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Abstract In the first part of the article, we discuss the quantum adi-
abatic theorem and explain the quantum adiabatic approach
We analyze the computational power and limitations of to computation. Next, we clarify the connection between
the recently proposed ‘quantum adiabatic evolution algo- the continuous time evolution of adiabatic computing and
rithm’. the quantum circuit model with its discretized time. We
do this by describing a way of efficiently simulating quan-
tum adiabatic algorithms with a network of standard quan-
tum gates. After this exposition, we explore three question
about quantum adiabatic evolution algorithms.
Can we apply the exponential lower bounds for quan-
Quantum computation is a revolutionary idea that has tum search [2] to conclude that the adiabatic quantum al-
fundamentally transformed our notion of feasible compu- gorithm for 3SAT must take exponential time? More con-
tation. The most dramatic example of the power of quan- cretely, at a high level of abstraction, the adiabatic quiant
tum algorithms was exhibited in Shor’s celebrated quan- algorithm for 3SAT may be viewed as some quantum pro-
tum algorithms for factoring and discrete log [13]. Groser’  cess that gets information about the 3SAT instance only by
quantum search algorithm [10] gives a quadratic speedup(quantum) queries of the following type: given a truth as-
for a much wider class of computational problems. Despite signment, how many clauses of the formdaare not sat-
numerous attempts in the last few years, it has proved toisfied? We prove that there is a (classical) polynomial time
be a difficult challenge to design new quantum algorithms. algorithm that can reconstruct the 3CNF formdlay mak-
Recently, Farhi et al. [6, 7] proposed a novel paradigm for ing polynomially many queries of this type. It is somewhat
the design of quantum algorithms — via quantum adiabatic surprising that this question does not appear to have been
evolution. This paradigm bears some resemblance to simustudied in the context of relativization results for NP. lr o
lated annealing, in the sense that the algorithm starts fromcontext, it rules out any query complexity based (quantum)
an initial disordered state, and homes in on a solution (by lower bound for the adiabatic quantum solution of 3SAT.
what could be described as quantum local search) as a pa- |s adiabatic quantum computing really quantum? We
rameter 5* is smoothly varied fron0 to 1. The challenge  give an example of an adiabatic quantum algorithm for
lies in showing that the process still converges to the de-searching that matches the optimal quadratic speedup ob-
sired solution with non-negligible probability if this 18- tained by Grover's search algorithm. This example demon-
tion is made in polynomial time. In [7, 8], this paradigm  strates that the ‘quantum local search’, which is implisit i

was applied to the Exact Cover problem (which has a closethe gdiabatic evolution, is truly non-classical in natuced
connection to the 3SAT problem), and using computer sim- 5 computational viewpoint.

ulations it was shown that the algorithm works efficiently
on small randomly chosen instances of this problem.

1. Introduction

Finally, we give a simple example of a computational
problem on which the adiabatic quantum algorithm prov-
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to the global minimumf(1™) = —1. We prove that for  introduce a delay factor(s), which determines the rate at
such instances, the adiabatic quantum algorithm requires a which the Hamiltonian is modified as a functionofNow
exponential slowdown im. We do this by showing that the Schrodinger equation inequals

the gap between the minimum and second eigenvalue of the

Hamiltonian of the system is exponentially small. In an up- Liy(s))y = —ir(s)H(s)[(s)).
coming paper [5], we generalize these techniques to show a
similar exponential slowdown for 3SAT. The crucial quantity for this transformation is the gap be-
tween the two smallest eigenvaluesHfs), which we de-
2. The Quantum Adiabatic Theorem note byg(s). It can be shown that a delay scheduleith
- : . I H (s)ll2
The Hamiltonian of a physical system gives a complete T(s) > W

specification of the time evolution of this system. At a

given timet, let ¢(¢) denote the state of the system un- s sufficiently slow’ for the adiabatic evolution from(0)

der the influence of the Hamiltoniaki (¢). The differential to $(1). As a result, the total delay of this process will
equation that describes the time evolution is the well-kmow be of the orderfl (s)ds. For most Hamiltonians it is
s=0 )

Schrodinger equation: too difficult to determine the gag(s) for everys. If this

il (t — HO®), is the case, we can also look at tinimum gaymin =
el () @) min, g(s) and the Maximuni pax := max; || & H(s)]2,
where i is Planck’s constant ~ 6.63 x 10~3% Joule- and obtain the adiabatic evolution with the constant delay

second, divided b2r. A Hamiltonian is described by a factorr(s) = 7. € O(5p==).

2
Hermitian matrix, whose eigenvectors represent the eigen- Feie
states of the system. The corresponding eigenvalues refe
to the different energies of the eigenstates. The statergeig
vector) with the lowest energy (eigenvalue) is called the ) . , .
‘ground state’ of the system. The Schradinger equation can Adiabatic quantum computatioas proposed by Farhi

also be described with reference to the unitary transforma-€t @/-[6], works as follows. At time = 0, the quan-
tion U that is defined by the HamiltoniaH () (from now UM mechanical system is described by a Hamiltorign
on we work withi = 1): whose eigenstates are easy to compute. Next, this system is

slowly transformed to its final HamiltoniaH ¢, for which

8. Adiabatic Quantum Computation

%U(t) = —iH()U(t), the ground state is the solution to a specific minimization
problemf. We do this is by letting the energies of the
with the initial conditionU (0) = I. We say that the Hamil-  eigenstates of H; correspond with the function that we try

tonian evolution fromH (0) to H(T') inducesthe unitary to minimize. Hence, if this functiorf has domair{0,1}",

transformationU/ (7). The evolution of a system with a then the final Hamiltonian is defined by

time-independent HamiltoniaH is easily expressed by the

exponential/(T) = e~'TH | Finding the (approximate) so- H; := Z £(2) - |2Xl.

lutions for Hamiltonians that vary in time is one of the core z€{0,1}"

tasks in quantum physics. One of the most important cases

of such a time-dependent case is described by the adiabati®Ve will assume throughout this paper thfat {0,1}* — R

evolution of an isolated quantum mechanical system. is computable in polynomial time, and thétz) is bounded
The quantum adiabatic theorem states that a physicalby a polynomial inz|.

system that is initially in its ground state, tends to stay in ~ The choice of the initial Hamiltonia#l, is independent

this lowest energy state, provided that the Hamiltonian of of the solution of the problem, and will be such th& is

the system is changed ‘slowly enough’.[4] not diagonal in the computationalbasis. Specifically, we
The quantitative version of the adiabatic theorem gives consider the ‘Hadamard basis’ with the bit values

the following specific upper bound on the slowdown that . .

is required for the adiabatic evolution of the ground state.  |0) := %(|0) +11)) and |1):= \/%(|0) —|1)).

(See for example [12] for more details on this.) Parameter-

ize the time-dependent Hamiltonian Bi(s) for0 < s <1 For a binary stringz € {0,1}", let |2) denote the state

and its ground state by(s). Our goal is thus to gradu- which would be written agz) in this basis. (The uni-

ally transform the applied Hamiltonian frof#i(0) to H(1) tary mapping between these two representations is pro-

such that the initial stat¢(0) = #(0) evolvesto a close ap- vided by then-fold Hadamard matrixi¥®"|z) = |2) and

proximationy (1) ~ ¢(1) of the ground state off (1). We Wen|2) = |2).)



A simple starting Hamiltonian that fulfills the above re-
quirements is

Ho == 3 h(z)- |2,

ze{0,1}n

with A(0") = 0 andh(z) > 1 for all otherz # 07, such
that the ground state with zero energyHf is the uniform
superpositiorj0---0) = —= 3" _ |2). Having defined the
initial and final conditions of our system, we will now de-
scribe the time-evolution.

Following the proposal by Farhi et al. in [6, 7], we can
define the time dependent Hamiltoni&f(t) as the linear

combination of the starting and the final Hamiltonian:

H{(t)

= (- 7) Ho+ +H;,
with 0 < ¢t < T, andT the crucialdelay factorof the
Hy, — H¢ transition.

By the adiabatic theorem we know that this system will
map the initial ground statg)(0)) = [0") to the global
minimum of the functionf, provided that we picl" large
enough. In the previous section we mentioned fhat
O(Amaxgni,) is a sufficient upper bound on this delay.
Without any further knowledge about the specific Hamil-
tonian H(t) — which involves detailed knowledge about
the functionf, this is also a lower bound for a reliable adi-
abatic evolution fromH, to H;. Becausd|LH(s)|; is
polynomial inn (as long asf € poly(n)), we will ignore
this factor and focus mostly on tife > g2 requirement
for the delay of the adiabatic quantum computation.

4. Approximating the Adiabatic Evolution

In this section we explain how the continuous time evo-
lution from H, to Hy can be approximated by a quantum
circuit of sizepoly(nT'). Our goal is to demonstrate the in-

Lemmal Let H(¢t) and H'(t) be two time-dependent
Hamiltonians for0 < ¢t < T, and letU(T) and U'(T)
be the respective unitary evolutions that they induce.df th
difference between the Hamiltonians is limited||d(¢) —
H'(t)|]2 < ¢ for everyt, then the distance between the in-
duced transformations is bounded By (T') — U'(T) |2 <

V2T54.

Proof: Lete(t) andy'(¢t) be the two state trajectories of the
two HamiltoniansH and H' with initially 1(0) = ¢'(0).
Then, for the inner product between the two states (with
initially (¢'(0)|¢(0)) = 1), we have

W' Ol (®) =iy (O)(H () — H'(£))[1h(2))-

Because at any momemtve have [4(t))|2 = [|¢'(1))]2 =
1and||H(t) — H' ()] < 4, we see that at = T the
lower bound(y'(T)|4(T))| > 1—T46 holds. This confirms
that for every vectoty we have|U (T')[¢)) — U'(T)|)|2 <
V2Ts. 1

This lemma tells us how we can deviate from the ideal
Hamiltonian H (t) (1 — £)Hy + LHy, without in-
troducing too big of an error to the induced evolution.
As mentioned above, we will approximate the continuous
H(0) —» H(T) trajectory by a sequence ofHamiltoni-
ansHj, ..., H/, each of which applied for a duration §f.
This yields the unitary evolutioti’ (T"), defined by

U'(T) e*i(%)Hi ... e*i(%)hﬂ,

with for any1 < j < r the Hamiltoniant} := H(LL) =
(1= L)Ho + (£)Hy. If we view H' as a time-dependent
Hamiltonian H'(t) := Hjy with j(t) := [Z], then we
have the boundH(t) — H'(t)]. < %|H; — Holl» €
O(n?/r) for all t. By the previous lemma we thus have
the bound|U(T') — U'(T)||2 € O(\/Tnd/r).

The second part of our approximation deals with the

gredients of the polynomial upper bound, and we do not try problem of implementing the unitary transformatiotis

to optimize to get the most efficient simulation.

The approximation is established in two steps. First, we

discretize the evolution frorkl, to H; by a finite sequence
of HamiltoniansH;, Hj,... that gives rise to the same

defined by

U’ —iT (- H i T (D Hy

].=e

overall behavior. Second, we show how at any moment theWith elementary operations.

combined Hamiltoniant; (1 — s)Ho + sHy can be
approximated by interleaving two simple unitary transfor-
mations.

To express the error of our approximation, we usefthe
induced operator norm|“ |2

1712 max | Mzls.

[z]2=1

The next lemma compares two Hamiltoniah&t) and
H'(t) and their respective unitary transformatiotigT")
andU'(T).

The Campbell-Baker-Hausdorff theorem|[3] tells us how
well we can approximate ‘parallel Hamiltonians’ by con-
secutive onesfleA*B — e4eB|, € O(|AB|2). Hence in
our case, by defining

Ul e 1T (=HHo  o—iF(DH;
. . 2
we get the approximatioflU; — U/'|» € O(%L | HoHy ||2).
This leads to|U'(T) — U"(T)|l. € O(n*'T?/r), and
hence also for the original transformationjU(T") —
U"(T)]2 € O(n+'T?/r).



BecauseHy = ), h(z)|2X2| is diagonal in the With these initial and final conditions one can easily

Hadamard basi¢0,1}", andH; = Y. f(2)|2Xz| is di- show that for the resulting time-dependent Hamiltonian
agonal in the computational bases, we can implement the . .
aboveU/ as H(t) = (1-4)Ho+ Huy,

UJ'-' = Wen.E, -We". F;;, the gap between the two smallest eigenvalues as a function

of s := % is expressed by
with W®" then-fold Hadamard transform, ankl, and F

the appropriate phase changing operations: (s) \/zn +4(27 — 1)(s2 — 5) )
g(s) = .
. j 2n
FO,]'|Z) =] e_lg(l_F)h(z)l,Z),
Fiilz) o= e_ig(%‘)f(z)|z) This gap reaches its minimum at= % when it equals
hi ' \/% At first sight, this would lead to the conclusion that the

Becausei(z) and f(z) are easy to compute, so afgand  necessary delay fact@ = Q(g;2,) is linear inN = 2.
F;. We have thus obtained the following theorem. However, by using our knowledge of the gap functid:)

Theorem 1 Let Hy and H; be the initial and final Hamil- W€ ¢an significantly reduce the running time¢v/N).

tonians used in an adiabatic computation, with the func- For ex_a!mple, regardless oi’the_solutim,nNe _know that
tion f € O(n%). Then, the unitary transformatioli (T') the transition fromf (0) to H () will have a minimal gap

. ) 1
induced by the time-dependent Hamiltoni&it) := (1 — that is significantly blgge_r thanﬁ. The necessary delgy
1)Ho+ L H; can be approximated byconsecutive unitary factor that we use for this first part of our transformation

transformationsU?, ..., U" with r € O(T?n?+1). Fur- Hy, — H,, can therefotre be mgch smaller than I.n gen-
thermore, eact!’ has the formiV " Fy " F; and can eral atany moment = 7, Equation 1 tells us t_he size of the
thus be efficiently implementedsiply (nT) time. gapg(s), and hence the delay factor that suffices at that mo-

ment. This means that we can employ a varying delay factor
It is interesting to note that thB ®"FyW®"F; transfor-  g(s)~2, without destroying the desired adiabatic properties
mation has the same form as the ‘Grover iteration’ of the of the evolutionHy, — H,. In sum, this approach leads to
standard quantum search algorithm[10]. More recently, we a total delay factor of
also learned that the work of Hogg on quantum search
heuristics[11] describes essentially the same algoritem a /1 ds /1 2"
the adiabatic approach to minimization. s—0 9(8)? s—0 2"+ 427 — 1)(s%2 — s)

2" arctan(v/2" — 1)

5. Quantum Adiabatic Searching - o — 1 :

ds

One question that should be asked first is if adiabatic AS & function of N = 27, this gives a time complexity
quantum computing is truly quantum computing. In this O(V2") = O(V'N), which coincides with the well-known -
section we answer this question affirmatively by reproduc- Square root speed-up of quantum searching. (See the article

ing the quadratic speed-up of Lov Grovers search algo- by Farhi and Gutmann[9] for another example of a ‘contin-
rithm. uous time algorithm’ for quantum searching.)

For the search problem, the functigh: {0,1}" — R
takes on valuel on all strings except the solution € 6. Query Bounds for the 3SAT Problem
{0, 1}™ for which f(u) = 0. Thus the final Hamiltonian for

the adiabatic algorithmiZ,, will have eigenstate) with The adiabatic quantum algorithms of [7, 8] work on
eigenvaluel, with the exception of the unknown solution  3SAT as follows: on input a formul@ = C; A --- A Cr
u € {0,1}", which has eigenvalug (where theC; are clauses in variables, . . ., z,,), the only

way the quantum algorithm gathers information ab®us
Hy = Z |2Xzl- by queries which ask, for a given truth assignmér{in
2€{0,1}"\{u} general a superposition of assignments), how many of the
The initial Hamiltonian is defined similarly, except that M clausesb does not satisfy. A natural approach to es-

it is diagonal in the Hadamard basis, and has ground statd@plishing a lower bound on the running time of the adia-
|0n): batic quantum algorithm is to show that any quantum algo-

rithm must make a large number of such queries to solve
Hy, := Z |2)2]. the problem. This is the approach that leads to the expo-
2€{0,1}7\{0"} nential lower bound for unstructured search [2] (there the



query asked, for a given assignméntwhether or not it  another positive variable, and’; X; X| denotes the num-
is a satisfying assignment), thus showing that relative to aber of clauses that have one of the positive variables equal
random oracle NP is not a subset of subexponential quanto z;, another equal ta:;, and another positive variable.
tum time. In this section, we show that the seemingly small The expressiohX; X ; X| equals the number of times the
difference between the specifications of these two types ofclause(—z; vV —z; V ;) (or equivalent permuted clauses
queries results in a dramatic change in the query complex-ike (z;, V —z; V —z;)) occurs.
ity — O(n®) queries suffice to obtain enough information These expressions are symmetric under permutation of
to characterizéd. Thus black box or oracle techniques do the symbols, so for exampleX,; X; X| = |X;X;X| and
not rule out a polynomial time solution to 3SAT by adi- |X,;X,;X;| = | X, X, X;|.
abatic qguantum search. To reconcile this with the oracle For example, we have that
results from [2], it is useful to recall that the Cook-Levin
theorem, suitably formulated as saying that NP has a ‘local- Fe(0™) = |XXX|+|XX|+|X|
checkability’ property, does not relativize [1] (see [14} f
a brief discussion of this issue). In this sense, the regults Since any clause with a negated variable will be satisfied,
this section indicate that even keeping track about the num-and the rest will not be satisfied.
ber of unsatisfied clauses constitutes sufficient strutiia The following definitions will be helpful. For eache
formation about the problem to bypass the oracle results. {1,...,n}let

More formally, let _ -
Vi = [ XX X[ - XXX+ [XiX| - [X:X|
Fs(b) := “#unsatisfied clauses in assignmérib)”, +1X;| — | X4

with b € {0,1}". In our black box model, the quantum  For each pait, j € {1,...,n},i#j,let
algorithm is only allowed to accedsvia a quantum black-
box Bs that reversibly maph)|0) — |b)|Fs(b)). In this YV, = |[XiX;X|+ XXX - XXX - | XX X|
section, we prove that the query complexity for 3SAT is XX+ |Xa X | — (XX | — XX
O(n?), by showing thatFy is completely determined by B R ! ’
its values on the)(n?) input strings of Hamming weight  For each triplei, j, k of pairwise distinct integers from
< 3. Our techniques also apply to the Exact Cover problem {1 ... n}, let
discussed in [7].

For convenience, and without loss of generality, we will YViie = | XeXaX;| + |1 XX Xe| + | XX Xk
nol': a::ow ereated }/ariablles inr:he same clausle, but instead XX Xp| — | XX X
will allow clauses of size less thah For example, we can — —_— —_—
replace the claus@; V z; V 22) with (z; V z5), and(z; V — XX Xk | — [ Xa X X[ — | X; X5 X
-z V x2) with a constant clausd) that is always satisfied.
Without loss of generality, we can assume that the number

of such(1) clauses i9). . . i . . .
4 . {1,...,n}, i # j, lete¥ denote the string with & in
Let us introduce some notation. et X X | denote the positionsi and j and Os elsewhere. For eachj,k €

number of clauses i® that have all three variables with- { n}, pairwise distinct, le¢7* denote the string with
out negation (e.g(z; V z2 V z3)). We will say that these 1’. TN '
clauses are “of the formX X X. Let [ X X X| denote the a \;\l‘/\ep:s\ll\t/lcr)]r;zéjtr?:gl;xa:rt\ggzrzlzewhere.
number of clauses that have exactly one variable negated '
(e.g. t()ﬂh V;T? M 373))h Fl:]rther we I?1XXX| deglote the dTheorem 2 Leth € {0,1}" and letT be the subset of
number of clauses that have exactly two variable negated, ; - suchthab; = 1 <= i € I. Then
and|X X X | denote the number of clauses that have all three{ o '
variables negated. We also define the analogoasd 2

. ; . F. = Fe(O" Y; Y Yiik-
variable versions of these expressions. 2 (t) 2(07) + Z it z ij + Z ik

For eachi € {1,...,n} let e’ denote the string with
a1l in theith position andds elsewhere. For eachj €

Furthermore, if we subscript any of th€ with an in- el el iyskel
dex, sayi, then we only count clauses that hameas one Furthermore,
of the non-negated (qrositive variables. Similarly, if we
subscript any of theX with an index, sayi, then we only Yy, = Fq>(e’) F<1>( ™)
count clauses that hawg as one of the negated variables. Y, = Fal(e ) — Fy(e') — Fyp (eJ) + Fa(0™)
For example|X; X X | denotes the number of clausesdin Yin = Fa(e) — Fy(el _ F (it
that contain the variable; and two other positive variables, ik = Fale ,) (V) = Fa(e™) = Fa(e’)
|X; X, X | denotes the number of clauses withandz; and +Fy(€') + Fo(e’) + Fa(e*) — Fa(0™).



In other words, in order to be able to evaluétg for every with
input string{0,1}™, we only need to query the black-box

— 1 1
Bg on theO(n?) inputs with Hamming weight at most Ao(s) = 3-3V2—2s+1 and
(the case$ € {07, ¢, e, eii*}). Specifically, we can de- M(s) = % + %, /22 — 25 + 1.

cide whethe® is satisfiable or not by querying the black- B .

box By a total of O(n?) times, after which we use the ~Specifically, ais = 0 we havelu(0)) = [0) = —5(|0) +
query results to evaluatBy f_or all _other possible inputs  |1)) and|w,; (0)) = [1) = %qo) —|1)), while ats = 1 we

b € {0,1}". If any of the strings givés (b) = 0, then® have|uvo(1)) = |0) and|vy (1)) = [1).

is satisfiable, otherwise it is not satisfiable. (Clearlythwi For then qubit case, it is easily shown that for every
this mforn:atlon we ::an also answer other decision prob- y € {0,1}" there is an eigenvalue

lems like “® € PP?") The full proof of this theorem is

described in the appendix of this article. Ay(s) = (n—w(y))-Ao(s) +w(y) - A (s),
_ _ ) where the corresponding eigenvector is th#old tensor
7. Lower Boundsfor Adiabatic Algorithms product
lvy(s)) = [0y, (5)) @ vy, (5)) ® -+~ @ [vy, (s)).

In this section we present an easybit problem, for
which the adiabatic approach only succeeds if it is allowed  Because\g(s) < Ai(s) for all s, the ground state of
an exponential delay. We do this by changing an easy prob-H (sT) is |ug(s), - .., vo(s)) with eigenvaluenX(s). The
lem (the Minimum Hamming Weight Problem) into a per- eigenvalues closest to this ground energy are those asso-
turbed version for which the proper solution is as far as pos- ciated with thew(y) = 1 eigenvectorguv,(s)), which
sible from its local minimum. It will be shown that for this have eigenvaluén — 1)A¢(s) + A1 (s). Hence, the en-
perturbed version, the quantum adiabatic algorithm does in ergy gap between the two smallest eigenvaluegés =

deed require exponential time. V252 — 25 + 1, with its minimum g, = \/% ats = 1
(t = %). Because this gap is independentrgfwe can
7.1. The Minimum Hamming Weight Problem transformH, to H,, adiabatically with a constant delay fac-

tor. As a result, the ground staftef (s)) := |vo(s))®™ of

Consider the adiabatic quantum algorithm that tries to the system evolves frofd - -- 0) to[0- - -0) in time O(1).
minimize the Hamming weight(z) of ann bit string We will now discuss an important aspect of the above
z € {0,1}". We define the initial Hamiltonian by, := adiabatic evolution, which we will use in the lower bound of

the next section. We saw how the initial ground state of the

>, w(z)|£X2], such that the time-dependent Hamiltonian o ) . A
Hamiltonian Hy is the uniform superposition >, 12)

is
while the final ground state doff,, is the zero string0™).
Hy(t) = (1 — %) Z w(2)|2X2] Both states share the p_roperty that they have an exponen-
2e{0,1}n tially small component in the subspace spanned by com-
‘ putational basis vectors labeled with strings of Hamming
T {Z} w(z)]2Xzl. weight at leas(% + ¢)n. With the eigenvector decompo-
z2€4{0,1}»

sition of Equation 2 we can see that such an upper bound
holds for0 < s < 1. Take for example the vectdi™),

As intended, the ground state of the final Hamiltonian is which indeed has:

simply |0 - - - 0) with zero energy.
~ Sincew(z) = 21 + -+ + zn, itis easy to see thal, () [(1"wo(s) - -wo(s))] < =, (3)

is a sum ofn Hamiltonians, each acting on a single qubit.

Thus even thougttl,, (¢) is a2™ x 2" dimensional matrix, ~ for all s. This bound suggests that a perturbation of the
which thus ha" eigenstates, these eigenstates and theirHamiltonian,, in this subspace will only have an expo-
corresponding eigenvalues may be computed by solving thehentially small effect on the evolution of the ground state.
2 dimensional problem. For the analysis of the minimal gap In the next section we will use this phenomenon to obtain
between the two smallest eigenvalues it is again convenien@n exponential lower bound on the time complexity of a per-
to introduce a relative time-paramemr: %, which ranges turbed version of the Minimum Hammlng Welght Problem.

from0to 1. The eigen-decomposition for tR&limensional ) )
problem yields: 7.2. The Perturbed Hamming Weight Problem

1/1—-s s—1 Ao (8)|vo(5)Xvo(s)] We will now consider the minimization of a function that
2\ s—1 1+s - +A1(8)|v1(s)Xv1 (8)]- (2) is variation of the Hamming weight function of the previous



section: At2,..., A1 o erased:

. w(z) ifw(z) < +¢e)n, Aiq | 0 0
fe) = { pe) fuwi)>Eren @ [ B e iy
with e > 0 andp(z) a decreasing function that achieves the 0 AQ',, g - sz; on

global minimumf (z) = p(z) = —1linthew(z) > (1 +&)n _

region. Our main result will be the proof that minimum gap ©f, equivalently,

of the corresponding adiabatic evolutiéfy () is exponen- B = A— Al0™X0™ — 10"YO™MA + 24 {10"Y0™
tially small, and hence that the adiabatic minimizatiory of o [07XO™] = 07X0"|A + 241,1]07X0%]-
requires a delay factor that is exponential in the input size By construction, the stafey (s)) will be an eigenstate a8

n. for everys with A, ; as its eigenvalue. At = 0 the min-
For clarity of exposition, we will focus on the special imum eigenvalue oB coincides with thisd; ; = 0 entry;
case where while at the finak = T the minimum eigenvalue (with value
—1)is ‘located’ in the(2™ — 1) x (2" — 1) sub-matrix (cor-
. w(z) fz#1---1, responding to the subspace orthogonabfds)})). Because
f(z) = T (5) : -
1 ifz=1---1. B transforms continuously between these two extremes, it

follows that there is a critical momeast for which the min-
The proof contains all the ingredients required for the gen- imum eigenvalue in this subspace and the eigenvalug

eral result mentioned above. are identical. In short, at. the matrixB has a ‘zero gap’
The fact that this problem is a perturbed version of the between its two minimum eigenvalues.
Minimum Hamming Weight Problem is best expressed by It can also be shown by the definitions.4fandV’, the
fact thatV’t H,,V is diagonal, and the lower bound of Equa-
Hi(t) = Hy(t) — L(n+1)17X1". tion 3 that:
|[A=Bl: = v2-]4]0") —(0"|A0"X0" (|

We will analyze the time-dependent eigenvaluediofby
comparing them to those df,,. In the previous section,

sV2(n +1) - [{1™V (s)|0™)|

we were able to diagonalize thé, matrix by the unitary < s(n + 1)_
transformatioV (s) that maps the bit string ) ®- - -® |yn) - Wond

to the tensor produgby, (s))®---®|vy, (s)). Hence, using
s := %, we have that/t(s) - H,(t) - V(s) is a diagonal
matrix with spectrum{\,(s)|y € {0,1}"}. By looking at
H; in the eigenbasis aff,, we get the following matrix4,
where we suppress some of the parametarsls for ease d(A,B) := min max [Aj — pr(jl,
of notation: T olsjser

Theoptimal matching distandeetweend and B expresses
how close the spectrg;, ..., A2 } @and{pus, ..., pan } Of
A andB are, and is formally defined by

with the minimization over all permutatiomse Sa». Itis a
A = VI.H, -V —sn+1)Viimanv. known result in matrix analysis that for Hermitian matrices
A and B this distance is upper bounded p — B|» (see
Note first that fort = 0 andt = T', A is a diagonal matrix. ~ Section V1.3 in [3]).
For intermediate values af A will have off-diagonal en- We thus reach the conclusion that for all values,ahe
tries caused by the perturbatiens(n + 1)[17)(1"| in the ~ gapg(s) of A (and hence ofi;(s)) will never be bigger
Hamiltonian H;. At ¢ = 0 the minimum eigenvalue is than the gap of3 plus twice the distanc4 — B|,. At
zero, which is indicated by thel; ; = 0 in the top-left the critical moment,, when the two minimal eigenvalues
corner of the Hamiltonian. At = T, the minimal eigen- ~ Of B are identical, this implies for the gap df the upper
value has changed tel (for z = 17), which coincides  boundg(s.) < sc(n +1)/v2"=3, and hence also for the
with the bottom-right elementis» »» = —1. The eigen- ~ HamiltonianHy: gmin € O(_5=). Applying the require-
vectors of these values aug (0)) andof' (1)), respectively. — mentT > g2 thus yields the lower bourd(2;) for the
Intuitively, one expects the critical moment in the time €vo  delay factorT.
lution of H; to occur when the ground state has to change
from |v§) to |v]'). This is indeed the case as we will see 7.3, Generalization
next.
To prove our claim we will introduce another matrk It is not difficult to see that the above lower bound
that equals the matrid with its entriesds 1, . .., A2~ 1 and method applies to the larger class of functions mentioned




in Equation 4. The critical property qf is that it only de-
viates from the Hamming weight functian(z) for those
stringsz that have an exponential small inner-product with
the H (s) ground statéug(s) - - - vo(s)) for all s (the prop-
erty of Equation 3).

As long as the perturbatiom : {0,1}" — R in Equa-
tion 4 is polynomial inn, we have an inequality similar to
Equation 3:

|(Hy = Hu)lvo(s) - --vo(s))2 (6)

Hence, if the perturbatiop is such that the minimum of

is not f(0™), then the adiabatic algorithm requires a delay
T > g;l?n that is exponential in the input size of the prob-
lem. i.e.T € 29,

e 279,

8. Conclusions

Adiabatic quantum computation is a novel paradigm for
the design of quantum algorithms — it is truly quantum in

the sense that it can be used to speed up searching by a

guadratic factor over any classical algorithm. On the ques-
tion of whether this new paradigm may be used to efficiently
solve NP-complete problems on a quantum computer — we

showed that the usual query complexity arguments cannot

be used to rule out a polynomial time solution. On the other

hand, we argue that the adiabatic approach may be thought

of as a kind of ‘quantum local search’. We designed a
family of minimization problems that is hard for such lo-
cal search heuristics, and established an exponential lowe
bound for the adiabatic algorithm for these problems. This
provides insights into the limitations of this approach. In

an upcoming paper [5], we generalize these techniques to
show a similar exponential slowdown for 3SAT. It remains [10]
an open question whether adiabatic quantum computation

can establish an exponential speed-up over traditionat com
puting or if there exists a classical algorithm that can simu
late the quantum adiabatic process efficiently.
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A. Proof of the Query Complexity Result gives us

XXX|- X XX|+ XiX;X
Theorem2 Letb € {0,1}" and letI be the subset of | | Z' ' | Z XX X

iel i<jel
{1,...,n}suchthat; =1 <= i€ I. Then,
- > XXX
F(b) = FO)+> Yi+ > Yij+ > Y i<j<kel
iel i<jel i<j<kel unsatisfied clauses of the formiX X.
Similarly, we have
Furthermore,
_ > XX
Y; = F(e')—F(@") i<jel
Yij = F(e¥)—F(e') — F(el) + F(0") unsatisfied clauses of the forfiLX,
- — ijky _ ij\ _ iky _ ik _ _ _
Ygp = F(EV) - F(ed) - Fle®) = Fle") SEX| - X (XX + %)
+F(e') + F(e’) + F(e") — F(0"). iel i<jel

Proof: We count the total number of unsatisfied clauses by unsatisfied clauses of the foriLX,,

analyzing each type of clause. | XX| - Z | X X| + Z | X X
Firstly, the only clauses of the fordd X X that will not iel i<jel
be satisfied are those that have all three variables with in-

oo o unsatisfied clauses of the forfX,
dices inl. This gives us

> IXil

y XXX i€l
i<j<kel unsatisfied clauses of the for®, and
unsatisfied clauses of the for@X X. Note that if there | X - Z | X
are less thai ones inb then any of the summations over el
i, 4,k € I satisfyingi < j < k will be empty and thus sum  unsatisfied clauses of the fori.
to 0. These account for all the unsatisfied clauses. Summing
Secondly, the only clauses of the forknX X that will these quantities while rearranging terms according to the

not be satisfied are those that have both of the negated varinumber of variables in the summations, gives us the first
ables with indices il and the positive variable with index part of the theorem:
notinI. This gives us

Fb) = |XXX|+|XX[+|X[+) ¥i+ Y ¥
Z |WX| el i<jerl
i
i<jel + Y Y
= > (XXX + XXk X + | XX X)) rerker
i<j<kel = F(O")+ZY}+ Z Y + Z Yiik-
iel i<jel i<j<kel

unsatisfied clauses of the forfiX X.

Thirdly, the only clauses of the fordd X X that will not
be satisfied will be those that have the negated variable with )
index in I and the positive variables with indices notiin F(e') = F(0")+Y.
This gives us

Notice that forF(e?) any of the summations with more
than one variable will be empty, and we get

Similarly, for F(ei7) any of the summations with three vari-

— _ _ ables will be empty, and we are left with
SXXX| - > (XXX |+ XX X))

iel i<jel F(eij) = FO0")+Y;+Y; +Y;.
+ Z (I X; X5 | + X X X | + | X6 X X)) Lastly, for F'(e**) we get
i<i<kel F(e%) = FO") +Yi+Y; +Yi+ Y + Y + Vi
unsatisfied clauses of the forfaX X. +Yijk.-

The only clauses of the fordd X X that will notbe satis-  From these equations follow the second part of the theorem.
fied are those that contain no variable with indeX ifThis ]



