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(57) ABSTRACT 

A mechanism is provided for reordering buS transactions to 
increase bus utilization in a computer System in which a 
Split-transaction bus is bridged to a Single-envelope bus. In 
one embodiment, both masters and Slaves are ordered, 
Simplifying implementation. In another embodiment, the 
System is more loosely coupled with only masters being 
ordered. Greater bus utilization is thereby achieved. To 
avoid deadlock, transactions begun on the Split-transaction 
bus are monitored. When a combination of transactions 
would, if a predetermined further transaction were to begin, 
result in deadlock, this condition is detected. In the more 
tightly coupled System, the predetermined further 
transaction, if it is requested, is refused, thereby avoiding 
deadlock. In the more loosely-coupled System, the flexibility 
afforded by unordered slaves is taken advantage of to, in the 
typical case, reorder the transactions and avoid deadlock 
without killing any transaction. Where a data dependency 
exists that would prevent Such reordering, the further trans 
actions is killed as in the more tightly-coupled embodiment. 
Data dependencies are detected in accordance with address 
coincidence signals generated by Slave devices on a cache 
line basis. In accordance with a further optimization, at least 
one slave device (e.g., DRAM) generates page-coincidence 
bits. When two transactions to the slave device are to the 
Same address page, the transactions are reordered if neces 
Sary to ensure that they are executed one after another 
without any intervening transaction. Latency of the slave is 
thereby reduced. 

19 Claims, 21 Drawing Sheets 
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BUSTRANSACTION REORDERING IN A 
COMPUTER SYSTEM HAVING 

UNORDERED SLAVES 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifi 
cation; matter printed in italics indicates the additions 
made by reissue. 

This application is a continuation-in-part of U.S. patent 
application Ser: No. 08/432,622, filed May 2, 1995, now 
abandoned. 

FIELD OF THE INVENTION 

The present invention relates to the computer architecture, 
in particular to computer architecture for Small computer 
Systems. Such as personal computers. 

STATE OF THE ART 

The PowerPC computer architecture, co-developed by 
Apple Computer, represents a departure for prior-generation 
small computer architectures, PowerPC machines currently 
sold by Apple are based largely on the Motorola MPC601 
RISC microprocessor. Other related processors, including 
the MPC 604, MPC 603, MPC 603e, and MPC 602 are 
currently available and additional related processor includ 
ing the MPC 620 will be readily available in the future. The 
MPC60x permits separate address bus tenures and data bus 
tenures, where tenure is defined as the period of bus mas 
tership. In other words, rather than considering the System 
bus as an indivisible resource and arbitrating for access to 
the entire bus, the address and data buses are considered as 
Separate resources, and arbitration for access to these two 
buses may be performed independently. A transaction, or 
complete exchange between two buS devices, is minimally 
comprised of an address tenure; one or more data tenures 
may also be involved in an exchange. There are two kinds 
of transactions: address/data and address-only. 
A tenure consists of three phases: arbitration, transfer, and 

termination. During termination, a signal occurs that marks 
the end of the tenure. The same signal is used to acknowl 
edge the transfer of an address or data beat. A beat corre 
sponds generally to a particular State of the address bus or 
the data bus. TransferS include both Single-beat transfers, in 
which a single piece of data is transferred, and burst data 
transfers, in which a burst of four data beats is transferred. 

Referring more particularly to FIG. 1, note that the 
address and data tenures are distinct from one another and 
that both consist of three phases-arbitration, transfer, and 
termination. FIG. 1 shows a data transfer that consists of a 
single-beat transfer (up to 64 bits). In a four-beat burst 
transfer, by contrast, data termination signals are required 
for each beat of data, but re-arbitration is not required. 
Having independent address and data tenures allows address 
pipelining (indicated in FIG. 1 by the fact that the data tenure 
begins before the address tenure ends) and split-bus trans 
actions to be implemented at the System level. Address 
pipelining allows new address bus transactions to begin 
before the current data bus transaction has finished by 
overlapping the data bus tenure associated with a previous 
address bus tenure with one or more Successive address 
tenures. Split-buS transaction capability allows the address 
bus and data bus to have different masters at the same time. 

For clarity, the basic functions of address and data tenures 
will be discussed in Somewhat greater detail. 

In the case of address tenure, during address arbitration, 
address bus arbitration Signals are used to gain mastership of 
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2 
the address bus. Assuming the CPU to be the bus master, it 
then transferS the address on the address bus during the 
address transfer phase. The address Signals, together with 
certain transfer attribute signals discussed in greater detail 
hereinafter, control the address transfer. After the address 
transfer phase, the System uses the address termination 
phase to signal that the address tenure is complete or that it 
must be repeated. 

In the case of data tenure, during address arbitration, the 
CPU arbitrates for mastership of the data bus. After the CPU 
is the bus master, during the data transfer phase, it Samples 
the data bus for read operations or drives the data bus for 
write operations. Data termination Signals occur in the data 
termination phase. Data termination Signals are required 
after each data beat in a data transfer. In a Single-beat 
transaction, the data termination Signals also indicates the 
end of the tenure, while in burst accesses, the data termi 
nation Signals apply to individual beats and indicate the end 
of the tenure only after the final data beat. 

Address-only transferS use only the address bus, with no 
data transfer involved. This feature is particularly useful in 
multi-master and multiprocessor environments, where exter 
nal control of on-chip primary caches and TLB (translation 
look-aside buffer) entries is desirable. Additionally, the 
MPC60x provides a retry capability that Supports an efficient 
"Snooping protocol for Systems with multiple memory 
Systems (including caches) that must remain coherent. 

Pipelining and Split-bus transactions, while they do not 
inherently reduce memory latency, can greatly improve 
effective bus-memory throughput. The MPC60x bus proto 
col does not constrain the maximum number of levels of 
pipelining that can occur on the bus between multiple 
masters. In a System in which multiple devices must com 
pete for the System bus, external arbitration is required. The 
external arbiter must control the pipeline depth and Synchro 
nization between masters and Slaves. 

In a traditional pipelined implementation, data bus tenures 
are kept in Strict order with respect to address tenures. 
However, external hardware can further decouple the 
address and data buses, allowing the data tenures to occur 
out of order with respect to the address tenures. Second 
generation PowerPC computers include computers whose 
architecture was especially designed for high performance 
and that incorporated Such hardware. This architecture Sup 
ports true Split-bus operation with ordered slaves and 
ordered masters. “Ordered” means each master and each 
Slave has its own independent FIFO Structure Supporting 
“ordered” service to transactions posted to it. If a slave 
receives three transactions A, B, and C, then it will respond 
to A first, B second, and C third. If a master performs 
transactions D, E, and F, then it expects Servicing of those 
transactions in the order of D first, E Second, and F third. 
There can be up to a Selected number of outstanding 
master/slave pair transactions in the architecture at one time. 
In one preferred embodiment, this Selected number is three 
outstanding pair transactions. As a result, in the foregoing 
architecture, an expansion bridge may concurrently have 
one outstanding slave transaction to it and one outstanding 
master transaction from it. Although ordered masters and 
Slaves, as opposed to unordered masters and Slaves, provide 
an overall Simplification to System architecture, they can 
lead to deadlocks when there are conflicting completion 
dependencies. 

Deadlock occurs in a computer System when one resource 
cannot complete an access to another resource, and the 
acceSS blocks other resources from performing transactions 
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on the bus. Livelock occurs in a computer System when one 
resource cannot complete an access to another resource, 
does not block resources from performing transactions on 
the bus, but no forward progreSS can be made due to the 
resources inability to complete its access. 
Due to the plethora of design methodologies and imple 

mentations utilized by expansion card Vendors, Systems are 
most prone to deadlockS and livelocks when there is an 
expansion bridge in the System. Some potential deadlockS 
may be detected and prevented at the bridge level; however, 
other pieces of the overall Solution may need to be imple 
mented at a higher level in System arbitration. 

The main reason that a deadlock or livelock occurs is that 
each of two different resources that communicate with each 
other assumes that it has top priority in the System. 
Unfortunately, when they communicate with each other this 
causes a conflict, and if one does not back off its access, the 
end result is deadlock or livelock. 

In the architecture of certain Power PC computers of the 
assignee, the top priority bus is known as the ARBus, it is 
the one bus assumed to never have to back off an access. 
However, there may be a need for the ARBus to communi 
cate with an ISAbuS behind an expansion bridge. AS history 
recalls, the ISAbuS design assumed that any initiated acceSS 
would complete; therefore, an ISA master would not have to 
back off its access. Therein lies the problem. The Power PC 
architecture, in one instance, chose the ARBuS to be the bus 
to not back off, and the PC-World chose the ISA bus to be 
the bus to not back off. This conflict of interest could result 
in deadlock. 

In another instance, the PowerPC architecture may incor 
porate a PCI bus-to-PCI bus (“PCI2PCI”) bridge having an 
interlocking behavior that disallows access to its Slave port 
on one side of the PC12PCI bridge while its master on the 
same side of the PCI2PCI bridge has a transaction to 
perform. This behavior also means that the PCI2PCI bridge 
assumes that it does not have to be backed off, and any 
communication between the ARBus and a target behind the 
PCI2PCI bridge could result in deadlock. 

Although decoupling the address and data buses in a 
computer System enables bus utilization to be greatly 
increased, it would be desirable to further increase bus 
utilization beyond what can reasonably be achieved in a 
System having both ordered masters and ordered slaves. 
Especially desirable would be a computer architecture in 
which bus utilization is increased and in which deadlockS 
are more readily avoided. 

SUMMARY OF THE INVENTION 

A mechanism is provided for reordering bus transactions 
to increase bus utilization in a computer System in which a 
Split-transaction bus is bridged to a Single-envelope bus. In 
one embodiment, both masters and Slaves are ordered, 
Simplifying implementation. In another embodiment, the 
System is more loosely coupled with only masters being 
ordered. Greater bus utilization is thereby achieved. In 
accordance with one embodiment of the invention, a queu 
ing Structure includes multiple master queues and multiple 
Slave queues. The queuing Structure receives bus grant 
Signals and respective Slave acknowledge Signals from 
respective Slave devices. Each time an address bus grant is 
issued a record is entered in the queuing Structure, the record 
comprising a first entry in a master queue identified by the 
address bus grant Signals, and a Second entry in a Slave 
queue identified by the Slave acknowledge Signals. The first 
entry identifies a target Slave device in accordance with the 
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4 
Slave acknowledge Signals, and the Second entry identifies 
an originating master device in accordance with the address 
buS grant Signals. A matching circuit is responsive to queue 
entries from the queuing Structure for producing match bits 
identifying selected records the first entry of which is at the 
head of a master queue. A data arbitration circuit is respon 
Sive to the match bits and to queue entries from the queuing 
Structure for generating data bus grant signals for the master 
devices and for generating for each Slave device a multibit 
Signal which when active identifies a transaction within the 
transaction queue of the Slave device. 

DESCRIPTION OF THE DRAWINGS 

The present invention may be further understood from the 
following description in conjunction with the appended 
drawing. In the drawing: 

FIG. 1 is a diagram illustrating overlapping tenures for a 
single-beat transfer on a conventional MPC601 bus; 

FIG. 2 is a System-level block diagram of a computer 
System in which the present invention may be used; 

FIG. 3 is a block diagram of the memory controller 300 
of FIG. 2; 

FIG. 4 is a timing diagram showing conventional usage of 
the MPC601 bus; 

FIG. 5 is a timing diagram showing usage of the ARBuS 
(a Superset of the MPC601 bus) in the high-performance 
computer architecture of FIG. 2; 

FIG. 6 Is a block diagram of the arbiter 600 of FIG. 3; 
FIG. 7 comprising FIG.S. 7A and 7B is a block diagram of 

the expansion bridge 700 of FIG. 2; 
FIG. 8 illustrates a deadlock in which an ARBus master 

read of an expansion bridge is followed by an ARBus master 
read of memory; 

FIG. 9 illustrates a deadlock in which an ARBus master 
read of an expansion bridge is followed by an ARBuS master 
L2 hit or allocate operation; 

FIG. 10 illustrates a deadlock in which a processor read 
of an expansion bridge is followed by a processor write to 
that expansion bridge, 

FIG. 11 illustrates a deadlock in which a Bus Grant signal 
and an Address Retry Signal occur concurrently; 

FIG. 12 illustrates a deadlock in which a Bus Request 
Signal and an Address Retry Signal occur concurrently; 

FIG. 13 illustrates a deadlock in which expansion bridges 
read each other concurrently; 

FIG. 14 illustrates a deadlock in which one master 
attempts to read both expansion bridges, 

FIG. 15 illustrates a deadlock in which an ISAbus master 
reads a target behind an opposite expansion bridge, 

FIG. 16 illustrates a deadlock in which a PCI bus master 
read gets stuck behind a posted PCI bus master write; 

FIG. 17 illustrates a deadlock in which the ARBus trans 
action limit is hit, and accesses cannot complete; 

FIG. 18 illustrates a deadlock in which one expansion 
bridge, with an outstanding ARBus read, accepts a read from 
another expansion bridge, 

FIG. 19 is a block diagram of another embodiment of the 
arbiter 600 of FIG. 3; 

FIG. 20 is a block diagram showing the input and output 
signals of the ArbMux 603' of FIG. 19; 

FIG. 21 is a block diagram showing the input and output 
signals of the ArbMux 603' of FIG. 19 in greater detail; 

FIG. 22 is a block diagram showing the input and output 
signals of the ArbDatSM 604 of FIG. 19; 



US RE38,428 E 
S 

FIG. 23 is a block diagram of a bit filter portion of the 
ArbDatSM 604 of FIG. 19; 

FIG. 24 is a block diagram showing the input and output 
signals of the ArbDatSM 604 of FIG. 19 in greater detail; 

FIG. 25 is a block diagram showing the input and output 
signals of the ARtryGen block 613' of FIG. 19; and 

FIG. 26 is a block diagram showing the input and output 
signals of the ARtryGen bock 613' of FIG. 19 in greater 
detail; 

DETAILED DESCRIPTION OF THE 
INVENTION 

In the following description, the System architecture of a 
computer System in which the present invention may be used 
will first be described, including a description of the 
MPC601 bus, the ARBus, which is a Superset of the 
MPC601 bus, a system arbiter and an expansion bridge. 
Deadlock avoidance will then be described, beginning with 
a description of the types of deadlockS and livelocks that 
may occur in the System, followed by a description of 
Specific deadlock and livelock situations for both a System 
having a Single expansion bridge and a System having two 
or more expansion bridges. Rules will be identified for 
avoiding deadlock. These rules will then be Summarized, 
both for the case of a single expansion bridge and for the 
case of two or more expansion bridges. Finally, the manner 
in which the rules are implemented in the system will be 
described. 

Referring now to FIG. 2, the present invention may be 
used in a computer system of the type shown. A CPU 203 
(for example a PowerPC 601 microprocessor) is connected 
to a system bus 204, including a data bus 205, an address bus 
206, and a control bus (not shown). A memory subsystem 
288 includes, in the illustrated embodiment, a main memory 
209, a read-only memory 211, and a level-two cache 
memory 212. The CPU 203, through the system bus 204, is 
connected directly to the level-two cache memory 212. The 
CPU 203 is connected indirectly to the main memory 209 
and the read-only memory 211, through a datapath circuit 
221 and a memory controller 300. In general, the datapath 
circuit 221 provides for 64- or 128-bit reads from and writes 
to memory, in either big-endian or little-endian mode. The 
memory controller 300 controls the various memory devices 
within the memory subsystem 208 in response to signals on 
the System buS 204 and, in particular, provides address and 
control Signals (i.e., RAS and CAS) to the main memory 
209. The datapath circuit 221 and the memory controller 300 
are connected by a register data bus 217. 

Also shown is an optional Secondary processor 218 
which, like the CPU 203, may be a Power PC 601 micro 
processor for example. 

The system bus 204 is also connected to an expansion bus 
bridge 219 (possibly more than one) and, optionally, a video 
bus bridge 220. In a preferred embodiment, the system bus 
204 is a Superset of the conventional Power PC 601 micro 
processor interface referred to herein as the Apple RISC 
Bus, or ARBus. An expansion bus connected to the expan 
sion bus bridge 219 may be a standard PCI bus. Likewise, 
a video bus connected to the video bus bridge 220 may be 
a PCI-like bus. 

Referring to FIG. 3, the memory subsystem 208 including 
the memory controller 300 of FIG. 2 are shown in greater 
detail, with particular emphasis on the various Signals input 
to and output from the memory controller 300. The memory 
controller 300 includes a main memory controller 302, a 
cache/ROM controller 305, and an arbiter 600. The main 
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memory controller 302 produces address and control signals 
for the main memory 209 and includes a DRAM sequencer 
303 and certain memory address logic. The cache/ROM 
controller 305 produces control signals for the level-two 
cache memory 212 and the read-only memory 211 and 
includes a cache/ROM sequencer 306 and certain cache 
logic. Both the main memory controller 302 and the cache/ 
ROM controller 306 exchange control signals with the 
arbiter 600, which executes overall control of the memory 
controller 300 and which is more particularly the subject of 
the following description. 
The arbiter 600 includes a register file (not shown) that 

may be written and read by the CPU 203 across the register 
data bus 217. The register file includes, in addition to 
numerous base address registers, various ID, configuration 
and timing registers. The particulars of these registers are 
not essential to an understanding of the present invention 
and will not be further described. The arbiter 600 inputs 
various control Signals from and outputs various control 
signals to a control bus 309. Some of the control signals 
carried by the control bus 309 are part of the conventional 
PowerPC 601 microprocessor interface. The majority of the 
signals carried by the control bus 309, however, are side 
band information signals used in accordance with the 
present invention to independently control the address buS 
206 and the data bus 205. 

Prior to describing in detail the manner in which these 
Side-band information signals are used to decouple the 
address bus 206 and the data bus 205, it will be useful to 
consider what is termed herein conventional usage of the 
PowerPC 601 microprocessor interface. 
As shown in FIG. 1, address tenure and data tenure both 

have arbitration, transfer and termination phases. Each of 
these phases involves the exchange of respective handshak 
ing Signals. Referring to FIG. 4, the handshaking Signals that 
characterize the address arbitration phase are a bus request 
Signal BR and a bus grant signal B.G. The bus request Signal 
BR is an output signal of the CPU 203. The bus grant signal 
is an input signal of the CPU 203 and is output by the arbiter 
600. Both the bus request signal BR and the bus grant signal 
BG relate to the address bus 206. When the CPU 203 has 
received the bus grant Signal BG, it is free to enter the 
address transfer phase. 

During the address transfer phase, a transfer Start Signal 
TS is asserted by the CPU 203 when the CPU 203 begins to 
drive the address bus 206. The address is decoded by a slave 
device as belonging to that address, i.e., falling within the 
devices assigned address Space. During the address termi 
nation phase, the slave device asserts the address acknowl 
edge Signal AACK after it has Sampled the address on the 
address bus 206. 

During the address transfer phase, certain transfer 
attribute signals are used indicate the nature of transaction, 
including whether the transaction is an address-only trans 
action. ASSuming that the transaction is not, then the transfer 
start signal TS is treated by the arbiter 600 as an implicit data 
bus request, Starting the data arbitration phase. Following 
assertion of the acknowledge Signal AACK, a data bus grant 
signal DBG is asserted by the arbiter 600 once the data bus 
205 is available for use by the CPU 203. The CPU 203 may 
then begin the data transfer phase on the next cycle by 
driving the data bus 205. During a subsequent data termi 
nation phase, the slave device asserts a transfer acknowledge 
signal TA after it has sampled the data on the data bus 205. 
The foregoing Sequence of operations is repeated for a 

Second Subsequent transaction. In FIG. 4, the transaction to 
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which address and data information pertain is indicated in 
parentheses, i.e., transaction (1) and transaction (2). 

Note that in FIG. 4, address tenures and data tenures, 
although they may be pipelined, are tightly ordered. That is, 
data bus tenure on the System is granted in the same order 
as address tenure is granted even if the address tenures are 
granted to different masters. In precise terms, if TS(n) is for 
Master A and TS(n+1) is for Master B, then DBG(n) will be 
for Master A and DBG(n+1) will be for Master B. 

This tight ordering of the conventional MPC601 bus may 
result in considerable System performance degradation, 
especially as bus speed increases. A read transaction to an 
expansion-bus device, for example, will typically be high 
latency as compared to a main-memory read transaction. 
Tight ordering of address and data tenures results in Such 
latency impacting the data bus. That is, even though another 
transaction might be ready to use the data bus first, during 
the latency period, it cannot because of the tight ordering of 
address and data tenures. If a System is to handle information 
Streams having real-time constraints, Such as Video Streams, 
it is important to ensure that the data bus is not unavailable 
for use during Substantial periods of time; otherwise real 
time deadlines may be missed, resulting in objectional 
artifacts during presentation. 
The architecture of the computer system of FIG. 2 

decouples address and data tenures Such that data bus 
utilization is increased. This increase in data bus utilization 
allows for higher real-time performance to be achieved. In 
particular, the present invention allows for a true split-buS 
architecture with ordered slaves and ordered masters. 
“Ordered,” in one usage, means each master and each Slave 
has its own independent FIFO Structure Supporting 
“ordered” service to transactions posted to it. If a slave 
receives three transactions A, B, and C, the it will respond 
to A first, B second, and C third. If a master performs 
transactions D, E, and F, then it expects Servicing of those 
transactions in the order of D first, E Second, and F third. In 
one embodiment, there can be up to three Outstanding 
master/slave pair transactions at one time. 

Referring briefly again to FIG. 3, the side-band informa 
tion signals carried by the control bus 309 are side-band 
information signals used to decouple the address bus 206 
and the data bus 205. These side-band information signals 
include, in addition to the bus request signal BR, the bus 
grant signal BG and the data bus grant signal DBG of FIG. 
4, corresponding Signal for each master besides the CPU 
2O3. 

In one embodiment, the system includes, besides the CPU 
203, four additional masters for up to a total of five masters: 
the CPU 203, the secondary processor 218 (if present), the 
expansion bus bridge 219, one additional expansion bus 
bridge (if present), and the video bus bridge 220 (if present). 
The control bus 309 therefore carries five bus request signals 
BR0:4), five bus grant signals BGO:4), and five data bus 
grant signals DBGO:4). 

In the same embodiment, the System includes Six Slaves: 
the expansion bus bridge 219 (also a master), the additional 
expansion bus bridge (also a master, if present), the video 
bus bridge 220 (also a master, if present), the main memory 
209, the read-only memory 211, and memory controller 
registers accessible via the register data bus 217. For each 
slave, the control bus 309 carries three signals: a slave 
acknowledge Signal SACK, a read data available Signal 
RDDA, and a source- or sink-data signal SSD. The control 
bus 309 therefore carries six slave acknowledge signals 
SACK0:5), six read data acknowledge signals RDDAO:5), 
and six source- or sink-data signals SSDO:5). 
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The manner in which the foregoing Signals are used to 

decouple address tenures and data tenure may be appreciated 
with reference to FIG. 5. For simplicity, the address arbi 
tration phase has not been illustrated. The address transfer 
phase is essentially the Same as in the conventional case. The 
address termination phase, however, differs. The addressed 
Slave asserts the AACK Signal in the conventional manner, 
the AACK Signal being used by the master. In parallel with 
AACK, the addressed slave generates a SACK Signal for use 
by the arbiter 600. The arbiter uses this information about 
which Slave has acknowledged in order to reorder transac 
tions on the system bus 204. 

In the data arbitration phase, the data bus is granted to 
masters based on a priority ordering of masters, and is 
granted to Slaves based in part on the priority of the master 
of the transaction and in part on the availability of data from 
the slave. What may be considered in effect two sets of grant 
signals are therefore defined, DBGO:#Masters-1 for mas 
ters and SSDO:#Slaves-1 for slaves. 
Assume, for example, that in FIG. 5 the first transaction 

is a read by the CPU 203 from the expansion bus bridge 219 
and that the Second and third transactions are writes to 
memory from the video bus bridge 220. In general, video 
transactions will be assigned a higher priority than transac 
tions by the CPU 203 because of the real-time requirements 
of Video transactions. Data bus grant Signals are therefore 
issued to video bus bridge 220 for the first video transaction 
(2), which proceeds through the data transfer phase, and the 
Second Video transaction (n), which also proceeds through 
the data transfer phase. The CPU 203 will not be issued a 
data bus grant Signal for its read from the expansion bus 
bridge 219 until a read data acknowledge Signal has been 
returned to the arbiter 600 from the expansion bus bridge 
219. Then, the CPU 203 will be issued a data bus grant 
signal for its read and the expansion bus bridge 219 will 
Simultaneously be issued a corresponding Slave Source-data 
Signal causing it to present its data on the data bus 205 to be 
sampled by the CPU 203. 
AS may be appreciated from the foregoing description, the 

data arbitration phase in accordance with the present inven 
tion is very different than in the conventional case. This 
different manner of operation allows address and data ten 
ures to be decoupled, increasing utilization of the data bus. 
The data transfer and data termination phases, however, are 
essentially the same as in the conventional case. 

Transaction reordering is controlled by the arbiter 600. 
The general characteristics of the arbiter 600 will first be 
described, after which the arbiter 600 will be described in 
greater detail. 
The basic behavior that the arbiter 600 guarantees is as 

follows: 
Any given ARBus master has its own address and data 

tenures strictly ordered. That is, DBG(n) always cor 
responds to TS(n) and for a set of TS(n) and TS(n+1), 
DBG(n) will always occur before DBG(n+1). 

Any given ARBus Slave has its own data tenures Strictly 
ordered. That is, SSD(n) always corresponds to TS(n) 
and for a set of TS(n) and TS(n+1), SSD(n) will always 
occur before SSD(n+1). 

Data bus tenure is not necessarily granted on the ARBuS 
in the same order as address tenure is granted if the 
address tenures are granted to different masters. That is, 
is TS(n) is for Master A and TS(n+1) is for Master B, 
DBG(n) may be for Master B and therefore DBG(n+1) 
for Master A. 

In the illustrated embodiment, the arbiter 600 supports 
five logical masters. The five masters arbitrate for use of the 
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bus in accordance with a fixed priority as follows: the video 
bus bridge 220, the expansion bus bridge 219, an additional 
expansion bus bridge (if present), the CPU 203, and the 
Secondary processor 218. By giving highest priority to the 
video bus bridge 220, the arbiter 600 allows the video bus 
bridge 220 to “hog” the ARBus. 

The arbiter 600 may optionally “park” the CPU 203 or the 
video bus bridge 220 on the ARBus by asserting the appro 
priate BG wire during idle bus cycles. The default mode of 
operation is to park the most recent master. 

Address bus arbitration occurs in every cycle that an 
address tenure is not active. Masters assert their individual 
bus request signals (BR) to the arbiter 600 to signal a request 
for service. The arbiter 600 signals the master which has 
won the arbitration by asserting bus grant (BG). Masters that 
have BG asserted in a given cycle are free to assert TS and 
therefore start a transaction in the next cycle. 

The arbiter 600 controls the use of the data signals as a 
function of the address and the availability of read data. If 
a given ARBus address receives an AACK, the arbiter 600, 
by sampling the SACK signals, knows which slave will 
accept write data or will return read data. A slave that asserts 
AACK for a write transaction gives implicit permission to 
the arbiter 600 to grant the data bus to the master and allow 
it to assert the associated write data. Slaves must assert 
RDDA when requested return read data is available. 
The arbiter 600 grants the data bus to a selected master via 

the assertion of DBG (Data Bus Grant) and indicates to the 
Slave that data is to be asserted or accepted via the assertion 
of SSD (Source of Sink Data). 

Transactions which do not involve a data transfer 
(Address-Only transactions) are typically generated by the 
CPU 203 or the secondary processor 218 and are simply 
acknowledged (AACK asserted) by the arbiter 600. 

Referring now to FIG. 6, the arbiter 600 will be described 
in greater detail. The arbiter 600 includes master queues 601, 
one for each master in the System, and Slave queues 602, one 
for each slave in the system. Each of the master queues 601 
are connected at their respective data inputs to a SACK 
vector composed of the Slave acknowledge Signals SACK of 
each of the slaves, in addition to a Rd/Wr signal. Hereinafter, 
the term "SACK vector” will be understood to mean signals 
including the Slave acknowledge Signals SACK of each of 
the slaves and the Rd/Wr signal. Each of the slave queues 
602 are connected at their respective data inputs to a BG 
vector composed of the bus grant Signals BG of each of the 
masters. (In more precise terms, the BG vector is the 
physical bus grant Signals Sampled in the cycle that the TS 
Signal is asserted.) The bus grant signals BG are produced by 
an address bus arbiter state machine 605 in response to the 
bus request Signals BR of each of the masters. 

Each time the address acknowledge Signal AACK is 
presented on the system bus 204, the master queues 601 and 
the slave queues 602 are updated by pushing the SACK 
vector onto one (and only one) of the master queues 601 and 
pushing the BG vector onto one (and only one) of the Slave 
queues 602. In particular, the SACK vector is pushed onto 
one of the master queues 601 identified by the BG vector, 
and the BG vector is pushed onto one of the Slave queues 
602 identified by the SACK vector. 
The SACK vectors at the heads of the master queues 601 

and the BG vectors at the heads of the slave queues 602 are 
input to an arbiter multiplexer 603. The arbiter multiplexer 
603 looks at the SACK vectors at the head of the master 
queues 601 and determines which of the slave queues 602 
designated by the SACK vectors have at their heads a BG 
vector that designates the reciprocal one of the master 
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queues 601. On the next data tenure of the masters for which 
this condition is satisfied, data will be sourced from the 
corresponding slave. The arbiter multiplexer 603 also 
receives a read-ready vector RDDA composed of the read 
data acknowledge Signals RDDA of each of the slaves. 

Based on the foregoing input signals, the arbiter multi 
plexer 603 produces a slave match vector SlvMatch and a 
slave read ready vector SlvRdReady. The slave match vector 
SlvMatch designates those masters finding matching Slaves, 
i.e., Slaves expecting to next respond to transactions from 
those respective masters. The slave read ready vector SlvR 
dReady identifies, of those masters, which have slaves that 
are actually ready to Source data. The slave match vector 
SlvMatch and the slave read ready vector SlvRdReady are 
input to an data bus arbiter state machine 604. 
The SACK vectors at the head of the master queues 601 

are also input to the data bus arbiter state machine 604. The 
data bus arbiter state machine 604 determines which trans 
action is ready to go by examining the bits of the SlvMatch 
vector in priority order and, it a bit indicates a matching 
master/slave pair, determining further whether either the 
transaction is a write transaction (by examining the Rd/Wr 
bits at the front master queue entries) or the corresponding 
bit in the Slvrd Ready vector is set, indicating that the slave 
is ready to Source data. In Verilog notation, the data bus 
arbiter state machine 604 computes a vector TransReady as 
follows: 
Trans Ready 0:4= S 1 v Match 0:4& 

({5{Write}}:SlvRdReadyO:4) Based on the computed 
TransReady vector, the data bus arbiter state machine 604 
asserts a corresponding one of the data bus grant Signal 
DBG. The data bus arbiter state machine 604 also asserts a 
corresponding one of the Source-or-sink-data signals SSD, 
in accordance with the SACK vector at the front of the 
Winning master queue. 

Operation of the arbiter 600 may be further understood 
from the following illustrative examples. 
To take a relatively simple example, assume that Master 

1 (the expansion bus bridge 219) issues a read transaction to 
Slave 3 (the video bus bridge 220). Slave 3, when it is ready 
to Service the transaction, asserts the AACK Signal on the 
ARBus and, at the same time, generates a SACK Signal to 
the arbiter 600 identifying Slave 3. When the arbiter 600 
receives the AACK signal, the SACK vector is pushed onto 
one of the master queues 601 based on the BG vector. At the 
same time, the SACK vector is pushed onto one of the 
master queues 601 based on the BG vector. Assuming that 
no other transactions are presently queued, a SACK vector 
value representing Slave 3 (for example b111011) will 
appear at the head of the one of the master queues 601 for 
Master 1, and a BG vector value representing Master 1 (for 
example b10111) will appear at the head of the one of the 
slave queues 602 for Slave 3. The arbiter multiplexer 603 
will therefore cause the SlvMatch vector to have a value 
indicating a match for Master 1 (for example b01000). When 
Slave 3 is ready with read data, it will assert its RDDA 
signal, in response to which the arbiter multiplexer 603 will 
cause the SlvRdReady vector to have a value indicating the 
readiness of Slave 3 (for example b00100). If no other 
transactions having higher priority have in the meantime 
become ready to go, the data bus arbiter state machine 604 
will then issue a data bus grant signal DBG to Master 1 and 
a sink/Source data signal SSD to Slave 3, and the data 
transfer phase of the transaction will proceed. 
To take another, more complex example, assume that after 

Master 1 has issued the foregoing transaction request 
(shown below as Transaction 1) but before Slave 3 has 
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responded with an RDDA signal, a series of further trans 
actions is issued, in accordance with the following chrono 
logical Sequence: 
1. Master 1 Rd Slave 3 
2. Master 3 Wr Slave 3 
3. Master 3 Wr Slave 0 
4. Master 4 Rd Slave 1 
5. Master 2 Wr Slave 4 

Note that transactions 1 and 2 both involve Slave 3, and 
transactions 2 and 3 both involve Master 3. Because masters 
and Slaves are ordered, data dependencies are created. That 
is, transaction 2 cannot complete until transaction 1 has 
completed. Similarly, transaction 3 cannot complete until 
transaction 2 has completed. Transactions 4 and 5, on the 
other hand, have no data dependencies. Transaction 4 is a 
read from Master 4 (CPU 1) to Slave 1 (ROM). In the case 
of ROM and RAM, because read latency is minimal and is 
know in advance, the RDDA signals for ROM and RAM are 
tied asserted. 

Transaction 2, Master 3's write of Slave 3, is queued up 
behind Master 1's read of Slave 3. Transaction3, Master 3’s 
write of Slave 0, is queued up behind Master 3's write of 
Slave 3. When transaction 4 is queued, there are matching 
queue entries at the head of the master and Slave queues for 
transactions 1 and 4. Transaction 1, however, is a read 
transaction and is not allowed to proceed until an RDDA is 
received from Slave 3. 

Therefore, the arbiter 600 first grants the data bus to 
Master 4 and Slave 1 for transaction 4. When transaction 5 
is queued, there are matching queue entries at the head of the 
master and Slave queues for transactions 1 and 5. ASSume, 
however, that an RDDA has still not been received from 
Slave 3. The arbiter 600 will then grant the data bus to 
Master 2 and Slave 4 for transaction 5. 
ASSume now that an RDDA is received from Slave 3. 

Transactions 1, 2 and 3 will then, in that order, be granted the 
bus and will complete. In the foregoing example, whereas 
the address order of the transactions is 1, 2, 3, 4, 5, the data 
order is 4, 5, 1, 2, 3. 
When the system is totally idle, i.e., the data bus is not 

busy and all queues are empty, a CPU memory read trans 
action is executed immediately without queuing the trans 
action. 
The expansion bridge responds to transactions on the 

ARBus and PCI Bus and forwards them to the “other' bus 
appropriately. The primary function of the expansion bridge 
is to map transactions from one bus to the other. The job of 
the expansion bridge to transfer data between the ARBus 
and the PCI Bus is complicated by the fact that the ARBus 
and the PCI Bus are very different in a number of respects 
as shown in the following table: 

TABLE 1. 

BUS 

BUS CHARACTERISTIC ARBUS PCI Bus 

ADDRESS/DATA TENURES Full split transaction Single envelope 
(pended) (non-pended) 

ENDIANESS Big endian Little endian 
CYCLE TYPES One cycle type Many cycle types 
TRANSACTION LENGTHS Fixed (3.2-byte) 

burst length 
Arbitrary length 
transaction with 
byte-enabled writes. 

BUS SPEED Up to 50 MHz 33 MHz 

The PowerPC architecture and the ARBus do not “natu 
rally’ generate many types of cycles that are required by the 
PCI specification. These unique PCI Bus cycles are included 
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12 
in the PCI specification to provide backwards compatibility 
for x86/ISA/IBM PC-AT cards and software. The expansion 
bridge provides facilities for generating PCI Bus configu 
ration cycles, I/O cycles and PCI “Special Cycles/ 
“Interrupt Acknowledge” via Special address Spaces. 

Referring now to FIG. 7, the expansion bridge 700 will be 
described in greater detail. The expansion bridge is con 
structed with two main state machines for the ARBus and 
PCI Bus. The two main state machines actually consist of a 
number of Smaller Sub-State machines. These State machines 
operate in different clock domains and require that hand 
Shake Signals be Synchronized. Transactions passed between 
the ARBus and the PCI Bus are staged in a large packet 
buffer Structure. Data endian conversion is performed on the 
ARBus side of the packet buffer with data being stored in the 
packet buffer in PCI Bus Little Endian format. Address 
endian Swizzling is performed on the master Side of a 
transaction. For a master cycle to the PCI Bus from the 
ARBus, the address Swizzling occurs on the ARBus side. 
For a master cycle to the ARBus from the PCI Bus, the 
address Swizzling occurs on the PCI Bus side. 
AS explained previously, Systems are most prone to dead 

lockS and livelocks when there is an expansion bridge in the 
system. In the description that follows, a deadlock will be 
introduced, together with its LockUp type (A, B, or C as 
described below), a solution for the deadlock, and where in 
the System the deadlock prevention logic preferably resides. 
Deadlock prevention rules assume a starting point behavior 
in which the expansion bridge allows concurrent reads 
through the bridge, and the ARBus arbiter performs the 
DBWO* protocol as necessary. The DBWO* protocol 
allows the Processor to re-order a write data phase around a 
read data phase for Snoop pushes. 
An entire class of deadlocks and livelockS is related to the 

PCI Bus being stalled during reads. During a read, the PCI 
Bus can potentially remain Stalled for micro-Seconds at a 
time when the target of the read is on the other Side of a 
bridge. For instance, a Master on PCI Bus 1 wants to read 
from a target behind a PCI2PCI bridge on PCI Bus 2. In this 
case the master incurs the latency of three bridges (a first 
expansion bus bridge, a Second expansion bus bridge, and a 
PCI2PCI bridge) before actually reaching the target, and no 
other transactions can occur on PCI BuS 1 as long as the read 
is stalling the bus. If other transactions from the ARBus were 
able to get access to the PCI BuS and complete, then the class 
of deadlockS related to conflicting completion orders would 
disappear. This type of lockup is referred to herein as Type-A 
LockUp. 
Another class of deadlocks and livelockS is related to the 

ISAbus and PCI2PCI bridge behavior. When an ARBus read 
occurs to an ISA bus or a target behind a PCI2PCI bridge, 
it has no way of knowing whether it will complete or be 
blocked. A "block' can occur for the ISA bus if there is an 
ISA bus master already on the ISA bus with a pending 
transaction; this transaction may or may not require ARBuS 
access. A “block' can also occur for the PCI2PCI bridge if 
the bridge has writeS posted to it that it must perform on the 
host side of the PCI2PCI bridge before completing the read. 
In either of these two cases, there is an ARBus master that 
will wait forever for its read to either the ISA bus or 
PCI2PCI bridge to complete. If anything “blocks” the ISA 
bus or PCI2PCI bridge from completing its non-back-offable 
access, deadlock will occur. This type of lockup is referred 
to herein as Type-B LockUp. 
A third class of deadlocks and livelocks is related to the 

ARBus arbiter being fixed priority, and to croSS 
communication problems between devices on the bus who 
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are both masters and Slaves. Lower priority master can be 
starved from gaining ownership of the ARBus when follow 
ing the generic ARBus rules set forth for behavior following 
an ARBus ARTRY. If in addition, the lower priority master 
is unable to accept transactions as a slave, deadlockS or 
livelocks can occur. This type of lockup is referred to herein 
as Type-C LockUp. 

Deadlock avoidance is complicated by the fact that in 
Some Systems there may be more than one expansion bridge. 
Hence, deadlocks in a true Split bus architecture having only 
a single expansion bridge connected to the ARBuS will be 
considered first, followed by a consideration of deadlocks in 
a true Split bus architecture having two expansion bridges. 
Systems having more than two expansion bridges will not be 
considered, although Similar deadlock avoidance principles 
may be applied to Such Systems. 

Various deadlockS can occur with a Single expansion 
bridge in a System implemented with a split bus (ARBus), 
ordered masters, ordered slaves, and utilizing a fixed priority 
arbitration scheme for the masters on the ARBus. These 
deadlocks can also occur in a dual expansion bridge System 
with the Same characteristics, but only one expansion bridge 
need be involved to cause the deadlock. 

Referring to FIG. 8, deadlock may occur when an ARBus 
master read of an expansion bridge is followed by an ARBuS 
master read to memory. A typical Sequence of transactions is 
as follows: 

1. PCI Bus 1 Master initiates read of main memory, and 
Stalls PCI Bus 1. 

2. Processor 1 reads target behind Expansion Bridge 1 
(Expansion Bridge 1 AAcks without ARTRY). 

3. Processor 1 reads main memory (Memory Controller 
AAck's without ARTRY). 

4. Expansion Bridge 1 forwards read of main memory 
(Memory Controller AAcks without ARTRY). 

Master Processor 1 has ordered itself: a) Expansion 
Bridge 1, b) Read main memory. Slave main memory has 
ordered itself: a) Read by Processor 1, b) Read by Expansion 
Bridge 1. PCI Bus 1 has an implied ordering of a) Read main 
memory, b) Read by Expansion Bridge. PCI Bus 1 is stalled 
by the read of main memory and will not get off the bus until 
the read has completed. In this case, the completion order of 
Master Processor 1 directly conflicts with completion order 
of PCI Bus 1. This is a Type-A LockUp. There are two 
potential solutions: 1) Retry the Expansion Bridge 1 read of 
main memory, OR 2) Retry the Processor 1 read of main 
memory. For reasons described hereinafter. Solution 2 is 
preferred for ease of implementation. This deadlock is 
therefore avoided by having the ARBus arbiter prevent the 
Processor from reading main memory (via ARTRY) fol 
lowing the Processor's read of an expansion bridge. 

Referring to FIG. 9, deadlock may occur when an ARBus 
master read of an expansion bridge is followed by an ARBuS 
master L2 hit or allocate operation. A typical Sequence of 
transactions is as follows: 

1. PCI Bus 1 Master initiates read of main memory, and 
Stalls PCI Bus 1. 

2. Master A reads target behind Expansion Bridge 1 
(Expansion Bridge 1 AAcks without ARTRY). 

3. Master A issues memory read causing the L2 (Second 
level cache) to allocate the cache line. 

4. Expansion Bridge 1 must complete its read of main 
memory, but it cannot complete. 

Because the TAG SRAMs utilize a latch to capture the 
address from the main Address BuS during a TS , no future 
TS can occur until the completion of the TAG update. The 
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System arbiter prevents future TS events by deasserting all 
Bus Grants to Masters until the completion of the TAG 
update. Unfortunately, in the Scenario described above, the 
TAG update will not complete until the PCI Bus Master A 
read of main memory has occurred. Master A has ordered 
itself: a) Read of Expansion Bridge 1, b) Read of main 
memory. Expansion Bridge 1 has ordered itself: a) Read of 
main memory, b) Read by Master A. This is a Type-A 
LockUp. Since the TAG update must complete without 
future occurrences of TS , the deadlock fix is to have the 
ARBus arbiter prevent an access by Master A that would 
cause a second level cache hit or allocate (via ARTRY) 
following Master A's read of an expansion bridge. 

Referring to FIG. 10, deadlock may occur when a pro 
ceSSor read of an expansion bridge is followed by a proces 
Sor write to that expansion bridge. A typical Sequence of 
transactions is as follows: 

1. Processor 1 reads target behind PCI2PCI bridge behind 
Expansion Bridge 1. PCI2PCI bridge blocks read 
completion in order to flush posted write data to target 
upstream of PCI2PCI bridge. 

2. Processor 1 writes target behind Expansion Bridge 1. 
3. Expansion Bridge 1 write attempt to main memory 

causes Processor 1 to attempt Snoop Push. 
The PCI2PCI bridge has become interlocked, and must 

flush a posted write upstream of itself; in this case the write 
is headed toward the ARBus, and Expansion Bridge 1's 
buffers are full and cannot currently accept the write. The 
first two outstanding transactions in this scenario are 1) 
Master Processor 1 has an outstanding read of Expansion 
Bridge 1, followed by 2) Master Processor 1 has an out 
Standing write to Expansion Bridge 1. The third attempted 
transaction is a write cycle from Expansion Bridge 1 to main 
memory. However, this write cycle is to copyback-cacheable 
Space and causes a Snoop hit in Processor 1's cache. Pro 
ceSSor 1 retries Expansion Bridge 1's write cycle, but now 
needs to push the dirty cache line to main memory. However, 
at this point it is unable to push the dirty cache line due to 
its outstanding write to Expansion Bridge 1. With the use of 
DBWO*, Processor 1 could have re-ordered the Snoop push 
write transaction around its outstanding read of Expansion 
Bridge 1 (transaction number 1). However, the MPC60x 
microprocessor is not capable of re-ordering the Snoop push 
write transaction around its own outstanding write. This is a 
Type-B LockUp, caused by Processor 1's inability to com 
plete its read due to the PCI2PCI bridge's interlocking 
behavior. This deadlock is avoided by having the ARBus 
arbiter prevent the Processor from writing to an expansion 
bridge if it has an outstanding read of the expansion bridge. 
This will allow the Processor to perform the Snoop Push 
write transaction if required. 

There is a set of deadlocks that only occur with more than 
one an expansion bridge in a System implemented with a 
split bus (ARBus), ordered masters, ordered slaves, and 
utilizing a fixed priority arbitration Scheme for the masters 
on the ARBus. In one particular System architecture, high to 
low priority is: 1) Video, 2) Expansion Bridge 1, 3) Expan 
sion Bridge 2, 4) Processor 1,5)Processor 2, Deadlock rules 
described previously also apply to a multiple expansion 
bridge environment. The following new rules are in addition 
to the previous rules. 

Referring to FIG. 11, deadlock may occur in the case of 
concurrent BuS Grant and Address Retry signals. A typical 
Sequence of transactions is as follows: 

1. Expansion Bridge 1 attempts a write to Expansion 
Bridge 2 but Expansion Bridge 2 buffers are full. 

2. Expansion Bridge 2 has a write to Expansion Bridge 1 
and received BuS Grant during Expansion Bridge 1 
cycle. 
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3. Expansion Bridge 2ARTRY's Expansion Bridge 1 due 
to full buffers. As per ARBus specification, Expansion 
Bridge 2 ignores its Bus Grant and does not take the 
ARBuS. 

4. As per ARBus specification, following ARTRY, both 
Expansion Bridge 1 and Expansion Bridge 2 deassert 
their Bus Requests for one clock. Both re-assert Bus 
Requests. Expansion Bridge 1 wins. The foregoing 
Sequence of transactions is repeated indefinitely. 

Following ARBus protocol after an ARtry, a master who 
has a Bus Grant ignores it. All masters must deassert their 
Bus Requests the clock following an ARtry, and then 
re-assert them. In a fixed priority arbitration Scheme, the 
higher priority master will win every time, and if it cannot 
complete its access, an ARBus livelock results. This is a 
Type-C LockUp, and is avoided by having the expansion 
bridge disregard the ARBuS protocol, and take the address 
tenure if a Bus Grant occurs during an ARtry. An expansion 
bridge can do this without adverse Side-effects because it is 
not a Snooping bus master. 

Referring to FIG. 12, deadlock may occur in the case of 
concurrent Bus Request and Address Retry Signals. A typical 
Sequence of transactions is as follows: 

1. Video attempts a write to Expansion Bridge 1 but 
Expansion Bridge 1 buffers are full; 

2. Expansion Bridge 1 has its Bus Request asserted 
because it has a read of memory to perform, but Video, 
with multiple cycles to perform, keeps its Bus Request 
asserted. 

3. Expansion Bridge 1 ARTRY*s Video due to full 
buffers. AS per ARBus Specification, Expansion Bridge 
1 and Video deassert their bus requests the clock 
following ARTRY*. 

4. Video and Expansion Bridge 1 reassert the bus requests. 
Since Video has a fixed higher priority than Expansion 
Bridge 1, it constantly gets Bus Grant. The foregoing 
Sequence of transactions is repeated indefinitely. 

Following ARBus protocol after an ARTRY, all masters 
on the bus deassert their Bus Requests to give the Processor 
a guaranteed window being the only bus requestor. This 
guarantees that the Processor, who normally has lowest 
ARBus priority, acquires the bus next in order to complete 
a high priority transaction Such as a Snoop Push. In this case, 
the ARBuS protocol causes the lower priority expansion 
bridge to never receive a Bus Grant due to the higher priority 
Video requesting the ARBuS to complete its access. Since 
the completion of the Video access is dependent on the 
expansion bridge freeing up Some buffer Space, and Since the 
expansion bridge must get the ARBuS to complete its acceSS 
or receive an ARTRY* in order to free up PCI Bus 1 to free 
up buffer Space for the Video write to come in, the expansion 
bridge effectively needs higher priority than Video this time. 
This is a Type-C LockUp, and is avoided by having an 
expansion bridge keep its Bus Request asserted the clock 
following an ARTRY* if it is the source of the ARTRY*. 
This is precisely the protocol the MP60X processor per 
forms to effectively achieve a higher priority when neces 
Sary. 

Referring to FIG. 13, deadlock may occur in the case of 
expansion bridges reading each other concurrently. A typical 
Sequence of transactions is as follows: 

1. A Master Behind Expansion Bridge 1 reads a target 
behind Expansion Bridge 2 (Expansion Bridge 2 
AAcks) stalling PCI Bus 1. The read remains out 
Standing within Expansion Bridge 2. 

2. A Master Behind Expansion Bridge 2 reads a target 
behind Expansion Bridge 1 (Expansion Bridge 1 
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AAcks) stalling PCI Bus 2. The read remains out 
Standing within Expansion Bridge 1. 

This is the most basic deadlock case. Each expansion 
bridge has a Stalled bus, and yet each expansion bridge 
accepts the read from the opposite expansion bridge. Neither 
of the accepted reads can complete because the buses they 
are attempting to get onto are Stalled. At least one of the 
buses must free itself for this basic deadlock to be avoided; 
one expansion bridge must not accept the read, but must 
ARTRY* the read attempt to it. This is a Type-A LockUp, 
and is avoided by having an expansion bridge disallow a 
read of its slave while it has an outstanding master read 
tenure (AAck* without ARTRY). Once the data bus grant 
is received corresponding to the address tenure, then the 
transaction is guaranteed to complete and Slave reads can be 
accepted. 

Referring to FIG. 14, deadlock may occur in the case of 
one master attempting to read both expansion bridges. A 
typical Sequence of transactions is as follows: 

1. PCI Bus 1 Master initiates read of target behind 
Expansion Bridge 2, and stalls PCI Bus 1. 

2. Processor 1 reads target behind Expansion Bridge 1 
(Expansion Bridge 1 AAcks without ARTRY). 

3. Processor 1 reads target behind Expansion Bridge 2 
(Expansion Bridge 2 AAcks without ARTRY). 

4. PCI Bus 1 Master's read of target behind Expansion 
Bridge 2 occurs on ARBus (Expansion Bridge 2 
AAcks without ARTRY). 

Master Processor 1 has ordered itself: a) Read Expansion 
Bridge 1, b) Read Expansion Bridge 2. Slave Expansion 
Bridge 2 has ordered itself: a) Read by Processor 1, b) Read 
by Expansion Bridge 1. Expansion Bridge 1 has implied 
ordering due to stalled PCI Bus of: a) Read of Expansion 
Bridge 2, b) Read by Processor 1. In this scenario, all three 
devices involved have conflicting completion orders. 
Although Processor 1's read of the target behind Expansion 
Bridge 2 can complete on PCI BuS2, it cannot complete on 
the ARBus until Processor 1's read of Expansion Bridge 1 
has completed. Expansion Bridge 1's read of Expansion 
Bridge 2 must complete before Processor 1's read of Expan 
Sion Bridge 1 can complete. Since Expansion Bridge 2 is 
ordered to deliver the response to Processor 1's read before 
delivering the response to Expansion Bridge 1's read, the 
deadlock results. This is a Type-A LockUp, and is avoided 
by preventing one master from reading both an expansion 
bridges. This prevents the response ordering dependencies 
for the master. 

Referring to FIG. 15, deadlock may occur in the case of 
an ISA bus master reading a target behind an opposite 
expansion bridge. A typical Sequence of transactions is as 
follows: 

1. PCI Bus 2 Master reads ISA target behind Expansion 
Bridge 1, stalling PCI Bus 2 (Expansion Bridge 1 
AAcks) 

2. ISA Master on ISA initiates read of target behind 
Expansion Bridge 2. ISA Master cannot be backed off. 

3. Expansion Bridge 1 forwards ISA Master's read to 
Expansion Bridge 2. Expansion Bridge 2 retries Expan 
sion Bridge 1 because PCI Bus 2 Master read is 
Outstanding. This occurs indefinitely. 

The fact that the master behind Expansion Bridge 2 got its 
read AAcked by Expansion Bridge 1 on the ARBus prior to 
the ISA bus master behind Expansion Bridge 1, implies that 
Expansion Bridge 2's completion order is: 1) Complete read 
to ISA bus behind Expansion Bridge 1, 2) Accept incoming 
read from Expansion Bridge 1 (or whomever). However, the 
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ISAbuS has initiated an access and will retry all accesses to 
it until its read of the target behind Expansion Bridge 2 has 
completed. The ISA bus completion order is: 1) Complete 
read to target behind Expansion Bridge 2, 2) Accept incom 
ing read from Expansion Bridge 2 (or whomever). These 
two masters have conflicting completion orders. Note that if 
PCI Bus 2 had not been stalled by its read and Expansion 
Bridge 2 could have accepted the read from Expansion 
Bridge 1, then all transactions would be able to complete. 
This is a Type-A (PCI Bus 2 stall) and Type-B LockUp (ISA 
bus block). The fix is to allow ISA bus master cards to 
communicate only with main memory or targets behind the 
Same expansion bridge. For example, System Software may 
remap accesses acroSS the bridges to memory and complete 
transfers virtually. 

Referring to FIG.16, deadlock may occur when a PCI bus 
master read gets Stuck behind a posted PCI bus master write. 
A typical Sequence of transactions is as follows: 

1. Three transactions: a) Processor 1 Reads Expansion 
Bridge 1, b) Processor 1 Reads Expansion Bridge 1, c) 
Processor 2 Reads Expansion Bridge 2. 

2. Meanwhile: a) Expansion Bridge 1 has a write trans 
action destined for Expansion Bridge 2, and a PCI Bus 
Master on PCI Bus 1 issues a read of memory, stalling 
PCI Bus 1, b) Expansion Bridge 2 has a write trans 
action destined for Expansion Bridge 1, and a PCI Bus 
Master on PCI Bus 2 issues a read of memory, stalling 
PCI BuS 2. 

The normal means to get a PCI Bus Master read to free up 
the PCI Bus is to retry a transaction from the PCI bus when 
it cannot be serviced. Normally, the PCI Bus Master read 
would propagate to the ARBus, attempt its cycle on the 
ARBus, and either complete or get an ARTRY. In either 
event, it frees up the bus. For a high-performance 
architecture, concurrent reads are desired at all times. The 
scenario on both PCI buses is that they are stalled with reads 
heading to memory, but there are write transactions to the 
opposite expansion bridge in each expansion bridge which 
cannot complete (because the transaction limit has been 
reached). Since neither expansion bridge's ARBus master 
write transactions can complete their address tenure, their 
respective PCI BuS Master read tenures cannot gain acceSS 
to the ARBus to complete or receive an ARTRY. In this 
instance the PCI buses will remain stalled indefinitely. This 
is a Type-A LockUp, and is avoided by having an expansion 
bridge immediately retry PCI Bus master reads if it has a 
PCI Bus master write transaction queued up in front of it that 
has not completed. This will ensure that the PCI Bus master 
read has access to the ARBus to complete the acceSS or 
receive an ARTRY. 

Referring to FIG. 17, deadlock may occur when the 
ARBuS transaction limit is hit, and accesses cannot com 
plete. A typical Sequence of transactions is as follows: 

1. Three transactions: a) Processor 1 Reads ISA target 
behind Expansion Bridge 1, b) Processor 2 Reads target 
behind Expansion Bridge 2, c) Expansion Bridge 2 
Reads target behind Expansion Bridge 1, stalling PCI 
Bus 2. 

2. Meanwhile: a) Expansion Bridge 1 has a write trans 
action destined for Expansion Bridge 2, and b) an ISA 
BuS has initiated a read access of main memory on the 
ISA Bus. The ISA bus master cannot be backed off. 
This ISA bus master access blocks the Processor 1 
Read from completing. 

The fundamental problem with this scenario is that the 
transaction queue depths are limited to three transactions. If 
the depth were four, then the Expansion Bridge 1 write 
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transaction destined for Expansion Bridge 2 could complete, 
allowing the ISA bus master read of main memory to 
complete, etc. Given that the transaction queue depths are 
limited to three transactions, the other two problems to note 
are that the PCI Bus Master on PCI Bus 2 has stalled its bus 
with the read of the target behind Expansion Bridge 1 and 
that the ISA bus master has stalled its ISA bus with the read 
of main memory. If either bus were not stalled, then either 
the Processor 2 read of the target behind Expansion Bridge 
2 would complete, or the Processor 1 read of the ISA target 
would complete. This is a Type-A (PCI Bus 2 stall) and 
Type-B LockUp (ISAbus block). Since neither the PCI Bus 
2 stall or the ISA bus block can be prevented, the deadlock 
is avoided by the ARBus arbiter to prevent Expansion 
Bridge 2 from reading Expansion Bridge 1 if Expansion 
Bridge 2 has an outstanding read. In general terms, if an 
expansion bridge-A has an outstanding ARBuS Master's 
Slave Read, then the ARBus arbiter should prevent 
(ARTRY) an expansion bridge-A from reading an expan 
Sion bridge-B until the outstanding read has completed. 

Referring to FIG. 18, deadlock may occur when one 
expansion bridge, with an outstanding ARBus read, accepts 
a read from another expansion bridge. A typical Sequence of 
transactions is as follows: 

1. Expansion Bridge 1 accepts two ARBus to PCI Bus 1 
writes. Meanwhile, a PCI Bus Master on PCI Bus 1 has 
initiated a read acceSS from a target behind Expansion 
Bridge 2. 

2. Expansion Bridge 2 accepts a read from Processor 2 to 
the PCI2PCI bridge, followed by a read from Expan 
sion Bridge 1. Meanwhile, Expansion Bridge 2 also 
accepts two PCI Bus to Expansion Bridge 1 write 
cycles. 

3. The Processor 2 read of the PCI2PCI bridge causes the 
bridge to attempt to flush posted write data to main 
memory. Since all buffers are filled in the direction of 
PCI Bus 2 to PCI Bus 1, and PCI Bus 1 is stalled, the 
PCI2PCI bridge cannot flush its data. 

The problem with this scenario is that the two PCI buses 
have conflicting completion orders. Since Expansion Bridge 
2 AAcked Expansion Bridge 1's read, PCI Bus 1 has 
committed to completing the read before allowing any other 
accesses to occur, thereby stalling the PCI Bus. The Pro 
cessor 2 read of the PCI2PCI bridge has kicked off the 
interlocking behavior of the bridge. The PCI2PCI bridge 
will not Service the read until it has completed its writes. 
Unfortunately, to complete its write, an access must occur on 
PCI Bus 1 to free up some buffer space. PCI Bus 2 won't 
Service the read until it executes the write, and PCI Bus 1 
won’t service the write until it completes the read. This is a 
Type-A (PCI Bus 1 stall) and Type-B LockUp (PCI2PCI 
bridge block). Since neither the PCI Bus 1 stall or the 
PCI2PCI bridge block can be prevented, the fix is for the 
ARBus arbiter to prevent Expansion Bridge 1 from reading 
Expansion Bridge 2 if Expansion Bridge 2 has an outstand 
ing read. In general terms, if an expansion bridge has an 
outstanding ARBus master's Slave Read, then the ARBus 
arbiter should prevent (ARTRY) another expansion bridge 
from reading that expansion bridge until the outstanding 
read has completed. 
The following Summary is a compilation of the foregoing 

rules. Items below in italic text are deadlock avoidance rules 
for which an expansion bridge is responsible, and items 
below in plain text are deadlock avoidance rules for which 
the ARBus arbiter or processor bus arbiter is responsible. 

A1. The ARBus arbiter must prevent an ARBus master 
from reading main memory (via ARTRY) if that master has 
an outstanding read of an expansion bridge. 
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A2. The ARBus arbiter must prevent an access by an 
ARBus master that would cause a Second level cache hit or 
allocate (via ARTRY) if that master has an outstanding read 
of an expansion bridge. 

A3. The ARBus arbiter must prevent a Snooping ARBus 
master from writing to an expansion bridge if the master has 
an outstanding read of an expansion bridge to allow for 
required Snoop Push write transactions. DeadLock Avoid 
ance Rules for Multiple Expansion Bridges, Split Bus, Fixed 
Priority, Ordered Masters and Slaves: 

B1. An expansion bridge must disregard ARBuS protocol 
and take the address tenure if a Bus Grant occurs concurrent 
with an ARtry*. 

B2. An expansion bridge must disregard ARBuS protocol 
and keep its Bus Request asserted the clock following an 
ARTRY* if it is the Source of the ARTRY. 

B3. An expansion bridge must disallow a read of its slave 
while it has an outstanding master read transaction and its 
corresponding data tenure has not begun. 

B4. The ARBus arbiter must prevent one master from 
reading both expansion bridges. 

B5. ISAbus master cards must not read targets behind the 
opposite bridge. Software must restrict target accesses from 
ISA to the same bridge or main memory. 

B6. An expansion bridge must retry PCI Bus master reads 
if it has a PCI Bus master write transaction queued up in 
front of it that has not completed. 

B7. If an expansion bridge has an outstanding ARBuS 
master's Slave Read, the ARBus arbiter must prevent 
(ARTRY) that expansion bridge from reading another 
expansion bridge until the read completes. 

B8. If an expansion bridge has an outstanding ARBuS 
master's Slave Read, the ARBus arbiter must prevent 
(ARTRY) another expansion bridge from reading that 
expansion bridge until the read completes. 
AS noted above, Some of the deadlock avoidance rules are 

implemented in the expansion bridge itself. Others of the 
deadlock avoidance rules are implemented in the System 
arbiter. In either case, the general technique employed is to 
detect a deadlock hazard, a condition which, if a Single 
further “deadlocking transaction were accepted, would 
result in deadlock and, if that transaction is requested, 
refusing to accept it by issuing a retry Signal. 

Referring again to FIG. 6, a block 613 monitors the state 
of the master queues 601 to detect a deadlock hazard, and 
monitors the BG and SACK vectors to detect a deadlocking 
transaction. When Such a transaction is requested, an 
ARTRY Signal is generated, causing the transaction to be 
backed off instead of being accepted and queued. 

Each master queue locally generates two Signals, a 
Valid Br1Rd Signal, indicating that the master has a read to 
Expansion Bridge 1 pending, and a Valid Br2Rd Signal, 
indicating that the master has a read to Expansion Bridge 2 
pending. These signals are bussed to the block 613 instead 
of actual queue entries. 
From the foregoing Signals, the block 613 detects dead 

lock hazards. Also input to the block 613 are the BG vector 
and the SACK vector, which together indicate the master/ 
Slave pair for a requested transaction. From the latter Signals, 
the block 613 detects deadlocking transactions and in 
response generates a ARTRY Signal. 

Referring again to FIG. 7, in the case of the expansion 
bridge 700, deadlock avoidance is implemented in an 
ARBus control block 710 and in a PCIBus control block 
720. In particular, an Address Master state machine 
AMst601) causes the expansion bridge 700 to disregard the 
ARBus protocol and take address tenure if a Bus GRant 
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occurs concurrent with an ARTRY signal. Likewise, the 
Address Master state machine AMst601) causes the expan 
sion bridge 700 to disregard to ARBus protocol and keep its 
Bus Request asserted the clock following an ARTRY if it is 
the Source of the ARTRY. 
An Address Slave state machine and a PCI Master state 

machine each implement a further deadlock avoidance rule 
in Similar manner as described previously in relation to the 
System arbiter. That is, a deadlock hazard is detected, during 
which if a deadlocking transaction is detected, that transac 
tion is refused. In particular, the Address Slave State machine 
disallows a read of its Slave while it has an outstanding 
master read transaction and its corresponding data tenure has 
not begun. The PCI Master state machine retries PCI Bus 
master reads if it has a PCI Bus master write transaction 
queued up in front of it that has not completed. 

Use of the described deadlock avoidance techniques 
enables a high-performance split-transaction System bus to 
be interfaced to a single-envelope expansion bus without 
compromising System reliability. Rather than the character 
istics of the expansion bus limiting the performance of the 
System bus, performance of the System bus may be sepa 
rately optimized. As a result, overall System performance is 
greatly improved. 
Increased Efficiency by Allowing Transaction Independence 
Within Slave Devices 
The description thus far has assumed a System in which 

both masters and slaves are ordered. In particular, the 60X 
microprocessor assumes that its transactions are ordered. AS 
a consequence, master ordering is to Some extent ingrained 
within the underlying System architecture. Slave ordering, 
on the other hand, although it may be convenient from an 
implementation perspective, is not required. Increased effi 
ciency may be achieved by relaxing the constraint of Slave 
ordering, thereby allowing transaction independence within 
Slaves. To achieve unordered slaves, additional information 
must be exchanged between the Slaves and the arbiter. AS 
before, this information may be exchanged in the form of 
additional Side-band Signals not provided for by the 
MPC60X bus specification. 

Referring to FIG. 19, a block diagram is shown of a 
modified arbiter that allows for unordered slaves. The arbiter 
of FIG. 19 differs from the arbiter of FIG. 6 principally in the 
signals input to and output from the blocks ArbMux 603, 
ArbDatSM 604 and ARtryGen 613, as well as in the logical 
function of these blocks. In other respects, the arbiter of FIG. 
19 and the arbiter of FIG. 6 remain substantially the same. 
Like designations have therefore been used in FIG. 19 as in 
FIG. 6, with the ArbMux, ArbDatSM and ARtryGen blocks 
being differentiated by prime designations 603', 604 and 
613', respectively. 

Considering first the block ArbMux 603', in order to allow 
for transaction independence within slaves, the ArbMux 603 
receives as inputs all of the queue entries of all of the Slave 
queues (instead of just all of the front entries as in FIG. 6). 
Therefore, if the masters are numbered 0 through M, the 
Slaves are numbered 0 through S and the queues locations 
within each Slave queue are numbered 0 through Q, then the 
ArbMux 603 receives (S+1)(M+1+1)(Q+1) bits of informa 
tion from the slave queues. One of the bits in the expression 
(M+1+1) is a valid bit that allows for a flop-based queue 
implementation instead of one requiring random-access 
memory. In an exemplary embodiment with S=5, M=4, and 
Q=2, the number of bits received from the slave queues is 
6x6x3=108 bits. Since masters remained ordered, the Arb 
Mux 603' continues to receive only the front entries from the 
master queues, the same as in FIG. 6. In the illustrated 
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embodiment, the ArbMux 603 receives from the master 
queues (M+1)(S+1+1+1)=5x8=40 bits. As in the case of the 
Slave queue entries, one of the bits in the expression (S+1+ 
1+1) is a valid bit. The extra bit in the expression (S+1+1+1) 
is a read/write bit as described previously. 

Furthermore, the ArbMux 603', instead of receiving only 
a Single RDDA signal from each Slave, now receives an 
RDDA signal for each slave queue entry. In the illustrated 
embodiment, the ArbMux 603 therefore receives (S+1)(Q+ 
1)=6x3=18 bits. 

In the arbiter of FIG. 6, the ArbMux 603 outputs two bits 
(SlvMatch and SlvRdReady) for each master in the system. 
The ArbMux 603' of FIG. 19, on the other hand, outputs two 
bits for each master for each queue location. Hence, the 
ArbMux 603' outputs 2(M+1)(Q+1) bits which are input to 
the ArbDatSM 604. In the illustrated embodiment, the 
ArbMux 603' outputs 2x5x3=30 bits for input to the Arb 
DatSM 604. The front queue entries from each of the master 
queues are input to the ArbDatSM 604 as before. 
The ArbDatSM 604 of FIG. 6 produces two sets of output 

signals, DBG and SSD. The DBG output signals remain 
unchanged in the case of the ArbDatSM 604. One DBG 
signal is output for each master for a total of M-1 DBG 
Signals. Instead of outputting out a Single SSD Signal for 
each slave device, however, the ArbDatSM 604 outputs an 
SSD Signal for each queue location within each slave device, 
for a total of (S+1)(Q+1) bits (6x3=18 bits in the illustrated 
embodiment). 

The ArbDatSM 604 receives multiple address coinci 
dence (AC) signals from each of the slave devices. In the 
illustrated embodiment the ArbDatSM 604 receives from 
each Slave device a separate Signal for every possible pair of 
queue entries within the slave device, indicating whether the 
Same cache line is the target of both transactions queued 
within the pair of queue entries. In general there are Q(Q+ 
1)/2 possible pairs of queue entries within a slave device. 
The ArbDatSM 604 therefore receives (S+1)Q(Q+1)/2) 
total address coincidence bits or, in the illustrated 
embodiment, 6x2x3/2=18 bits. The ARtryGen Block 613', 
in addition to the BG and SACK vector inputs previously 
described in relation to the ARtryGen block 613 of FIG. 6, 
also receives the same address coincidence Signals. 

In the case of Some slave devices, the average latency of 
the slave device may be reduced by reordering transactions 
involving the slave device. In the case of DRAM, for 
example, page mode reads take less time than non-paged 
reads. Hence, in the embodiment of FIG. 19, the ArbDatSM 
604 further receives page coincidence (PC) signals from at 
least one slave device, i.e., DRAM. The ArbDatSM block 
604 receives from the slave device a separate signal for 
every possible pair of queue entries within the slave device, 
indicating whether the targets of both transactions queued 
within the pair of queue entries are within the same page. 
The ArbDatSM block 604 therefore receives Q(Q+1)/2 total 
page coincidence bits or, in the illustrated embodiment, 
2x3/2=3 bits. 

Referring now to FIG. 20, the inputs and outputs of the 
ArbMux block 603' are illustrated in greater detail. For each 
master Mo through M., the ArbMux 603 receives the 
frontmost queue entry, represented as Qo. The inputs from 
the master queues to the ArbMux 603' are therefore repre 
Sented as MoQo, MQo. . . . , McQo. 

In the case of the Slave queues, every slave queue entry is 
input into the ArbMux 603'. Hence, for the slave queue So, 
inputs to the ArbMux 603' include SQo, SQ., . . . , 
SoQo.1, and likewise for each slave queue in Sequence up 
to and including the last slave queue Ss, whose inputs 
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include Ss. Oo, Sis)O1,..., Ss. Oo. 1). The ArbMux 
603' receives from the slave devices themselves individual 
Read Ready Signals for each queue location. From Slave 0, 
the refore, the ArbMux 603 receives RDDA, 
RDDA,..., RDDA, and likewise for each slave up 
to and including the last Slave device, Slave S+1, whose 
inputs include RDD Aso, RDDAs, . . . . 
RDDA?sion 

In FIG. 6, a transaction is allowed to proceed only if it is 
the frontmost transaction of both the master and the slave. 
The matching queue location within the slave is by defini 
tion always the frontmost valid queue location within the 
slave. In the case of ArbMuX 603 of FIG. 6, therefore, its 
function is to identify masters whose next transaction in 
order is also the next transaction in order of the target Slave 
device. In the case of the ArbMux 603' of FIG. 19, slave 
ordering is no longer required. Hence, the function of the 
ArbMux 603' is to identify for each master the queue 
location within the target Slave that matches the frontmost 
transaction of the master. The ArbMux 603' also indicates 
whether transaction data for that queue location is ready. 
Hence, for each master, two bits, a SlvMatch bit and a 
SlvRdReady bit, are output for each queue location. In the 
case of master Mo, the bit pairs output by the ArbMux 603' 
are designated MQo, MoQ1, . . . , MoQg1, and likewise 
for each Succeeding master up to and including the last 
master M1, the outputs for which are MQo, Mi 
Q1, ..., M.Qo. If a master has a valid transaction 
in its queue, then for the frontmost valid transaction, the 
SlvMatch signal for that master that corresponds to the 
matching target slave queue location will be asserted. If the 
master has no valid transaction in its queue, then no signal 
is asserted for that master. 
The inputs and outputs of ArbMux 603' are illustrated in 

greater detail in FIG. 21 for the case M=4, S=5 and Q=2. 
Referring to FIG. 22, the inputs and outputs of the 

ArbDatSM 604 are illustrated in greater detail. The outputs 
of the ArbMux 603' described previously are shown as being 
input to the ArbDatSM 604 at a top edge thereof. These 
inputs are used by the ArbDatSM 604 to determine which 
master is to be granted the bus by asserting one of the Data 
Bus Grant signals DBGo through DBG output by the 
ArbDatSM 604'. The same inputs are also used by the 
ArbDatSM 604 to determine which SSD signal of the target 
Slave is to be asserted according to the queue location that 
the transaction occupies within the Slave queue. Which Slave 
is in fact the target Slave is identified by the frontmost master 
queue entries, shown as being input to the ArbDatSM 604 
at a left edge thereof in like manner as in FIG. 6. 
The ArbDatSM 604 outputs an SSD signal corresponding 

to each Slave queue location. Hence, for Slave 0, the outputs 
of the ArbDatSM 604 include SSD, SSD, . . . , 
SSDoo, and so forth for each slave up to and including 
Slave S+1, the outputs for which include SSDso, 
SSDs 11, . . . , SSDs: 1)(o. 1). 
The inputs to the bottom edge of the ArbDatSM 604' are 

observed and to realize a further optimization as described 
more fully hereinafter. 

In its basic operation, the ArbDatSM 604 performs the 
following functions: 

1. Determines the highest priority master having a trans 
action “ready to go' based on: 
a) the SlvMatch bits for all of the masters; 
b) the read/write bits from the frontmost queue loca 

tions of all of the master queues, and 
c) the SlvRdReady bits for all of the master. 
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2. ASSerts the corresponding DBG signal for the winning 
master, and 

3. Asserts the correct SSD signal for the target slave based 
O 

a) the SlvMatch bits for the winning master; and 
b) the SACK vector in the frontmost queue location of 

the winning master. 
AS may be appreciated from the foregoing description, the 

system of FIG. 19 is much more loosely coupled than the 
system of FIG. 6. The loosely-coupled nature of the system 
of FIG. 19 may be taken advantage of to improve the way 
in which deadlocks are avoided. 
As previously described in relation to FIG. 6, slave 

ordering is a major cause of deadlock. When what would 
otherwise be a deadlocking transaction is detected, it is 
“killed by issuing an ARtry signal. Without slave ordering, 
a large proportion of what would otherwise be deadlocking 
transactions, instead of being killed, can now be accepted 
and reordered in relation to other transactions So as to avoid 
deadlock. Such reordering is not possible, however, when a 
data dependency exists. For example, a read of one data 
location by one device followed by a write of the same data 
location by another device does not yield the same result as 
if the execution order is reversed. If a deadlock situation 
cannot be avoided by transaction reordering because of a 
data dependency, the need remains to kill the deadlocking 
transaction. 
Of course, data dependencies may also exist absent any 

potential deadlock situation. Observing Such data dependen 
cies will not cause any transaction to be killed as in a 
deadlock situation, although it may reduce Somewhat the 
utilization of the bus. 

Information regarding data dependencies is input to the 
ArbDatSM 604 in the form of address coincidence (AC) 
Signals from each of the slaves. Using this information, the 
ArbDatSM 604' Schedules transactions so as to observe all 
data dependencies. For each of slave devices 0 to S+1, the 
ArbDatSM 604 receives Q(Q+1)/2 address coincidence bits. 
In the case of Q=2, for example, the ArbDatSM 604 receives 
three address coincidence bits from each Slave: AC, AC, 
and AC, each indicating that the two Subscripted queue 
locations have target addresses within the same cache line. 

In operation, the ArbDatSM 604' uses the address coin 
cidence Signals as follows: 

1. The ArbDatSM selects for each master a set of address 
coincidence bits from a particular Slave in accordance 
with the SACK vectors at the head of the respective 
master queues. 

2. Each Selected Set of address coincidence bits is used to 
determine for that particular slave device which queue 
location or locations cannot have the transaction 
queued therein go next without violating a data depen 
dency. 

3. For each master, the SlvMatch bits input to the Arb 
DatSM are modified in accordance with the results of 
Step 2 to turn off selected SlvMatch bits, if necessary, 
in order to ensure that data dependencies are observed. 

To take a concrete example, assume that the frontmost 
queue entry for Master 0 designates Slave 0. Assume further 
that the SlvMatch bits for Master 0 are 010, indicating that 
the match is for queue entry 1 of Slave 0. Without taking into 
account the address coincidence bits of Slave 0, the trans 
action in queue entry 1 will be executed if Master 0 is the 
winning master. Now assume that the address coincidence 
bits of Slave 0 are 100, indicating that the transactions 
within queue locations 0 and 1 are directed to the same cache 
line. A data dependency therefore exists between the trans 
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actions Such that they must be executed in order. To prevent 
the transaction in queue entry 1 from being executed before 
the transaction in queue entry 0, the SlvMatch bits of Master 
0 are modified, i.e., changed from 010 to 000. The same 
modification is performed for each arbitration cycle until the 
transaction in queue entry 0 has executed. The address 
coincidence bits for Slave 0 will then be 000. The SlvMatch 
bits of Master 0 then, instead of being modified, remain 010 
Such that the transaction in queue entry 1 may be executed 
next if Master 0 is the winning master. 
The ArbDatSM 604 uses the page coincidence (PC) bits 

in a similar manner, not to enforce data dependencies but to 
reduce Slave latency and boost System performance. In the 
illustrated embodiment, PC bits are received from DRAM 
only. In other embodiments, PC bits may be received from 
other or additional slave devices. The slave device is 
responsible, once a PC bit has been asserted, to keep that PC 
bit asserted until both of the page-coincident transactions 
have been executed (or, more precisely, Scheduled for 
execution). 

In operation, the ArbDatSM 604 determines to which 
masters the PC bits will be applied, e.g., which masters have 
a DRAM transaction at the front of their queues, in accor 
dance with the SACK vectors at the head of the master 
queues. The PC bits are then used to determine which queue 
locations cannot have the transactions queued therein go 
next without forfeiting the Speed advantage to be gained 
from paged access. In practice, if a PC bit is asserted, the 
transactions to which the PC bit relates will be scheduled for 
execution prior to any other transactions involving the 
DRAM. In other words, if the DRAM has three transactions 
queued, two of which are to the same page, the execution 
order will be COINCIDENT, COINCIDENT, NON 
COINCIDENT, instead of NON-COINCIDENT, 
COINCIDENT, COINCIDENT, although both sequences 
yield the Same Speed advantage. In other embodiments, any 
execution order that results in the page-coincident transac 
tions being executed one after another without any inter 
vening transaction may be acceptable for purposes of the PC 
bits. 
The AC and PC bits may be regarded as control inputs to 

a bit filter that operates upon the SlvMatch bits, as shown in 
FIG. 23. 
The inputs and outputs of ArbDatSM 604' are illustrated 

in greater detail in FIG. 24 for the case M=4, S=5 and Q=2. 
Referring to FIG. 25, the inputs and outputs of the 

ARtryGen block 613' are illustrated in greater detail. The 
inputs along the top and left edges of the ARtryGen block 
613' remain unchanged compared to the ARtryGen block 
613 of FIG. 6. Unlike the ARtryGen block 613 of FIG. 6, 
however, the ARtryGen block 613', instead of generating 
ARtry based on the assumption of ordered Slaves, uses 
certain deadlock address-coincidence (DLAC) inputs 
received at the bottom edge of the block to generate a 
“qualified” ARtry Signal only when a data dependency 
prevents transactions from being reordered So as to avoid the 
deadlock. The Slave devices each monitor each System bus 
address tenure and compare the address placed on the bus to 
addresses queued within the respective Slave devices. If the 
address on the bus is the same as an address already queued 
within the slave device, the slave device raises its DLAC 
signal to the ARtryGen block 613". All slave devices or only 
selected slave devices (most importantly DRAM) may 
monitor the bus and signal the ARtryGen block 613' in this 
manner. In the illustrated embodiment, all slave devices are 
assumed to provide a DLAC signal. The ARtryGen block 
613 therefore receives signals DLACo through DLACs. 
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In operation, when the ARtryGen block 613' detects a 
potential deadlocking transaction to a particular slave 
device, it checks to see if the DLAC bit for that slave device 
is asserted. If the DLAC bit for that slave is not asserted, 
then no ARtry signal is generated. If the DLAC bit for that 
Slave device is asserted, then an ARtry signal is generated. 

The inputs and outputs of ARtryGen block 613' are 
illustrated in greater detail in FIG. 26 for the case M=4, S=5 
and Q=2. 

It will be apparent to those of ordinary skill in the art that 
the present invention may be embodied in other specific 
forms without departing from the Spirit or essential character 
thereof. The presently disclosed embodiments are therefore 
considered in all respects to be illustrative and not restric 
tive. The Scope of the invention is indicated by the appended 
claims rather than the foregoing description, and all changes 
which come within the meaning and range of equivalents 
thereof are intended to be embraced therein. 
We claim: 
1. In a computer System having a System bus and having 

arbitration circuitry, multiple master devices including a 
System microprocessor, and multiple Slave devices, all 
coupled to the System bus, a method of reordering System 
buS transactions, comprising the Steps of: 

receiving and queuing within a particular Slave device a 
plurality of transactions, 

within Said arbitration circuitry, arbitrating between pend 
ing transactions based on arbitration policies including 
an arbitration policy that responses are received by 
respective master devices in the same order as requests 
were issued by the respective master devices, and 

at least Some of the time, Said arbitration circuitry, without 
Signalling Said microprocessor, Signalling Said particu 
lar slave device Such that the System bus is granted for 
a later queued transaction within Said particular slave 
device prior to being granted for an earlier queued 
transaction. 

2. The method of claim 1, comprising the further step of 
maintaining for each master device a master queue in which 
respective queue entries identify respective target Slave 
devices, and maintaining for each Slave device a slave queue 
in which respective queue entries identify respective origi 
nating master devices. 

3. The method of claim 2, wherein the step of arbitrating 
further comprises identifying a winning master device based 
at least in part on a priority ordering of Said master devices, 
and determining for at least Said winning master device a 
matching queue entry within a slave queue identified by a 
frontmost queue entry within the master queue of the 
winning master device, the matching queue entry identifying 
the winning master device. 

4. The method of claim 3, wherein the step of signalling 
Said particular Slave device comprises signalling to the 
particular slave device the matching queue entry identifying 
the winning master device. 

5. The method of claim 4, comprising the further step of 
the Slave devices identifying to the arbitration circuitry pairs 
of transactions involving the same address block. 

6. The method of claim 5, wherein the arbitration 
circuitry, in identifying the winning master device, ensures 
that for each pair of transactions identified by the Slave 
devices, a corresponding earlier queued transaction is 
executed prior to a corresponding later queued transaction. 

7. A computer System comprising: 
a System bus, 
multiple master devices, including a System 

microprocessor, each coupled to the System bus, 
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26 
multiple Slave devices each coupled to the System bus and 

each comprising a transaction queue for queuing mul 
tiple transactions, and 

arbitration circuitry coupled to the System bus and Sepa 
rately coupled to the multiple slave devices for, without 
Signalling Said microprocessor, Signalling a particular 
slave device Such that within Said particular Slave 
device a later queued transaction is executed prior to an 
earlier queued transaction. 

8. The apparatus of claim 7, wherein said arbitration 
circuitry comprises: 

multiple master queues, each corresponding to one of Said 
master devices, in which respective queue entries iden 
tify respective target Slave devices, 

multiple Slave queues, each corresponding to one of Said 
slave devices, in which respective queue entries iden 
tify respective originating master devices, 

means for determining a winning master device based at 
least in part on a priority ordering of Said master 
devices, and 

means for determining for at least the winning master 
device a matching queue entry within a slave device 
identified by a frontmost queue entry within the master 
queue of the winning master device, the matching 
queue entry identifying the winning master device. 

9. An arbiter comprising: 
an address arbitration circuit for receiving bus request 

Signals from multiple master devices and in response 
thereto generating address bus grant Signals for the 
master devices, 

a queuing Structure including multiple master queues, 
each corresponding to one of the master devices, and 
multiple Slave queues, each one corresponding to one 
of multiple Slave devices each having a transaction 
queue, the queuing Structure receiving the bus grant 
Signals and receiving respective slave acknowledge 
Signals from respective slave devices, wherein each 
time an address bus grant is issued a record is entered 
in the queuing Structure, the record comprising a first 
entry in a master queue identified by the address bus 
grant signals, the first entry identifying a target Slave 
device in accordance with the slave acknowledge 
Signals, and a Second entry in a Slave queue identified 
by the slave acknowledge Signals, the Second entry 
identifying an originating master device in accordance 
with the address bus grant signals, 

a matching circuit responsive to queue entries from the 
queuing Structure for producing match bits identifying 
selected records the first entry of which is at the head 
of a master queue, and 

a data arbitration circuit responsive to the match bits and 
to queue entries from the queuing Structure for gener 
ating data bus grant signals for the master devices and 
for generating for each slave device a multibit Signal 
which when active identifies a transaction within the 
transaction queue of the Slave device. 

10. The apparatus of claim 9, wherein said selected 
records include all records within the queuing Structure the 
first entry of which is at the head of a master queue. 

11. The apparatus of claim 10, wherein the match bits 
partially identify Said Selected records, entries at the head of 
the master queues being used in combination with the match 
bits to uniquely identify the Selected records. 

12. The apparatus of claim 11, wherein the matching 
circuit is responsive to read-ready Signals from the Slave 
devices for producing read-ready bits in one-to-one corre 
spondence with the match bits. 
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13. The apparatus of claim 12, wherein the matching 
circuit produces a match bit and a read-ready bit for each 
queue location of the slave device transaction queues. 

14. The apparatus of claim 12, wherein the data arbitration 
circuit produces a signal bit for each queue location of the 
Slave device transaction queues. 

15. The apparatus of claim 12, wherein the data arbitration 
circuit comprises a bit filter and is responsive to address 
coincidence Signals from the Slave devices for filtering the 
match bits prior to Selecting a winning master device. 

16. The apparatus of claim 15, wherein the address 
coincidence Signals identify pairs of transactions involving 
the same block of addresses. 

17. The apparatus of claim 16, wherein the data arbitration 
circuit ensures that for each pair of transactions identified by 
the slave devices, a corresponding earlier queued transaction 
is executed prior to a corresponding later queued transaction. 

18. A method of avoiding deadlock in a computer System 
having a split-transaction bus and a Single-envelope buS 
bridged by a bus bridge, the split-transaction bus and the 
Single-envelope bus each having at leaSt One master device 
and One Slave device connected thereto, comprising: 

1O 
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Storing data from One or more accepted buS transactions, 
determining, prior to a request for a buS transaction from 

a requeStor, if execution of Such buS transaction would 
cause deadlock based On the Stored data, and 

responsive to the determination that execution of the bus 
transaction would cause deadlock, Sending a retry 
Signal to the buS transaction requeStor: 

19. An apparatus for avoiding deadlock in a computer 
System having a Split-transaction bus and a Single-envelope 
bus bridged by a bus bridge, the split-transaction bus and 
the Single-envelope bus each having at leaSt One master 
device and One Slave device connected thereto, comprising: 

a memory for Storing data from One Or more accepted buS 
transactions, and 

deadlock avoidance logic coupled to the memory for 
determining, prior to a request for a buS transaction 
from a requester, if execution of the buS transaction 
would cause deadlock based on the Stored data, the 
deadlock avoidance logic adapted to Send a retry Signal 
to the bus transaction requester if execution of the bus 
transaction would cause deadlock. 
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