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Abstract— Piezoelectric bending actuators are an attractive
option for driving microrobots due to their light weight,
scalability, ease of integration and high bandwidth. However,
the only existing energy or power output measurements for
piezoelectric bending actuators have been extrapolated from DC
values or unloaded AC values and are most likely overestimates.
For microrobot applications such as flapping flight, accurate
measures of power density are critical. In this work, to
properly measure the energy output of a 10mg piezoelectric
actuator, a custom dynamometer is designed and constructed
to directly measure the power output at various frequencies and
conditions. The dynamometer can simulate a pure resistive load
at resonant frequencies from 1 to 100Hz. Due to low internal
damping and fracture limits, actuators cannot be run in the
matched condition at high fields (> 1 V/µm). Using the device,
energy output per cycle at 1.6 V/µm was measured to be a
maximum of 19.1 µJ/cycle (232 µm amplitude, 30Hz), giving a
delivered energy density per cycle of 1.89J/kg. Internal actuator
damping was measured at 1 V/µm to account for an energy
loss of only 0.21µJ per cycle (232 µm amplitude, 30Hz).

I. INTRODUCTION

Piezoelectric bending actuators have been utilized in many

areas of robotics, such as to flap the wings of a micro air

vehicle [1], to actuate control surfaces for indoor slow fliers

[2], and even for motors for legged microrobots [3],[4].

However, in dynamic robots where piezoelectric actuators

are the main source of actuation, the power output of these

actuators is still unknown.

Several researchers have addressed some issues regarding

power output and power density for piezoelectric actuators.

In the field of piezoelectric transformers, efficiency limi-

tations are discussed in [5]. Pomirleanu [6] has reported

power outputs for piezoelectric stack actuators, but only for

quasi static conditions (which in our experience is likely an

overestimate). Near [7] has extrapolated constituent equa-

tions to predict power output for popular bimorph and other

piezoelectric actuators (such as RAINBOW). In [8], energy

densities for the same 10mm bimorphs that we are testing

in this work are predicted from DC measurements.

It is widely known that the properties of piezoelectric

actuators (such as d31 and the Young’s modulus) can change

drastically when the actuators are subject to high fields or

high displacements [9] [10]. In addition, extrapolating behav-

iors as simple as maximum strain in the piezoceramic (such

as the large strain values found in [11]) are invalid since these

values are only internally induced strain; external mechanical

strain can make the piezoceramic fail prematurely, especially

This work was supported by NSF IIS-0412541

when it is simultaneously actuated via an electric field. The

effect of nonlinearities such as creep, hysteresis, saturation,

etc. can obviously reduce power output of piezoelectric

actuators, but to the authors’ knowledge this has not been

quantified at sufficient field (only up to 0.1V/µm in [10]).
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Fig. 1. 10mg piezoelectric bending actuator

This work focuses on measuring the power output of the

10mm piezoelectric bending actuators discussed in [8], used

to drive the wings of a 100 mg flapping wing air vehicle [1].

These 10mg actuators are composed of PZT-5H actuation

layers with a carbon fiber elastic layer and glass fiber/carbon

fiber extension as shown in Fig. 1. In order to measure the

power output and delivered power density for these actuators,

a custom dynamometer was designed to actively measure

force and displacement of an actuator and therefore compute

power output. The dynamometer contains another actuator

that can actively simulate varying loads (varying stiffness,

mass, and damping). Our goal is to run our device under test

(DUT) at frequencies up to 100Hz and explore the actuator’s

behavior as frequency, displacement, and voltage drive level

are varied.

II. DYNAMOMETER DESIGN

To control the applied force on the DUT running at 100Hz,

we need another (larger) actuator with a bandwidth above

the desired operating frequency. In order for piezoelectric

actuators to run in a reasonably efficient way, we must run

the DUT as if it was driving a load at resonance [12]. In

order to do so, the Driver actuator in the dynamometer must

simulate various stiffnesses and masses, in addition to acting

as a desired damping value. This allows us to choose the

resonant frequency and oscillation amplitude of the simulated

load below the overall system resonant frequency.

The driver actuator (another, larger piezoelectric bimorph)

is attached to the DUT via a lightweight spring with a known



spring constant. Custom optical position sensors accurate to

about 1 µm are used to monitor the position of both actuators

[13]. The setup appears in Fig. 2.
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Fig. 2. Schematic of proposed dynamometer

A. Dynamic Model of Piezoelectric Bending Actuator

A piezoelectric bending actuator can simply be modeled

as a force source (representing the piezoelectric plate) in

parallel with a spring (representing the elastic layer) [14].

At high frequencies, we must also include the damping

losses (coming from a variety of sources such as the matrix

in the composite layers, hysteresis, and other piezoelectric

nonlinearities) and mass of the actuator. In this case, the

mass term is an equivalent mass derived from the distributed

mass of the actual actuator.
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Fig. 3. Second order model of a cantilever bending actuator

This simple second order model is far from an exact

model for the actuator in that it does not contain any direct

expressions for creep, hysteresis or saturation. However, if

we look at the frequency response of the actuator subject to

an input of 10V amplitude and the frequency response of a

model fit with appropriate stiffness, mass, and damping (via

least squares, see Table II-A), one can see that the second

order model is a fair approximation of our bending actuator

(Fig. 4). The resonant peak of the actuator is significantly

wider than the model’s and slightly asymmetric; this can be
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Fig. 4. Frequency response (magnitude Bode plot) for 10mm bimorph
(10V amplitude drive or 0.08V/µm)

TABLE I

SECOND ORDER BEST FIT MODEL PARAMETERS

Parameter Fit Value

k 250N/m
b 5.9 ∗ 10

−4Ns/m
m 6.0 ∗ 10

−7kg

explained by softening in the actuator at high displacements,

which of course the model does not account for. Up to the

resonant peak, however, a second order model is more than

sufficient to properly predict the frequency response of the

actuator.

B. Dynamic Model of Entire Dynamometer

If we use our simple model for a single piezoelectric

bending actuator in Fig. 3 and apply it to our proposed dy-

namometer in Fig. 2, we have the complete model in Fig. 5.

Here we have included mass and damping in the connecting

spring (functioning as our force sensor) for completeness.

FDUT FDriver

kDUT

bDUT

mDUT

kDriver

mDriver

bDriver
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DUT Spring Driver

bsp

ksp

msp

Fig. 5. Block diagram of dynamometer

The work output of the DUT in the setup of Fig. 5 can be

expressed as



W =

∫ xf

x0

Fdx1 (1)

where F is the force output of the DUT. If we express this in

terms of velocity and time (for oscillatory inputs), we have

W =

∫ tf

t0

Fv1dt (2)

where W here is energy output per oscillation cycle. If we

represent the actuator positions x1 and x2 as the sum of their

sinusoidal harmonics

x1 =

∞∑
n=1

An sin(ωnt+ φn) (3)

x2 =

∞∑
n=1

Bn sin(ωnt+ ψn) (4)

v1 = ẋ1 =

∞∑
n=1

Annω cos(ωnt+ φn) (5)

and we express the force output of the DUT as, in general,

F = ksp(x1 + x2) + bsp(ẋ1 + ẋ2) +msp(ẍ1 + ẍ2) (6)

and substitute our expressions for positions, velocities, and

forces into (2), we have the energy output of the DUT

in terms of the energy in the spring mass, damping, and

stiffness:

Wk = AnBnπksp sin(φn − ψn) (7)

Wb = Anπωbsp(An +Bn cos(φn − ψn)) (8)

Wm = AnBnπmspω
2 sin(φn − ψn) (9)

where Wk is the energy delivered to the spring element,

Wb is the energy delivered to the damping element in the

connecting spring, and Wm is the energy delivered to the

mass of the spring.

The total energy output per cycle (Wn) and total power

output P of the DUT can then be written as

Wn = Wk +Wb +Wm (10)

P =
∞∑

n=1

Wnnω

2π
(11)

If msp and bsp are significant, to properly measure power

output we must include Wb and Wm from (8) and (9).

However, at low frequencies, these two terms are very small

and we won’t need the values for msp and bsp which are

difficult to extract. It is also important to remain at high

enough frequency that creep effects are negligible. We have

noticed creep in these actuators up to around 10Hz; we will

include a factor of safety here and assume that at 30 Hz creep

effects are negligible but we are still at low enough frequency

that Wb and Wm are negligible compared with Wk. Note that

the driver damping, inertia, and spring properties do not enter

in the energy delivery calculations.

III. DYNAMOMETER CONSTRUCTION

Constructing the driver actuator is quite straightforward;

it is virtually the same process as for our small DUT except

the size is scaled up. The connecting spring is a challenging

design problem, however. First, the spring should have low

mass and damping so that we can neglect the effect of its

mass (msp in (9)) and damping (bsp in (8)). The spring also

needs to be linear. We also need it to be removable from the

DUT and driver actuator so that the DUT can be changed.

Finally, the spring must connect to both actuators in such a

way that their bending does not cause any type of binding

in the system. In theory, this is simply achieved by putting

pin joints at the attachment points of the two actuators (as is

shown in Fig. 2), but in practice at this scale pin joints have

hysteresis and friction and also weigh too much.

The solution to the spring design problem is shown in Fig.

6, with the actual constructed spring shown in Fig. 7. Our

spring is made of carbon fiber bent around a mold during

curing, then glued to two separate, smaller arcs cured in the

same manner. The main span is the linear spring element;

the two arcs at the end of the spring relieve the moment

due to bending of the two actuators by employing Kevlar

fiber, strung tightly between the arcs. The Kevlar fiber is

very compliant to moments since it is made up of several

threads that are wound together. Since the actuators are

not perfectly parallel, the string also serves to allow small

off-axis deflections. Stiff carbon fiber planks were glued

permanently onto the Kevlar string to attach the planar ends

of the actuators with a low melting point plastic.

Spring Element

Kevlar String

10mm

Attachment Planks

Fig. 6. Schematic of custom dynamometer spring

Fig. 7. Front and side view of carbon fiber dynamometer spring

The entire dynamometer with both actuators, connecting

spring, and position sensors is shown in Fig. 8. Horizontal



and vertical micropositioning stages were employed to line

up the spring prior to attachment. To calculate the spring

constant of our connecting spring, which can vary slightly for

different attachments, we run each DUT once connected and

measure the Driver deflection. Since we always use the same

Driver, we measured its stiffness a priori at a known drive

voltage corresponding to the dynamometer neutral position

(kDriver = 475 N/m at 125V). If our DUT tip displaces x1

and our driver (which is passive for this test) displaces x2 and

has stiffness kdriver, the stiffness of the connecting spring

ksp is

ksp =
kdriverx2

x1 − x2

(12)

Noticing that we have a subtraction of two rather small

displacements in the denominator of this expression and a

possibly small displacement in the numerator, we matched

the stiffness of the connecting spring to our driver actuator so

that the expression in (12) does not vary widely with small

displacement errors (typical ksp = 400 N/m).

X Adjustment

Stage

Y Adjustment

Stage
DUT

Driver

Connecting Spring

Optical Position Sensors10mm

Fig. 8. Picture of dynamometer test setup

IV. DYNAMOMETER VERIFICATION

A. Bandwidth Verification

We tested the bandwidth of the entire system when the

DUT and Driver are simultaneously connected through ksp.

As can be seen from Fig. 9, the resonant frequency of

the system is approximately 320Hz, which satisfies our

requirement of being over 100 Hz. However, the system

has a very high mechanical Q; this means that it will be

very easy to excite the main resonant mode when driving at

lower frequencies. Thus to avoid resonances from 2nd and

3rd harmonics of the drive, we use drive signals < 100Hz.

Note that the positions x1 and x2 are 180 degrees out of

phase at DC; this is due to the positive directions of the two

displacements shown in Figure 2 being in opposite directions.

B. Verification of Maximum Power at Resonance

At resonance, the spring and mass of a dynamic system

produce and absorb no net energy per cycle. Under this
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Fig. 9. Bode plot driving the Driver actuator of the dynamometer. DUT
plot is for position x1 of Fig 2 and Driver plot is for position x2 of Fig 2.

condition, the actuator only performs work on its internal

damping and the damping of the load. Therefore, if we

calculate the energy output per cycle of the DUT from (7)

(we only include the spring term for now because msp and

bsp are negligible at 30 Hz), we should see a peak when

the input voltage to the DUT is 90 degrees out of phase

with the position of the DUT. As seen in Fig. 10, indeed the

power output of the DUT is maximum at 90 degrees within

an allowable phase error (about 1 degree).

Energy Output of DUT vs Input and Output phase

Phase Between DUT Input Voltage and DUT Position (◦)

E
n
er

g
y

O
u
tp

u
t

p
er

C
y
cl

e(
µ

J)

2.8

3.2

3.6

4.0

4.4

4.8

30 60 90 120 150

Fig. 10. Verification of maximum power at resonance (90 degrees), 1
V/µm

C. Sample Work Loop

A work loop was plotted in Fig. 11 to further verify the

system’s behavior. The standard work loop curve is observed

(see [15], [16] or [17] for more on actuator or muscle work

loops). The useful work which we will report later in this

paper (for this trial 5.9 µJ per cycle) is the area inside the

work loop of Fig. 11. The shape of the work loop is not

perfectly symmetric due to expected hysteresis.



Work Loop of DUT at Resonance
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Fig. 11. Work loop of DUT at 125V drive, 150 µm amplitude of
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V. POWER OUTPUT MEASUREMENTS

From [8], we expect our 10mm, 10mg actuators to fracture

at an average motion amplitude of 190 µm. To make sure

each actuator survives all the tests, we include a factor of

safety here and only run the DUTs up to 150 µm of am-

plitude. The measured power output at simulated resonance

(30Hz) for a typical 10mm actuator is shown in Fig. 12.

Energy Output of Typical DUT vs Motion Amplitude
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Fig. 12. Typical power output curves for 10mg bimorph

Several interesting observations can be made from Fig.

12. First, one can see that the power output is saturating as

we drive the DUT at very high (> 125V ) voltages. Even

though the power output is still modestly increasing, we

do not expect to see much additional power output above

200V amplitude drive (1.6 V/µm) and did not test above

this amplitude.

Using a simple linear system analysis, we fit the data

in Fig. 12 to our linear model. At resonance, the internal

force source of the actuator only does work on its own

internal damping and the simulated damping introduced by

the driver (i.e. no net work on the mass and spring elements).

If we denote the internal actuator damping as bact and the

simulated load damping bload, then the useful work output

of the DUT is given by

W = bloadA
2

1
ω2

∫ T

0

cos2(ωt+ φ1) = bloadA
2

1
ωπ (13)

At our resonance condition,

F = (bact + bload)v1 (14)

Using another assumption of a linear system, the force

source of the DUT in Fig. 5 is sinusoidal and only depends

on the voltage on the actuator, or

F = F (V ) cos(ωt+ φ1) (15)

Combining with (14) and (13), the work output of the

actuator for a given voltage drive is

W = [πF (V )]A− [πbact]A
2ω (16)

We fit this model via least squares to the data in Fig. 12.

The curves appearing in Fig. 12 are work output parabo-

las, reaching a maximum when the load damping matches

the internal actuator damping. However, the peak of these

parabolas would only be observed if the actuator could

withstand much more than 150 µm of motion; we are

only observing the very front edge of each parabola. Since

in all these drive amplitudes the parabola would peak for

only much greater amplitudes, we cannot accurately fit the

curvature (the squared amplitude term of (16)) since the

linear term in (16) is dominating. Even though we expect the

internal damping of the actuator to vary with drive voltage,

we cannot accurately extract bact from this analysis method.

We measured energy output for 5 actuators. As can be

seen from Fig. 13, some deviation is observed likely due to

hand assembly. The linear part of (16) was fit to the actuator

data via least squares. The error from each data point to

the least squares fit mean was calculated and divided by the

least squares fit value to find a percentage error vector. The

standard deviation of this percentage error vector is given in

Table II.

TABLE II

ERROR CHARACTERISTICS FOR LEAST SQUARES FIT TO DATA IN FIG. 13

Drive Amplitude Fit Std. Dev. of % Error Energy/Volt (µJ/V)

50V 7.2 0.048

100V 8.3 0.052

150V 6.2 0.053

200V 7.7 0.047

A. Extrapolation to Higher Frequencies

All results presented thus far were run at 30 Hz to avoid

limitations discussed in Section IV. To find the behavior

of the actuator at higher frequencies and to verify that we

do not need to include the spring mass and damper energy



Energy Output of 5 DUTs vs Motion Amplitude
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Fig. 13. Power output for 5 different 10mm bimorphs

terms ((9) and (8)), the DUT was driven at a constant voltage

amplitude and kept at a constant displacement (in this case,

125V amplitude drive, 100 µm amplitude displacement). The

drive frequency was varied between 20 and 100Hz in vacuum

and air (to eliminate the possibility of air damping). Energy

output of the DUT was taken at resonance for each frequency

as seen in Fig. 14.
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Fig. 14. Behavior of dynamometer with increasing frequency

In Fig 14 we are again measuring the work done per

cycle on the load damping, given by (13). In other words

we are just counting the work done on the load damping,

not the work done by the DUT on its own internal damping.

However, since we are keeping the displacement and voltage

drive constant, for all frequencies we would expect that the

work output per cycle is a constant equal to the total work

done by the internal force source of the DUT, or

WTotal = Wbload
+Wbact

= C (17)

We can then extract the damping in the DUT actuator,

bact, through a least squares fit of the slope of the data in

Fig. 14, which is also plotted. We find when we average the

two slopes of the lines, at 125V drive, bact = 0.0066Ns/m.

This value corresponds only to a 3% loss in energy output

from 20Hz compared with 100Hz for our 100 µm amplitude,

125V trial. The authors would like to note that again the

mass and damping of the spring were neglected, so strictly

speaking this value of bact is an upper bound, but the mass

of the spring is very small and its damping is most likely

negligible simply through its construction.

VI. IMPROVEMENTS TO ACTUATOR PERFORMANCE

Recent findings in [18] has suggested that a special cutting

technique could reduce the size of edge cracks along our

bimorph actuators which govern their fracture. The technique

involves only scoring the PZT-5H using laser micromachin-

ing, then cleaving the edge on the score line. When the

actuators were assembled, the cleaved edge (most likely

containing fewer or smaller microcracks) faced outward on

the actuator, where the maximum strain occurs. In principle,

this could improve the amplitude at which the actuators

fracture and therefore increase their power density through

higher displacement.

Energy Output of Improved vs Standard Actuators

DUT Motion Amplitude (µm)

E
n
er

g
y

O
u
tp

u
t

p
er

C
y
cl

e(
µ

J)

00

4

8

12

16

20

40 80 120 160 200 240

Standard Actuators

Improved Actuators

Fig. 15. Comparison of improved actuator and standard actuator perfor-
mance. Both were driven at 200V amplitude.

As seen from Fig. 15, the performance of the actuators

improved significantly, and not just by increasing the avail-

able displacement before fracture. In fact, the power output

of the actuator was significantly better at all amplitudes. The

authors hypothesize that since the actuators are very small

(1.5mm wide at the base), edge crack effects are probably

very significant. Thus we can improve our performance

tremendously by reducing edge cracks through the mentioned

cleaving process. Fig. 15 includes results from three of

our improved actuators, but the driver actuator, even when

increased in size from previous tests, could not test these

actuators to fracture. Therefore, the maximum energy output

per cycle shown in Fig. 15 of 19.1 µJ/cycle is only a lower

bound until the actuators can be tested all the way to fracture.

The standard actuators were easily fractured if tested beyond

150 µm.



VII. CONCLUSION AND FUTURE WORK

We have achieved several milestones in measuring the

power output of miniature piezoelectric bending actuators. To

our knowledge, we have made the first active measurement

of force and displacement of piezo bending actuators up to

100Hz. In addition, our dynamometer has the capability of

simulating any reasonable real or imaginary load on the DUT.

We used this capability to simulate actuators driving a load

at resonance.

Regarding the power output of our piezoelectric actuators,

we have shown that the internal damping of the actuator is

not a significant source of loss. We have also shown that for

maximum power output, the actuators should be run at very

high voltage amplitudes (200V or 1.6 V/µm). Our maximum

energy output results are summarized in Table III. The reader

is encouraged to note that the predicted value for energy

density in Table III is itself extrapolated from DC predictions

and does not include losses in the material; therefore it is

most likely not attainable since the actuator is oscillating.

TABLE III

ENERGY OUTPUT CHARACTERISTICS FOR 10MG PIEZOELECTRIC

BIMORPH ACTUATORS

Parameter Predicted in [8] Standard Improved

Mass (mg) 11.72 10.1 10.1

Energy Output (µJ/cycle) 27.5 9.5 >19.1

Energy Density (J/kg) 2.35 0.94 >1.89

bact @ 1V/µm (Ns/m) 0.0052 [14] 0.0066 –

We have shown that the actuators cannot be run with a

matched load damping for maximum power transfer; this

would require that the actuators go through high displace-

ments that have been shown to cause fracture. However,

increasing the actuator amplitude before fracture, done by

reducing edge microcracking, directly leads to higher energy

outputs. When this was done through a new manufacturing

process which involved cleaving the PZT-5H, both energy

output at lower amplitudes and increased amplitude at frac-

ture were indeed observed. However, the actuators were not

tested all the way to fracture, so the energy output shown

(19.1 µJ/cycle) is only a lower bound.

Finally, we compare our actuator to the flight muscle of

an actual flying insect (a typical Dipteran) with the estimates

of Table IV (data from [19]). The improved piezoelectric

bending actuator, operating at 275 Hz (a typical flapping

frequency of our micromechanical flying insect prototype)

at 200V drive would produce 4.7mW of useful work output

(including a 0.53mW or 11% loss from the internal damping

of the actuator). This yields a power density of 476W/kg,

easily beating the estimate for Dipteran muscle power density

in Table IV. This also compares favorably to other available

millimeter scale actuators such as the rotary piezoelectric

motor of [20] with a power density of 81W/kg.
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TABLE IV

ESTIMATE OF DIPTERAN INSECT POWER GENERATION

Typical Power
Density

% Muscle Mass
Implied Muscle
Power Density

70 W/kg 35 200W/kg
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