
Citation: Kim, M.-J.; Kim, S.; Lee, B.;

Kim, J. Enhancing Deep Learning-

Based Segmentation Accuracy

through Intensity Rendering and 3D

Point Interpolation Techniques to

Mitigate Sensor Variability. Sensors

2024, 24, 4475. https://doi.org/

10.3390/s24144475

Academic Editors: Xin Xia and

Letian Gao

Received: 9 May 2024

Revised: 3 July 2024

Accepted: 8 July 2024

Published: 11 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Deep Learning-Based Segmentation Accuracy
through Intensity Rendering and 3D Point Interpolation
Techniques to Mitigate Sensor Variability
Myeong-Jun Kim 1 , Suyeon Kim 2, Banghyon Lee 2 and Jungha Kim 3,*

1 Graduate School of Automotive Engineering, Kookmin University, Seoul 02707, Republic of Korea
2 Moovita Pte Ltd., Block 44, 535 Clementi Rd., Singapore 599489, Singapore
3 Department of Automotive and IT Convergence, Kookmin University, Seoul 02707, Republic of Korea
* Correspondence: jhkim@kookmin.ac.kr

Abstract: In the context of LiDAR sensor-based autonomous vehicles, segmentation networks play a
crucial role in accurately identifying and classifying objects. However, discrepancies between the
types of LiDAR sensors used for training the network and those deployed in real-world driving
environments can lead to performance degradation due to differences in the input tensor attributes,
such as x, y, and z coordinates, and intensity. To address this issue, we propose novel intensity
rendering and data interpolation techniques. Our study evaluates the effectiveness of these methods
by applying them to object tracking in real-world scenarios. The proposed solutions aim to harmonize
the differences between sensor data, thereby enhancing the performance and reliability of deep
learning networks for autonomous vehicle perception systems. Additionally, our algorithms prevent
performance degradation, even when different types of sensors are used for the training data and
real-world applications. This approach allows for the use of publicly available open datasets without
the need to spend extensive time on dataset construction and annotation using the actual sensors
deployed, thus significantly saving time and resources. When applying the proposed methods, we
observed an approximate 20% improvement in mIoU performance compared to scenarios without
these enhancements.

Keywords: 3D segmentation; deep learning; LiDAR sensor; object detection; data annotation;
intensity rendering

1. Introduction

Autonomous vehicles are designed to navigate to programmed destinations without
human input, utilizing an array of sensors such as Light Detection and Ranging (LIDAR),
Radio Detection and Ranging (RADAR), and vision-based sensors. These sensors act as the
vehicle’s eyes, gathering essential information about its surroundings [1–3].

Sensor Characteristics in Autonomous Vehicles: Each type of sensor employed in
autonomous vehicles has distinct attributes. Vision sensors are adept at recognizing objects
and are especially useful in identifying lanes, traffic lights, and traffic signs. Their drawback,
however, is their reduced effectiveness in low-light or cloudy conditions, and their inability
to measure distances accurately. These issues are typically addressed through sensor fusion
with other sensor types [4–6].

Distance Measurement and Sensor Fusion: RADAR and LIDAR are superior to vision
sensors in terms of distance measurement, using radio waves and laser pulses, respectively,
to ensure reliable performance in dark environments. RADAR is particularly useful for long-
range measurements critical to adaptive cruise control (ACC) and automatic emergency
braking (AEB) systems, due to its capability to detect objects in longitudinal directions
despite significant lateral measurement errors. LIDAR is highly valued for its precision in
both longitudinal and lateral measurements and is crucial in applications requiring detailed

Sensors 2024, 24, 4475. https://doi.org/10.3390/s24144475 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144475
https://doi.org/10.3390/s24144475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5348-8068
https://doi.org/10.3390/s24144475
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144475?type=check_update&version=1

Sensors 2024, 24, 4475 2 of 18

spatial mapping, although it struggles in adverse weather conditions such as rain or snow,
where its laser pulses cannot penetrate large particles.

Ultrasonic and Single Sensor Studies: Ultrasonic sensors are primarily utilized for
parking assistance due to their high accuracy and dependable performance in poor weather
conditions, though they are limited to short detection ranges. Recent research has focused
on using single LIDAR sensors for object detection and tracking, leveraging deep learning
to accurately classify and measure distances without the need for sensor fusion [7,8].

Deep Learning in Object Detection: Deep learning-based systems are deployed to
detect various on-road objects. The effectiveness of these systems hinges on training with
accurately labeled datasets, which significantly influences detection accuracy. To address
the variability in dataset quality, open datasets of high quality are provided to the research
community to facilitate advancements in object detection and to mitigate the limitations
associated with dataset construction.

This paper introduces innovative methods aimed at enhancing object detection and
tracking using a single LIDAR sensor. The approach involves object segmentation and
clustering, as well as tracking to perform object detection:

1. Improvement of Deep Learning Networks: The mIoU (mean Intersection over Union)
of object segmentation has been improved by refining network layers. Rigorous train-
ing and evaluation helped identify and implement the most effective
network configuration.

2. Intensity Rendering and Data Interpolation: We propose a technique to bridge the gap
between test data and training data collected from different sensors, thus minimizing
physical discrepancies and preventing degradation in detection accuracy.

The proposed system’s efficacy was evaluated in real road environments using an
interacting multiple model tracking algorithm that adapts to the dynamic nature of road ob-
jects, allowing for a robust object detection and tracking system that operates independently
of the sensor diversity in the training dataset.

2. Related Research

Traditional segmentation methods and deep learning based segmentation networks
are frequently employed for object classification using single LIDAR sensors.

1. Geometrical Characterization Method: This method classifies objects based on their
geometrical characteristics in three-dimensional (3D) data, such as the position and
number of points in a cluster. This 3D data clustering technique identifies objects
when specific conditions, like the size, shape, or intensity of the LIDAR data, are
met. Since users define these conditions themselves, this approach can achieve high
accuracy. Nonetheless, the results may vary depending on the object’s pose, position,
and shape, making traditional classification methods susceptible to environmental
changes and necessitating highly complex conditions [9,10].

2. Deep Learning-Based Segmentation Method: This approach utilizes deep learning
to segment objects. Data are inputted into a computer, which is then trained to dis-
cern rules. Various deep learning methods have been developed to ensure accurate
object segmentation despite environmental variations. The fundamental deep learn-
ing process consists of constructing multiple deep layers to create a neural network,
identifying optimal parameters for each layer, and deriving the most suitable pre-
diction output [11]. Deep learning algorithms are extensively used and have shown
promising results in fields such as image, voice, and handwriting recognition.

Deep Learning for 3D Point Clouds: The classification and segmentation of 3D point
clouds using deep learning can be categorized into two approaches:

The first uses the entire 3D point cloud as input. The second converts the 3D data
into a 2D image for processing. Networks such as PointNet [12], VoxelNet [13], and
SqueezeSeg [14,15] illustrate these methods, each with its strengths and limitations in
terms of processing speed and accuracy. RangeNet++ is noted for its superior accuracy in

Sensors 2024, 24, 4475 3 of 18

converting 3D LIDAR data into 2D images via spherical projection, achieving a high level
of segmentation accuracy after filtering [16].

Performance Comparison: The networks like PointNet, PointNet++, SqueezeSeg,
SqueezeSegV2, RangeNet21, 53++, etc., are compared in terms of their object recognition
accuracy and scanning speeds. SqueezeSegV2, which has the fastest real-time performance,
is preferred even if its accuracy is slightly lower, because object detection performance can
be adjusted through post-processing, such as clustering.

As shown in Table 1, the results of recent studies using the SemanticKITTI dataset are
presented as IoU(%) values for each detectable category in road scenarios, with the far right
column indicating the operating speed (ms).

Table 1. Semantic segmentation result on Semantic KITTI.

Method Road Car Truck Bicycle Motor
Cycle

Other
Vehicle Person Bicyclist Motor

Cyclist
Speed
(ms)

SqueezeSegV2 [15] 88.6 81.8 13.4 18.5 17.9 14 20.1 25.1 3.9 20

RangeNet53++ [16] 91.8 91.4 25.7 25.7 34.4 23 38.3 38.8 4.85 83.3

SqueezeSegV3 [17] 91.7 92.5 29.6 38.7 36.5 33 45.6 46.2 20.1 238

PointNet++ [18] 72 53.7 0.9 1.9 0.2 0.2 0.9 1 0 5900

TangentConv [19] 83.9 90.8 15.2 2.7 16.5 12.1 23 28.4 8.1 3000

RandLA-Net [20] 90.5 94.2 43.9 29.8 32.2 39.1 48.4 47.4 9.4 880

JS3C-Net [21] 88.9 95.8 54.3 59.3 52.9 46 69.5 65.4 39.9 471

SPVNAS 90.2 97.2 56.6 50.6 50.4 58 67.4 67.1 50.3 259

Cylinder3D 92.2 97.1 50.8 67.6 63.8 58.5 73.7 69.2 48 131

RPVNET 93.4 97.6 44.2 68.4 68.7 61.1 75.9 74.4 43.4 168

In this paper, we utilize SqueezeSegV2, an evolution of the original SqueezeSeg model,
for object segmentation. SqueezeSegV2 retains the general framework of its predecessor
but incorporates enhancements such as an adjusted loss function and improved batch
normalization techniques. These modifications result in higher segmentation IoU during
training. Although the real-time performance remains unchanged, there is a noticeable
improvement in segmentation, as evidenced by higher average IoU values for classes such
as cars, pedestrians, and cyclists.

To ensure safe driving for autonomous vehicles, especially in high-speed environments,
the perception system must operate effectively in real-time and robustly adapt to various
road conditions. SqueezeSegV2 was chosen because it offers the fastest processing speed
among networks that use intensity values as an input tensor, ensuring that the perception
system functions reliably in diverse driving environments.

A comprehensive training dataset is crucial for effective object segmentation using
deep learning [22]. Open datasets like the Karlsruhe Institute of Technology and Toyota
Technological Institute (KITTI) are invaluable; however, mismatches in data characteristics
between the actual sensors used and those in the datasets can lead to errors when the data
is applied in real-world algorithms.

LIDAR point cloud data extensively utilize intensity values, which vary significantly
across different environmental elements like asphalt, painted lanes, vehicles, and sidewalks.
These intensity differences are crucial for distinguishing between various objects based on
size and shape within the 3D point cloud data.

According to the research results from experiments on 3D object detection using
different LiDAR sensors, a significant difference in accuracy can be observed when the
LiDAR sensor used to build the train dataset is different from the one used during testing.
Table 2 shows only a subset of the LiDAR-CS benchmark data, where VLD denotes Velodyne

Sensors 2024, 24, 4475 4 of 18

and the number following it indicates the number of channels of the sensor. The AP results
for each method significantly decrease due to differences in sensors [23,24].

Table 2. Cross evaluation on LiDAR-CS benchmark result.

Train
Val

VLD-64 VLD-32 VLD-16

Methods mAP Car Truck Ped. mAP Car Truck Ped. mAP Car Truck Ped.

VLD-64

PointPillar 64.16 82.19 88.04 31.76 36.29 51.50 57.68 19.45 26.42 40.96 41.85 14.82

SECOND 67.30 82.09 87.85 31.28 34.87 45.77 50.89 19.42 22.99 35.16 32.96 12.56

POINTRCNN 41.69 57.89 63.80 13.69 27.56 35.26 38.80 12.51 21.72 28.87 27.86 9.70

PV-RCNN 71.97 89.15 90.95 30.74 39.94 54.38 57.49 17.51 27.47 42.16 37.60 11.29

CenterPoint 78.00 86.08 88.18 59.23 41.86 48.51 53.72 32.92 27.70 36.34 35.25 20.66

VLD-32

PointPillar 42.96 60.76 71.64 19.94 46.08 64.11 75.60 23.64 36.55 52.73 55.40 21.75

SECOND 41.28 56.69 63.00 20.76 48.40 62.01 73.77 26.45 37.89 50.44 54.04 22.08

POINTRCNN 36.11 55.51 61.29 9.13 35.76 49.09 51.23 16.11 33.47 43.95 44.32 16.27

PV-RCNN 44.97 66.61 63.68 18.38 53.45 71.48 79.37 24.64 43.61 59.75 61.38 21.54

CenterPoint 51.23 59.74 67.01 34.52 56.94 63.55 73.26 41.50 43.83 51.56 52.35 34.28

VLD-16

PointPillar 25.50 35.13 46.32 13.84 35.83 53.70 54.45 19.27 39.70 57.09 64.36 22.64

SECOND 19.22 25.26 38.50 12.00 39.68 54.74 61.37 20.50 39.07 54.33 61.72 20.26

POINTRCNN 33.38 48.78 62.37 5.55 38.47 49.09 56.73 17.92 37.45 46.43 49.93 19.61

PV-RCNN 17.65 26.66 40.64 5.12 46.18 65.20 72.13 21.27 46.28 64.43 69.61 22.63

CenterPoint 17.42 26.03 34.02 5.39 48.69 56.36 62.15 34.86 47.56 54.49 61.44 34.39

Deep learning models require large datasets to accurately detect objects. If no suitable
open dataset exists that uses the same LIDAR sensor, one must undertake the arduous task
of logging and labeling data manually. To circumvent this, some studies use game data
from simulations like Grand Theft Auto (GTA), which, while readily available, often fails to
accurately represent real-world intensity values. Recent methods address this by applying
virtual noise to simulator data, rendering the intensity values more akin to those found in
real environments, thereby expanding the usable dataset size [25,26].

The LiDAR point cloud generation method in GTA V typically employs a raycasting
approach, a function available within the game, which simulates a virtual LIDAR to gather
data. GTA V is particularly useful because it automatically annotates each point with
an instance level for object classification (e.g., vehicles, pedestrians, cyclists). While this
automated method eases the burden of manual annotation, it is not without its flaws—
pedestrian data represented as cylinders can lead to significant errors. The Precise Synthetic
Image and LiDAR (PreSIL) dataset, introduced by Hurl et al. [27], addresses these inaccura-
cies by offering more realistic data through improved instance segmentation.

Similarly, the CARLA simulator synthesizes 3D point cloud data using a raycasting
method. According to Wang et al. [28], this technique allows for the automatic collection of
data, mirroring the KITTI dataset in requiring approximately 15 h for about 1700 frames.

Despite the utility of these synthesized datasets in training, they are not suitable
for real-time data evaluation due to physical discrepancies caused by sensor differences,
leading to inaccurate results. This paper proposes novel methods of intensity rendering
and 3D data interpolation to bridge the gap between training and real data without compro-
mising real-time performance. Our principal contribution is the development of an optimal
intensity rendering function that facilitates point-to-point matching across different sensors
and improves detection accuracy through data interpolation.

The enhancements in data matching not only elevate the classification accuracy but
also enhance the subsequent tracking of classified objects, confirming the effectiveness of

Sensors 2024, 24, 4475 5 of 18

our proposed methods. By implementing these algorithms, users can significantly reduce
the need for extensive data collection tailored specifically for deep learning applications.

3. System Overview

In this research, we developed a perception system utilizing a single 3D LIDAR
sensor. As depicted in Figure 1, the system primarily consists of detection and tracking
components. The detection segment uses 3D data as input to perform object classification
and segmentation through deep learning networks, identifying the targets for tracking.
The tracking component incorporates the Interacting Multiple Model Unscented Kalman
Filter Joint Probabilistic Data Association (IMM-UKF-JPDA) algorithm, which effectively
tracks multiple models, accounting for road conditions.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18

The enhancements in data matching not only elevate the classification accuracy but
also enhance the subsequent tracking of classified objects, confirming the effectiveness of
our proposed methods. By implementing these algorithms, users can significantly reduce
the need for extensive data collection tailored specifically for deep learning applications.

3. System Overview
In this research, we developed a perception system utilizing a single 3D LIDAR sen-

sor. As depicted in Figure 1, the system primarily consists of detection and tracking com-
ponents. The detection segment uses 3D data as input to perform object classification and
segmentation through deep learning networks, identifying the targets for tracking. The
tracking component incorporates the Interacting Multiple Model Unscented Kalman Fil-
ter Joint Probabilistic Data Association (IMM-UKF-JPDA) algorithm, which effectively
tracks multiple models, accounting for road conditions.

Figure 1. Proposed System Flow Diagram: The system is divided into segmentation and tracking
parts. The segmentation part, which is the main contribution of this study, is indicated with blue
boxes.

4. KUL-Seg
Figure 2 illustrates the layer structure of the proposed segmentation network, KUL-

Seg. While the overall layer composition is similar to the framework of SqueezeSegV2, a
new Fire module (Fire 7_b) has been added between Fire modules 7 and 8 to enhance
segmentation mIoU. Various attempts were made to configure the optimal network, such
as changing the convolution filter size or adding new convolution layers. The KUL-Seg
network, proposed herein, demonstrated the most stable results across various tests.

Figure 2. The KUL-Seg network composition with one additional Fire module added. The added
Fire module is represented by a yellow box in the diagram.

Table 3 presents the performance of networks trained on 10,848 KITTI datasets. A
single KITTI dataset contains scene data with a size of 64 × 512 and consists of six tensors:

Figure 1. Proposed System Flow Diagram: The system is divided into segmentation and tracking parts.
The segmentation part, which is the main contribution of this study, is indicated with blue boxes.

4. KUL-Seg

Figure 2 illustrates the layer structure of the proposed segmentation network, KUL-
Seg. While the overall layer composition is similar to the framework of SqueezeSegV2,
a new Fire module (Fire 7_b) has been added between Fire modules 7 and 8 to enhance
segmentation mIoU. Various attempts were made to configure the optimal network, such
as changing the convolution filter size or adding new convolution layers. The KUL-Seg
network, proposed herein, demonstrated the most stable results across various tests.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18

The enhancements in data matching not only elevate the classification accuracy but
also enhance the subsequent tracking of classified objects, confirming the effectiveness of
our proposed methods. By implementing these algorithms, users can significantly reduce
the need for extensive data collection tailored specifically for deep learning applications.

3. System Overview
In this research, we developed a perception system utilizing a single 3D LIDAR sen-

sor. As depicted in Figure 1, the system primarily consists of detection and tracking com-
ponents. The detection segment uses 3D data as input to perform object classification and
segmentation through deep learning networks, identifying the targets for tracking. The
tracking component incorporates the Interacting Multiple Model Unscented Kalman Fil-
ter Joint Probabilistic Data Association (IMM-UKF-JPDA) algorithm, which effectively
tracks multiple models, accounting for road conditions.

Figure 1. Proposed System Flow Diagram: The system is divided into segmentation and tracking
parts. The segmentation part, which is the main contribution of this study, is indicated with blue
boxes.

4. KUL-Seg
Figure 2 illustrates the layer structure of the proposed segmentation network, KUL-

Seg. While the overall layer composition is similar to the framework of SqueezeSegV2, a
new Fire module (Fire 7_b) has been added between Fire modules 7 and 8 to enhance
segmentation mIoU. Various attempts were made to configure the optimal network, such
as changing the convolution filter size or adding new convolution layers. The KUL-Seg
network, proposed herein, demonstrated the most stable results across various tests.

Figure 2. The KUL-Seg network composition with one additional Fire module added. The added
Fire module is represented by a yellow box in the diagram.

Table 3 presents the performance of networks trained on 10,848 KITTI datasets. A
single KITTI dataset contains scene data with a size of 64 × 512 and consists of six tensors:

Figure 2. The KUL-Seg network composition with one additional Fire module added. The added Fire
module is represented by a yellow box in the diagram.

Table 3 presents the performance of networks trained on 10,848 KITTI datasets. A
single KITTI dataset contains scene data with a size of 64 × 512 and consists of six tensors:
x, y, z, intensity, range and label. The data is provided in numpy format. The configuration
utilizing a single fire module 7b yielded the highest accuracy and mean IoU. The IoU for
each category of Car, Cyclist, and Pedestrian is presented according to the configuration of
the network layer. Each network variant is labeled to indicate modifications: (S) indicates

Sensors 2024, 24, 4475 6 of 18

a layer with a smaller filter than the original; (L) indicates a layer with a larger filter;
‘dual pipe’ describes a network configuration where identical convolution layers to the
original SqueezeSegV2 are set in parallel prior to deconvolution; (E) represents an expanded
network with more fire modules; (R) denotes a network with a reduced number of fire
modules, with the specific number of reductions shown in parentheses; ‘Single #b’ refers
to a network where an additional fire module is inserted as a single layer; ‘odd’ includes
networks with all odd-numbered fire modules added; and ‘second half’ denotes networks
where a fire module is added in the latter half. ‘NP’ stands for the original layers without
any additional pooling.

Table 3. Network evaluation results.

Category Dual
Pipe

Dual
Pipe (S)

Dual
Pipe (L)

Dual
Pipe
(XS)

Dual
Pipe
(XL)

Dual
Pipe
(NP)

Dual
Pipe
(E)

Dual
Pipe
(R)

Dual
Pipe
(R3)

Dual
Pipe

(RNP)

Dual
Pipe
(R4)

Car 0.78 0.81 0.81 0.80 0.80 0.81 0.80 0.80 0.80 0.79 0.81

Pedestrian 0.49 0.41 0.34 0.41 0.54 0.53 0.47 0.30 0.52 0.23 0.47

Cyclist 0.38 0.53 0.52 0.54 0.39 0.41 0.43 0.54 0.43 0.49 0.46

mIoU 0.55 0.58 0.56 0.58 0.58 0.58 0.57 0.55 0.58 0.50 0.58

Category Single
(S)

Single
(Odd)

Single
(2nd
half)

Single
2b(S)

Single
3b(S)

Single
4b(S)

Single
5b(S)

Single
6b(S)

Single
7b(S)

Single
8b(S)

Single
8b(L)

Car 0.76 0.76 0.77 0.77 0.76 0.76 0.77 0.77 0.76 0.78 0.77

Pedestrian 0.37 0.23 0.23 0.40 0.39 0.45 0.48 0.46 0.24 0.28 0.26

Cyclist 0.38 0.48 0.48 0.38 0.39 0.34 0.37 0.34 0.49 0.56 0.53

mIoU 0.50 0.49 0.49 0.52 0.52 0.52 0.54 0.52 0.50 0.54 0.52

Category
Single

all
(Same)

Single
2b

(Same)

Single
3b

(Same)

Single
4b

(Same)

Single
5b

(Same)

Single
6b

(Same)

Single
7b

(Same)

Single
8b

(Same)

Car 0.78 0.80 0.80 0.80 0.80 0.79 0.84 0.78

Pedestrian 0.22 0.30 0.30 0.52 0.30 0.51 0.72 0.40

Cyclist 0.48 0.55 0.55 0.39 0.55 0.40 0.54 0.41

mIoU 0.49 0.55 0.55 0.57 0.55 0.57 0.70 0.53

To adapt SqueezeSeg for training with 3D data, a conversion to 2D is necessary.
This involves automatically extracting a 90◦ Region of Interest (ROI) from the 3D LIDAR
data and performing spherical projection to generate an input image. Each point within
the point cloud is characterized by zenith and azimuth angles, calculated as shown in
Equations (1) and (2). The data, existing within a 3D space, is projected forward to form
the input image. The resultant input tensor is composed of five channels: x, y, z, intensity,
and range, and is sampled to a resolution of 64 pixels × 512 pixels. The range value is
computed using the Euclidean distance from the origin, based on the LIDAR data’s x, y,
and z coordinates.

The azimuth and zenith angles are defined by Equations (1) and (2) as follows:

θ = arcsin
z√

x2 + y2 + z2
(1)

ϕ = arcsin
y√

x2 + y2
(2)

Considering the forward direction of the 3D point cloud data aligns with the X-axis,
the point cloud is projected onto the Y-Z plane using a 45◦ angle on either side, forming

Sensors 2024, 24, 4475 7 of 18

a frontal view. The field of view (FOV) used for capturing the data span of 90◦, with the
LIDAR data from this region divided into 512 columns (pixels) and each channel data
forming 64 rows (pixels), which are then spherically projected onto the Y-Z plane to serve
as the network’s input.

SqueezeSeg is a variant of SqueezeNet, characterized by a similar network architecture
but differentiated primarily by the dimensions of the input tensors [29]. Unlike SqueezeNet,
which utilizes a square input tensor, SqueezeSeg uses a horizontally elongated rectangular
tensor measuring 64 pixels by 512 pixels. Consequently, while SqueezeNet downsamples
both the height and width during convolution operations, SqueezeSeg only downsamples
the width.

A notable feature of SqueezeSeg’s architecture is its adoption of the shortcut concept,
akin to that used in ResNet. This is implemented to mitigate data loss during the down-
sampling process by relaying an upsampled feature map through a skip connection, as
depicted in Figure 3. The convolution layers in SqueezeSeg incorporate the Fire module
and Fire Deconv concepts. These are designed to reduce the number of parameters and the
computational load typically associated with conventional convolution and deconvolution
layers in CNNs.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 18

𝜙 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑦𝑥 + 𝑦 (2)

Considering the forward direction of the 3D point cloud data aligns with the X-axis,
the point cloud is projected onto the Y-Z plane using a 45° angle on either side, forming a
frontal view. The field of view (FOV) used for capturing the data span of 90°, with the
LIDAR data from this region divided into 512 columns (pixels) and each channel data
forming 64 rows (pixels), which are then spherically projected onto the Y-Z plane to serve
as the network’s input.

SqueezeSeg is a variant of SqueezeNet, characterized by a similar network architec-
ture but differentiated primarily by the dimensions of the input tensors [29]. Unlike
SqueezeNet, which utilizes a square input tensor, SqueezeSeg uses a horizontally elon-
gated rectangular tensor measuring 64 pixels by 512 pixels. Consequently, while
SqueezeNet downsamples both the height and width during convolution operations,
SqueezeSeg only downsamples the width.

A notable feature of SqueezeSeg’s architecture is its adoption of the shortcut concept,
akin to that used in ResNet. This is implemented to mitigate data loss during the
downsampling process by relaying an upsampled feature map through a skip connection,
as depicted in Figure 3. The convolution layers in SqueezeSeg incorporate the Fire module
and Fire Deconv concepts. These are designed to reduce the number of parameters and
the computational load typically associated with conventional convolution and deconvo-
lution layers in CNNs.

The Fire module includes a squeeze layer, which uses 1 × 1 convolutions to reduce
the channel size. The expand layer, comprised of both 1 × 1 and 3 × 3 filters, performs
convolution operations and then concatenates the outputs of the previous layers to restore
the channel count while still reducing the overall computational demand.

For instance, if an input tensor’s dimensions are H × W × C and a 3 × 3 convolution
filter is employed, the number of parameters would traditionally be calculated as 9𝐶
and the computation as 9𝐻𝑊𝐶 . In contrast, within the Fire module, the number of pa-
rameters is reduced to 𝐶 , and the computation to 𝐻𝑊𝐶 . Thus, the Fire module sig-
nificantly decreases both the number of parameters and the computational requirements.

(a) (b)

Figure 3. (a) represents the layer configuration of the Fire module, while (b) represents the layer
configuration of the Fire Deconv.

The reduction in computational time, achieved through the use of fewer parameters,
ensures performance akin to that of AlexNet. However, the use of a SqueezeSeg network

Figure 3. (a) represents the layer configuration of the Fire module, while (b) represents the layer
configuration of the Fire Deconv.

The Fire module includes a squeeze layer, which uses 1 × 1 convolutions to reduce
the channel size. The expand layer, comprised of both 1 × 1 and 3 × 3 filters, performs
convolution operations and then concatenates the outputs of the previous layers to restore
the channel count while still reducing the overall computational demand.

For instance, if an input tensor’s dimensions are H × W × C and a 3 × 3 convolution
filter is employed, the number of parameters would traditionally be calculated as 9C2 and
the computation as 9HWC2. In contrast, within the Fire module, the number of parameters
is reduced to 3

2 C2, and the computation to 3
2 HWC2. Thus, the Fire module significantly

decreases both the number of parameters and the computational requirements.
The reduction in computational time, achieved through the use of fewer parame-

ters, ensures performance akin to that of AlexNet. However, the use of a SqueezeSeg
network is particularly beneficial in applications like autonomous vehicles, where real-time
performance is critical.

Sensors 2024, 24, 4475 8 of 18

As the image passes through each layer, the convolution filters detect the feature points
of the object and determine the class to which it belongs. In this study, object classification
was segmented into four categories: vehicle, cyclist, pedestrian, and unknown. The model
was trained using a dataset comprising 10,848 entries from the KITTI database, enabling it
to effectively learn and classify diverse road objects.

5. Intensity Rendering and 3D Points Interpolation

In this study, the KITTI dataset, utilized for training, was collected using a Velodyne
64-channel LIDAR sensor, model HDL-64E (Velodyne, San Jose, CA, USA). When this
dataset is applied to different LIDAR sensor data, such as those from a sufficiently trained
SqueezeSeg network, there is a notable reduction in training effectiveness. This reduction
is attributed to the different resolutions and intensity specifications of each sensor, as the
SqueezeSeg network relies on five specific tensors for features: x, y, z, intensity, and range.
Consequently, discrepancies between training and testing sensors can significantly impact
the accuracy of the SqueezeSeg network. Although the KITTI dataset is widely used, the
actual input sensor data often differ from the training dataset, which poses a challenge for
model performance.

The original Velodyne HDL-64E sensor, integral to the KITTI dataset compilation,
features a 360◦ horizontal field of view, a horizontal angular resolution of 0.08◦, a vertical
FOV of 26.9◦, and a vertical angular resolution of 0.4◦. In contrast, the Ouster OS1-64
LIDAR sensor (Ouster, San Francisco, CA, USA) used in our experiments possesses a 360◦

horizontal FOV, a horizontal angular resolution of 0.35◦, a vertical FOV of 45◦, and a vertical
angular resolution of 0.35◦. The differing resolutions between these two sensors result in
a gap in the data when projected onto a 2D plane of 64 × 512 pixels for the SqueezeSeg
network. To address this issue, we employed linear interpolation to adjust for the resolution
differences, setting the data quantity equally.

Linear interpolation effectively reduces the gap in the horizontal angular resolution
between the two sensors. As demonstrated in Figure 4, the interpolated data show a
significant improvement. Figure 4a displays the initial projected image from the raw
data of the Ouster sensor, where some rows and columns appear empty due to poor
resolution. In contrast, Figure 4b shows the image post-interpolation, where the gaps are
filled, providing a complete and improved resolution image.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 4. (a) Projected image using raw data of Ouster LIDAR with a blank pixel caused by sensor
resolution; (b) Projected image with linear interpolation for covering the blank pixel. In (a), the space
between pixels is empty in the horizontal direction due to the difference in resolution, but (b) con-
sists of continuous data without spaces.

In this study, differences in the intensity values between sensors affected the out-
comes of the SqueezeSeg model, as illustrated in Figure 5. For example, the Velodyne sen-
sor has intensity values ranging from 0–255, while the Ouster sensor records values ap-
proximately between 0–9000. An identical point on the floor, when scanned by both sen-
sors at the same time and location, returned intensity values of 5 for Velodyne and 113 for
Ouster. The intensity among the input tensors of the five channels is utilized as a critical
feature to distinguish objects in the LIDAR point cloud, akin to how color information is
used in vision sensor images.

To evaluate the correlation between the Velodyne HDL-64E and the Ouster OS1-64,
data were compared after scanning the same environment simultaneously from the same
position, and the intensity correlation was quantitatively analyzed. The decision against
normalizing intensity data was due to the substantial scale differences between the two
sensors, which, when normalized, led to greater errors in intensity values.

(a) (b)

Figure 5. Sensor intensity and resolution comparison in same environment. (a) Point cloud data of
Velodyne HDL-64e; (b) Point cloud data of Ouster OS1-64. The color of each point is displayed in a
different color according to the intensity value distribution of each sensor.

The persisting differences were further confirmed, as depicted in Figure 6 and Table
4, by analyzing approximately 3000 points from frequently detected parts. We applied the
least squares method to approximate a relationship between the two sets of sensor data.
While intensity data can vary by situation, it appeared visually similar to Velodyne data
when compared with non-rendered data. Moreover, the evaluation accuracy of the
SqueezeSeg outputs was higher when using these processed data.

Figure 4. (a) Projected image using raw data of Ouster LIDAR with a blank pixel caused by sensor
resolution; (b) Projected image with linear interpolation for covering the blank pixel. In (a), the space
between pixels is empty in the horizontal direction due to the difference in resolution, but (b) consists
of continuous data without spaces.

This linear interpolation process is crucial for mitigating differences in sensor reso-
lution. While it can increase the data volume by approximately a factor of eight in some
cases, which might potentially affect real-time performance due to higher computational

Sensors 2024, 24, 4475 9 of 18

demands, this impact is minimized as only the frontal data are utilized in this context.
This approach allows for the more accurate application of models trained on the KITTI
dataset to different sensor types, ensuring a more robust and reliable performance in varied
operational environments.

In this study, differences in the intensity values between sensors affected the outcomes
of the SqueezeSeg model, as illustrated in Figure 5. For example, the Velodyne sensor has
intensity values ranging from 0–255, while the Ouster sensor records values approximately
between 0–9000. An identical point on the floor, when scanned by both sensors at the
same time and location, returned intensity values of 5 for Velodyne and 113 for Ouster.
The intensity among the input tensors of the five channels is utilized as a critical feature
to distinguish objects in the LIDAR point cloud, akin to how color information is used in
vision sensor images.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 4. (a) Projected image using raw data of Ouster LIDAR with a blank pixel caused by sensor
resolution; (b) Projected image with linear interpolation for covering the blank pixel. In (a), the space
between pixels is empty in the horizontal direction due to the difference in resolution, but (b) con-
sists of continuous data without spaces.

In this study, differences in the intensity values between sensors affected the out-
comes of the SqueezeSeg model, as illustrated in Figure 5. For example, the Velodyne sen-
sor has intensity values ranging from 0–255, while the Ouster sensor records values ap-
proximately between 0–9000. An identical point on the floor, when scanned by both sen-
sors at the same time and location, returned intensity values of 5 for Velodyne and 113 for
Ouster. The intensity among the input tensors of the five channels is utilized as a critical
feature to distinguish objects in the LIDAR point cloud, akin to how color information is
used in vision sensor images.

To evaluate the correlation between the Velodyne HDL-64E and the Ouster OS1-64,
data were compared after scanning the same environment simultaneously from the same
position, and the intensity correlation was quantitatively analyzed. The decision against
normalizing intensity data was due to the substantial scale differences between the two
sensors, which, when normalized, led to greater errors in intensity values.

(a) (b)

Figure 5. Sensor intensity and resolution comparison in same environment. (a) Point cloud data of
Velodyne HDL-64e; (b) Point cloud data of Ouster OS1-64. The color of each point is displayed in a
different color according to the intensity value distribution of each sensor.

The persisting differences were further confirmed, as depicted in Figure 6 and Table
4, by analyzing approximately 3000 points from frequently detected parts. We applied the
least squares method to approximate a relationship between the two sets of sensor data.
While intensity data can vary by situation, it appeared visually similar to Velodyne data
when compared with non-rendered data. Moreover, the evaluation accuracy of the
SqueezeSeg outputs was higher when using these processed data.

Figure 5. Sensor intensity and resolution comparison in same environment. (a) Point cloud data of
Velodyne HDL-64e; (b) Point cloud data of Ouster OS1-64. The color of each point is displayed in a
different color according to the intensity value distribution of each sensor.

To evaluate the correlation between the Velodyne HDL-64E and the Ouster OS1-64,
data were compared after scanning the same environment simultaneously from the same
position, and the intensity correlation was quantitatively analyzed. The decision against
normalizing intensity data was due to the substantial scale differences between the two
sensors, which, when normalized, led to greater errors in intensity values.

The persisting differences were further confirmed, as depicted in Figure 6 and Table 4,
by analyzing approximately 3000 points from frequently detected parts. We applied
the least squares method to approximate a relationship between the two sets of sensor
data. While intensity data can vary by situation, it appeared visually similar to Velodyne
data when compared with non-rendered data. Moreover, the evaluation accuracy of the
SqueezeSeg outputs was higher when using these processed data.

For clarity, each part, such as different vehicle sections like the bonnet, radiator grille,
and tires, was represented by average intensity values. Graphs representing these averages
were categorized into four groups: vehicle, truck, ground, and pillar. Figure 7 presents
a graph that compares point-to-point matches across all categories to identify the most
suitable function from the approximate equations provided in Figure 6. We computed the
root mean square error (RMSE) for each function using the Ouster data and the ground
truth data from Velodyne LIDAR. Among various tested functions, the logarithmic function
consistently showed the lowest RMSE values, indicating the closest match to the actual
data. This finding led to the adoption of the logarithmic function as the primary rendering
function, as demonstrated in Figure 7 and detailed in Table 5.

Sensors 2024, 24, 4475 10 of 18
Sensors 2024, 24, x FOR PEER REVIEW 10 of 18

Figure 6. The graph of intensity correlation between sensors using different approximation func-
tions. The green line indicates the polynomial function, the red line indicates the logarithmic func-
tion, and the black dotted line indicates the linear function.

Table 4. Intensity value comparison.

Category O Intensity V Intensity Ratio
Vehicle 45.91 3.78 0.08
Truck 714.50 123.38 0.17

Ground 113.28 5.60 0.05
Pillar 376.01 108.64 0.29

For clarity, each part, such as different vehicle sections like the bonnet, radiator grille,
and tires, was represented by average intensity values. Graphs representing these aver-
ages were categorized into four groups: vehicle, truck, ground, and pillar. Figure 7 pre-
sents a graph that compares point-to-point matches across all categories to identify the
most suitable function from the approximate equations provided in Figure 6. We com-
puted the root mean square error (RMSE) for each function using the Ouster data and the
ground truth data from Velodyne LIDAR. Among various tested functions, the logarith-
mic function consistently showed the lowest RMSE values, indicating the closest match to
the actual data. This finding led to the adoption of the logarithmic function as the primary
rendering function, as demonstrated in Figure 7 and detailed in Table 5.

Table 5. RMSE of each function.

Functions Linear 2nd Order Polynomial Logarithm
RMSE 72.12 132.87 58.26

Figure 6. The graph of intensity correlation between sensors using different approximation functions.
The green line indicates the polynomial function, the red line indicates the logarithmic function, and
the black dotted line indicates the linear function.

Table 4. Intensity value comparison.

Category O Intensity V Intensity Ratio

Vehicle 45.91 3.78 0.08
Truck 714.50 123.38 0.17

Ground 113.28 5.60 0.05
Pillar 376.01 108.64 0.29

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18

Figure 7. The graph of the root mean square error of each function. The blue point is a polynomial
function, the orange point is a log function, and the gray point is a linear function, and the black line
crossing the graph represents the ground truth.

The colors represented in each image of Figure 8 are normalized according to the
rainbow color spectrum, ranging from red to purple, based on the intensity distribution
of the LiDAR sensor. As shown in the images, the application of the logarithmic function
results in a color distribution for the Velodyne LiDAR data and Intensity that appears
similar. Figure 9 displays the rendering results for each function, and the detection per-
formance was compared using IoU. The logarithmic function not only yielded the highest
accuracy but also demonstrated superior performance in the mAP results, as outlined in
Table 5. This confirms the efficacy of using a logarithmic rendering function for adjusting
intensity values between different LIDAR sensors, enhancing the overall accuracy of the
SqueezeSeg model.

(b) (a)

(c)

Figure 7. The graph of the root mean square error of each function. The blue point is a polynomial
function, the orange point is a log function, and the gray point is a linear function, and the black line
crossing the graph represents the ground truth.

Sensors 2024, 24, 4475 11 of 18

Table 5. RMSE of each function.

Functions Linear 2nd Order Polynomial Logarithm

RMSE 72.12 132.87 58.26

The colors represented in each image of Figure 8 are normalized according to the
rainbow color spectrum, ranging from red to purple, based on the intensity distribution
of the LiDAR sensor. As shown in the images, the application of the logarithmic function
results in a color distribution for the Velodyne LiDAR data and Intensity that appears
similar. Figure 9 displays the rendering results for each function, and the detection perfor-
mance was compared using IoU. The logarithmic function not only yielded the highest
accuracy but also demonstrated superior performance in the mAP results, as outlined in
Table 5. This confirms the efficacy of using a logarithmic rendering function for adjusting
intensity values between different LIDAR sensors, enhancing the overall accuracy of the
SqueezeSeg model.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18

Figure 7. The graph of the root mean square error of each function. The blue point is a polynomial
function, the orange point is a log function, and the gray point is a linear function, and the black line
crossing the graph represents the ground truth.

The colors represented in each image of Figure 8 are normalized according to the
rainbow color spectrum, ranging from red to purple, based on the intensity distribution
of the LiDAR sensor. As shown in the images, the application of the logarithmic function
results in a color distribution for the Velodyne LiDAR data and Intensity that appears
similar. Figure 9 displays the rendering results for each function, and the detection per-
formance was compared using IoU. The logarithmic function not only yielded the highest
accuracy but also demonstrated superior performance in the mAP results, as outlined in
Table 5. This confirms the efficacy of using a logarithmic rendering function for adjusting
intensity values between different LIDAR sensors, enhancing the overall accuracy of the
SqueezeSeg model.

(b) (a)

(c)

Figure 8. Intensity rendering comparison results. (a) Ouster raw data, (b) Velodyne raw data,
(c) Intensity rendering output of Ouster data with logarithm function. If you look at the figure above,
which expresses the intensity value in color, you can intuitively see that the value of (c) is much closer
to the value of the comparison group (b) than (a).

1

(b) (a)

(c)

Figure 9. Cont.

Sensors 2024, 24, 4475 12 of 18

1

(b) (a)

(c)

Figure 9. Results of intensity rendering with different rendering functions. (a) Intensity rendering
output with 2nd order polynomial function, (b) Velodyne raw data, (c) Intensity rendering output
with logarithmic function. As with the RMSE value comparison result in Figure 7, it can be seen that
(c) is most similar to the Velodyne data when intensity data is expressed by color.

6. Object Tracking

Euclidean clustering was utilized to cluster the segmented objects, with Random
Sample Consensus (RANSAC) serving as the ground removal algorithm. Using RANSAC
to eliminate ground points, data inaccurately labeled as vehicles were removed, enhancing
the accuracy of object tracking [30]. It is common in such cases for adjacent points, like
ground points or other objects, to be mistakenly grouped together. The labels for each point
were assigned by the SqueezeSeg network. Only clusters where the share of the object
label exceeded 70% were designated as target clusters for tracking. In our experiments,
the false positive ratio of the SqueezeSeg output labels in each segment did not exceed
20%, while the true positive ratio remained above 80%. Setting the threshold at 70% was
crucial, as the noise generated during the recovery of the 3D image from the 2D image
could misrepresent distant objects as being closer in the 2D image. To mitigate this, clusters
with low classification label occupancy were excluded from tracking. The tracker then
followed the objects that had been filtered through Euclidean clustering, free from noise.
Each label contains the object’s ID, relative speed, and distance from the center point of the
tracked object; the object type is visualized by color.

For multi-object tracking, the Interacting Multiple Model Unscented Kalman Filter
Joint Probabilistic Data Association algorithm was employed [31]. The different kinetic
properties of vehicles, pedestrians, and cyclists necessitated the application of distinct
parameters in the tracking. The dynamic models in the IMM filter, such as Constant Velocity
(CV), Constant Turn Rate Velocity (CTRV), and Random Motion (RM), were configured
based on the tracked object’s behavior.

IMM is an algorithm that utilizes N parallel filter banks and is commonly employed
alongside JPDA in complex tracking systems like missile defense and aircraft tracking [32].
The core components of an IMM algorithm include interaction, filter bank, model prob-
ability update, and measurement fusion. Mode transition probabilities follow a Markov
chain, and the initial probabilities can be set by the user and further refined by Monte Carlo
simulation outcomes. Without these probabilities, the IMM operation would resemble a
static MM algorithm.

The IMM algorithm operates by determining the next mode from a mixture of all
previous filter state estimates. Each mode’s filtering steps are executed in parallel within
the filter bank, encompassing prediction and update processes. The updated state estimates
are subsequently combined across all filters, and parameters such as mixed mode, state,
and covariance are used to compute the probability of the next mode [33].

The UKF model within the filter bank excels in handling complex nonlinear models
better than the Extended Kalman Filter. This superiority is due to the sigma sample
points being processed through a nonlinear function, resulting in more accurate mean and
covariance estimates than those provided by the EKF, which simplifies the nonlinear model
through linearization.

Sensors 2024, 24, 4475 13 of 18

Figure 10 illustrates the detailed sequence of the tracking modules, represented by
a flowchart (a) and a diagram of the tracking module process (b). The IMM-UKF-JPDA
comprises four stages: interaction; prediction and measurement data association; mode
probability update; and combination. The process starts with IMM probability mixing in
the interaction stage, where mode transition probabilities are calculated. Next, in the UKF,
sigma points are selected, propagated through the transfer function, and used to predict
measurement and covariance. The state measurement cross-covariance matrix and UKF
Kalman gain are then computed. In the data association stage, similar to traditional PDA
filters, the updated state and covariance are determined by the association probabilities.
Finally, the mode probabilities are updated, and outputs from each filter are combined to
produce the final state and covariance. The variables used in the flowchart include state
X, covariance P, control vector u, and measurement Z, with superscripts and subscripts
denoting the number of filters and time steps, respectively [34].

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18

Markov chain, and the initial probabilities can be set by the user and further refined by
Monte Carlo simulation outcomes. Without these probabilities, the IMM operation would
resemble a static MM algorithm.

The IMM algorithm operates by determining the next mode from a mixture of all
previous filter state estimates. Each mode’s filtering steps are executed in parallel within
the filter bank, encompassing prediction and update processes. The updated state esti-
mates are subsequently combined across all filters, and parameters such as mixed mode,
state, and covariance are used to compute the probability of the next mode [33].

The UKF model within the filter bank excels in handling complex nonlinear models
better than the Extended Kalman Filter. This superiority is due to the sigma sample points
being processed through a nonlinear function, resulting in more accurate mean and co-
variance estimates than those provided by the EKF, which simplifies the nonlinear model
through linearization.

Figure 10 illustrates the detailed sequence of the tracking modules, represented by a
flowchart (a) and a diagram of the tracking module process (b). The IMM-UKF-JPDA com-
prises four stages: interaction; prediction and measurement data association; mode prob-
ability update; and combination. The process starts with IMM probability mixing in the
interaction stage, where mode transition probabilities are calculated. Next, in the UKF,
sigma points are selected, propagated through the transfer function, and used to predict
measurement and covariance. The state measurement cross-covariance matrix and UKF
Kalman gain are then computed. In the data association stage, similar to traditional PDA
filters, the updated state and covariance are determined by the association probabilities.
Finally, the mode probabilities are updated, and outputs from each filter are combined to
produce the final state and covariance. The variables used in the flowchart include state
X, covariance P, control vector u, and measurement Z, with superscripts and subscripts
denoting the number of filters and time steps, respectively [34].

(a) (b)

Figure 10. The flow chart of IMM-UKF-JPDA. The contents of each stage of JPDA and IMM are
expressed in the box flow chart above, and in the graph below, the overall algorithm flow is ex-
pressed as a graph.

7. Experiments
The PC utilized in the experiment was configured with ROS Kinetic 1.12.17, Python

2.7, and TensorFlow 1.4, running on Ubuntu 16.04 LTS. The network training was exe-
cuted using an Nvidia GTX 1080 Ti GPU (Nvidia, Santa Clara, CA, USA), and field tests
were conducted on various roads with a LIDAR system mounted on mid-sized SUVs.
SqueezeSegV2, developed in Python with tensorflow-gpu 1.4, processes the detected
points. Subsequently, C++-based Euclidean clustering and object tracking classify the

Figure 10. The flow chart of IMM-UKF-JPDA. The contents of each stage of JPDA and IMM are
expressed in the box flow chart above, and in the graph below, the overall algorithm flow is expressed
as a graph.

7. Experiments

The PC utilized in the experiment was configured with ROS Kinetic 1.12.17, Python
2.7, and TensorFlow 1.4, running on Ubuntu 16.04 LTS. The network training was exe-
cuted using an Nvidia GTX 1080 Ti GPU (Nvidia, Santa Clara, CA, USA), and field tests
were conducted on various roads with a LIDAR system mounted on mid-sized SUVs.
SqueezeSegV2, developed in Python with tensorflow-gpu 1.4, processes the detected points.
Subsequently, C++-based Euclidean clustering and object tracking classify the data. The
data transmission and reception between nodes were facilitated using ROS Topic.

To assess the performance of the network, an evaluation test was carried out on both
the original and intensity-rendered Ouster data using the SqueezeSegV2 network, which
had been trained on the KITTI dataset. The test dataset included ‘Car’, ‘Cyclist’, and
‘Pedestrian’, detected by the Ouster sensor, appearing 3421, 17, and 13 times, respectively,
across 867 frames collected from highways, city roads, alleys, and residential areas. As
indicated in Table 6, there was a noticeable improvement in the accuracy of identifying
the vehicle, cyclist, and pedestrian categories. When compared to the values in the “No
rendering & interpolation” row, which represent the results using the existing segmentation
network, it can be observed that applying the logarithmic function rendering and 3D
point cloud data interpolation methods proposed in this study improves the IoU values
in all areas. Specifically, Car improved by approximately 7%, Cyclist by about 28%, and
Pedestrian by around 43%.

Sensors 2024, 24, 4475 14 of 18

Table 6. Table of mIoU performance comparison according to the rendering function.

Intensity Rendering Method Car Cyclist Pedestrian mIoU

No rendering and interpolation 70.9 26.5 32.7 43.4

Linear function 71.7 22.3 12.5 35.5

Polynomial function 72.2 26.9 20.4 39.9

Logarithm function 75.9 33.6 46.7 52.0

During real road tests, as depicted in Figure 11, it is evident that vehicle data are
marked in white. For semantic segmentation, the mean Intersection over Union metric is
used, defined by Equation (3), where TP, FP, and FN represent true positives, false positives,
and false negatives, respectively. The variable “c” denotes the class, while uppercase “C”
represents the number of classes:

mIoU =
1
C ∑C

c=1
TPc

TPc + FPc + FNc
(3)

Sensors 2024, 24, x FOR PEER REVIEW 14 of 18

data. The data transmission and reception between nodes were facilitated using ROS
Topic.

To assess the performance of the network, an evaluation test was carried out on both
the original and intensity-rendered Ouster data using the SqueezeSegV2 network, which
had been trained on the KITTI dataset. The test dataset included ‘Car’, ‘Cyclist’, and ‘Pe-
destrian’, detected by the Ouster sensor, appearing 3421, 17, and 13 times, respectively,
across 867 frames collected from highways, city roads, alleys, and residential areas. As
indicated in Table 6, there was a noticeable improvement in the accuracy of identifying
the vehicle, cyclist, and pedestrian categories. When compared to the values in the “No
rendering & interpolation” row, which represent the results using the existing segmenta-
tion network, it can be observed that applying the logarithmic function rendering and 3D
point cloud data interpolation methods proposed in this study improves the IoU values
in all areas. Specifically, Car improved by approximately 7%, Cyclist by about 28%, and
Pedestrian by around 43%.

During real road tests, as depicted in Figure 11, it is evident that vehicle data are
marked in white. For semantic segmentation, the mean Intersection over Union metric is
used, defined by Equation (3), where TP, FP, and FN represent true positives, false posi-
tives, and false negatives, respectively. The variable “c” denotes the class, while uppercase
“C” represents the number of classes: mIoU = ∑ (3)

Table 6. Table of mIoU performance comparison according to the rendering function.

Intensity Rendering Method Car Cyclist Pedestrian mIoU
No rendering and interpolation 70.9 26.5 32.7 43.4

Linear function 71.7 22.3 12.5 35.5
Polynomial function 72.2 26.9 20.4 39.9
Logarithm function 75.9 33.6 46.7 52.0

(a) (b)

Figure 11. The image of SqueezeSegV2 output. (a) Rendered and interpolated point cloud data, (b)
result of SqueezeSegV2. Object detection was performed with SqueezeSegV2 using the prepro-
cessed value (a) to obtain the result, (b). By using the data in (b), the model goes through the clus-
tering process and removes non-vehicle guard rails and floor surfaces that have not been removed.

The differences in angular resolution and intensity range between Velodyne’s HDL-
64 LIDAR, used in training, and Ouster’s OS1, used in experiments, presented challenges
in object classification. Nevertheless, the adaptation of sensor characteristics through in-
tensity rendering resulted in highly accurate classification, particularly because the same

Figure 11. The image of SqueezeSegV2 output. (a) Rendered and interpolated point cloud data, (b) re-
sult of SqueezeSegV2. Object detection was performed with SqueezeSegV2 using the preprocessed
value (a) to obtain the result, (b). By using the data in (b), the model goes through the clustering
process and removes non-vehicle guard rails and floor surfaces that have not been removed.

The differences in angular resolution and intensity range between Velodyne’s HDL-64
LIDAR, used in training, and Ouster’s OS1, used in experiments, presented challenges
in object classification. Nevertheless, the adaptation of sensor characteristics through
intensity rendering resulted in highly accurate classification, particularly because the same
optimally set hyperparameters were applicable. Notably, smaller objects like cyclists and
pedestrians, which typically exhibit fewer features than vehicles, demonstrated significant
improvements in accuracy post-intensity rendering.

Field experiments were conducted at an urban road intersection and on a highway,
under clear weather conditions to avoid complications from rain or snow. As illustrated
in Figure 12, at the urban intersection, vehicles turning or driving straight at a five-way
signal-controlled junction were detected and tracked. On the highway, nearby moving
vehicles were tracked as the test vehicle drove straight.

Sensors 2024, 24, 4475 15 of 18

Sensors 2024, 24, x FOR PEER REVIEW 15 of 18

optimally set hyperparameters were applicable. Notably, smaller objects like cyclists and
pedestrians, which typically exhibit fewer features than vehicles, demonstrated signifi-
cant improvements in accuracy post-intensity rendering.

Field experiments were conducted at an urban road intersection and on a highway,
under clear weather conditions to avoid complications from rain or snow. As illustrated
in Figure 12, at the urban intersection, vehicles turning or driving straight at a five-way
signal-controlled junction were detected and tracked. On the highway, nearby moving
vehicles were tracked as the test vehicle drove straight.

(a) (b)

Figure 12. The image tracking results. (a) Urban environment; (b) highway environment. Among
the tracking results, the distance to the center point of the object, target ID, and relative speed were
visualized.

The experimental setups compared the performance of data with and without the
applied intensity rendering and data interpolation, using the same tracking algorithms.
The results of these comparisons are documented in Table 7, demonstrating the effective-
ness of the proposed adjustments in real-world conditions.

Table 7. Tracking result.

Scene Frame Object False Alarm Missed
Detection

ID SW Remarks

Dataset 01 289 45

13 117 62

3 24 7
Both

methods
applied

Dataset 02 365 4

72 27 22

4 3 3
Both

methods
applied

During the evaluation, tracking tests were performed on two distinct datasets, con-
sisting of 289 and 365 frames, respectively. In both instances, the data processed by the
proposed algorithm demonstrated considerably more stable outcomes across various sce-
narios. These metrics included false alarms—where non-vehicles were incorrectly identi-
fied as vehicles, missed detections—where vehicles were not identified, and ID switch
counts—where the shape of a detected object changed frequently enough to necessitate a
change in the tracking ID.

Due to differences in 3D point data distribution, a single object can be clustered as
two separate objects in the segmentation results. However, when applying the method

Figure 12. The image tracking results. (a) Urban environment; (b) highway environment. Among
the tracking results, the distance to the center point of the object, target ID, and relative speed
were visualized.

The experimental setups compared the performance of data with and without the
applied intensity rendering and data interpolation, using the same tracking algorithms. The
results of these comparisons are documented in Table 7, demonstrating the effectiveness of
the proposed adjustments in real-world conditions.

Table 7. Tracking result.

Scene Frame Object False Alarm Missed Detection ID SW Remarks

Dataset 01 289 45
13 117 62

3 24 7 Both methods applied

Dataset 02 365 4
72 27 22

4 3 3 Both methods applied

During the evaluation, tracking tests were performed on two distinct datasets, con-
sisting of 289 and 365 frames, respectively. In both instances, the data processed by the
proposed algorithm demonstrated considerably more stable outcomes across various sce-
narios. These metrics included false alarms—where non-vehicles were incorrectly identified
as vehicles, missed detections—where vehicles were not identified, and ID switch counts—
where the shape of a detected object changed frequently enough to necessitate a change in
the tracking ID.

Due to differences in 3D point data distribution, a single object can be clustered as two
separate objects in the segmentation results. However, when applying the method proposed
in this study, the segmentation results improve, preventing such issues. Consequently,
this leads to enhanced tracking stability. As evidenced, when the output data from the
deep learning network become unstable, it adversely affects the tracking algorithm’s
performance. This underscores the importance of stable and reliable object detection data
as a prerequisite for efficient tracking performance. The proposed algorithm’s ability to
maintain stability across different test conditions highlights its robustness and potential
applicability in real-world autonomous driving systems [33].

8. Conclusions

In this study, we provided a rendered 3D LIDAR point cloud as the input to a Squeeze-
Seg network, which was trained using the KITTI dataset. To enhance object classification,
we removed the ground from the KITTI data for better clustering. The differences between

Sensors 2024, 24, 4475 16 of 18

the training data and the test data significantly impact classification accuracy; therefore, we
corrected the Ouster data, used as test data, by mapping the intensity relationships and
matching the resolution differences to conditions similar to the KITTI data using linear
interpolation. This process led to an improved detection performance, even with different
sensors. By implementing our proposed solution and integrating various sensors, we
effectively compensated for sensor variations and prevented degradation in the detection
accuracy of the deep learning network.

The quantity of high-quality training data is directly related to the accuracy of the
network. Given the challenges in collecting such data, our rendering techniques offer
solutions across multiple areas.

In this study, the proposed method improved the segmentation IoU for Car, Cyclist,
and Pedestrian by approximately 7%, 28%, and 43%, respectively, compared to the existing
methods, achieving a 20% improvement in mIoU. When applying this method to object
tracking across two datasets in different environments, the number of tracking failures,
which is the sum of false alarms, missed detections, and ID switches, was reduced to about
18% and 8%, respectively, compared to when the method was not applied.

Furthermore, the reliability of classifications using deep learning varies depending
on the road environment. To address this, we combined deep learning with the Euclidean
clustering method, where an object is recognized as a tracking target only if the classified
points in the cluster exceed a certain threshold. This approach helps remove static obstacles,
such as trees or walls.

To validate the proposed method, tests were conducted in static and various dynamic
environments, including downtown areas, highways, and suburban roads. Testing in only
static conditions does not account for factors like vehicle vibration due to road irregularities
and data processing time delays related to vehicle speed, leading to significant differences in
results. However, after extensive testing in actual road environments, the results confirmed
that the impact of environmental changes is minimal.

This study primarily focused on reducing the differences between training and test
datasets by comparing Velodyne’s HDL-64 and Ouster’s OS1 LIDAR. Future work will
explore comparisons with other sensors and datasets to further validate and expand the
applicability of our methods.

Author Contributions: Conceptualization, M.-J.K.; methodology, M.-J.K.; software, M.-J.K.; valida-
tion, M.-J.K. and S.K.; formal analysis, M.-J.K.; investigation, M.-J.K. and S.K.; resources, M.-J.K.; data
curation, M.-J.K. and S.K.; writing—original draft preparation, M.-J.K.; writing—review and editing,
B.L. and J.K.; visualization, M.-J.K.; supervision, J.K.; project administration, J.K.; funding acquisition,
M.-J.K. and S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE)
and Korea Institute for Advancement of Technology (KIAT) through the Project of Global Human
Resources Cultivation for Innovative Growth (Project No.: P0008751).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Suyeon Kim and Banghyon Lee were employed by the company
Moovita Pte Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow.

Transp. Res. Part C Emerg. Technol. 2018, 89, 384–406. [CrossRef]
2. Kim, S.H.; Choi, H.L. Convolutional neural network for monocular vision-based multi-target tracking. Int. J. Control. Autom. Syst.

2019, 17, 2284–2296. [CrossRef]

https://doi.org/10.1016/j.trc.2018.02.012
https://doi.org/10.1007/s12555-018-0134-6

Sensors 2024, 24, 4475 17 of 18

3. Choi, W.Y.; Hong, S.M. Modeling of target detection in local search for phased array radar tracking. Int. J. Control. Autom. Syst.
2009, 7, 922–929. [CrossRef]

4. Ha, J.E. Improved algorithm for the extrinsic calibration of a camera and laser range finder using 3D–3D correspondences. Int. J.
Control. Autom. Syst. 2015, 13, 1272–1276. [CrossRef]

5. Du, X.; Ang, M.H.; Rus, D. Car detection for autonomous vehicle: LIDAR and vision fusion approach through deep learning
framework. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver,
BC, Canada, 24–29 September 2017; pp. 749–754.

6. Marti, E.; de Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell.
Transp. Syst. Mag. 2019, 11, 94–108. [CrossRef]

7. Alnaggar, Y.; Afifi, M.; Amer, K. Multi Projection Fusion for Real-Time Semantic Segmentation of 3D Point Clouds. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 1800–1809.

8. Yang, Y.; Chen, F.; Wu, F.; Zeng, D.; Ji, Y. Multi-view semantic learning network for point cloud based 3D object detection.
Neurocomputing 2020, 397, 477–485. [CrossRef]

9. Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ.
2008, 112, 2988–2998. [CrossRef]

10. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of LiDAR data and building object detection in urban areas.
ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

11. Guan, H.; Yu, Y.; Ji, Z.; Li, J.; Zhang, Q. Deep learning-based tree classification using mobile LiDAR data. Remote Sens. Lett. 2015,
6, 864–873. [CrossRef]

12. Qi, R.; Charles, H.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 652–660.

13. Zhou, Y.; Tuzel, O. VoxelNet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

14. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object
segmentation from 3D LiDAR point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893.

15. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegv2: Improved model structure and unsupervised domain adaptation
for road-object segmentation from a LiDAR point cloud. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382.

16. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and accurate LiDAR semantic segmentation. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4213–4220.

17. Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. SqueezeSegv3: Spatially-adaptive convolution for efficient
point-cloud segmentation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28
August 2020; Part XXVIII 16. pp. 1–19.

18. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.
Process. Syst. 2017, 30, 1–10.

19. Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.Y. Tangent convolutions for dense prediction in 3D. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3887–3896.

20. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Markham, A. Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 11108–11117.

21. Yan, X.; Gao, J.; Li, J.; Zhang, R.; Li, Z.; Huang, R.; Cui, S. Sparse single sweep LiDAR point cloud segmentation via learning
contextual shape priors from scene completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9
February 2021; Volume 35, pp. 3101–3109.

22. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3D LiDAR using fully convolutional network. arXiv 2016, arXiv:1608.07916.
23. Fang, J.; Zhou, D.; Zhao, J.; Tang, C.; Xu, C.; Zhang, L. LiDAR-CS dataset: LiDAR point cloud dataset with cross-sensors for 3D

object detection. arXiv 2023, arXiv:2301.12515.
24. Kim, M. A Study on Auto Valet Parking System Based on Dynamic Map Updates Utilizing V2I in Autonomous Vehicles. Ph.D.

Thesis, Graduate School of Automotive Engineering, Kookmin University, Seoul, Republic of Korea, 2024.
25. Mok, S.; Kim, G. Simulated Intensity Rendering of 3D LiDAR using Generative Adversarial Network. In Proceedings of the 2021

IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Republic of Korea, 17–20 January 2021;
pp. 295–297.

26. Zhao, S.; Wang, Y.; Li, B.; Wu, B.; Gao, Y.; Xu, P.; Keutzer, K. ePointDA: An end-to-end simulation-to-real domain adaptation
framework for LiDAR point cloud segmentation. arXiv 2020, arXiv:2009.03456. [CrossRef]

27. Hurl, B.; Czarnecki, K.; Waslander, S. Precise synthetic image and LiDAR (Presil) dataset for autonomous vehicle perception. In
Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2522–2529.

28. Wang, F.; Zhuang, Y.; Gu, H.; Hu, H. Automatic generation of synthetic LiDAR point clouds for 3-D data analysis. IEEE Trans.
Instrum. Meas. 2019, 68, 2671–2673. [CrossRef]

https://doi.org/10.1007/s12555-009-0608-7
https://doi.org/10.1007/s12555-013-0528-4
https://doi.org/10.1109/MITS.2019.2907630
https://doi.org/10.1016/j.neucom.2019.10.116
https://doi.org/10.1016/j.rse.2008.02.004
https://doi.org/10.1016/j.isprsjprs.2013.11.001
https://doi.org/10.1080/2150704X.2015.1088668
https://doi.org/10.1609/aaai.v35i4.16464
https://doi.org/10.1109/TIM.2019.2906416

Sensors 2024, 24, 4475 18 of 18

29. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

30. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 2007, 26, 214–226.
[CrossRef]

31. Sualeh, M.; Kim, G.W. Dynamic multi-LiDAR based multiple object detection and tracking. Sensors 2019, 19, 1474. [CrossRef]
[PubMed]

32. Mazor, E.; Averbuch, A.; Bar-Shalom, Y.; Dayan, J. Interacting multiple model methods in target tracking: A survey. IEEE Trans.
Aerosp. Electron. Syst. 1998, 34, 103–123. [CrossRef]

33. Saidani, W.; Morsly, Y.; Djouadi, M.S. Multiple sensors and JPDA-IMM-UKF algorithm for tracking multiple maneuvering targets.
Int. J. Electr. Comput. Eng. 2017, 1, 1494–1499.

34. Rachman, A. 3D-LIDAR Multi Object Tracking for Autonomous Driving. Doctoral Dissertation, Delft University of Technology,
Delft, The Netherlands, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.3390/s19061474
https://www.ncbi.nlm.nih.gov/pubmed/30917566
https://doi.org/10.1109/7.640267

	Introduction
	Related Research
	System Overview
	KUL-Seg
	Intensity Rendering and 3D Points Interpolation
	Object Tracking
	Experiments
	Conclusions
	References

