
1GRAVITON FAST START

AWS Graviton Fast Start
A 4-step adoption plan for Amazon EC2

Introduction

AWS Graviton processors are custom designed by AWS to enable the best

price performance for workloads in Amazon EC2. Amazon EC2 instances

powered by AWS Graviton2 processors provide up to 40% better price

performance over comparable fifth generation x86-based instances for

a wide variety of workloads. The latest AWS Graviton3 processors add

significant performance jumps over Graviton2, providing 25% better

performance for a wide range of compute-intensive workloads. For

a quick overview of Graviton processors and Amazon EC2 instances

powered by Graviton, visit the AWS Graviton page.

We have seen many customers adopt Graviton with minimal effort and

continue to enjoy the significant price-performance benefits they realized.

This document outlines a framework to help you quickly move your own

workload to Graviton-based EC2 instances with ease, all based on the

best practices we’ve found from working with thousands of customers.

This plan is designed so a single engineer or small team can accomplish all

four steps, with each step split into two subtasks.

We have outlined a 4-step plan in this document that is suitable for many

applications, but based on the complexity of your application, some

migrations take more time and others less. Regardless of the application

complexity, the approach and high-level steps described here remain

the same.

HOW TO IDENTIFY A GOOD
TARGET WORKLOAD

A good candidate for Graviton

adoption is a workload running

on Linux or BSD, built either

using open-source components

or source code that you control.

Having full access to the source

code of every component allows

you to make any necessary

changes quickly and easily as

part of this adoption plan. If you

use third-party software, many

ISVs already support the Arm64

architecture implemented by

AWS Graviton processors. If

you use third-party software

that does not support Arm64,

reach out to us on the re:Post

community support forum.

https://aws.amazon.com/ec2/graviton/
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

2GRAVITON FAST START

If you get stuck at any step, feel free to reach out to Graviton experts on

the re:Post community support forum. You can get started for free with

Graviton-based instances by leveraging the T4g free trial that offers t4g.

small instances free for up to 750 hours per month through December

31st, 2022. Check out the Amazon EC2 FAQs page for more details.

A good candidate for Graviton adoption is a workload running on Linux or

BSD, built either using open-source components or source code that you

control. Having full access to the source code of every component allows

you to make any necessary changes quickly and easily as part of this

adoption plan. If you use third-party software, many ISVs already support

the Arm64 architecture implemented by AWS Graviton processors. If you

use third-party software that does not support Arm64, reach out to us on

the re:Post community support forum.

Agenda

The following plan has been organized into a logical sequence of steps

as follows:

•	 Step 1: Learning and exploring

•	 Task 1 – Review key documentation and software support for Graviton

•	 Task 2 – Explore your workload, and inventory your current software stack

•	 Step 2: Plan your workload transition

•	 Task 3 – Install and configure your application environment

•	 Task 4 – Build your application(s) and/or container images

•	 Step 3: Test and optimize your workload

•	 Task 5 – Testing and optimizing your workload

•	 Task 6 – Performance testing

•	 Step 4: Infrastructure and deployment

•	 Task 7 – Update your infrastructure as code

•	 Task 8 – Perform Canary or Blue-Green deployment

TOP TIP

Task 2 will require you to build

the application/workload list

of dependencies. If you need

information from other teams,

it might be useful to ask them

for this information before you

start the first task, so that you

could have their answers by

the time you reach Task 2.

https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://aws.amazon.com/free/free-tier-faqs/
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

3GRAVITON FAST START

Step 1: Learning and exploring

TASK 1

Review key documentation and software support for Graviton

Start by watching re:Invent 2020 – Deep dive on AWS Graviton2

processor-powered EC2 instances and re:Invent 2021 – Deep dive into

AWS Graviton3 and Amazon EC2 C7g instances, which will give you an

overview of the Graviton-based instances and some insights on how

to run applications depending on their operating system, languages,

and runtimes.

Keep learning by watching re:Invent 2021 – The journey of silicon

innovation at AWS to better understand Amazon’s commitment to

pushing the envelope with custom silicon.

Finally, spend some time reading relevant sections of the Getting started

with AWS Graviton repository, which will act as a useful reference

throughout your adoption.

TASK 2

Explore your workload, and inventory your current software stack

To start the migration, the first thing you need to do is inventory your

current software stack so you can identify the path to equivalent software

versions that support Graviton. At this stage, it can be useful to think in

terms of software you download (e.g. open source packages, container

images, libraries), software you build, and software you procure/license

(e.g. monitoring or security agents).

Areas to review:

•	 Operating system and version (the more recent the better)

•	 If your workload is container based, check container images you

consume for Arm64 support. Keep in mind many container images

https://www.youtube.com/watch?v=NLysl0QvqXU
https://www.youtube.com/watch?v=NLysl0QvqXU
https://youtu.be/WDKwwFQKfSI
https://youtu.be/WDKwwFQKfSI
https://www.youtube.com/watch?v=2DCAtpeBABY
https://www.youtube.com/watch?v=2DCAtpeBABY
https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started

4GRAVITON FAST START

now support multiple architectures, which simplifies consumption

of those images in a mixed-architecture environment. You can

read ECR multiarch support announcement for more details.

•	 All the libraries, frameworks, and runtimes used

by the application and its components.

•	 The tools used to build, deploy, and test your application (e.g. compilers,

test suites, CI/CD pipelines, provisioning tools, and scripts).

•	 All the tools and/or agents used to deploy and manage the application

in production (e.g. monitoring tools or security agents)

The Getting started with AWS Graviton repository will be helpful for

this task. It will give you guidance for Operating Systems, Container

environments, and various open-source software.

For each component of your software stack, check the version and then

check whether they are available for Graviton/arm64. AWS Graviton

processors are modern processors and to benefit from their full potential,

it is generally recommended to use software versions that are as recent

as possible. As an example, Java 8 works perfectly well on Graviton, but

we’ve seen several applications benefiting from upgrading to Java 11

due to arm64-specific optimizations in Java 11 (refer to the Getting

started with AWS Graviton repository for details on how to get the best

performance on Graviton). It is also worth noting that it is generally

simpler to upgrade the dependencies first on x86-64, and then transition

to Graviton with the most recent versions of software already in place to

reduce the number of variables.

Depending on where you obtain your dependencies, there could be

multiple ways to check whether they support Graviton. Some tools, like

GCC, call the architecture AArch64, and some others, like the Linux Kernel,

call it arm64. When looking for packages in the various repositories, you’ll

find those different combinations, and sometimes just “ARM.”

The main ways to check and places to look include:

•	 The package repositories of your favorite Linux distributions. The coverage

is generally rather comprehensive: Debian, for example has some of the

largest package repositories with more than 98% of its packages built

for the arm64 architecture, and of the remaining 2%, some are x86

specific or games that are not typically used in a server environment.

If you find any software

without support for the

arm64, please let AWS know

by reaching out on the re:Post

community support forum.

There are language-specific

sections in the getting started

guide with useful pointers

to get the best performance

from Graviton processors.

https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://github.com/aws/aws-graviton-getting-started
https://seven2.awsapps.com/workdocs/index.html#/login?redirectPath=folder%2F66d8ee68940e3ee4233aefa670cb9a21fb7ee59ec83b10fdc7676b52ff055e00
https://github.com/aws/aws-graviton-getting-started/blob/main/containers.md
https://github.com/aws/aws-graviton-getting-started/blob/main/containers.md
https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

5GRAVITON FAST START

•	 Your container image registry. Amazon ECR now offers public repositories

that you can search for arm64 images. DockerHub allows you to

search for a specific architecture (Arm64 enabled images).

•	 On GitHub, you can check for arm64 versions in the release section.

However, some projects don’t use the release section or only release source

archives, so you may need to visit the main project webpage and check

the download section. You can also search the GitHub project for “arm64”

or “AArch64” to see whether the project has any arm64 code contributions

or issues. Even if a project does not currently produce builds for arm64, in

many cases, an Arm64 version of those packages will be available through

Linux distributions or additional package repositories (e.g. EPEL). You can

search for packages using a package search tool, such as pkgs.org.

•	 In the download section or platform support matrix of your software

vendors, look for references to Arm64, AArch64, or Graviton. Software

vendor documentation will often list ‘platform requirements’ which

include supported operating system versions and architectures.

Categories of software with potential issues:

•	 Packages or applications sourced from independent software vendors (ISV’s)

may not exist for Graviton yet. However, AWS is working with lots of software

partners to offer technical guidance to port and optimize their software

on Graviton, so the list of available ISV software continues to expand.

•	 The Python community often produce modules containing low level

language code (e.g. C/C++) that needs to be compiled for the Arm64

architecture prior to use on Graviton. While AWS is actively working with

the open-source community to ensure the most popular modules are

available, in some cases the Python Package Index may lack pre-built

binaries for Arm64. To avoid falling back to sub-optimal pure Python

versions these modules can automatically be built from source code (See

the Python section of the re:Post community support forum for details).

At the end of the first step, you learned enough about Graviton to know how

to port your workload and have inventoried your current software stack, so

you can start migrating during the second step.

Specific to containers you

may find an amd64 (x86-64)

container image you currently

use has become a multi-

architecture container image

when arm64 support was

added meaning there may not

be an explicit arm64 container,

so make sure you check for

both as different projects

may choose different ways to

vend their container images

for both x86-64 and arm64.

https://docs.aws.amazon.com/AmazonECR/latest/public/public-repositories.html
https://gallery.ecr.aws/?architectures=ARM+64&page=1
https://hub.docker.com/search?type=image&architecture=arm64
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-enable-epel/
https://pkgs.org/
https://github.com/aws/aws-graviton-getting-started/blob/main/python.md
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

6GRAVITON FAST START

Step 2: Plan your workload transition

TASK 3

Install and configure your application environment

To transition and test your application, you will first need a Graviton

environment, so depending on your execution environment,

you’ll have to:

•	 Obtain or create an arm64 AMI to boot your Graviton instance(s)

from. Depending on how you manage your AMIs, you can either

start directly from an existing reference AMI for arm64, or you

can build your Golden AMI with your specific dependencies

from one of the reference images. See reference list here.

•	 If you operate a container-based environment, you’ll need to build or

extend an existing cluster with support for Graviton-based instances. Both

Amazon ECS and EKS support adding Graviton- based instances to an

existing x86-based cluster. For ECS, you just need to add Graviton-based

instances to your ECS cluster, launching them with either the AWS ECS-

optimized AMI for arm64 or your own AMI after you’ve installed the ECS

agent. For EKS, you will need to create a node-group with Graviton2-

based instances launched with the EKS optimized AMI for arm64.

•	 Complete the installation of your software stack

based on the inventory created in Task 2.

TASK 4

Build your application(s) and/or container images

Note: if you are not building your application or component parts of your overall

application stack, then you may skip this step.

Now that you have an environment available, you can build your

application stack.

For applications built using interpreted or JIT’d languages, including Java,

PHP, or Node.js, they should run as-is or with only minor modifications.

You can support Graviton and

x86 instances in the same

Auto Scaling Group. This blog

details the process using the

launch template override.

In many cases your installation

scripts can be used as-is or

with minor modifications to

reference architecture specific

versions of components

where necessary. The first

time through this may be an

iterative process as you resolve

any remaining dependencies.

https://github.com/aws/aws-graviton-getting-started/blob/main/os.md
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-optimized_AMI.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://aws.amazon.com/blogs/compute/supporting-aws-graviton2-and-x86-instance-types-in-the-same-auto-scaling-group/

7GRAVITON FAST START

The repository contains language-specific sections with recommendations,

for example Java, Python, C/C++, Goland, Rust or .Net. Note: if there is

no language specific section, it is because there is no specific guidance

beyond using a suitably current version of the language as documented

here (e.g. PHP Version 7.4+). .NET-core is a great way to benefit from

Graviton-based instances. This blog post covers .NET5 performance.

Applications using compiled languages, including C, C++, or Go, need to

be compiled for the Arm64 architecture. Most modern builds (e.g. using

Make) will work when run natively on Graviton-based instances, however,

you’ll find language-specific compiler recommendations in this repository:

C/C++, Go, and Rust.

Just like an operating system, container images are architecture specific.

You will need to build arm64 container image(s). To make the transition

easier, we recommend building multi-arch container image(s) that can

run automatically on either x86-64 or arm64. Check out the container

section of this repository for more details and this blog post provides a

detailed overview of multi-architecture container image support, which

is considered a best practice for establishing and maintaining a multi-

architecture environment.

You will also need to review any functional and unit test suite(s) to ensure

you can test the new build artifacts with the same test coverage you have

already for x86 artifacts.

At the end of the second step, you have built an environment using

Graviton-based instances and installed your application on top of this

environment. During the third step, you’ll test and ensure you get the

expected level of performance.

If you believe you are

observing architecture-specific

issues, please check the
Arm Architecture Reference

Manual Armv8 or reach

out to us on the re:Post

community support forum.

https://github.com/aws/aws-graviton-getting-started/blob/main/java.md
https://github.com/aws/aws-graviton-getting-started/blob/main/python.md
https://github.com/aws/aws-graviton-getting-started/blob/main/c-c++.md
https://github.com/aws/aws-graviton-getting-started/blob/main/golang.md
http://Rust
https://github.com/aws/aws-graviton-getting-started/blob/main/dotnet.md
https://github.com/aws/aws-graviton-getting-started/blob/main/README.md#recent-software-updates-relevant-to-graviton
https://aws.amazon.com/blogs/compute/powering-net-5-with-aws-graviton2-benchmark-results/
https://github.com/aws/aws-graviton-getting-started/blob/main/c-c++.md
https://github.com/aws/aws-graviton-getting-started/blob/main/golang.md
https://github.com/aws/aws-graviton-getting-started/blob/main/rust.md
https://github.com/aws/aws-graviton-getting-started/blob/main/containers.md
https://github.com/aws/aws-graviton-getting-started/blob/main/containers.md
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

8GRAVITON FAST START

Step 3: Test and optimize your workload

TASK 5

Testing and optimizing your workloads

Now that you have your application stack on Graviton, you should run

your test suite to ensure all regular unit and functional tests pass. Resolve

any test failures in the application(s) or test suites until you are satisfied

everything is working as expected. Most errors should be related to the

modifications and updated software versions you have installed during

the transition (tip: when upgrading software versions, first test them

using an existing x86 environment to minimize the number of variables

changed at a time. If issues occur, then resolve them using the current x86

environment before continuing with the new Graviton environment). If

you suspect architecture-specific issue(s) please have a look at our C/C++

section, which documents them and gives advice on how to solve them.

If there are still details that seem unclear, please reach out to your AWS

account team or to the re:Post community support forum.

TASK 6

Performance testing

With your fully functional application, it’s time to establish a performance

baseline on Graviton. In most cases, you should expect performance gains.

When comparing to existing x86-64 instances, we recommend running

tests by fully loading both systems to determine the maximum possible

price/performance. You can then determine and configure an appropriate

load level for your production environment before performing

the deployment.

Important: This repository has sections dedicated to Optimization and a

Performance Runbook for you to follow during this stage.

If after reading the Optimization

and Performance Runbook

sections and following the

recommendations, you

don’t observe the expected

application performance,

you can reach out to us

on the re:Post community

support forum.

https://github.com/aws/aws-graviton-getting-started/blob/main/c-c++.md
https://github.com/aws/aws-graviton-getting-started/blob/main/c-c++.md
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://github.com/aws/aws-graviton-getting-started/blob/main/optimizing.md
https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/graviton_perfrunbook.md
https://github.com/aws/aws-graviton-getting-started/blob/main/optimizing.md
https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/graviton_perfrunbook.md
https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/graviton_perfrunbook.md
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute
https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

9GRAVITON FAST START

If, after reading the documentation in this repository and following the

recommendations, you do not observe expected performance, then

please reach out to your AWS account team, or send an email to ec2-arm-

dev-feedback@amazon.com with details so we can assist you with your

performance observations.

At the end of third step, you will have your application running on top

of Graviton-based instances and have established a baseline for the

performance. You are now ready to test it in a production environment.

mailto:ec2-arm-dev-feedback%40amazon.com?subject=
mailto:ec2-arm-dev-feedback%40amazon.com?subject=

10GRAVITON FAST START

Step 4: Infrastructure and deployment

TASK 7

Update your infrastructure as code

Now that you have a tested and performant application, it’s time to

update your infrastructure as code to add support for Graviton-based

instances. This typically includes updating instance types, AMI IDs, ASG

constructs to support multi-architecture (see Amazon EC2 ASG support

for multiple Launch Templates), and finally deploying or redeploying

your infrastructure.

TASK 8

Perform Canary or Blue-Green deployment

Once your infrastructure is ready to support Graviton-based instances,

you can start a Canary or Blue-Green deployment to re-direct a portion

of application traffic to the Graviton-based instances. Ideally, you’ll run

these initial tests in a development environment and load test with traffic

patterns as close as possible to production traffic. Monitor the situation

carefully to catch any unexpected behavior until your application is

running as expected on Graviton, at which point you can determine your

transition strategy.

https://aws.amazon.com/about-aws/whats-new/2020/11/amazon-ec2-auto-scaling-announces-support-for-multiple-launch-templates-for-auto-scaling-groups/
https://aws.amazon.com/about-aws/whats-new/2020/11/amazon-ec2-auto-scaling-announces-support-for-multiple-launch-templates-for-auto-scaling-groups/

11GRAVITON FAST START

Celebrate

Congratulations! You have completed the Graviton Fast Start program

by following the 4-step plan. We understand this project took significant

effort and time, and hope you were able to benchmark price performance

benefits by using Graviton-based instances for your workloads. We’d love

to hear about your experience on the re:Post community support forum.

This is just the beginning of your Graviton adoption journey. If you

realized significant price performance gains with your first workload, you

can identify more workloads from different AWS services and get even

more price performance gains in AWS.

Thanks for using AWS Graviton Fast Start!

https://repost.aws/topics/TA8YtFU8qJSXmTuZEBXRRQRg/compute

