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The creation rate of phase slip vortices is related to an energy barrier through an Arrhenius law. By
computing a proportionality factor that relates the Josephson frequency to the Arrhenius rate one can
then deduce the form of the vortex nucleation energy barrier from the observed dependence of critical
velocity on pressure drive. The results of a numerical simulation is presented which evaluates this factor

over a 1arge parameter space.

When superfluid “He flows through a submicrometer-
sized a?erture, energy can be dissipated by 27 phase slip
events.'? These discrete energy loss processes occur at a
well defined critical velocity v,, at which a quantized vor-
tex is nucleated near the surface of the aperture and sub-
sequently grows in the ambient flow. Within a few mi-
croseconds the vortex element crosses all the flow lines
through the aperture, before eventually annihilating on a
distant boundary.> The energy carried away* by the vor-
tex causes the velocity in the aperture to drop by dv =« /I
where « is the circulation quantum (the ratio of Planck’s
constant to the “He atomic mass) and [ is the effective hy-
draulic length of the aperture.

If the flow through the aperture is sustained by an im-
pressed pressure head Ap, the spatially averaged flow ve-
locity in the aperture consists of a continuous sawtooth
wave form in which a linear acceleration is followed by
an abrupt 27 deceleration event. Equating the force on
the fluid to the product of mass and acceleration leads to
the frequency of the sawtooth*

f=2 (1)
PK

Here p is the liquid density and Ap /p is the chemical po-
tential difference which is the fundamental driving poten-
tial for superfluid flow. The Josephson frequency f; is
so-named because of the similarity of Eq. (1) with the cor-
responding ac Josephson equation in superconductors.
[However, for the case of “He, Eq. (1) has nothing to do
with the dc Josephson relationship.]

The quantized vortices which cause the phase slips are
created by thermal-activation processes which carry the
system over a velocity-dependent energy barrier E (v, T).
The height of this barrier is a decreasing function of ve-
locity and is a generic consequence of the nearby bound-
ary. The barrier prevents nascent vortices from entering
the fluid until either the temperature is high enough to
overcome the barrier or the velocity is high enough to
lower the barrier.’ Since each vortex nucleation event
causes a phase slip, the rate of phase slips is given by the
Arrhenius law

f,=Te —[E(v,T)/kBT]:e —[E*(v,T)/kpT] _
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Here I' is an attempt frequency for the process and
E*=E()—kzTInl.

Recent attention®’ has focused on the problem of
determining the functional form of E*(v,T). Since a
phase slip decreases the velocity, it is difficult to directly
probe E *(v, T) through the Arrhenius formula, which de-
scribes a rate at constant velocity. One experimental ap-
proach is to study pressure-driven flow through an aper-
ture.>”® It is possible to measure the dependence of the
average critical velocity v, on the externally applied pres-
sure head Ap, at constant temperature. The inverse func-
tion Ap(v,), when inserted into Eq. (1), then relates the
Josephson frequency to the critical velocity f;(v,). One
is then faced with the problem of relating f; to f, and
thereby to E*. We will show below that it is possible to
write f;=vyf,, where y is a calculable function of the
phase slip size, dv. Then a combination of Egs. (1) and (2)
yields

E*=—kzTIn 3)

Ap(v,) ]

The purpose of this work is to find the factor y for all
possible values of the phase slip size.

The thermal fluctuations give rise to a statistical width
a, in the distribution of critical velocities. This width can
be defined in terms of the velocity derivative of the ener-
gy barrier:

[0E(v, T)/av]l,

(4)

From this definition we see that « is the velocity range in
which thermal fluctuations, of size k37T, can assist vor-
tices over the energy barrier.

If the energy barrier decreases linearly with velocity
and if the phase slip size 5v >>a, it has been shown® that

_ B0
E, |

kT
1.78—2"p, PL

5 Tvoky || ()

The approximation made to derive Eq. (5) was based on
the assumption that the phase slip size is sufficiently large
so that the nucleation rate drops to essentially zero after
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a phase slip. This is the case if the phase slip size is large
compared to the width of the distribution. Here the
linear energy barrier has been taken to be of the form

E(v,T)=Ey(1—v/v,) , ©6)

where —E, /v,, is the slope of E(v, T).
If pxf; is substituted for Ap, one can solve Eq. (5) for
fr

~[E(v,,T)/kygT

f1=vTe =yfav), @)
where
vy=1.78a/6v . (8)

The factor y is the required function to relate f; and
f 4. From Eq. (7), ¥ can be seen as a correction factor for
the attempt frequency I' in the Arrhenius formula. This
is reasonable because, for the case of pressure driven flow,
the velocity spends only part of its time near v, whereas
f4(v.) represents a nucleation rate appropriate for the
velocity remaining at v,.

Since v depends on the hydraulic length of the aper-
ture, the limit a/6v <<1 does not always apply, so we
seek a more general form of the factor ¥ in terms of the
ratio a/8v. When a/6v is large enough that Eq. (8) is
not valid, then after a vortex has just crossed the aper-
ture, there may still be a significant possibility that anoth-
er vortex will be formed. For large a/8v, which corre-
sponds to a very small decrease in velocity after a phase
slip, the velocity remains close to v,. In this case, the
rate of creation of vortices f; is given by the Arrhenius
rate, Eq. (2), evaluated at v.. Thus, y is expected to tend
to unity for large a /8v.

A value of ¥ greater than unity is unphysical. This can
be seen by recalling that ¥ can be taken as a correction
factor to the attempt frequency. The correction is re-
quired because, during the sawtooth, v is usually less than
v.. Note that Eq. (8) implies that ¥ goes to infinity for
large a/8v. If y were greater than unity, the corrected
attempt frequency would be greater than the actual at-
tempt frequency. Thus, Eq. (8) is clearly invalid for large
a/dv.

The parameter o can be determined from the observed
dependence of v, on pressure head, Ap. This is seen from
Eq. (7) by writing f, in terms of Ap [Eq. (1)] and then
taking the natural logarithm of both sides. Subsequent
differentiation with respect to v, yields

dv, ©)
am————— .
dIn(Ap)
Here we have assumed that y is independent of v,, which
is equivalent to assuming that E (v,T) is approximately
linear near v,. E(v,T) is approximately linear if
da/dv, << 1. Since the dependence of critical velocity on
driving pressure can be measured, a can be determined
from Eq. (9) using the observable, v, (Ap). Typical values
from experiments show a is on the order of a few percent
of v,.6710
The value of y for arbitrary values of a/8v can be
found by numerical simulation. For pressure driven flow
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(i.e., fixed f), the equation of motion of the superfluid is
a combination of uniform acceleration punctuated by
discrete velocity decrements. In the simulation the veloc-
ity is incrementally advanced in small time steps and the
Arrhenius rate f 4 is used to determine the probability P
of a phase slip nucleation event in the time step Az.

P=1-—e-f"At .

(10)

A random number N, less than unity, is selected in
each step. If N <P the velocity is decreased by 6v (a
phase slip event), superposed on the acceleration change.
If N > P the velocity is only increased. This simulation
creates the sawtooth v (#) which is characteristic of the
pressure driven flow. From this sawtooth we compute v,,
the average value of the velocity at which the phase slips
occur. This value is then inserted into the Arrhenius for-
mula Eq. (2) to get f4(v.). The ratio of f; to this num-
ber gives 7.

The simulation could be performed over a wide range
of the parameters f; and Sv, but this can be avoided by
choosing appropriate units. We are free to choose the
units of both velocity and time independently. We
choose to measure velocity in units of dv. With this
choice, the velocity is decreased by 1 after a vortex is
created. Furthermore, we choose to measure time in
units of f; . Therefore, on the average, a vortex crosses
the aperture every 1 time unit.

In these units, the equation of motion of the fluid is
given by

dv/dt=1. (11)

This equation of motion is the statement that a constant
acceleration is imposed on the fluid in the aperture.

For the linearized energy barrier, the rate of vortex
crossings given by Eq. (2) is of the form:

fa=be"™. (12)

We hold the temperature fixed in the simulation, and
there is no need to show the temperature dependence of
the parameter b. During each time step, the probability
of a vortex being created is given by Eq. (10), where f 4 is
given by Eq. (12).

The simulation yields v, the average velocity at which
a vortex is created. The rate f, of vortex creation at
fixed velocity, given in Eq. (12), is then evaluated at this
v.. The desired factor y is the ratio of f; (unity in our
units) to f 4. Specifically,

y=(be"’H) 1. (13)

By Eq. (12), the parameter b is the rate of vortex
creation at zero velocity. If this parameter is very small,
a vortex will have a negligible probability of being creat-
ed, except when the velocity is large. Therefore, small b
yields a large value of v,. Similarly, large b corresponds
to small v,. By Eq. (8), we expect ¥ =1.78a for small a
(8v is unity in the simulation). Therefore, we expect that
v is independent of the choice of b, for small a. This is in
fact the obtained result. Furthermore, it is found that the
values of ¥ do not depend on b for any a. We must



9656

1.0 ]
. %OUJOG
+ Nosgeeseeies) ]
0.8 WQ& © ]
- wj] -
08| ad 4
L ch 4
& r o ]
0.4} J
02l ]

YRS SN ST TR N SR TN WU S NN SN ST U SO SN TN S T 1
0'Oo.o 0.5 1.0 1.5 2.0

a/6v

FIG. 1. The values of the correction factor y obtained from
simulation. The solid line is the expression in (8).

choose some reasonable value of b, even though the gen-
eral form of ¥ does not depend on b. Since f; and f 4(v,)
should be on the same order of magnitude, we can brack-
et the range of possibilities of 5. Our simulation has been
performed for values of b=e =30 7100 and e 2%,
These correspond to v, /a=50, 100, and 200. The final
values of y are found not to depend on b in this range. In
summary, we choose b and a, and the simulation gives v,.
The quantity y is evaluated by Eq. (13).

The values of y obtained from the simulation are
shown as open circles in Fig. 1. They are plotted as a
function of a/6v (which is just a in the units of the simu-
lation). The simulation was carried out for values of
a/8v up to 10. The values of ¥ do not depend on b for
any a.

In Fig. 1, y is seen to approach the anticipated value of
unity for large a /v, reflecting the fact that if the phase
slip velocity decrement 8v is very small, the velocity
remains near v, always, and f,~f,. Conversely for
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TABLE 1. The coefficients for the numerical fit to . The fit
was made in two temperature regimes, as indicated. y is given
by 3¢ _pa,[In(a/6v)]".

0.0487 <a/6v<1.432

1.432<a/dv< 10

a, 0.7849646 0.7783844

a 0.1731825 0.1943483

a, —6.860631X 1072 —17.229038 X 102
a; 3.104779X 102 —5.644377X 1073
a, 2.973394X 102 7.406305X 103
as 4.774672X 1073 4.127597x10~*
ag 4.062508 X 1073 —1.705651X10*

small values of a/dv, ¥y is seen to equal the value
1.78a /6v, as given by Eq. (7).

The behavior in the range 0.05 <a/6v < 10 can be ex-
pressed as a polynomial

6
y=13 a,[In(a/8v)]",

n=0

(14)

where the coefficients a, are given in Table I.

In conclusion, we have found a proportionality func-
tion ¥ which connects the Josephson frequency f; to the
Arrhenius rate f 4. This creates a direct link, by Eq. (3),
between an experimentally measurable function Ap(v,)
and the nucleation energy function E*(v). If v >a
then Eq. (5) holds. If v <<a then the velocity stays close
to v, and ¥ tends to one. When &v is of the order of
our numerical simulation provides the value of y.

The work described here has been aided by conversa-
tions with K. Schwab, J. C. Davis, Yu. Mukharsky, and
S. Vitale. This work was supported by the Office of Na-
val Research and the National Science Foundation.

10. Avenel and E. Varoquaux, Phys. Rev. Lett. 55, 2704 (1985).

2A. Amar, Y. Sasaki, R. Lozes, J. C. Davis, and R. E. Packard,
Phys. Rev. Lett. 68, 2624 (1992).

30ne possible scenario for a phase slip is described in S.
Burkhart, M. Bernard, O. Avenel, and E. Varoquaux, Phys.
Rev. Lett. 72, 380 (1994).

4P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).

5The vortex nucleation problem is described in R. J. Donnelly,
Quantized Vortices Lines in He II (Cambridge University
Press, New York, 1991), Chap. 8.

6G. M. Shifflett and G. B. Hess, J. Low Temp. Phys. 98, 5
(1995).

7J. Steinhauer, K. Schwab, Y. Mukharsky, J. C. Davis, and R.

E. Packard, Phys. Rev. Lett. 74, 5056 (1995); J. Steinhauer,
Ph.D. dissertation, University of California, Los Angeles,
1995.
8 Another experimental approach is to use a hydrodynamic os-
cillator which varies the velocity in a sinusoidal fashion. This
is described in E. Varoquaux, W. Zimmermann, Jr., and O.
Avenel, in Excitations of Two and Three Dimensional Quan-
tum Fluids, edited by A. F. G. Wyatt and H. J. Lauter (Ple-
num, New York, 1992).
9R. E. Packard and S. Vitale, Phys. Rev. B 45, 2512 (1992).
103, C. Davis, J. Steinhauer, K. Schwab, Yu. M. Mukharsky, A.
Amar, Y. Sasaki, and R. E. Packard, Phys. Rev. Lett. 69, 323
(1992).



