«» UK Patent Application «»GB 2 360921 . A

(43) Date of A Publication 03.10.2001

(21) Application No 0102630.1
{22} Date of Filing 02.02.2001

(30} Priority Data

(31) 09497629 (32} 03.02.2000 (33) US

{71) Applicant(s)
International Business Machines Corporation
{Incorporated in USA - New York)
Armonk, New York 10504, United States of America

(51) INTCL’
GOG6F 3/037

(62) UKCL (Edition S)
H4T TBLA

{56) Documents Cited
US 5668964 A

{58) Field of Search
UK CL (Edition S } H4T TBLA
INT CL7 GOGF 3/00 3/033 3/037

ONLINE: EPOQUE. INTERNET
{72) Inventor(s)

Daniel O Becker

{74) Agent and/or Address for Service
M J Jennings
IBM United Kingdom Limited, Intellectual Property
Department, Hursley Park, WINCHESTER, Hampshire,
S021 2JN, United Kingdom

(54) Abstract Title ,
Tabbed notebook having a common registry

(67) A method for manipulating a tabbed notebook window in which the pages from an existing tabbed
notebook window may be moved to drop points in a graphical user interface outside a display space allocated
to the existing tabbed notebook window. If the drop point to which a tabbed page is not within the display
space allocate to an existing tabbed notebook window, a new tabbed notebook window is created to contain
the moved tabbed page. A shared common container is provided to register the existing tabbed notebook
windows. When a new tabbed notebook window is created, it registers itself in the shared common container.
Each time a tabbed page is received outside of the tabbed notebook window in which it is currently located,
the list of registrations in the shared common container is queried to determine whether the page has been
moved to another existing tabbed notebook window. If not, a new tabbed notebook window is created to
receive the tabbed page.)

@DilablearAwaylest | Oag
[qear \ant {lodybug \ quorter{ swimming \

S4EN
\
2

(Dipenny] OBD
[penny\

@

FIG. 4

L
VvV 1¢609€¢ 99

11/5

2/5

ACCOUNTING
NFS " AE 52
NETWORK OPERATING
PROTOCOL 49 SYSTEM 53
PRINTER
DRVER 50
” i
24
SPOOLER 51 24 s
DIGITAL
SIGNAL
— CESSOR
MEMORY MICRO- ROM /0
MANAGEMENT PROCESSOR 23 CONT.
5 2 = Q£
IZI
]
CD ROM
32
HARD | {FLOPPY| | KEYBOARD MOUSE VIDEO AUDIO
DISK || pisk | | CONTROLLER || CONTROLLER | |CONTROLLER |{ CONTROLLER
% ||z 28] K] 3
1 f 14
KEYBOA§€3 Moussg GRAPHIC DISPLAY
SPEAKER | [SPEAKER
1A || 158 |

FIG. 2

3/5

@{TablearAwaylest] O o0

[gear \ant {ladybug { quorter\ swimming { penny \

//’,/'/
\
7/

FIG. 3

@ITabTearAwaylest OocQg
f gear (—nt ‘@dybug(quorter’(sw:mmmg\

//',
2
7

@ipenny 1 OoGeQ
J penny\ |

®

FIG. 4

4175

@) | O8O
[qear _ ont \ladybug \ swimming \
S
@DIpenny, quorter | O ocQg
/ penny\ quarter\

5/5

(' Begin)
}
Create
Tabbed
Notebook
Window

— 61

Register
Tabbed Window
In Common
Reqistry

User Drags |
Tab To New
Location

Is

. Rearrange
Location Yes g
Within Current (T:?::r (::t
2
Window? Notebook | _—g5
Enumerate @D
Other Tabbed g
Windows In
System 66
s Location 67 Ploce Tab
Within Known In Child
Child Window Window 68
e N

10

15

20

25

30

35

40

2360921

TABBED NOTEBOOK HAVING A COMMON REGISTIRY

BACKGROUND OF THE INVENTION

The present invention is directed to a graphical user interface
employing tabbed notebook metaphor and more particularly a tabbed notebook
metaphor with tear-away pages using a common registry.

Many windowed computer user interfaces employ a tabbed notebook
metaphor. The tabbed notebook interface resembles a paper folder commonly
used in filing cabinets, presentations and administrative assistance.
Computer user interfaces commonly employ tabbed notebooks to present
multiple pages of information to a user, allowing the user to select and
flip from page to page using the tabs at the edge of the page. However, as
many tabbed pages fill the notebook, the user interface becomes difficult
to use. Often the multitude of tabs fills the computer window, preventing a
user from seeing all the tabs at the same time. Also, certain repetitive
tasks may require actions on a small sub-set of tabbed pages. This often
leads to clumsy flipping of tabbed pages when many tabs are present. A user
may wish to view multiple pages at once which is nearly impossible to do
with the typical current tabbed notebook metaphor. What is needed is a
method for manipulating and repositioning tabbed pages in a tabbed notebook

in a computer user interface.

SUMMARY OF THE INVENTION

The present invention allows a user to grab and drag a tabbed page
and move it to a new window outside the original tabbed notebook window.
Optionally, a new window may be resized and repositioned by the user
allowing a high degree of flexibility and usefulness in the computer user
interface. Multiple tabbed pages may be moved from the original noteboock to
the new window. The computer user interface allows creation of multiple new
windows to receive and display tabbed pages taken from the original tabbed
notebook window. When a new window is created to receive a tabbed page from
an original tabbed notebook, the new window is called a child window of the
parent window originally containing the tabbed notebook page. Tabbed pages
may be moved and shared among any of the tabbed notebook windows. The new
child windows may return tabbed pages to the original parent notebook when
closed. These operations are accomplished by using a common shared
container or registry for tabbed notebook windows. When a tabbed notebook
window is created, it registers itself in the common shared container. The
notebook windows de-register themselves from the common shared container
when they are closed or destroyed. The common shared container lists all

known tabbed notebook windows in existence in the system.

10

15

20

25

30

35

40

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be described in more
detail, by way of example, with reference to the accompanying drawings in

which:

Fig. 1 illustrates a computer system in which the system of the

invention is implemented;

Fig. 2 is an architectural block diagram of the computer illustrated

in Fig. 1;

Fig. 3 illustrates a display of a tabbed notebook window displayed by

the system of the present invention;

Fig. 4 illustrates a creation of a new tabbed notebook window

according to the teachings of the present invention;

Fig. 5 illustrates the operation of moving another tabbed page to the

new tabbed notebook window; and

Fig. 6 is a flow diagram of the process used in the present

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention may be run on a computer or on a collection of
computers under a number of different operating systems. The computer could
be, for example, a personal digital assistant (PDA}, a personal computer, a
mini computer, mainframe computer or a computer running in a distributed
network of other computers. Although the specific choice of computer is
limited only by disk and disk storage requirements, computers in the IBM
series of personal computers could be used in the present invention. In
the alternative, the computer system might be in the IBM RISC System/600
line of computers which run on the AIX operating system. The various
models of the IBM personal computers, RISC System/600™ computers and the
AIX™ operating system are described in many publications of the IBM

Corporation.

In Fig. 1, a computer 1 0, comprising a system unit 1 1, a keyboard
12, a mouse 13 and a display 14 are depicted. The screen 16 of display
device 14 is used to present the graphical user interface (GUI). The
graphical user interface supported by the operating system allows the user

to use a point and shoot method of input, i.e., by moving the mouse pointer

10

15

20

25

30

35

40

to an icon representing a data object at a particular location on the
screen 16 and pressing one of the mouse buttons to perform a user command

or selection.

Fig. 2 shows a block diagram of the components of the personal
computer shown in Fig. 1. The system unit 1 1 includes a system bus or
plurality of system buses 21 to which various components are coupled and by
which communication between the various components is accomplished. The
microprocessor 22 is connected to the system bus 21 and is supported by
read only memory (ROM) 23 and random access memory (RAM) 24 also connected
to system bus 21. A microprocessor in the IBM multimedia PS/2 series of
computers is one of the Intel family of microprocessors including the 386
or 486 microprocessors. However, other microprocessors including, but not
limited to, Motorola's family of microprocessors such as the 68000, 68020
or the 68030 microprocessors and various Reduced Instruction Set Computer
(RISC) microprocessors manufactured by IBM, Hewlett Packard, Sun, Intel,

Motorola and others may be used in the specific computer.

The ROM 23 contains among other code the Basic Input-QOutput system
(BIOS) which controls basic hardware operations such as the interaction and
the disk drives and the keyboard. The RAM 24 is the main memory into which
the operating system and application program are loaded. The memory
management chip 25 is connected to the system bus 21 and controls direct
memory access operations including passing data between the RAM 24 and hard
disk drive 26 and floppy disk drive 27. The CD ROM 32, also coupled to the
system bus 21, is used to store a large amount of data, e.g., a multimedia

program or large database.

Also connected to this system bus 21 are various 1/0 controllers: The
keyboard controller 28, the mouse controller 29, the video controller 30,
and the audio controller 31. As might be expected, the keyboard controller
28 provides the hardware interface for the keyboard 12, the mouse
controller 29 provides the hardware interface for mouse 13, the video
controller 30 is the hardware interface for the display 14, and the audio
controller 31 is the hardware interface for the speakers 15a and 15b. The
speakers 15a and 15b may be used to present audio to the user. An 1/0
controller 40 such as a Token Ring Adapter enables communication over a

network 46 to other similarly configured data processing systems.

One of the preferred implementations of the present invention is as a
set of instructions in a code module resident in the random access memory
24. Until required by the computer system, the set of instructions may be
stored in another computer memory, for example, in the hard disk drive 26,

in an optical disk for eventual use in the CD ROM 32 or in a floppy disk

10

15

20

25

30

35

40

for eventual use in the floppy disk drive 27. As shown in the figure, the
operating system 50 and presentation manager 52 are resident in RAM 24. In
this example, the invention is embodied as an adjunct module onto the
operating system. Alternatively, the graphical user interface could be
incorporated into a standalone application 54, e.g., in a monitor program.
The monitor program 54 may monitor all the nodes in the network or only the

subset of nodes which are part of the parallel database 56.

Currently, the IBM 0S/2 Operating System Version 2.1, provides a
control device called a "notebook" which is useful when multiple panels or

pages of data are displayed for review.

Fig. 3 shows an example of a typical tabbed notebook window in a
computer user interface. Six pages of information are presented to the user
in the window. At the top of the notebook is a set of six tabs marked with
alphanumeric data in the form of a title for the information on that page
(here marked "gear", "ant", "ladybug", "quarter", "penny", and "swimming").
In this example, the page of information is a simple picture corresponding
to the tab title. A user may select and navigate tabbed pages in the
notebook by clicking on the tab with the mouse or using a keyboard key
sequence. Alternatively or in addition to the alphanumeric identification
data on the tabs, the tabs may be color coded. The tabbed pages can be
manipulated to display any one of the tabbed pages on the screen of the
display as the page with the tab entitled "gear" is displayed in Fig. 3.

The system of the invention permits manipulation and repositioning of
tabbed pages from a tabbed notebook like that shown in Fig. 3 by grabbing
and dragging a tabbed page and moving it to a new window or to an existing
window outside of the original notebook window. Multiple tabbed pages may
be moved from the original notebook to a new or existing window. A computer
user may create multiple new windows outside of the original tabbed
notebook window. Tabbed pages may be moved and shared among the new windows
and the original window. Tabbed pages are returned to the original tabbed
notebook when a child window containing the tabbed page is closed. When a
tabbed page is moved outside the window from which it is selected, and it
is not moved to an existing tabbed notebook window, a new tabbed notebook

window is created to receive the tabbed page.

New tabbed notebook windows register themselves in a shared common
container when they are created. The tabbed notebook windows also
de-register themselves from the shared common container when they are
destroyed or closed. The shared common container lists all known tabbed
notebook windows in the system. The information listed for each notebook

window in the shared common container comprises references to the

10

15

20

25

30

35

40

corresponding tabbed notebook windows. From each registration, the assembly
of the data comprising the corresponding shared notebook window can be
located and the bounds of the corresponding tabbed notebook window can be
obtained. In this manner, the list registered in the shared common
container constitutes a reference providing an indication of all of the
tabbed notebook windows in existence and their boundaries. The shared
common container of tabbed notebook window references facilitates searches
for tabbed notebook windows and enables tabbed pages that are moved in user
interface to be placed in an existing notebook or new notebook window
quickly. In the Java programming language, the shared container can be
implemented as a static Vector with each element for the Vector
representing one tabbed notebook window. When moving a notebook tab, the
static Vector is enumerated and the tabbed page is placed in an existing
element of the Vector, or in the case where the notebook tabbed page is
dropped on an area of the screen outside on the existing window, a new

tabbed notebook window is created and added to the shared common container.

Each tabbed page is considered to be owned by the tabbed notebook
window in which it was originally created and each tabbed page contains an
owner reference identifying the tabbed notebook window by which it is
owned. When a tabbed notebook window is closed or destroyed, the tabbed
pages are returned to their owners, as indicated by the owner references
contained by the page. Alternatively, the tabbed notebook pages will be
destroyed when the tabbed notebook window which owned the tabbed pages no
longer exists. Fig. 4 illustrates an example of an operation of the system
of the invention. In this example, the user has dragged one of the tabbed
pages into a new window. This action is analogous to "tearing-away" or
removing a tabbed page from a physical notebook of file folder. One way of
dragging and moving a tabbed page to a new window is: 1) moving the mouse
pointer over one of the tabs, depress and hold a mouse button, move the
mouse pointer to an area outside the original tabbed notebook window, and
release the mouse button to drop the tabbed page.

When the user drops the tabbed notebook page, the shared common
container of registrations of tabbed notebook windows is accessed and each
registration in the shared container is enumerated. In this action, each
registration in the shared common container is processed and the bounds of
each registered tabbed notebook window is queried. If no existing tabbed
notebook window contains the drop point for the tabbed notebook page, a new
tabbed notebook window is created and registered with shared common
container. The tabbed page is then placed in the new tabbed notebook
window. Like the original window, the new window may be resized and

positioned anywhere on the screen. If the drop point is in an existing

10

15

20

25

30

35

40

tabbed notebook window, the tabbed page is placed in the existing tabbed
notebook window.

The user may repeat the process and drag a second tabbed page from
the original tabbed notebook window to the new window. An example of this
operation is shown in Fig. 5. When the user drops the tabbed notebook page,
the shared common container is accessed. Each tabbed notebook window
registration in the shared common container is enumerated and the window
bounds are queried. The tabbed notebook window containing the drop point
receives the tabbed notebook page. If the drop point were outside of any
existing tabbed notebook window, another new tabbed notebook window would
be created. In the example of Fig. 5, no new tabbed notebook window is

created or registered with the shared common container.

The displayed tabbed notebook windows may be viewed and operated
independently. Tabbed pages may be moved from one window to any other
window. Closing a child window returns the tabbed pages to their original
tabbed notebook. When a tabbed notebook window is closed, it removes its
registration from the shared common container. The tabbed notebook pages of
the closed window are returned to the "owning window" which is the window
in which the pages were originally created as tabbed pages and made

available for display as tabbed notebook pages.

Fig. 6 is a flowchart illustrating the operation of the system when
being used to manipulate tabbed pages in tabbed notebook windows in
accordance with the invention. As indicated in Fig. 6, the program starts
with an instruction sequence 61 in which a tabbed notebook window is
created in response to a user command. The creation of the tabbed notebook
window causes a notebook window display like that shown in Fig. 3 to be
generated on the screen 60 of the display device 14. Then in instruction
sequence 62, the tabbed notebook window created in instruction sequence 61
registers itself in the shared common container. In the example
illustrated, the user selects a tab, drags the selected tabbed page to a
drop point on the display screen 60 and releases the tabbed page at the
drop point. The program responds to this input control by the user in
instruction sequence 63 to show the motion of the tabbed page on the
display screen to the drop point. Following instruction sequence 63, the
program enters a decision sequence 64 in which the program determines
whether or not the drop point is within the window created in instruction
sequence 61. If the tab is still within this window, then the program
branches to instruction sequence 65 wherein the tabbed page is rearranged
in the notebook so that the tabbed page is displayed. In this example, this
completes the program operation in response to the user input commands. The
user, instead of actually dragging a tab, may merely select the tab by

clicking on it with the mouse in which case, in instruction sequence 63,

10

15

20

25

30

35

40

the program will detect that the tab has been selected and then in decision
sequence 64, the program will determine that the drop point is within the
current window and will branch to instruction sequence 65 to display the

selected tabbed page.

If, in decision sequence 64, the program determines that the drop
point to which the tab has been moved is not within the current window, the
program proceeds to instruction sequence 66 in which the shared common
container is accessed and the registrations in the shared common container
are enumerated. The bounds of the tabbed notebooks windows registered in
the shared common container are queried to determine whether the drop point
is within one of the tabbed notebook windows registered in the shared
common container. If the drop point is not within the boundaries of a
tabbed notebook window, the program returns to instruction sequence 61 and
a new child tabbed notebook window is created to contain and display the

tabbed page that has been moved.

This new window with the tabbed page will then be displayed on the
screen 60 of the display 14. The program will then proceed to instruction
sequence 62 wherein the newly created tabbed notebook window registers
itself in the shared common container. If the user then drags another
tabbed page in one of the notebook windows to a new location, the process
will proceed into the decision sequence 64 and then into the instruction
sequence 65 or instruction sequence 66 and decision sequence 67 and the

process will reiterate as described above.

If it is determined in decision sequence 67, that the drop point to
which a tabbed page has been moved is within the boundaries of a tabbed
notebook window registered in the shared common container, the program will
branch to instruction sequence 68 in which the tabbed page is placed and

displayed in the tabbed notebook window containing the drop point.

If a child notebook window is closed or destroyed, the program
receives the owner reference stored on each tabbed page in the closed or
destroyed notebook window and returns the pages to the tabbed notebook
window or windows, which are designated in the owner references. If the
owner's tabbed notebook window no longer exists, the tabbed pages from the

closed or destroyed window are destroyed.

10

15

20

25

30

35

40

CLAIMS

1. A method of displaying and manipulating data on a computer terminal
display screen comprising displaying data on said display screen in the
format of a first tabbed notebook window containing tabbed pages, at least
some of said tabbed pages having tabs which are visible on said display
screen, providing a shared common container for registering tabbed notebook
windows which are in existence and capable of being displayed on said
display screen, registering said first tabbed notebook window in said
shared common container, selecting a first tabbed page from said first
tabbed notebook window and moving said first tabbed page to a drop point
outside of said first tabbed notebook window, accessing said shared common
container to determine whether the drop point is within the bounds of a
tabbed notebook window registered in said common container, if said drop
point is within the bounds of a tabbed notebook window registered in said
shared common container, then placing the first tabbed page in such tabbed
notebook window, and if said drop point is not within the bounds of a
tabbed notebook window registered in said shared common container, then
creating a second tabbed notebook window, placing said first tabbed page in
said second tabbed notebook window, and registering said second tabbed

notebook window in said shared common container.

2. A method as recited in claim 1, further comprising providing in each
of the pages contained by said second tabbed notebook window an owner
reference to the tabbed notebook window in which such tabbed page was
originally created as a tabbed page, and returning each tabbed page
contained by said second tabbed notebook window to the tabbed notebook
window indicated by the owner reference of such tabbed page when said

second tabbed notebcok window is closed or destroyed.

3. A method as recited in claim 1 or claim 2, further comprising
selecting a second tabbed page from the tabbed pages in said first notebook
container and moving said second tabbed page to a second drop point,
accessing said shared common container to determine whether said second
drop point is within the bounds of a tabbed notebook window registered in
said shared common container, and if said second drop point is within the
bounds of a tabbed notebook window registered in said shared common
container, then placing said second tabbed page in such tabbed, notebook
window, if said second drop point is not within the bounds of a tabbed
notebook window registered in said shared common container, creating a
third tabbed notebook window, placing said second tabbed page in said third
tabbed notebook window, and registering said third tabbed notebook window

in said shared common container.

10

15

20

25

30

35

40

4, A method as recited in claim 3, further comprising providing on each
of said tabbed pages an owner reference indicating the tabbed notebook
window in which such tabbed page was originally created as a tabbed page,
and when a tabbed notebook window is closed or destroyed, returning the
tabbed page or pages contained by such closed or destroyed tabbed notebook
window to the tabbed notebook window or windows indicated by the

corresponding owner references of said tabbed pages.

5. A system for displaying data comprising a processor, a graphic
display having a display screen controlled by said processor, a computer
memory storage containing a computer program controlling the operation of
said data processor to display data on said display screen in the form of
tabbed notebook windows, said computer program defining a shared common
container for registering references to tabbed notebook windows displayed
on said screen, said computer program controlling said data processor to
respond to user commands to move said tabbed pages to drop points and to
determine from the registrations in said shared common container whether
said drop points are within the bounds of tabbed notebook windows
registered in said shared common container, said computer program
controlling said data processor to place a selected tabbed page in a
selected tabbed notebook window when it is determined that the drop point
to which the selected tabbed page has been moved is within the bounds of
the selected tabbed notebook window, said computer program controlling said
data processor to create a new tabbed notebook window when the drop point
to which the selected tabbed page has been moved is not within the bounds
of a tabbed notebook window registered in said shared common container and
registering said new tabbed notebook window in said shared common

container.

6. A system as recited in claim 5, wherein said tabbed pages include
owner references indicating the tabbed notebook window or windows in which
said tabbed notebook pages were originally created as tabbed pages, said
computer program controlling said data processor to return the tabbed page
or pages in a tabbed notebook window to the tabbed notebook window or
windows indicated by said owner references when the tabbed notebook window
currently containing the tabbed notebook page or pages is closed or

destroyed.

7. A system as recited in claim 5 or claim 6, wherein said data
processor is operable to adjust the sizes and positions of the tabbed

notebook windows displayed on said screen.

8. A computer program for controlling the operation of a data processing

apparatus on which it runs to present data on a display, comprising:

10

15

20

25

30

35

10

means to display said data in the form of tabbed notebook windows,

said tabbed notebook windows each containing one or more tabbed pages;

means defining a shared common container registering references to

said tabbed notebook windows;

means responsive to user input commands to move tabbed pages from

said tabbed notebook windows to drop points on said screen;

means to determine from the registrations in said shared common
container whether each of said drop points is within the bounds of a tabbed
notebook window registered in said shared common container, and to place a
tabbed page in a selected tabbed notebook window when the drop point to
which a tabbed page has been moved is within the bounds of said selected

tabbed notebook window; and

means to create a new tabbed notebook window when the drop point to
which a tabbed page has been moved is outside the bounds of the tabbed
notebook windows registered in said shared common container and to place

such tabbed page in said new tabbed notebook window.

9. A computer program as recited in claim 8, further comprising means
responsive to the closing or destruction of a tabbed notebook window to
return the tabbed page or pages contained in such closed or destroyed
tabbed window to the tabbed notebook window or windows in which such tabbed

page or pages were originally created as tabbed pages.

10. A computer program as recited in claim 9, wherein said tabbed pages
contain owner references identifying the tabbed notebook windows in which
said tabbed notebook pages were originally created as tabbed pages, said
means to return said tabbed page or pages to the tabbed notebook window or
windows in which such tabbed page or pages were originally created being
responsive to said owner references to return the tabbed page or pages to
the tabbed notebook window or windows in accordance with said owner

references.

T o TRE
Application No: GB 0102630.1 Examiner: R. F. King
Claims searched: All Date of search: 30 July 2001
Patents Act 1977

Search Report under Section 17

Databases searched:

The <
& Paterit % '@
o ()ﬁi X Ny
'?f.? Ce g INVESTOR IN PEOPLE
’06, \{ v

4

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.S): H4T[TBLA]
Int Cl (Ed.7): GO6F3/00,3/033,3/037

Other: ONLINE: EPOQUE, INTERNET

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X US 5,668,964 A [Wall Data Inc] See whole doc. 1,5,8
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on orafter the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

