
(12) CERTIFIED INNOVATION PATENT 
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011101155 B4

(54) Title
Touch event model

(51) International Patent Classification(s)
G06F 3/041 (2006.01) G06F 3/048 (2006.01)

(21) Application No: 2011101155 (22) Date of Filing: 2011.09.08

(45)
(45)
(45)
(45)

Publication Date: 2011.10.13
Publication Journal Date: 2011.10.13
Granted Journal Date: 2011.10.13
Certified Journal Date: 2012.05.17

(62) Divisional of:
2009200493

(71) Applicant(s)
Apple Inc.

(72) Inventor(s)
Beaver, Jason Clay;Platzer, Andrew

(74) Agent / Attorney
Freehills Patent & Trade Mark Attorneys, Level 38 MLC Centre Martin Place, Sydney, 
NSW, 2000

(56) Related Art
US 2006/0097991



O

20
11

10
11

55
 

08
 Se

p 2 ABSTRACT

Embodiments of the present invention are directed to methods, software, devices 

and APIs for defining touch events for application level software. Furthermore, some 

embodiments are directed to simplifying the recognition of single and multiple touch

5 events for applications running in multi-touch enabled devices. To simplify the

recognition of single and multiple touch events, each view within a particular window 

can be configured as either a multi-touch view or a single touch view. Furthermore, each 

view can be configured as either an exclusive or a non-exclusive view. Depending on the 

configuration of a view, touch events in that and other views can be either ignored or

10 recognized. Ignored touches need not be sent to the application. Selectively ignoring 

touches can allow for simpler software elements that do not take advantage of advanced 

multi touch features to be executed at the same device and time as more complex 

software elements.

I
!



20
11

10
11

55
 

08
 Se

p 2
01

1

Australia

Patents Act 1990

COMPLETE SPECIFICATION 
INNOVATION PATENT

Invention Title: Touch event model

P/00/011 
Regulation 3.2

The following statement is a full description of this invention, including the best method 
of performing it known to us:



10584759

20
11

10
11

55
 

08
 Se

p 2
01

1

TOUCH EVENT MODEL

Field of the Invention

[0001] This relates to multi-point and multi-touch enabled devices in general, and

more specifically to recognizing single and multiple point and touch events in multi-point 

and multi-touch enabled devices.

Background of the Invention

[0002] A multi-touch enabled device is a device that can sense multiple touches at

the same time. Thus, a multi-touch enabled device can, for example, sense two touch 

events that take place simultaneously at two different positions on a multi-touch panel 

and are caused by two fingers being pressed down on the panel. Examples of multi-touch 

enabled devices are discussed in U.S. Pat. Application No. 11/649,998 (published by the 

United States Patent & Trademark Office as US 2008-0158172 Al), entitled 

“PROXIMITY AND MULTI-TOUCH SENSOR DETECTION AND

DEMODULATION,” filed on January 3, 2007, and hereby incorporated by reference in 

its entirety. Multi-point enabled devices define a more general set of devices that include 

multi-touch enabled devices as well as similar devices such as the multi-proximity sensor 

devices discussed in U.S. Pat. Application No. 11/649,998 mentioned above.

[0003] While the benefits of multi-touch enabled interfaces are known, these

devices can present some interface design challenges. Existing interface design 

conventions have assumed a single pointing user input device that specifies a single 

location at a time. Examples include a mouse or a touch pad.

[0004] More specifically, many existing graphical user interface (GUI) systems

provide user interfaces in which various portions of a display are associated with separate

software elements. Thus, for example, portions of a display can be associated with a



20
11

10
11

55
 

08
 Se

p

O window, and the window can be associated with a specific software application and/or

process. A mouse can be used to interact with the window and the application or process 

associated with that window. The mouse cursor can then be moved to another window to 

interact with another application or process. Because only a single pointing device is 

used, interaction with only a single window and application or process can occur at a 

time. ’

[0005] The assumption of a single interaction with a window at any one time can

greatly simplify user interface design. The application and/or process running within a 

window can operate under the assumption that a detected interaction with that particular 

window is the only input being received. Thus, the application and/or process need not 

concern itself with the possibility of other user interactions occurring in other portions of 

the display outside that window. Furthermore, a window can be additionally partitioned 

into various elements, wherein each element is associated with a specific portion of the 

window. Each element can be implemented by a separate software element (e.g., a 

software object). Again, each software object can process interactions that occur in its 

associated area without concerning itself with interactions that may be simultaneously 

occurring elsewhere.

[0006] On the other hand, if a multi-touch interface is being used, two or more

touch events can simultaneously occur at different portions of the display. This can make 

it difficult to split the display into different portions and have different independent 

software elements process interactions associated with each portion. Furthermore, even if 

the display is split up into different portions, multiple touch events can occur in a single 

portion. Therefore, a single application, process or other software element may need to 

process multiple simultaneous touch events. However, if each application, process or 

other software element needs to consider multiple touch interactions, then the overall cost 

and complexity of software running at the multi-touch enabled device may be undesirably 

high. More specifically, each application may need to process large amounts of incoming 

touch data. This can require high complexity in applications of seemingly simple 

functionality, and can make programming for a multi-touch enabled device generally 

difficult and expensive. Also, existing software that assumes a single pointing device can

-2-



20
11

10
11

55
 

10
A

pr
20

12 4384763

be very difficult to convert or port to a version that can operate on a multi-point or a 

multi-touch enabled device.

[0007] Reference to any prior art in the specification is not, and should not be

taken as, an acknowledgment or any form of suggestion that this prior art forms part of 

the common general knowledge in Australia or any other jurisdiction or that this prior art 

could reasonably be expected to be ascertained, understood and regarded as relevant by a 

person skilled in the art.

Summary of the Invention

[0008] According to one aspect of the invention, there is provided a computer

readable storage medium storing one or more programs for execution by a portable multi

touch device, the one or more programs including instructions for: displaying a user 

interface including a plurality of views, each view corresponding to a respective portion 

of the user interface; executing one or more software elements, each software element 

being associated with a first view of the plurality of views; associating a multi-touch flag 

with the first view; receiving two or more touches at the first view; and selectively 

sending one or more touch events, each touch event describing a respective touch of the 

two or more touches, to at least one of the one or more software elements associated with 

the first view at which the respective touch was received based on at least a value of the 

multi-touch flag associated with the first view.

[0009] Also herein described is a method for recognizing point events at a multi

point device. The method comprising displaying one or more views and executing one or 

more software elements, with each software element being associated with a particular 

view. The method further comprises associating a multi-point flag or an exclusive point 

flag with each view, receiving one or more point inputs at the one or more views, and 

selectively sending one or more point events, with each point event describing a received 

point input, to one or more of the software elements associated with views at which a 

point input was received based on the values of the multi-point and exclusive point flags.

-3-



ο
CM

20
11

10
11

55
 

08
 Se

p

(0010] In embodiments of this aspect of the invention, the multi-point device is a

multi-touch device.

(0011] Also herein described is a method for recognizing one or more touch

events at a multi-touch device, comprising defining one or more views, assigning an 

exclusive touch or a multi-touch flag to each view, and accepting one or more touch 

events detected in each view in accordance with the exclusive touch or multi-touch flag 

for each view.

[0012] Also herein described is a computer readable medium comprising a

plurality of instructions configured for execution at a multi-point device. The instructions 

are configured to cause the multi-point device to display one or more views and execute 

one or more software elements, each software element being associated with a particular 

view. The instructions are also configured to cause the multi-point device to associate a 

multi-point flag or an exclusive point flag with each view, receive one or more point 

inputs at the one or more views, and selectively send one or more point events, each point 

event describing a received point input, to one or more of the software elements 

associated with views at which a point input was received based on the values of the 

multi-point and exclusive point flags.

[0013] In embodiments of this aspect of the invention, the multi-point device is a

multi-touch device.

[0014] Also herein described is a multi-touch enabled mobile telephone including

a computer readable medium as described above and configured for execution at the 

mobile telephone.

[0015] Also herein described is a multi-touch enabled digital media player

including a computer readable medium as described above and configured for execution 

at the mobile digital media player.

[0016] Also herein described is a computer readable medium comprising a

plurality of instructions configured for execution at a multi-point device, the instructions 

being configured to cause the multi-point device to define one or more views, assign an

-4-



ο
CN

20
11

10
11

55
 

08
 Se

p

exclusive point or a multi-point flag to each view; and accept one or more point events 

detected in each view in accordance with the exclusive point or multi-point flag for each 

view.

[0017] Also herein described is a method for recognizing one or more point

events at a multi- point device, comprising defining one or more views, assigning an 

exclusive point or a multi- point flag to each view, and accepting one or more point 

events detected in each view in accordance with the exclusive point or multi- point flag 

for each view.

[0018] Also herein described is a computer readable medium comprising a touch

data structure defining a state, at a particular time, of a single touch having been or being 

received at a multi-touch panel. The touch data structure comprises a phase field defining 

the phase of the touch at the particular time, a view field indicating the view in which the 

touch was or is being received, and a location field indicating the location where the 

touch is currently being received.

[0019] Also herein described is a device comprising a multi touch panel and a

computer readable medium comprising a touch data structure defining a state, at a 

particular time, of a single touch having been or being received at the multi-touch panel. 

The touch data structure comprises a phase field defining the phase of the touch at the 

particular time, a view field indicating the view in which the touch was or is being 

received, and a location field indicating the location where the touch is currently being 

received.

[0020] Also herein described is a method for operating a multi touch enabled

device comprising executing a software element representing a view, the software 

element displaying a visual representation of the view at a display, detecting a touch at a 

multi touch panel, and generating a data structure for defining a state of the touch at a 

particular time. The data structure comprises a phase field defining the phase of the touch 

at the particular time, a view field indicating the view in which the touch was or is being 

received, a location field indicating the location where the touch is currently being 

received.

-5-



ο
CM

20
11

10
11

55
 

08
 Se

p

[0021] Also herein described is in an environment with a device having a display

and a multi touch panel and application software interacting with user interface software, 

a method for operating through an application programming interface (API), comprising 

detecting a touch at the multi touch panel and generating a data structure for defining a 

state of the touch at a particular time. The data structure comprises a phase field defining 

the phase of the touch at the particular time, a view field indicating the view in which the 

touch was or is being received, and a location field indicating the location where the 

touch is currently being received. The method further comprises sending the data 

structure to the application software by the user interface software.

[0022] Embodiments of the present invention are directed to methods, software,

devices and APIs for defining touch events for application level software. Furthermore, 

some embodiments are directed to simplifying the recognition of single and multiple 

touch events for applications running in multi-touch enabled devices. To simplify the 

recognition of single and multiple touch events, each view within a particular window 

can be configured as either a multi-touch view or a single touch view. Furthermore, each 

view can be configured as either an exclusive or a non-exclusive view. Depending on the 

configuration of a view, touch events in that and other views can be either ignored or 

recognized. Ignored touches need not be sent to the application. Selectively ignoring 

touches can allow for simpler applications or software elements that do not take 

advantage of advanced multi touch features to be executed at the same device (and even 

at the same time) as more complex applications or software elements.

[0023] Further embodiments of the various aspects of the invention described in

the preceding paragraphs and additional aspects of the invention will become apparent 

from the following description.

[0024] As used herein, except where the context requires otherwise, the term

"comprise" and variations of the term, such as "comprising", "comprises" and

"comprised", are not intended to exclude further additives, components, integers or steps.

-6-



O
CM

20
11

10
11

55
 

08
 Se

p

Brief Description of the Drawings

[0025] Fig. 1 is a diagram of an input/output processing stack of an exemplary

multi-touch capable device according to one embodiment of this invention.

[0026] Figs. 2A is a diagram of an exemplary multi-touch enabled device

according to one embodiment of this invention.

[0027] Figs. 2B is a diagram of another exemplary multi-touch enabled device

according to one embodiment of this invention.

[0028] Fig. 3 is a diagram of an exemplary multi-touch display according to one

embodiment of this invention.

[0029] Fig. 4 is a flow chart showing an exemplary method of operation of the

multi-touch flag according to one embodiment of this invention.

[0030] Figs. 5A and 5B are flowcharts showing an exemplary method of

operation of the exclusive touch flag according to one embodiment of this invention.

Detailed Description of the Preferred Embodiment

[0031] In the following description of preferred embodiments, reference is made

to the accompanying drawings which form a part hereof, and in which it is shown by way 

of illustration specific embodiments in which the invention may be practiced. It is to be 

understood that other embodiments may be utilized and structural changes may be made 

without departing from the scope of the preferred embodiments of the present invention.

[0032] This relates to a touch event model that simplifies the recognition of single

and multiple touch events for user interface applications running in multi-point and multi

touch enabled devices. To simplify the recognition of single and multiple touch events, 

each view within a particular window can be configured as either a multi-touch view or a

-7-



ο
CM

20
11

10
11

55
 

08
 Se

p

single touch view. Furthermore, each view can be configured as either an exclusive or a 

non-exclusive view. Depending on the configuration of a view, touch events in that and 

other views can be either ignored or recognized.

[0033] Although embodiments of the present invention may be described and

illustrated herein in terms of specific multi-touch capable devices, it should be 

understood that embodiments of the present invention are not limited to such devices, but 

is generally applicable to any multi-touch capable device. Furthermore, embodiments of 

the invention are not limited to multi-touch devices but also include multi-point devices, 

such as multi proximity sensor devices as discussed in U.S. Application No. 11/649,998, 

mentioned above.

[0034] Some embodiments are related to APIs. In general, an API is a source

code interface that a computer system provides in order to support requests for services 

from a software operation. An API is specified in terms of a program language that can 

be interpreted or compiled when a system is built, rather than an explicit low level 

description of how data is laid out in memory. The software that provides the 

functionality of an API is said to be an implementation of the API. Various devices such 

as computer systems, electronic devices, portable devices and handheld devices have 

software applications. The device interfaces between the software applications and user 

interface software to provide a user of the device with certain features and operations.

[0035] At least some embodiments of the invention can include one or more APIs

in an environment with user interface software interacting with a software application. 

Various function calls or messages are transferred via the APIs between the user interface 

software and the software applications. Transferring the function calls or messages may 

include issuing, initiating, invoking or receiving the function calls or messages. Example 

APIs can include sending touch event information. An API may also implement functions 

having parameters, variables or pointers. An API may receive parameters as disclosed or 

other combinations of parameters. In addition to the APIs disclosed, other APIs 

individually or in combination can perform similar functionality as the disclosed APIs.

-8-



ο
CM

20
11

10
11

55
 

08
 Se

p

[0036] FIG. 1 is a diagram of an input/output processing stack of an exemplary

multi-touch capable device according to some embodiments of the invention. Hardware 

100 can be provided at the base level of a multi-touch enabled device. It can include 

various hardware interface components, such as a multi-touch enabled panel 101 and/or 

an accelerometer 102. The multi-touch panel can include a display and a panel that senses 

multiple touches simultaneously. An example of such a panel is discussed in more detail 

in the 11/649,998 application mentioned above. The accelerometer can be a hardware 

device that senses acceleration of the multi-touch enabled device. It can be used to sense 

when the device is being moved, how it is being moved, if it is dropped, etc. Other 

hardware interface devices, such as gyroscopes, speakers, buttons, infrared (IR) sensors, 

etc. (not shown) can also be included.

[0037] A driver or a set of drivers 103 can communicate with the hardware 100.

The drivers can receive and process input data from received from the hardware. A core 

Operating System (OS) 104 can communicate with the driver(s). The core OS can 

process raw input data received from the driver(s). In some embodiments, the drivers can 

be considered to be a part of the core OS.

[0038] A set of OS application programming interfaces (APIs) 105 can

communicate with the core OS. These APIs can be a set of APIs that are usually included 

with operating systems (such as, for example, Linux or UNIX APIs). User Interface APIs 

106 (UI APIs) can include a set of APIs designed for use by applications running on the 

device. The UI APIs can utilize the OS APIs. Applications 107 running on the device can 

utilize the APIs of the UI APIs in order to communicate with the user. The UI APIs can, 

in tum, communicate with lower level elements, ultimately communicating with the 

multi-touch panel 101 and various other user interface hardware. While each layer can 

utilize the layer underneath it, that is not always required. For example, in some 

embodiments, applications 107 can occasionally communicate with OS APIs 105. APIs 

105 and 106 can comprise respective sets of application programming interfaces as well 

as their respective implementations. For example UI APIs 106 can also include user 

interface (UI) software for implementing the UI APIs.

-9-



ο
CM

20
11

10
11

55
 

08
 Se

p

(0039] Figs. 2A and 2B are diagrams of two types of exemplary multi-touch

enabled devices according to some embodiments of the invention. Fig. 2A shows 

exemplary device 200. Device 200 can include a CPU 201 and a memory 202 connected 

through a bus 204. The bus can also connect to a multi-touch display 203. The multi

touch display can include a multi-touch panel and a display. The multi-touch panel and 

the display can be combined to form the multi-touch display 203. The multi-touch display 

can correspond to the multi-touch panel 101 within hardware layer 100 of Fig. 1. The 

CPU can be used to execute software stored in the memory. The software executed by the 

CPU can include layers 103-109 of Fig. 1. Thus, the software can include drivers, an OS, 

various APIs and applications.

[0040] Fig. 2B shows alternative device 210. Device 210 can be similar to device

200. However, device 210 can include a separate multi-touch panel (212) and display 

(211) instead of the single unit of device 200. Thus, for device 210 one need not touch 

the display in order to interact with the multi-touch panel. Device 210 can be, for 

example, a multi-touch track-pad equipped laptop computer (the multi-touch panel 

serving as a track pad).

(0041] The multi touch panel and/or display of Figs. 2A and 2B can also utilize

other sensory technology, such as proximity sensing, as discussed in U.S. App. No.

11/649,998, mentioned above. Generally, a multi-point panel and/or display can be used 

for the devices of Figs 2A and 2B. The multi-point panel and/or display can feature 

various types of sensor technology. For example, it can feature multi-touch technology 

only (thus resulting in a multi-touch panel and/or display), multi-proximity sense 

technology, a combination of the two, or another type of multi-point technology.

[0042] The devices of Figs 2A and 2B can include various different types of

multi-touch enabled devices. For example, they can include a mobile telephone, a 

portable video game console, an electronic music player, an e-book, a PDA, an electronic 

organizer, an e-mail device, a laptop or other personal computer, a kiosk computer, a 

vending machine, etc.

-10-



ο
CM

20
11

10
11

55
 

08
 Se

p

[0043] Fig. 3 is a diagram of an exemplary multi-touch display 300. The multi

touch display can be display 203 of Fig. 2A or display 211 of Fig. 2B. The display can 

display various user interface elements (such as graphics, etc.) generated by software 

running in the device incorporating the display (e.g., device 200 of Fig. 2A or device 210 

of Fig. 2B). The user can interact with the various user interface elements in order to 

interact with the software. When using the device of Fig. 2A, the user can interact with 

the user interface elements by touching them directly on the display. When using the 

device of Fig. 2B, the user can touch the separate multi-touch panel 212 in order to move 

and control one or more cursors on the display 211, the cursors being used to interact 

with the software.

[0044] The user interface elements rendered at the display 300 can include one or

more views. Each view can represent a graphical user interface element handled by a 

separate software element. The separate software elements can include different 

applications, different processes or threads (even if within the same application), different 

routines or subroutines, different objects, etc. In some embodiments, each separate 

software element can create user interface elements for its respective portion of the 

display as well as receive and handle touch inputs for that portion of the display. The 

touch inputs can be processed by the various layers discussed in connection with Fig. 1, 

which can subsequently send processed touch input data to the software element (which 

can be part of applications 109). The processed touch input data can be referred to as 

touch event(s) and can be in a format that is easier to handle than raw touch data 

generated by the multi-touch panel. For example, each touch event can include a set of 

coordinates at which a touch is currently occurring. In some embodiments, the set of 

coordinates may correspond to the centroid of a touch. For the sake of brevity and 

simplicity, the discussion below may refer to a software element associated with a view 

by simply referring to the view itself.

[0045] Views can be nested. In other words, a view can include other views.

Consequently, the software element associated with a first view can include or be linked 

to one or more software elements associated with views within the first view. While some

-11-



ο
CM

20
11

10
11

55
 

08
 Se

p

views can be associated with applications, others can be associated with high level OS 

elements, such as graphical user interfaces, window managers, etc.

[0046] The exemplary display of Fig. 3 shows a music browsing application. The

display can include a status bar view 301 that indicates the overall status of the device. 

The status bar view can be part of the OS. Title view 302 can also be included. The title 

view can itself include several other views, such as centre title view 310, back button 312 

and forward button 311. Table view 303 can also be included. Table view 303 can 

include one or more table element views, such as table element view 304. As seen, in one 

embodiment, the table element views can be song titles. A button bar view 305 can also 

be included. The button bar view can include buttons 306-309.

[0047] Each view and its associated software element may be able to receive,

process and handle touch events that occur at that particular view. Thus, for example, if a 

user touches song title view 304, the software element associated with that view can 

receive a touch event indicating that the view has been touched, process it and respond 

accordingly. For example, the software element can change the graphical representation 

of the view (i.e., highlighting the view), and/or cause other actions such as playing a song 

associated with the touched view.

[0048] In some embodiments, touch events are processed at the lowest level of

the view hierarchy. Thus, for example, if a user touches title bar view 302, the touch 

event need not be directly processed by the software element associated with the title bar 

view, but instead can be processed by a software element associated with a view included 

within the title bar view where the touch occurred (i.e., a software element associated 

with one of views 310, 311 and 312). In some embodiments, some higher level views can 

also handle touch events. In addition, various software elements that are not associated 

with a view being touched can nevertheless be alerted or can discover that the view is 

being touched.

[0049] Since display 300 is a multi-touch display, multiple touches can occur at

the same time. The multiple touches can occur in the same view, or in two or more 

different views. Furthermore, the user can perform gestures (e.g., by pressing down one

-12-



ο
CM

20
11

10
11

55
 

08
 Se

p

or more fingers and moving them) that can have predefined meanings. Multi-touch 

gestures are discussed in more detail in U.S. Pat. Application No. 10/903,964 (published 

by the United States Patent & Trademark Office as US 2006-0026521 Al), entitled 

“GESTURES FOR TOUCH SENSITIVE INPUT DEVICES,” filed on July 30, 2004, and 

hereby incorporated by reference in its entirety.

[0050] A view can receive touch events that start within the view. If a user keeps

a finger pressed against the display, then the view can receive multiple touch events 

indicating a continuous touch. If a user moves a pressed finger, the view can receive 

multiple touch events indicating movement of the touch. If a user moves a pressed finger 

outside of the view, then the view can still receive touch events associated with that 

movement (and the views to which the finger has been moved need not receive such 

touch events). Thus, a view can receive events associated with a gesture or a movement 

that begins at the view, even if it continues outside of the view.

[0051] A touch can refer to an act which begins with pressing a finger or another

body part or object to the surface of a multi touch panel (or multi touch display) and ends 

when the finger or object is removed from the display. Thus, the touch can include 

moving of the finger or object, or keeping the finger or object at the same place for a 

period of time.

[0052] Touch events can be sent to views (or the software elements that

implement the views) by one or more APIs (and their respective implementations). An 

example of an API for handling touch events is provided in Appendix A below.

According to the API of Appendix A, the API can send each view a touch event data 

structure that includes one or more single touch data structures (or touch data structures). 

Each touch event data structure can define the current state of all touches taking place at 

the view at a particular moment in time. The respective touch data structures within a 

touch event data structure can define the current states of one or more respective single 

touches at the particular moment in time. Thus, if there are three touches taking place at a 

particular moment in time in a particular view, a touch event data structure comprising 

three touch data structures defining the states of the five touches can be sent to the view.

-13-



ο
CM

20
11

10
11

55
 

08
 Se

p

In some embodiments, touch data structures can be sent even if their associated touches 

are no longer taking place in order to alert the view that the touches have terminated.

[0053] As noted above, a touch may include an act that need not be instantaneous.

E.g., a touch can include an act of moving or holding a finger against a display for a 

period of time. A touch data structure, however, defines a state of a touch at a particular 

time. Therefore, multiple touch data structures may be associated with a single touch, 

thus defining the single touch at different points in time.

[0054] Each touch data structure can comprise various fields. A “first touch for

view” field can indicate whether the touch data structure defines the first touch for the 

particular view (since the software element implementing the view was instantiated). A 

“time stamp” field can indicate the particular time that the touch data structure relates to.

[0055] An “info” field can be used to indicate if a touch is a rudimentary gesture.

For example, the “info” field can indicate whether the touch is a swipe and, if so, in 

which direction the swipe is oriented. A swipe is a quick drag of one or more fingers in a 

straight direction. The API implementations can determine if a touch is a swipe and pass 

that information to the application through the “info” field, thus alleviating the 

application of some data processing that would have been necessary if the touch were a 

swipe.

[0056] A “tap count” field can indicate how many taps have been sequentially

performed at the position of the touch. A tap can be defined as a quick pressing and 

lifting of a finger against a panel at a particular position. Multiple sequential taps can 

occur if the finger is again pressed and released in quick succession at the same position 

of the panel. Thus, the API implementation can count taps for various application and 

relay this information through the tap “count field.” Multiple taps at the same location are 

sometimes considered to be a very useful and easy to remember command for touch 

enabled interfaces. Thus, by counting taps, the API can again alleviate some data 

processing from the application.

-14-



ο
CM

20
11

10
11

55
 

08
 Se

p

(0057] A “phase” field can indicate a particular phase the touch is currently in.

The phase field can have various values, such as “touch phase began” which can indicate 

that the touch data structure defines a new touch that has not been referenced by previous 

touch data structures. A “touch phase moved” value can indicate that the touch being 

defined has moved from a position defined in a previous touch data structure. A “touch 

phase stationary” value can indicate that the touch has stayed in the same position since 

the last touch data structure for that touch was generated. A “touch phase ended” value 

can indicate that the touch has ended (e.g., the user has lifted his/her finger from the 

surface of a multi touch display). A “touch phase cancelled” value can indicate that the 

touch has been cancelled by the device. A cancelled touch can be a touch that is not 

necessarily ended by a user, but which the device can determine to ignore. For example, 

the device can determine that the touch is being generated inadvertently (i.e., as a result 

of placing a portable multi touch enabled device in one’s pocket) and ignore the touch for 

that reason. Each value of the “phase field” can be a integer number.

[0058] Thus, each touch data structure can define what is happening with a touch

at a particular time (e.g., whether the touch is stationary, being moved, etc.) as well as 

other information associated with the touch (such as position). Accordingly, each touch 

data structure can define the state of a particular touch at a particular moment in time.

One or more touch data structures referencing the same time can be added in a touch 

event data structure that can define the states of all touches a particular view is receiving 

at a moment in time (as noted above, some touch data structures may also reference 

touches that have ended and are no longer being received). Multiple touch event data 

structures can be sent to the software implementing a view as time passes, in order to 

provide the software with continuous information describing the touches that are 

happening at the view. One or more elements of the device such as, for example, 

hardware 100, drivers 103, core OS 104, OS APIs 105 and UI APIs can detect touches at 

the multi touch panel 101 and generate the various touch event data structures defining 

these touches.

[0059] The ability to handle multiple touches and multi-touch gestures can add

complexity to the various software elements. In some cases, such additional complexity

-15-



ο
CM

20
11

10
11

55
 

08
 Se

p

can be necessary to implement advanced and desirable interface features. For example, a 

game may require the ability to handle multiple simultaneous touches that occur in 

different views, as games often require the pressing of multiple buttons at the same time. 

However, some simpler applications and/or views (and their associated software 

elements) need not require advanced interface features. For example, a simple button 

(such as button 306) can be satisfactorily operable with single touches and need not 

require multi-touch functionality. In these cases, the underlying OS may send 

unnecessary or excessive touch data (e.g., multi-touch data) to a software element 

associated with a view that is intended to be operable by single touches only (e.g., a 

button). Because the software element may need to process this data, it may need to 

feature all the complexity of a software element that handles multiple touches, even 

though it is associated with a view for which only single touches are relevant. This can 

increase the cost of development of software for the device, because software elements 

that have been traditionally very easy to program in a mouse interface environment (i.e., 

various buttons, etc.) may be much more complex in a multi-touch environment.

[0060] Embodiments of the present invention address the above discussed issues

by selectively providing touch data to various software elements in accordance with 

predefined settings. Thus, a simpler interface can be provided for selected software 

elements, while others can take advantage of more complex multi-touch input.

[0061] Embodiments of the invention can rely on one or more flags associated

with one or more views, wherein each flag or combination thereof indicates a mode of 

touch event processing for a particular view. For example, multi-touch and/or exclusive 

touch flags can be used. The multi-touch flag can indicate whether a particular view is 

capable of receiving multiple simultaneous touches or not. The exclusive touch flag can 

indicate whether a particular view is to allow other views to receive touch events while 

the view is receiving a touch event.

[0062] Fig. 4 is a flow chart showing the operation of the multi-touch flag

according to one embodiment of the invention. At step 400, a user can touch a view at a

first location within the view. It can be assumed that no other touches are present on the

-16-



ο
CM

20
11

10
11

55
 

08
 Se

p

multi-touch display when the touch of step 400 is received. At step 402, the OS can send 

a touch event defining the received touch to a software element associated with the 

touched location.

[0063] At step 404, the user can touch the view at a second location while not

releasing the first touch (i.e., while keeping a finger pressed down at the first location). 

Thus, for example, the user can touch the right portion of table element view 304 at step 

400 and touch the left portion of table element view 304 at step 404 without releasing 

his/her finger from the right portion. Therefore, the second touch is contemporaneous 

with the first touch (thus taking advantage of the multi-touch capabilities of display 300).

[0064] At step 406, the OS can determine whether the multi-touch flag for the

view being touched is set. If the multi-touch flag is set, then the view can be a view that 

can handle multiple contemporaneous touches. Therefore, at step 408, a second touch 

event for the second touch can be sent to the software element associated with the view.

It should be noted that new instances of the first touch event can also be sent, indicating 

that the first touch event is still taking place (i.e., the finger at the first location has not 

been lifted). The new instances of the first touch event can specify different locations if 

the finger at the first location is moved away from that location without being lifted (i.e., 

if it is being “dragged” on the surface of the display).

[0065] If, on the other hand, the multi-touch flag is not set, the OS can ignore or

block the second touch. Ignoring the second touch can result in not sending any touch 

events associated with the second touch to the software element associated with the 

touched view. In some embodiments, the OS can alert other software elements of the 

second touch, if necessary.

[0066] Thus, embodiments of the present invention can allow relatively simple

software elements that are programmed to handle only a single touch at a time to keep 

their multi-touch flag unasserted, and thus ensure that touch events that are part of 

multiple contemporaneous touches will not be sent to them. Meanwhile, more complex 

software elements that can handle multiple contemporaneous touches can assert their 

multi-touch flag and receive touch events for all touches that occur at their associated

-17-



ο
CM

20
11

10
11

55
 

08
 Se

p

views. Consequently, development costs for the simple software elements can be reduced 

while providing advanced multi-touch functionality for more complex elements.

[0067] Figs. 5A and 5B are a flow chart showing an exemplary method of

operation of the exclusive touch flag according to one embodiment of the invention. At 

step 500, a user can touch a first view. At step 502, the OS can send a touch event to a 

first software element associated with the first view. At step 504, the user can touch a 

second view without releasing the first touch.

[0068] At step 506, the OS can check whether the exclusive touch flag for the

first view is asserted. If it is set (asserted), that means that the first view needs to receive 

touches exclusively, and no other touches are to be sent to other views. Thus, if the 

exclusive touch flag is set, the OS can ignore (or block) the second touch and not send it 

to any software elements. If the exclusive view flag is not set, then the process can 

continue to step 510 of Fig. 5B.

[0069] In step 510, the OS can determine if the exclusive view flag for the second

view is set. If that flag is set, than the second view can only receive exclusive touch 

events. Thus, if there is another touch event already being received by another view (i.e., 

the first view), the second view cannot receive a touch event, and the OS can ignore the 

second touch (step 512). However, if the exclusive touch flag for the second touch is not 

set (unasserted), the OS can send a touch event associated with the second touch to the 

second view. More specifically, the OS can send a touch event associated with the second 

touch to a software element associated with the second view (step 514).

[0070] Thus, the exclusive touch flag can ensure that views flagged as exclusive

only receive touch events when they are the only views on the display receiving touch 

events. The exclusive flag can be very useful in simplifying the software of applications 

running on a multi-touch enabled device. In certain situations, allowing multiple views to 

receive touches simultaneously can result in complex conflicts and errors. For example, if 

a button to delete a song and a button to play a song are simultaneously pressed, this may 

cause an error. Avoiding such conflicts may require complex and costly software. 

However, embodiments of the present invention can reduce the need for such software by

-18-



ο
CN

20
11

10
11

55
 

08
 Se

p

providing an exclusive touch flag which can ensure that a view that has that flag set will 

receive touch events only when it is the only view that is receiving a touch event. 

Alternatively, one or more views can have their exclusive touch flags unasserted, thus 

allowing multiple simultaneous touches at two or more of these views.

[0071] In some embodiments the exclusive flag can signify exclusivity for the

entire display. Thus, when a view with the exclusive flag set is receiving a touch event, 

all other views in the display can be blocked from receiving any touch events. In 

alternative embodiments, the exclusive flag can signify exclusivity in a smaller area such 

as a single application, or a single window. For example, a first view with its exclusivity 

flag set can block other views that are in the same window from receiving any touch 

events while the first view is receiving a touch event, but not block views in other 

windows.

[0072] The exclusive touch and multi-touch flags can be combined. Accordingly,

one or more views being displayed can each include two flags - a multi-touch flag and an 

exclusive touch flag. In some embodiments, all displayed views can include these two 

flags. The value of one flag need not depend on the value of another. In one example, a 

view with both exclusive and multi-touch flags set can allow multiple touches within the 

view but may only receive touches exclusively (i.e., when the view is receiving touches, 

touches to other views can be blocked). A view with both flags unasserted can block 

multiple touches within the view but allow single touches within the view even if touches 

are simultaneously taking place in other views. A view with the multi-touch flag 

unasserted and the exclusive touch flag asserted can allow only single touches within the 

view when no other touches are taking place in any other views. A view with the multi

touch flag asserted and the exclusive touch flag unasserted can allow all touches received 

for the view. A view with both flags asserted can allow multiple touches in the view 

while no other touches are taking place for other views.

[0073] Alternative embodiments can feature only one of the flags (and the

associated functionality). Thus, some embodiments can use the multi-touch flag only or

-19-



ο
CM

20
11

10
11

55
 

08
 Se

p

exclusive touch flag only. In some embodiments, different views can use different 

combinations of the flags.

[00741 The various functionalities performed by the OS in Figs 4, 5A and 5B can

instead be performed by other software, such as various utility software. These 

functionalities can be performed by software at any one layer of layers 103 through 108 

of Fig. 1. In an alternative embodiment, these functionalities can even be performed by 

hardware 100.

[0075] Provided below is an exemplary set of code showing the methods of an

exemplary software element associated with a view according to some embodiments of 

the invention. A person of skill in the art would recognize that other code may also be 

used to implement the functionalities discussed above.

[0076] While the above discussion centres on multi-touch displays and panels, the

present invention is not limited to multi-touch device but may include various multi-point 

devices as discussed above (including, for example, multi-proximity sensor devices). For 

multi-point devices, multi-point and an exclusive point flags can be used. These flags can 

operate in a similar manner to the multi-touch and exclusive touch flags discussed above.

[0077] Although the present invention has been fully described in connection

with embodiments thereof with reference to the accompanying drawings, it is to be noted 

that various changes and modifications will become apparent to those skilled in the art. 

Such changes and modifications are to be understood as being included within the scope 

of the present invention as defined by the appended claims.

-20-



O
CM APPENDIX A

20
11

10
11

55
 

08
 Se

p

©interface UIResponder

EXEMPLARY UI API CODE

- (void)touchesBegan:(NSSet
- (void)touchesMoved:(NSSet
- (void)touchesEnded:(NSSet

- (void)touchesCanceled;

*)touches withEvent: (UIEvent *) event; 
*)touches withEvent: (UIEvent *)event; 
*)touches withEvent: (UIEvent *) event;

// This method can be implemented instead of the individual
touchBegan:/touchMoved:/touchEnded:
// methods if the view author wishes to handle all associated touches 
simultaneously.
- (void)touchesChangedWithEvent:(UIEvent *) event;

@end

typedef enum {
UITouchPhaseBegan, // whenever a finger touches the surface.
UITouchPhaseMoved, // whenever a finger moves on the surface.
UITouchPhaseStationary, // whenever a finger is touching the

surface but hasn't moved since the previous event.
UITouchPhaseEnded, // whenever a finger leaves the surface.
UITouchPhaseCanceled, // whenever a touch doesn't end but we

need to stop tracking (e.g. putting device to face)
} UITouchPhase;

enum (
UITouchSwipedUp = 1 << 0, // more than one of the swipe flags

can be set if it's swiped at an angle.
UITouchSwipedDown = 1 << 1, // these swipe directions are

relative to the UI orientation (see UIApplication)
UITouchSwipedLeft = 1 << 2,
UITouchSwipedRight = 1 << 3,

};
typedef unsigned int UITouchlnfo;

©interface UITouch 
{

BOOL
NSTimelnterval
UITouchPhase
UITouchlnfo
NSUInteger

UlWindow
UlView

: NSObject

_firstTouchForView; 
_ timestamp;
_phase;
_info;
_tapCount,-

*_window;
*_view;

-21-



ο
CM

CGPoint
CGPoint

20
11

10
11

55
 

08
 Se

p

_locationlnview; 
jreviousLocat ionlnView;

- (NSTimelnterval)timestamp;
- (UITouchPhase)touchPhase;
- (UITouchlnfo)touchlnfo;
- (NSUInteger)tapCount; // touch down within a certain point within a 
certain amount of time

- (UlWindow *)window;
- (UlView *)view;

- (CGPoint)locationlnView;
- (CGPoint)previousLocationlnView;

@end

©interface UIEvent : NSObject 
{

CFTypeRef
NSTimelnterval
NSMutableSet
CFMutableDictionaryRef

event; 
timestamp;
*_touches; 
_keyedTouches;

(NSTimelnterval)timestamp;

(NSSet *)allTouches;
(NSSet *)touchesForWindow:(UlWindow *)window; 
(NSSet *)touchesForView: (UlView *)view;

@end

-22-



20
11

10
11

55
 

10
A

pr
20

12 4384763

WHAT IS CLAIMED IS:

1. A computer readable storage medium storing one or more programs for execution 

by a portable multi-touch device, the one or more programs including instructions for:

5 displaying a user interface including a plurality of views, each view

corresponding to a respective portion of the user interface;

executing one or more software elements, each software element being associated 

with a first view of the plurality of views;

associating a multi-touch flag with the first view;

10 receiving two or more touches at the first view; and

selectively sending one or more touch events, each touch event describing a 

respective touch of the two or more touches, to at least one of the one or more software 

elements associated with the first view at which the respective touch was received based 

on at least a value of the multi-touch flag associated with the first view.

15 2. The computer readable storage medium of claim 1, wherein the instructions for

sending one or more touch events include instructions for determining whether the multi

touch flag associated with the first view indicates that the first view is a multi-touch view.

3. The computer readable storage medium of claim 2, wherein the one or more 

programs include instructions for:

20 in accordance with a determination that the first view is a multi-touch view,

sending two or more touch events, corresponding to the two or more touches, to at least 

the one of the one or more software elements associated with the first view; and

in accordance with a determination that the first view is not a multi-touch view, 

sending only one of the one or more touch events to at least the one of the one or more

25 software elements associated with the first view.

-23-



20
11

10
11

55
 

10
A

pr
20

12 4384763

4. The computer readable storage medium of claim 3, wherein the one or more 

programs include instructions for:

in accordance with the determination that the first view is not a multi-touch view, 

blocking all touch events describing any other touches located in any view other than the 

5 first view until the two or more touches are no longer received.

5. The computer readable storage medium of claim 2, wherein the one or more 

programs include instructions for:

in accordance with a determination that the first view is a multi-touch view, 

allowing one or more other touch events contemporaneous with at least one of the two or 

10 more touches received at the first view to be sent to one or more software elements 

associated with one or more views distinct from the first view.

-24-



1/6
Ο(Μ

20
11

10
11

55
 

08
 Se

p

Fig· 1



2/6

20
11

10
11

55
 

08
 Se

p 2
01

1

CD

Ό

pq<N
bb

pq

CD
O<=> > 
CD 
Ό

bb•»—(pq



3/6

310

20
11

10
11

55
 

08
 Se

p 2
01

1

312

Fig-3



4/6

20
11

10
11

55
 

08
 Se

p 2
01

1

Kg. 4

408



20
11

10
11

55
 

08
 Se

p 2
01

1 5/6

508 to Fig 5B

Fig. 5A



6/6

20
11

10
11

55
 

08
 Se

p 2
01

1

from Fig 5A

514

Fig. 5B


