scholars also state that embedding the concepts of Computer Science within the other

disciplines through the concept of computational thinking greatly challenged teachers (Barr &

Stephenson, 2011). Grover and Pea (2013) pointed out that more research was needed to figure

out how to integrate CT into elementary subject areas.

 As the integration of CT into other subjects areas has proved challenging for teachers to

accomplish, Yadav et al. (2019) provided a toolkit for teachers to incorporate CT into their

25

classrooms using four concepts: abstraction, decomposition, patterns, and debugging (see Figure

12 for a breakdown of the entire guide from their article). For abstraction, teachers should focus

on reducing complexity, encouraging students to simplify and focus on the more important

information. For decomposition, teachers need to help students break down problems into

smaller, more manageable parts. For patterns, facilitate opportunities for students to recognize

and create patterns. For debugging, teachers can focus on encouraging students to identify the

errors in their work, and to fix it themselves.

Figure 12. Toolkit screenshot from Yadav et al. 2019

The Importance of Context

When considering CT integration into other subjects, the contexts that students work

within are highly important. A theme that runs through much of the STEM integration literature

is that STEM activities should be focused on realistic or real-world problems (Moore, Johnston,

& Glancy, 2020). The contexts used in CT integration activities should represent complexity of

real-world problems (Angeli et al., 2016; Berland & Steingut, 2016). Connecting the CT lessons

to other school subjects - particularly STEM subjects (Lesh & Harel, 2003; Ryan et al., 2017),

STEM careers (Ryu, Mentzer, & Knobloch, 2018), and the community - making them more

socially and culturally relevant (Johnson, 2013) - are all potentially good ways to help students

make connections in their learning of CT. Furthermore, it has been argued that embedding

STEM+C content in real-world contexts makes students more motivated and engaged in the

26

learning because they are more meaningful and relevant to students’ lives (Angeli et al., 2016;

Berland & Steingut, 2016; Guzey et al., 2016).

Integration of CT/CS into Elementary Engineering and Engineering-Based STEM

Engineering and CT are inherently connected (National Research Council [NRC], 2011) .

Computer science is often considered one of the disciplines of engineering and in many

universities, the CS department is within the college of engineering. In fact, computer science,

software engineering, and computer engineering overlap significantly - with nuanced differences

in the focus of each discipline. The hallmark of engineering design is that the engineer designs a

technology to meet a need. Since computer programs are technologies, then necessarily one who

designs a computer program would also use the principles of engineering design to design it.

Brennan and Resnick (2012) identify those who code as designers. Furthermore, criteria and

constraints guide and limit how designers work toward their end product (NRC, 2010). Ehsan,

Cardella, and Svarovsky (2018) found that CT elements were present within in the engineering

design process employed by young students. Table 1 provides an overview of how their research

identified overlaps between CT competencies and engineering design. While this is not a

comprehensive understanding of how engineering and CT overlap, it does demonstrate the

potential for the meaningfulness and thoroughness of how these two areas can work together.

Table 1

Engineering design elements and where CT competencies overlap (Ehsan, Cardella, &

Svarovsky, 2018)

Engineering Design Element Computational Thinking Concept Used During Design Task

Problem Scoping Data Collection
Abstraction
Problem Decomposition

Generating Ideas Data Analysis
Abstraction
Problem Decomposition
Pattern Recognition

27

Idea Selection Pattern Recognition
Abstraction

Testing Solution Simulation
Parallelization
Debugging/Troubleshooting
Pattern Recognition

Engineering design-based integrated curricular programs are a great way to introduce

students to CT constructs. Two such programs are PictureSTEM and ETA Hand2Mind: STEM in

Action. PictureSTEM (picturestem.org) is a set of three curricular units for grades K-2 that

integrate STEM+C content using engineering contexts and picture books. Each unit focuses on at

least one mathematics, science, and CT idea that is standards-based for that grade in service of

solving an engineering problem for a client (Tank et al., 2018). These curricula are a result of

three NSF-funded projects (#1442416, #1519387, #1543175). Unlike many of the other curricula

we have found, the CT is integrated into a larger unit as a means to solve an engineering problem

that the client for the problem needs solved (Hynes et al., 2019). For example, in Designing

Hamster Habitats (first grade), the students are working for Perri who is the owner of Perri’s Pet

Palace. Perri wants a new design for the exercise trail for her hamster habitats. To integrate CT

into this, the students must present their design with an accompanying algorithm that instructs

Perri and her customers how the hamster will move through the habitat. See Figure 13 for an

example. In order for students to be able to learn about algorithms prior to this final artifact they

must present to Perri, students are introduced to algorithms through a picture book, Joey and Jet

by James Yang, and then through following and creating algorithms with tangrams, which is an

extension of some the mathematics integration already occurring in the unit. In the Joey and Jet

reading lesson, students are asked to retell the story through sequencing using flowcharts, which

is both a literacy standard and a CT concept (Figure 14). Then the paired CT lesson has students

using tangrams to first follow algorithms then create their own (Figure 15). Each unit in the

PictureSTEM curricula has a similar manner in which CT is integrated into the whole

engineering design project and paired lessons that highlight the literacy and CT integration. The

kindergarten PictureSTEM unit focuses on pattern recognition and abstraction in literacy and

engineering through basket weaving and the second grade unit focuses on sequencing,

28

debugging, and algorithm development through use of a robotic device (Hynes et al., 2019; Tank

et al., 2018). These developmentally appropriate introductions to CT work well as jumping off

points for further explorations into CT for K-2 students.

Figure 13. Students developing the algorithm for the hamster habitat trail and the resulting

final letter to the client that includes the algorithm.

Figure 14. Joey and Jet flowchart for sequencing. Student retell the story through use of

prepositions and putting the game of fetch in the order that the dog, Jet, chases the ball.

29

Figure 15. Student following an algorithm using tangrams (right). Students then create their

own algorithm using the worksheet (left).

ETA Hand2Mind: STEM in Action curricula have two CT focused STEM kits. Each of these

have a computational device (Robot Mouse and Botley) as part of a larger engineering design -

based STEM integration project. In the Coding Mouse Exploration, students work to develop a

program for the robot mouse that demonstrates that they understand the basic needs of mice

(Figure 16). In the Coding and Mineral Collection Challenge, students develop a program for a

robot that will collect unsafe minerals that have come to the surface of the earth (Figure 17). For

both STEM in Action units, the CT concepts include code tracing and writing and debugging

code.

30

Figure 16. Child programming the robot mouse after designing code for the course. Image

taken without permission from https://www.hand2mind.com/item/stem-in-action-coding-

mouse-exploration/9123

Figure 17. Children using Botley to collect mineral samples as they explore the surface of the

earth. Image taken without permission from https://www.hand2mind.com/item/stem-in-

actionreg-coding-mineral-collection-challenge/14422

Engineering design-based STEM integration has the potential to help students understand

how CT and computing ideas are not only for the development of technological devices but also

for using such devices for other important reasons that are helpful to people. Context is an

31

important motivator for students as they engage with CT (Breiner et al., 2012; Corlu & Aydin,

2016; Guzey et al., 2016; Hsiao et al., 2019; Johnson et al., 2016; Milesi et al., 2017; Stubbs &

Myers, 2015). Putting students in real world applications of CT will help them build an

appreciation for CT beyond the strict constructs as we define them.

Integration of CT/CS into Elementary Mathematics

Some have suggested that mathematics and computational thinking are a natural fit for

elementary integration (e.g., Rich et al., 2020). In fact, several studies have shown that

mathematics achievement at the elementary levels seems to be linked to students’ CT skills. Rich

et al. (2020) provided a rich comparison of the interplay of CT and mathematics play out in

standards. They found that precision, completeness, order, repetition, and conditionals are all

part of both mathematics and CT - but have similarities and differences that need attention.

Studies of students at the middle school level have found that success in learning to think

computationally can depend on mathematics ability and prior CT experiences both in and out of

school (Grover, 2016). This finding was consistent with a few studies at the upper elementary

level. Lewis (2012) found that 5th grade student performance on Scratch programming quizzes

in a summer camp were highly correlated with their scores on a standardized math test. Salac et

al. (2020) found similar results with 296 4th grade students who received instruction on events,

sequence, and repetition based on the Creative Computing Curriculum. Although all students

showed increases in their CT knowledge, there were statistically significant differences in

learning outcomes between students with below grade-level math proficiency and those who

were at or above grade-level. In a preschool study, Lavigne et al. (2020) studied an integration of

CT ideas into mathematics instruction. The activities focused on cross-disciplinary concepts such

as patterns, combining shapes into larger shapes, and sequencing. Lavigne et al. (2020) stated

that “the fact that classroom teachers spent the majority of activity time on the target CT learning

goals suggests that the approach to integrating CT into preschool math instruction shows

promise” (p. 73).

Scratch and Scratch Jr. have been a focus of several interventions intended to integrate

mathematics and CT. Scratch’s Cross-Curricular Integration Guide includes many examples and

resources on how to integrate Scratch and mathematics. Some of the 3rd - 8th grade project

examples include building a multiplication game, creating a simple calculator, estimation game,

fibonacci sequence, probability dice roll games, making a shape calculator, and fractions

32

microworld. In another approach to integrating Scratch into mathematics, Maya Israel and Diana

Franklin created Action Fractions, which provides 10-12 hours of math and Scratch instruction

focused around 3rd and 4th grade fractions instruction

(https://www.canonlab.org/actionfractionslessons).

Flannery et al. (2013) also described that Scratch Jr. was designed to be integrated with

mathematics at grades K-2. In mathematics, ScratchJr can be used to support number sense and

measurement (distance, rotation, time, and iterations). There is a removable grid of 20 by 15

squares, and students can use the grid to measure how far a character can/should move. Scratch

also supports primary math at the upper elementary levels with its coordinate system, grid, x-

axis, and y-axis.

Integration of CT/CS into Elementary Science

There is little research on integrating CT/CS into science at the elementary levels, and

much of what is there studies the teachers rather than student learning. One of the few articles

that focuses on student learning is from Dickes et al.(2020). This study looked at student learning

within a model-eliciting activity (Lesh & Doerr, 2003) as a means to integrate science

(kinematics and ecology) with mathematics (geometry) and CT for 3rd- and 4th-grade students.

Within the kinematics portion of the integration, the students used an agent-based programming

tool that is on the NetLogo platform to model footprints (relating measurement and motion).

They found that the use of CT to model the phenomena required modeling cycles, or iterations.

This led to iterative improvement of the students’ representations (Dickes et al., 2020).

Even though the research base for integration of science and CT is not deep, curricular

projects are still available to support CT and science integration. Scratch’s Cross-Curricular

Integration Guide included many examples and resources on how to integrate Scratch and

science. Some of the 3rd - 8th grade project examples include using loops to create gravity

systems, poison in America food nutrition, and animated biomes. There are also lesson plans and

ideas associated with many of the CS/CT tools. For example, WonderWorkshop created a Dash

Robot Life Cycles STEAM Project where students research their plan or animal, create a poster,

and program Dash to visit each stage on the poster and talk about that stage. It should also be

pointed out that many of the CS standards at the elementary level exist within the Science

standards for different states (e.g., Indiana).

33

Integration of CT/CS into Elementary Literacy

Some have referred to computer science/computational thinking/computer literacy as our

“new literacy” (Jacob & Warschauer, 2018; Shein, 2014; Wilson, 2013). In addition, Kelleher,

Pausch, and Kiesler (2007) have suggested that computer science can be a modern storytelling

mechanism at the middle school level. Also at the middle school levels, Burke and Kafai (2012)

worked with ten students to draft, revise, and publish digital stories. Although students were able

to learn CS programming concepts, they did not investigate the literary elements. Burke and

Kafai (2012) caution that “digital stories in Scratch are likewise “products” that embody both the

technical and the creative elements of composition and offer a broader conception of what

“writing” with computers may look like in the 21st century” (p. 6).

Research has suggested that English ability at the elementary levels may be linked to

students' CT skills. For example, studies at the middle school level have found that English

ability is one of the contributing factors to students’ success in CS learning (Grover et al., 2016).

This finding was consistent with a study at the upper elementary level. Salac et al. (2020) found

similar results with 296 4th grade students who received instruction on events, sequence, and

repetition based on the Creative Computing Curriculum. Although all students showed increases

in their CT knowledge, there were statistically significant differences in learning outcomes

between students with below grade-level reading proficiency and those who were at or above

grade-level.

There have been several ways literacy and CS have been used together in the curriculum.

For example, in the younger grades, Scratch Jr was designed “to support narrative structure…[by

letting] children create multi-page projects, like a book with a beginning, middle, and end. Text

showing the name of each block can be revealed to support word recognition by letting children

match intuitive icons with related text” (Flannery et al., 2013, p. 8). Lowe and Brophy (2019)

examined the literacy practices of 18 K-2 students as they retold a fairy tale using Scratch Jr.

Students seemed to struggle with creating animations that matched their drafted storyboards.

There is little research documenting the role that texts, language, and vocabulary play into the

development of a broader and more well rounded CS and computational thinking (CT)

experience for students in K-5 classrooms.

There are several curriculums that have incorporated storytelling specifically in their CS

curriculum. For example, CS in SF created an entire unit around storytelling with Scratch. In

34

another example, Google for Education also developed CS First Curriculum, which has a

specific unit dedicated to using Scratch to tell stories. Scratch’s Cross-Curricular Integration

Guide also included many examples and resources on how to integrate Scratch and English

language arts. Some of the 3rd - 8th grade project examples include book reports, creation myths

retelling, informative writing (water cycle), literature circles, parts of speech random sentence

generator, and persuasive writing. In addition, Vicky Sedgwick has created curricular integration

ideas using the Micro:Bit with English language arts. In another literary example (Salac, 2020)

the curriculum Comprehending Code was created to utilize reading comprehension strategies and

research to drive computer science curriculum. Just as reading requires strategies beyond

decoding the letters into words, students need to make “meaning of the sequences of words into

instructions (like sentences) and the sequences of instructions into functions or programs (like

paragraphs).” However, we were unable to identify empirically based studies on whether these

curricula were effective in increasing students’ CT or literacy skills.

Although there are quite a few examples of CS and literacy integration, there are a

limited number of empirical studies investigating the effectiveness of these integrations on

literacy. Most of the literacy/CT studies are focused on students’ CT skills improvements. For

example, Lee (2010) taught and examined the CT knowledge and experiences of a one nine-

year-old boy. Lee met with the student once-per week for six weeks and showed him basic

programming and Scratch functions. Over the next 18 weeks, the boy selected and built language

arts themed projects such as digital storybooks and games. Lee found that the visual

programming approach employed in Scratch and the analogy-based instructional strategy

enabled the young participant to successfully learn computer programming while creating a

variety of multimedia products. Another study suggested that Scratch can be beneficial for non-

native English speakers to learn the English. In a study of 32 4th and 5th graders in Spain, all

students reported that this experience increased their English capabilities (Moreno-León &

Robles, 2015). However, these were self-reported claims by the students.

Many of these studies and resources show the potential for integrating CS into literacy

instruction (or the other way around). We have personally seen the power of building CS

elementary instruction around stories and literature. There have been a range of different

children’s books focusing on computer science within the past few years. Specifically, these

books tend to focus on using literacy to teach CS/CT ideas and principles. Haroldson and Bellard

35

(2020) reviewed 45 picture books and graphic novels published between 2015 and 2019 that

focused on CS at the K-8 grade levels (see Figure 18 for a screenshot of the list captured from

the article).

Figure 18. List of 45 Books Reviewed by Haroldson and Bellard (2020)

In other literary lists, CSTA’s K-8 CS Integration Resources curated by Todd Lash and

Vicky Sedgwick compiled resources and books that directly relate to CS/CT. The Canon Lab at

the University of Chicago run by Diana Franklin also established a list of books that relate to CT

appropriate concepts for K-5 students (https://www.canonlab.org/prekreadinglist). These include

If you give a mouse a cookie for infinite loops, or Beautiful oops for persistence and the design

process, or The art of clean up to discuss how to organize data. For each book, they have

36

suggestions for how to incorporate ideas around CT, including summaries, key questions,

strategies while reading the book and even coinciding activities.

One of the more popular books is targeted towards the lower elementary grade levels is

Hello Ruby. This book series has three different books, each focusing on a different CS-related

concepts. The first book focuses heavily on CT. It centers around a curious little girl, Ruby, who

uses her imagination to embark on a journey to crack the code of a mysterious card left by her

father before heading to work. Throughout this journey, Ruby needs to apply CT skills to

abstract and identify patterns, implement loops/conditional statements, and construct solutions.

She is a children’s book character created by Linda Liukas as a role model for children to get

immersed in the world of technology, computing and coding in a fun and playful, more inquiry-

based way (Kruskopf, 2016). The CS in SF curriculum at the K-2 levels are heavily based on

these books, incorporating the unplugged activities to explore basic control structures like

sequencing, loops, and conditionals.

Integration of CT/CS into Elementary Music

Researchers are also investigating ways to incorporate CS into music and the arts at the

primary school level. For example, Baratè et al. (2017) used LEGO bricks to represent basic

musical notations and to show how pitch and time can be represented graphically (see Figure 19

below). Barate described that this approach requires ideas around abstraction, iteration, and

debugging.

Figure 19. Screenshots from Baratè et al. (2020)

37

Another example of incorporating music and coding is through Wonder Workshop’s

Dash, a robot that can produce sounds and light depending on input from stimuli and/or coding

inputted through an app. WonderWorkshop has designed lesson plans to introduce students to

music and coding at the Kindergarten and first grade levels. Students are able to visualize the

notes in a hierarchical order and over time. They can program the robot to play the notes on the

xylophone through a simple app (see Figure 20).

Figure 20. Screenshot examples from WonderWorkshop’s website.

Another more advanced robot for integrating CT into music is Wigl (http://wiglbot.com/).

This robot responds to specific notes with real-world movements and lights. For example,

playing an “A” commands the robot to move forward, “B” backwards, “C” turns left, and “D”

turns right. It hears notes (from any instrument and even singing) and responds with real-world

movements, lights, and special dances. Through sequenced musical notes, you can even program

unique moves. Another interesting initiative is Note Code, which is a music programming puzzle

game designed as a tangible device coupled with entities to store sets of notes, play them back

and activate different sub-components or neighboring boxes.

Google’s CS First curriculum also has a unit dedicated to music and sound consisting of

eight different activities. In addition, Vicky Sedgwick has created curricular integration ideas

using the Micro:Bit with music.

Integration of CT/CS into Elementary Arts

In terms of the arts, ScratchJr and Scratch both enable students to create their own

characters and backgrounds. There was little research on this at the K-5 levels, although other

research around e-Textiles and the arts exists at the secondary level (Lui et al., 2020). At the

elementary level, Scratch’s Cross-Curricular Integration Guide included several examples and

38

resources on how to integrate Scratch and fine arts. Some of the 3rd - 8th grade project examples

include colors of the rainbow, making interactive landscapes, and animating aesop fables.

Google’s CS First curriculum also includes an intermediate art unit with eight activities that

leads students through the creation of animation, interactive artwork, photograph filters and other

exciting artistic projects using code.

Challenges with Integration of CT/CS into Elementary Classrooms

Teachers and scholars reported many challenges in teaching computational

thinking/computer science. Some of these challenges include frequent policy changes (B. Barker,

2010), mandatory requirements from district and schools (e.g., Google Inc. & Gallup Inc, 2016;

Indiana Department of Education, 2018), and even demands from the parents to teach CS/CT

(Google Inc. & Gallup Inc, 2016; Wang et al., 2016). Perhaps the largest concern is due to

competing demands from other subject areas and testing, teachers often struggle with addressing

CT/CS in their curriculum. Scholars have suggested integrating CT/CS into existing curriculum

(Barr & Stephenson, 2011), especially through shared terminology like those found in math

(Barr & Stephenson, 2011; Rich et al., 2019; Sneider et al., 2014; Weintrop et al., 2016). Or

perhaps integrating CT/CS by building content connections (Sung et al., 2017). Or through the

potential of building pedagogy connections through elementary problem-based learning (Ozturk

et al., 2018).

However, teachers still describe challenges with this approach due to their lack of content

knowledge around CT/CS. Teachers have often reported receiving a lack of training in CS/CT at

the elementary level (e.g., Ozturk et al., 2018), and often indicate feeling underprepared and

unable to incorporate these ideas into existing curriculum (Ottenbreit-Leftwich & Biggers,

2017). Israel et al. (2020) and Ray et al. (2018) both found that teachers were challenged to

differentiate elementary CS instruction for varying levels of academic abilities. They both noted

that teachers required the support of an instructional coach (with CS and UDL background) as

well as significant PD to successfully achieve differentiated CS instruction for all learners.

Experts have argued that in order for K-12 teachers to be able to integrate CT, they must

have professional support (Yadav, Gretter, et al., 2017). It appears that providing support to

teachers in the form of curriculum, coaching, or professional development is critical to the

success of incorporating CT into the existing K-5 curriculum. Furthermore, policies and daily

support structures need to be established to create the system that enables CT integration. In

39

other words, elementary teachers need to know and feel the importance of CT/CS. This can be

easily addressed by school administration acknowledging the importance of CT and providing

teachers with the support to be able to integrate CT into their classrooms.

Conclusion

Computational thinking (CT) in PreK-5 is an emerging and developing field. There is still

a great deal that we must learn about the developmental appropriateness of different techniques

for teaching CT, especially at the elementary level. Learning trajectories and progressions are

currently being developed and studied, but much of the research is not yet published. There are a

limited number of curricular innovations that are ready for PreK-5 implementation, and even

fewer that have been empirically tested, and even fewer still that are integrated into other subject

areas with attention to meaningful content integration between subjects.

The rationale for integration is two-fold. First, many schools face great challenges to add

CT into their curriculum. One of the greatest challenges is the time dedicated to other subject

areas. Second, studies have shown that contextualized application of CT tend to make learning

more relevant and meaningful for students. Therefore, curricula that uses CT to also teach or

reinforce other content areas through an integrated approach will be valuable for K-5 schools.

CT integration at the K-5 levels is most commonly being done with engineering design-based

STEM integration, with mathematics, and with literacy. The connections between engineering

and CT are natural and have a lot of room for development. The ways of thinking in mathematics

and CT are very similar when we think about it from a conceptual point of view. Using CT to

reinforce literacy and reading is being shown to have great potential. These areas need more

curricular resources for all grade bands.

Furthermore, curricular innovations can fall in multiple areas: unplugged, plugged, tools,

robotics, and books. Curricular resources that fall into each of these categories and integrate

with other subjects that are required to be taught should be created to focus on (1) clear,

developmentally appropriate learning trajectories and strategies, (2) using multiple

representations, and (3) making CT learning active, hands-on, and minds-on. Two stand out

curricular examples that incorporate these elements were PictureSTEM and ETA Hand2Mind:

STEM in Action.

We suggest that future research continues to investigate the connections between the

disciplines to more fully integrate CT in meaningful ways that do not add to the curriculum for

40

students, but rather enhances it for all areas. Curricula need to be developed and studied to

address the concerns brought up here. There is also a need for a deeper understanding of how

students develop CT competencies both with and without integration. Very few clinical studies

exist of how students engage with CT at different developmental stages or with a mind to the CT

skills that need to be developed. New studies that look at CT comprehensively and breakdown

the CT skills to focus deeply on these are needed. These studies should be used as a basis for

developing learning opportunities for children in both formal and informal spaces.

41

REFERENCES

Aggarwal, A., Gardner-McCune, C., & Tourestzky, D. (2017). Evaluating the effect of using

physical manipulatives to foster computational thinking in elementary school. ACM

SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-

6 computational thinking curriculum framework: Implications for teacher knowledge.

Journal of Educational Technology & Society, 19(3), 47-57.

Balanskat, A. and Engelhardt, K. (2014): Computing our future: computer programming and

coding - priorities, school curricula, and initiatives across Europe. European Schoolnet.

Available at: http://www.eun.org/c/document_library/get_file?uuid=521cb928-6ec4-

4a86-b522- 9d8fd5cf60ce&groupId=43887

Baratè, A., Ludovico, L. A., & Malchiodi, D. (2017). Fostering computational thinking in

primary school through a LEGO®-based music notation. Procedia computer science,

112, 1334-1344.

Barker, B. (2010). The pendulum swings: Transforming school reform. Westview House 734

London Road, Oakhill, Stoke-on-Trent, Staffordshire, ST4 5NP, UK.: Trentham Books

Ltd. .

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved

and what is the role of the computer science education community? ACM Inroads, 2(1),

48-54.

Berland, L. K., & Steingut, R. (2016). Explaining variation in student efforts towards using math

and science knowledge in engineering contexts. International Journal of Science

Education, 38(18), 2742-2761. http://doi.org/10.1080/09500693.2016.1260179

Bers, M. U. (2010). The tangible K robotics program: Applied computational thinking for young

children. Early Childhood Research and Practice, 12(2).

https://ecrp.illinois.edu/v12n2/bers.html

Bers, M. U. (2018a). Coding and computational thinking in early childhood: the impact of

ScratchJr in Europe. European Journal of STEM Education, 3(3), 8.

Bers, M. U. (2018b). Coding as a playground: Programming and computational thinking in the

early classroom. Routledge.

42

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A

discussion about conceptions of STEM in education and partnerships. School Science and

Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Proceedings of the 2012 annual meeting of the

American educational research association, Vancouver, Canada,

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of

computer science in UK schools. ACM Transactions on Computing Education (TOCE),

14(2), 1-22.

Bruner, J. S. (1960). The process of education. Harvard University Press.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).

Changing a generation’s way of thinking: Teaching computational thinking through

programming. Review of Educational Research, 87(4), 834-860.

Burke, Q., & Kafai, Y. B. (2012, February). The writers' workshop for youth

programmers: digital storytelling with scratch in middle school classrooms. In

Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp.

433-438).

Byers, J. A., & Walker, C. (1995). Refining the motor training hypothesis for the evolution of

play. The American Naturalist, 146(1), 25-40. https://doi.org/10.1086/285785

Century, J., Ferris, K. A., & Zuo, H. (2020). Finding time for computer science in the elementary

school day: a quasi-experimental study of a transdisciplinary problem-based learning

approach. International Journal of STEM Education, 7, 1-16.

Chalmers, C. (2018). Robotics and computational thinking in primary school. International

Journal of Child-Computer Interaction, 17, 93-100.

Clark, J., Rogers, M. P., Spradling, C., & Pais, J. (2013). What, no canoes? Lessons learned

while hosting a scratch summer camp. Journal of Computing Sciences in Colleges, 28,

204-210.

Corlu, M. A., & Aydin, E. (2016). Evaluation of learning gains through integrated STEM

projects. International Journal of Education in Mathematics, Science and Technology,

4(1), 20-29. https://doi.org/10.18404/ijemst.35021

43

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2018). Computational thinking. In S. A. Fincher &

A. V. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp.

513-546). Cambridge University Press.

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational

thinking through unplugged activities in early years of primary education. Computers &

Education, 150, 103832.

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). The profession of IT misconceptions about

computer science. Communications of the ACM 60(3), 31-33.

http://hdl.handle.net/10945/60896

Dickes, A. C., Farris, A. V., & Sengupta, P. (2020). Sociomathematical norms for integrating

coding and modeling with elementary science: A dialogical approach. Journal of Science

Education and Technology, 29(1), 35-52. https://doi.org/10.1007/s10956-019-09795-7

Ehsan, H., Cardella, M. E. & Hynes, M. (2020, Apr 17 - 21) Exploring Computational Thinking

Engagement: An Exploratory Study on Children With Mild Autism. AERA Annual

Meeting San Francisco, CA. (Conference Canceled).

Ehsan, H., Cardella, M., & Svarovsky, G. (2018, April) Engineering and computational thinking

among families engaging with an exhibit. Paper presented at the American Educational

Research Association (AERA) Annual Meeting. New York City. NY..

Ehsan, H., Ohland, C., Cardella, M. (2018, June). Computing for the critters: Exploring

computational thinking of children in informal learning settings. IEEE Frontiers in

Education Conference, San Jose, CA. https://doi.org/10.1109/FIE.2018.8659268

Ehsan, H., Rehmat, A. P., & Cardella, M. E. (2020). Computational thinking embedded in

engineering design: capturing computational thinking of children in an informal

engineering design activity. International Journal of Technology and Design Education.

https://doi.org/10.1007/s10798-020-09562-5

Ehsan, H., Rehmat, A., & Cardella, M. E. (2019). Computer science unplugged: Design a puppy

playground using computational thinking. NSTA Science and Children, 57(3), 32-38.

Faber, H. H., Wierdsma, M. D., Doornbos, R. P., van der Ven, J. S., & de Vette, K. (2017).

Teaching computational thinking to primary school students via unplugged programming

lessons. Journal of the European Teacher Education Network, 12, 13-24.

44

Fagundes, B., Ehsan, H., Moore, T. J., Tank, K. M., & Cardella, M. E. (2020, June). WIP: First-

graders’ computational thinking in informal learning settings. ASEE Virtual Annual

Conference. https://doi.org/10.18260/1-2--35541

Falkner, K., Vivian, R., & Falkner, N. (2014, January). The Australian digital

technologies curriculum: challenge and opportunity. In Proceedings of the Sixteenth

Australasian Computing Education Conference-Volume 148 (pp. 3-12).

Fessakis, G., Gouli, E., & Mavroudi, E. (2013, 2013/04/01/). Problem solving by 5–6 years old

kindergarten children in a computer programming environment: A case study. Computers

& Education, 63, 87-97. https://doi.org/https://doi.org/10.1016/j.compedu.2012.11.016

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013).

Designing ScratchJr: support for early childhood learning through computer

programming Proceedings of the 12th International Conference on Interaction Design

and Children, New York, New York, USA. https://doi.org/10.1145/2485760.2485785

Fluck, A. E., Webb, M., Cox, M. J., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2016).

Arguing for computer science in the school curriculum. Educational Technology &

Society, 19(3), 38-46.

Google Inc. & Gallup Inc. (2016). Trends in the State of Computer Science in U.S. K-12

Schools. Retrieved from http://goo.gl/j291E0.

Gretter, S., & Yadav, A. (2016). Computational thinking and media & information literacy: An

integrated approach to teaching twenty-first century skills. TechTrends, 60(5), 510-516.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.

Educational Researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in

middle school. Proceedings of the 47th ACM technical symposium on computing science

education, (pp. 552-557).

Guo, M., & Ottenbreit-Leftwich, A. (2020). Exploring the k-12 computer science curriculum

standards in the U.S. Workshop in Primary and Secondary Computing Education, Online.

Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building up STEM: An analysis of teacher-

developed engineering design-based STEM integration curricular materials. Journal of

Pre-College Engineering Education Research (J-PEER), 6(1), 11-29.

https://doi.org/https://doi.org/10.7771/2157-9288.1129

45

Haroldson, R., & Ballard, D. (2020). Alignment and representation in computer science: an

analysis of picture books and graphic novels for K-8 students. Computer Science

Education, 1-26.

Heintz, F., Mannila, L., & Farnqvist, T. (2016, October). A review of models for

introducing computational thinking, computer science and computing in K-12 education.

IEEE Frontiers in Education Conference, Erie, PA.

https://doi.org/10.1109/FIE.2016.7757410

Henderson, P. B., Cortina, T. J., & Wing, J. (2007). Computational thinking Proceedings of the

38th SIGCSE technical symposium on Computer science education, Covington,

Kentucky, USA. https://doi.org/10.1145/1227310.1227378

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch? A controlled experiment

comparing plugged first and unplugged first programming lessons. Proceedings of the

12th workshop on primary and secondary computing education,

Hsiao, H.-S., Lin, Y.-W., Lin, K.-Y., Lin, C.-Y., Chen, J.-H., & Chen, J.-C. (2019). Using robot-

based practices to develop an activity that incorporated the 6E model to improve

elementary school students’ learning performances. Interactive Learning Environments,

1-15. https://doi.org/10.1080/10494820.2019.1636090

Hynes, M. M., Cardella, M. E., Moore, T. J., Brophy, S. P., Purzer, S., Tank, K. M., Menekse,

M., Yeter, I. H., & Ehsan, H. (2019, June). Inspiring young children to engage in

computational thinking in and out of school (Research-to-practice). American Society for

Engineering Education Annual Conference & Exposition, Tampa, FL.

Indiana Department of Education. (2018b). STEM Six-Year strategic Plan: An Integrated K-12

STEM Approach for Indiana Retrieved from

https://www.doe.in.gov/sites/default/files/wf-stem/20181108154535030.pdf

Israel, M., Jeong, G., Ray, M., & Lash, T. (2020). Teaching Elementary Computer Science

through Universal Design for Learning Proceedings of the 51st ACM Technical

Symposium on Computer Science Education, Portland, OR, USA. https://doi-

org.proxyiub.uits.iu.edu/10.1145/3328778.3366823

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners

in school-wide computational thinking: A cross-case qualitative analysis. Computers &

Education, 82, 263-279.

46

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal of

Computer Science Integration, 1(1).

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2016). STEM road map: A framework for

integrated STEM education [Book]. Routledge.

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1021248&site=ehos

t-live

K–12 Computer Science Framework. (2016). http://www.k12cs.org

Kelleher, C. & Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school girls

to learn computer programming. Conference on Human Factors in Computing Systems -

Proceedings. P. 1455-1464. 10.1145/1240624.1240844.

Kruskopf, M. (2016). Explorations on the nature of children's conceptual change in

computational thinking during hello ruby summer school 2016. Master’s Thesis,

University of Helsinki. Retrieved from

https://helda.helsinki.fi/bitstream/handle/10138/174410/MastersThesisMillaKruskopf201

6.pdf?isAllowed=y&sequence=2

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org.

Computers in Human Behavior, 52, 200-210.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org.

Computers in Human Behavior, 52, 200-210.

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students' interest,

collaboration attitude, and programming empowerment in computational thinking

education. Computers & Education, 127, 178-189.

Lambić, D., Đorić, B., & Ivakić, S. (2020). Investigating the effect of the use of code. org on

younger elementary school students’ attitudes towards programming. Behaviour &

Information Technology, 1-12.

Lambić, D., Đorić, B., & Ivakić, S. (2020). Investigating the effect of the use of code. org on

younger elementary school students’ attitudes towards programming. Behaviour &

Information Technology, 1-12.

Lavigne, H. J., Lewis-Presser, A., & Rosenfeld, D. (2020). An exploratory approach for

investigating the integration of computational thinking and mathematics for preschool

children. Journal of Digital Learning in Teacher Education, 36(1), 63-77.

47

Lee, Y.-J. (2010). Developing computer programming concepts and skills via technology-

enriched language-art projects: A case study. Journal of Educational Multimedia and

Hypermedia, 19(3), 307-326.

Lee, I., & Malyn-Smith, J. (2020). Computational thinking integration patterns along the

framework defining computational thinking from a disciplinary perspective. Journal of

Science Education and Technology, 29(1), 9-18. https://doi.org/10.1007/s10956-019-

09802-x

Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on

mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.),

Beyond constructivism: Models and modeling perspectives on mathematics problem

solving, learning, and teaching (pp. 3-34). Lawrence Erlbaum.

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development.

Mathematical Thinking and Learning, 5(2), 157-189.

https://doi.org/https://doi.org/10.1207/S15327833MTL0502&3_03

Lewis, C. M., & Shah, N. (2012, February). Building upon and enriching grade four mathematics

standards with programming curriculum. In Proceedings of the 43rd ACM technical

symposium on Computer Science Education (pp. 57-62).

Lowe, T., & Brophy, S. (2019). Identifying computational thinking in storytelling literacy

activities with Scratch Jr. In ASEE Annual Conference Proceedings (p. 10).

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D., & Jayathirtha, G. (2020).

Communicating computational concepts and practices within high school students’

portfolios of making electronic textiles. Interactive Learning Environments, 28(3), 284-

301.

Lye, S. Y., & Koh, J. H. L. (2014, 2014/12/01/). Review on teaching and learning of

computational thinking through programming: What is next for K-12? Computers in

Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012

Malik, S. I., Shakir, M., Eldow, A., & Ashfaque, M. W. (2019). Promoting algorithmic thinking

in an introductory programming course. International Journal of Emerging Technologies

in Learning, 14(1), 84-94. https://doi.org/10.3991/ijet.v14i01.9061

48

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch

programming language and environment. ACM Transactions on Computing Education

(TOCE), 10(4), 1-15.

Milesi, C., Perez-Felkner, L., Brown, K., & Schneider, B. (2017, 2017-April-25). Engagement,

Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study

[Original Research]. Frontiers in Psychology, 8(602).

https://doi.org/10.3389/fpsyg.2017.00602

Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., &

Gajdzik, E. (2020). Multiple representations in computational thinking tasks: A clinical

study of second-grade students. Journal of Science Education and Technology, 29(1), 19-

34. https://doi.org/10.1007/s10956-020-09812-0

Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of

conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J.

Moore, & L. D. English (Eds.), Handbook of Research on STEM Education (pp. 3-16).

Routledge.

Moreno-León, J., & Robles, G. (2015, March). Computer programming as an educational tool in

the English classroom a preliminary study. In 2015 IEEE Global Engineering Education

Conference (EDUCON) (pp. 961-966). IEEE.

Mossberger, K. (2009). Toward digital citizenship. Addressing inequality in the information age.

Routledge handbook of Internet politics, 173, 85.

Mossberger, K., Tolbert, C. J., & McNeal, R. S. (2007). Digital citizenship: The Internet, society,

and participation. MIT Press.

Mouza, C., Yadav, A., & Ottenbreit-Leftwich, A. (2018). Developing computationally literate

teachers: Current perspectives and future directions for teacher preparation in computing

education. Journal of Technology and Teacher Education, 26(3), 333-352.

Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W.

(2013). Building cohesion across representations: A mechanism for STEM integration.

Journal of Engineering Education, 102(1), 77-116.

https://doi.org/http://doi.org/10.1002/jee.20000

National Research Council. (2010). Report of a workshop on the scope and nature of

computational thinking. The National Academies Press. https://doi.org/10.17226/12840

49

National Research Council. (2011). Report of a workshop on the pedagogical aspects of

computational thinking. The National Academies Press. https://doi.org/10.17226/13170

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking,

digital competence and 21st century skills when learning programming in K-9. Education

Inquiry, 11(1), 1-17.

Ottenbreit-Leftwich, A.T. & Biggers, M. (2017). Status of K-14 computer science education in

Indiana: Landscape Report. Submitted to the NSF’s ECEP Alliance, the Indiana

Department of Education, Governor of Indiana, Code.org, and Indiana legislators.

http://bit.ly/CSforINFinalReport

Ozturk, Z., Dooley, C. M., & Welch, M. (2018). Finding the hook: Computer science education

in elementary contexts. Journal of Research on Technology in Education, 50(2), 149-163.

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming

concepts and computational thinking with ScratchJr in preschool education: a case study.

International Journal of Mobile Learning and Organisation, 10(3), 187-202.

Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. Basic Books.

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code

via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning

tools for young children. Computers & Education, 128, 52-62.

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code

via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning

tools for young children. Computers & Education, 128, 52-62.

Ray, M. J., Israel, M., Lee, C., & Do, V. (2018). A Cross-Case Analysis of Instructional

Strategies to Support Participation of K-8 Students with Disabilities in CS for All

Proceedings of the 49th ACM Technical Symposium on Computer Science Education,

Baltimore, Maryland, USA. https://doi.org/10.1145/3159450.3159482

Ribble, M. (2015). Digital citizenship in schools: Nine elements all students should know

(third ed.). International Society for Technology in Education.

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018). Decomposition: A K-8

computational thinking learning trajectory Proceedings of the 2018 ACM Conference on

International Computing Education Research, Espoo, Finland. https://doi-

org.proxyiub.uits.iu.edu/10.1145/3230977.3230979

50

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in

mathematical and computational thinking: Implications for integrated instruction.

Interactive Learning Environments, 28(3), 272-283.

https://doi.org/10.1080/10494820.2019.1612445

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, mathematics, and

science: Elementary teachers’ perspectives on integration. Journal of Technology and

Teacher Education, 27(2), 165-205.

Roosevelt, E. (2008). Good citizenship: The purpose of education. Yearbook of the National

Society for the Study of Education, 107(2), 312-320.

Ryan, M., Gale, J., & Usselman, M. (2017). Integrating engineering into core science instruction:

Translating NGSS principles into practice through iterative curriculum design.

International Journal of Engineering Education, 33(1B), 321-331.

Ryu, M., Mentzer, N., & Knobloch, N. (2018). Preservice teachers’ experiences of STEM

integration: Challenges and implications for integrated STEM teacher preparation.

International Journal of Technology and Design Education.

http://doi.org/10.1007/s10798-018-9440-9

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming

languages integrated across the curriculum in elementary school: A two year case study

using “Scratch” in five schools. Computers & Education, 97, 129-141.

Sahami, M., Roach, S., Cuadros-Vargas, E., & LeBlanc, R. (2013). ACM/IEEE-CS computer

science curriculum 2013: reviewing the ironman report. Proceeding of the 44th ACM

technical symposium on Computer science education,

Salac, J., Thomas, C., Twarek, B., Marsland, W., & Franklin, D. (2020, February).

Comprehending code: Understanding the relationship between reading and math

proficiency, and 4th-grade cs learning outcomes. In Proceedings of the 51st ACM

Technical Symposium on Computer Science Education (pp. 268-274).

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking

of primary grade students Proceedings of the ninth annual international ACM conference

on International computing education research, San Diego, San California, USA.

https://doi-org.proxyiub.uits.iu.edu/10.1145/2493394.2493403

51

Shein, E. (2014). Should everybody learn to code? Communications of the ACM 57(2), 16–18.

DOI:https://doi.org/10.1145/2557447

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science framework

and NGSS: Computational thinking in the science classroom. Science Scope, 38(3), 10-

15.

Stubbs, E. A., & Myers, B. E. (2015, 06//). Multiple case study of STEM in school-based

agricultural education [Article]. Journal of Agricultural Education, 56(2), 188-203.

https://doi.org/http://doi.org/10.5032/jae.2015.02188

Sullivan, A., & Bers, M. U. (2019). Vex robotics competitions: Gender differences in student

attitudes and experiences. Journal of Information Technology Education: Research, 18,

97-112. https://doi.org/10.28945/4193

Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational manipulatives

for learning in the STEM disciplines. Journal of Research on Technology in Education,

48(2), 105-128. https://doi.org/10.1080/15391523.2016.1146563

Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners:

Practicing computational perspectives through embodiment in mathematics education.

Technology, Knowledge and Learning, 22(3), 443-463.

Sysło, M. M., & Kwiatkowska, A. B. (2015). Introducing a new computer science curriculum for

all school levels in Poland. In A. Brodnik & J. Vahrenhold (Eds.), Informatics in schools.

Curricula, competences, and competitions (pp. 141-154). Springer International

Publishing. https://doi.org/10.1007/978-3-319-25396-1_13

Tank, K. M., Moore, T. J., Dorie, B. L., Gajdzik, E., Terri Sanger, M., Rynearson, A. M., &

Mann, E. F. (2018). Engineering early elementary classrooms through the integration of

high-quality literature, design, and STEM+C content. In L. English & T. Moore (Eds.),

Early Engineering Learning (pp. 175-201). Springer Singapore.

https://doi.org/10.1007/978-981-10-8621-2_9

Touretzky, D. S., & Gardner-McCune, C. (2018). Calypso for Cozmo: Robotic AI for everyone.

Proceedings of the 49th ACM Technical Symposium on Computer Science Education,

Baltimore, Maryland, USA. https://doi.org/10.1145/3159450.3162200

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science education:

Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of

52

the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 609-

614).

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science education:

Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of

the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 609-

614).

Wang, J., Hong, H., Ravitz, J., & Hejazi Moghadam, S. (2016). Landscape of K-12 computer

science education in the US: Perceptions, access, and barriers. Paper presented at the

Proceedings of the 47th ACM Technical Symposium on Computing Science Education.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).

Defining computational thinking for mathematics and science classrooms. Journal of

Science Education and Technology, 25(1), 127-147.

Wilson, C. (2013). Making computer science count. Communications of the ACM 56(11), 32–33.

DOI:https://doi.org/10.1145/2527189

Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

transactions. Series A, Mathematical, physical, and engineering sciences, 366(1881),

3717-3725. https://doi.org/10.1098/rsta.2008.0118

Wohl, B., Porter, B., & Clinch, S. (2015). Teaching Computer Science to 5-7 year-olds: An

initial study with Scratch, Cubelets and unplugged computing. proceedings of the

workshop in primary and secondary computing education,

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging

competence domain. In Competence-based vocational and professional education (pp.

1051-1067). Springer.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in teacher

education. In P. J. Rich & C. B. Hodges (Eds.), Emerging Research, Practice, and Policy

on Computational Thinking (pp. 205-220). Springer International Publishing.

https://doi.org/10.1007/978-3-319-52691-1_13

53

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical

approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends,

60(6), 565-568.

Yadav, A., Larimore, R., Rich, K., & Schwarz, C. (2019). Integrating computational thinking in

elementary classrooms: Introducing a toolkit to support teachers Society for Information

Technology & Teacher Education International Conference 2019, Las Vegas, NV, United

States. https://www.learntechlib.org/p/208366

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through

Scratch in K-9. Computers & Education, 141, 103607.

54

Appendix

 The appendix for this white paper was developed by Meize Guo, a PhD candidate at

Indiana University, and Barbara Fagundes, a PhD student at Purdue University. Ms. Guo is

advised by Dr. Anne Ottenbreit-Leftwich, and Ms. Fagundes is advised by Dr. Tamara Moore.

The contents of the Appendix can be found at: https://docs.google.com/spreadsheets/d/1eo4-

ReBlKt6RaTQkFBZzv5BXGSuhb7wcxH7ezfzkpR8/edit?usp=sharing

