Model Question paper for online examination

M.Sc.CS Part- 1 Paper 2 : Digital Signal Processing-I & II

Q1.	What is the	unit step ı	response o	of the syster	n describe	ed by the	difference	equation?
y(n)	=0.9y(n-1)-0	.81y(n-2)-	+x(n) unde	r the initial	conditions	y(-1)=y(-	2)=0?	

- 1. $[1.099+1.088(0.9)^{n}.\cos(\pi 3n+5.20)]u(n)$
- 2. $[1.099+1.088(0.9)^{n}.\cos(\pi 3n-5.20)]u(n)$
- 3. $[1.099+1.088(0.9)^{n}.\cos(\pi 3n-5.20)]$
- 4. None of the mentioned

Q2	. To :	reduce	side	lobes,	in which	region	of the	filter	the f	requency	specific	ations	have	to be
opt	timize	ed?												

- 1. Stop band
- 2. Pass band
- 3. Transition band
- 4. None of the mentioned

Q3. Which of the following windows has a time domain sequence $h(n)=1/2(1-\cos 2\pi nM-1)$?

- 1. Bartlett window
- 2. Blackman window
- 3. Hamming window
- 4. Hanning window

Q4. If the value of N	√ increases then	the main lobe	in the frequency	response o	f the rectangular
window becomes _	·				

- 1. Disappear
- 2. broader
- 3. Doubles.
- 4. Thinner.

Q5. The large side lobes of $W(\omega)$ results in which of the following undesirable effects?

- 1. Circling effects
- 2. Broadening effects
- 3. Ringing effects
- 4. None of these above

Q6. What is the nyquist rate of the signal $x(t)=3\cos(50^*pi^*t)+10\sin(300^*pi^*t)-\cos(100^*pi^*t)$?

- 1. 50Hz
- 2. 100Hz
- 3. 200Hz
- 4. 300Hz

Q7. What is the discrete-time signal obtained after sampling the analog signal $x(t)=\cos(2000*pi*t)+\sin(5000*pi*t)$ at a sampling rate of 5000 samples/sec?

- 1. cos(2.5*pi*n)+sin(pi*n)
- 2. cos(0.4*pi*n)+sin(pi*n)
- 3. cos(2000*pi*n)+sin(5000*pi*n)
- 4. none of the mentioned

Q8. If the sampling rate Fs satisfies the sampling theorem, then the relation between quantization errors of analog signal(eq(t)) and discrete-time signal(eq(n)) is?

- 1. eq(t)=eq(n)
- 2. eq(t) < eq(n)
- 3. eq(t)>eq(n)
- 4. not related