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Abstract 
 

This paper presents a new wavelet-based algorithm for three-phase induction machine fault 

detection. This new method uses the standard deviation of wavelet coefficients, obtained from n-

level decomposition of each phase, to identify single-phasing of supply and unbalanced stator 

resistance faults in three-phase machines. The proposed algorithm can operate independent of the 

operational frequency, fault type and loading conditions. Results show that this algorithm has 

better detection response than the Fourier Transform-based techniques.  In addition, a user-

friendly graphical interface was designed. 

 

1. Introduction 
 

Induction machines are among the most widely used devices in industrial processes today. They 

are generally viewed to be robust and well suited for a wide ranging applications.  This 

increasing critical role in industrial processes underscores the level of attention given to early 

detection or diagnosis of potentially destructive faults, as well as the extensive research time 

devoted to the subject over the past decade. 
 

Methods for prediction and detection of motor faults are extensively documented in research 

literatures; many of these methods use stator currents and voltage signals in some form along 

with signature algorithms to determine or predict fault conditions in an induction motor.  A very 

organized summary of developments in motor signature analysis tools and techniques over the 

last two decades is presented by Benbouzid in
1
. Classical signature analysis techniques primarily 

use Fourier transform methods to examine current waveforms in details and then establish some 

criteria for classifying a range of rotor and stator faults.  The trend in signature analysis is 

moving towards application of non-traditional computational techniques in the subject areas such 

as finite elements and more recently wavelet signal processing
2-5

.  Induction motor fault 

diagnosis using Fourier techniques is well established
6
.  However, the frequency resolution 

required dictates a need for a large amount of data. 
 

This paper presents a novel induction motor fault detection system that does not require a large 

amount of data such as in the Fourier analysis techniques.  The method uses wavelet analysis to 

classify winding related motor problems such as open winding and winding resistance.  The 

reduction of these memory requirements allow the implementation of this system with lower cost 

hardware and permit the algorithm to be run in near real-time. In addition, a graphical user 

interface (GUI) was developed for student-friendly usage. 

 

2. Overview of the Wavelet Transform Technique 

 

Fourier analysis techniques provide significant information on frequency components of signals 

under study, but offer no information regarding where a particular frequency was located in the 

time axis.  In contrast, wavelet transforms offers time-frequency information of signals under 
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study, thereby making wavelet transform methods more comprehensive than Fourier transforms 

in signal analysis.  
 

Wavelet coefficients, at a first level of decomposition, are obtained from a signal under analysis 

by applying a mother wavelet. The process can be repeated if the mother wavelet is scaled and 

translated. The mother wavelet function (denoted by � �ΤΖ ) and its scaling function (given as � �ΤΚ ) 

describe a family of functions which are required to satisfy a number of criteria.  It must have a 

zero mean denoted as in (1). 

 � � �Τ ∆ΤΖ
�δ

�δ
�♦             (1) 

 

In addition � �ΤΖ  must have a square norm of one as denoted in (2). 
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These requirements are ensured by having a mother wavelet that is absolutely and square 

integrable.  The mother wavelet forms a family of wavelets when the function is scaled and 

translated in the time domain. When a mother wavelet is translated by a factor of a and scaled by 

a factor of b,  it can be expressed in a generic form as follows
7
: 
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The use of these wavelet functions provides a robust method of analyzing non-stationary signals 

to provide both frequency and time information. In practice, wavelet coefficients are obtained by 

a filter bank approach, with a low-pass filter and its complementary high-pass filter.  

 

3. Application of Wavelets in Induction Machine Fault Diagnosis 

 

The use of wavelets for induction machine fault detection is documented in various journals.  

They have been shown to yield satisfactory results for detecting electrical and mechanical faults
4
.  

Wavelet decomposition results in useful data contained in ‘details’ and ‘approximate’ parts as 

shown in the simplified block diagram of Fig 1.  The ‘approximation’ signal can be further 

decomposed into a new set of ‘approximation’ and ‘details’ signals and continue until n 

decomposition levels are obtained. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  First level decomposition 
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The ‘details’ signal contains high frequency information whereas the approximate part contains 

signal data with the low frequency components. Computing this decomposition to n levels results 

in those higher detail parts being removed, thereby reducing the overall frequency characteristics 

of the resulting data. This implies that lower levels of decomposition provide detail data that 

contains the highest frequency components.  For the induction machine signature analysis, the 

higher frequency wavelet components represent system noise or harmonics due to the input 

power inverter.  Therefore decomposition levels higher than one are of interest in the technique 

presented in this paper. 

 

Fault patterns are obtained from the information yielded by the n-level wavelet decomposition 

through a variety of strategies, including filter banks and classification algorithms
[8]

.   In this 

study a statistical analysis of the wavelet ‘details’ coefficients is used as the basis for fault 

detection.  From the mean or standard deviation of the wavelet coefficients it could be inferred 

that the average magnitude of frequency components are present in the signal under analysis. 

 

Each level of the signal detail coefficients provides frequency resolution that allows unique 

signature characteristics to be deduced. That is if the n-level detail coefficients are analyzed then 

each level represents the spatial information for a small range of frequencies. This allows the 

analysis of the frequency differences and their time location in the signal under analysis.  In this 

paper, the standard deviation of the wavelets coefficients is used to identify frequency anomalies 

in a given time range in the input data set.  The detection algorithm is discussed in details in the 

next section of this paper. 

 

 

4. Proposed Algorithm for Fault Detection 

 

The algorithm presented in this paper uses the standard deviation of wavelet coefficients to 

detect single-phasing of supply (loose connection) and unbalanced stator resistance faults in 

three-phase machines. These types of faults tend to lead to a greater concentration of low and 

midrange frequency anomalies. An attempt to detect these faults with frequency domain 

techniques alone discards the cyclic nature of reoccurring patterns with each period. The 

analytical method proposed is independent of motor operating frequency. The basic values used 

for the decision process are referred to in this paper as the Standard Deviation of Wavelet 

Coefficients (SDWC).  These values are calculated per phase by performing an n-level wavelet 

decomposition, then the standard deviation of these coefficients is obtained. 

  

To detect the fault type, the maximum and minimum SDWC values are compared between the 

three phases. The ratio of these values is then used to detect the fault type. The ratio of the 

SDWC between phase 1 (minimum) and phase 2 (maximum) is given by  < >�
� ���Χ 
 . For 

example, if a sample set in phase A contains the greatest SDWC and phase B contains the lowest 

SDWC at half of the value of phase A, then this would produce a SDWC ratio of ���!
∀Χ � . 

This value is used to test each data set to determine the presence of a winding fault.  In the test 

cases presented in this paper, the optimal threshold values to determine the proper ratio for 

different faults were determined through experimentation. These ratio values will be denoted as 
(ΙΓΗΧ , −Ι∆Χ , and ,ΟΩΧ for the three signature types detected. That is, (ΙΓΗΧ is the SDWC range 
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for a decision of no fault, −Ι∆Χ is the range for a winding resistance fault, and ,ΟΩΧ  is the range 

for open winding diagnosis. The decision process is shown functionally in the flow chart of Fig. 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flow chart of the algorithm 

 

 

This algorithm requires no learning and detects faults based on the differences between phases 

alone. The proposed diagnostic technique is tested using 63 different line-voltage and current 

measurements obtained from a set of identical 3-horsepower three-phase induction motors 

subjected to various types of faults.  The Reverse Biorthogonal (rbio6) wavelet available in 

MATLAB
®

 was used for testing the proposed algorithm. 
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5. Experimental Results and Fault Detection 

 

Data samples were gathered from input line voltages and currents of four different 3-horse-

power induction motors fed through a three-phase inverter.  The inverter offered the flexibility of 

adjusting machine supply frequency to 30, 60 and 80 Hz to facilitate testing of the detection 

algorithm under varying machine supply frequencies. The electrical fault studies included 

unbalanced supply voltage, single-phasing of supply and unbalanced stator resistance. 

Measurements where recorded using a digital storage oscilloscope.  

 

The faults were created by disconnecting the winding entirely or inserting a 15 Ohm resistance 

on the phase. These faults were all produced on the induction machine phase B. A graphical user 

interface (GUI) was created in MATLAB
®

 to offer a convenient environment for users to run the 

detection algorithm and determine the fault type from test files generated following fault 

simulation.  The GUI is shown in Fig. 3. 

 

 

Fig 3. GUI interface for the fault detection algorithm 
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The criteria used for fault detection was empirically determined using the input data set. The 

value used for n, the wavelet decomposition level, was ten, a value that will greatly magnify the 

frequency differences. This is considered a good choice because frequency differences for 

relatively low frequency systems such as the machines under study exist in lower bands.  

Decomposition coefficients at the lower levels simply compare electrical noise.  The ranges used 

for ,ΟΩΧ , −Ι∆Χ , and (ΙΓΗΧ  where chosen to be [0 - 0.1], [0.1 - 0.4], and [0.4 - 1] respectively.  

Sixty-three cases with 10,000 data points each were used for testing this detection algorithm. 

This data was wavelet-decomposed and the standard deviation of the wavelet coefficients for 

each phase obtained.  The wavelet coefficients for each phase is summarized and shown 

graphically in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Normalized Standard deviation of Wavelet coefficients for all data samples 

 

Fig. 4 shows the values of the normalized standard deviation of the wavelet coefficients for each 

phase.  At first observation, the data seems arbitrary. Since the data set contains many sets with 

faults, therefore it is expected a trend could be seen in phase B. This however shows very little 

information about the type of fault.  The data was then run through the algorithm to detect the 

fault conditions.  The faults were detected correctly for every case. The algorithm was set up to 

routinely sort the different samples based on fault type. This allowed for new plots to be 

constructed showing the similarities between data sets processing similar faults. Figures 5, 6 and 

7 shows the cases with no fault, winding resistance fault and open winding faults respectively. 

These plots clearly show the trends of the input data.  

 

The data could also be presented looking at the criteria originally used to determine the fault 

type, which is the ratio of the minimum to the maximum standard deviation of the wavelet 

coefficients.  Fig. 8 shows the data samples as they were analyzed where the no fault and the two 

fault conditions clearly demonstrate distinct behavior. The blue bars show the no fault condition, 

the green bars illustrate winding resistance faults and the smaller red (difficult to see at, the 

bottom of Fig. 8) bars depict the open winding resistance fault. Notice that the fault conditions 

yield a large difference in coefficients, and therefore smaller ratios (shorter bars). Again this data 

clearly shows that a correct detection can be obtained by using this algorithm. 
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Fig. 5 Wavelet coefficients showing no winding fault 

  

Fig. 6 Wavelet coefficients showing 

winding resistance fault 

Fig. 7 Wavelet coefficients showing open 

winding fault 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Relative ratio between phases of standard deviation of wavelet coefficients 
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6. Comparison with Fourier Transform Techniques 

 

The field of induction machine fault detection has been generally based on the use of the Fast 

Fourier Transform (FFT). This technique is well established and greatly researched in the 

literature, see
9
 for an overview. The algorithm proposed here has key advantages over classic 

FFT solutions. The use of FFT-based motor fault detection requires that frequency resolution be 

very good, generally less than 1 Hz. To achieve this resolution the data set used must be very 

large and therefore requires a large amount of memory for processing. The algorithm presented 

here performs without that requirement, in fact attempting an FFT-based fault detection 

algorithm on the same data set used in the wavelet-based algorithm, yields inconclusive results. 

This is illustrated in Fig. 9 where the data presented previously (with a known fault) has very 

poor frequency resolution around the operating frequency (60 Hz); note that each phase is shown 

in the three colored lines. Note that while a reduction of memory requirements were noticed, 

exact comparisons were not carried out. 

 

 
 

Fig. 9 FFT of motor current with known fault condition 

 

 

7. Conclusions 

 

Wavelet decomposition is a superior method of signal analysis in time varying situations due to 

spatial data retention. Analysis using wavelets produces both frequency and spatial information 

providing a robust solution for motor fault detection. Induction machines account for the 

majority of industrial equipment in use today and proper operation is of utmost importance. 

 

The fault detection algorithm discussed in this paper could identify a fault present in motor that 

is still operational, therefore can provide preventive maintenance schedule. Faults such as those 

discussed in this paper should be detected before they cause the machine to completely fail and 

avoid total system degradation. Detecting these faults in a timely manner is vital to maintaining a 

properly functional system. The proposed method offers a reliable solution for detecting the fault 

types of interest. This algorithm was tested on over sixty data samples, on four different 

induction machines and detected faults with 100% reliability. This algorithm is independent of 

operational frequency, fault type, and loading. In addition, the algorithm also requires no training 

and provides a more robust solution compared to systems simply comparing characteristics to 

known healthy values. That allows this system to work for many different motors and account 

for normal motor wear that may cause false positive detection in some algorithms since only the 

differences between windings is used as a detection criteria. 
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