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We use a phenomenological theory of superfluid critical velocities in small orifices to explain three
phenomena: (1) The low-temperature intrinsic critical velocity v, in dc experiments should depend loga-
rithmically on the driving pressure head; the logarithmic increment in v, is the width of the velocity dis-
tribution function for phase slips. (2) The critical velocity measured in dc experiments is related to that
seen in ac experiments through the quantum number of the phase slips involved. (3) It is possible that
quantum tunneling processes may be significant at temperatures as high as 0.3 K.

For over half a century physicists have recognized that
dissipation-free superflow can exist only below some criti-
cal velocity, v,. Measurements of this critical velocity
have been made in many laboratories' exploring the
effects of various parameters on the apparent breakdown
of superfluidity. Out of this wealth of observational data,
several theories have emerged to explain the observed
critical velocity.

A prediction of what that velocity should be was made
by Landau, who demonstrated that, above about 60 m/s,
superflow would decay by means of creation of elementa-
ry excitations. Although the Landau velocity is a
presumed upper limit to critical velocities, it is now un-
derstood that motion of quantized vortex lines can lead
to dissipation mechanisms at velocities considerably less
than the Landau limit. For example, the complex motion
of a tangle of quantum turbulence can lead to dissipation
processes in long channels.? Also, near the transition
temperature T,, thermal activation of small quantized
vortex rings can lead to finite dissipation.’

In 1965 Anderson described* the fundamental process-
es that might lead to flow dissipation when a pure
superfluid (e.g., “He below 1 K) passes through a small
orifice of area s in a very thin wall. He suggested that, at
the critical velocity v,, an instability could occur in the
flow which would lead to the motion of a quantized vor-
tex line across the orifice, crossing all the enclosed
streamlines. In such a process, the order-parameter
phase difference across the hole would change by 27 and
a fixed amount of energy would be removed from the flow
field. The energy decrement*® due to a 27 phase slip is
AE =kpv.s, where k is the quantum of circulation and p,
is the fluid’s mass density.

A confirmation of the Anderson phase-slip picture
came recently in the experiments of Avenel and Varo-
quaux (AV).® They studied the time evolution of a
superfluid Helmholtz oscillator which contained a sub-
micrometer orifice within the superfluid flow path. When
the velocity in the orifice reaches a critical value, the os-
cillation amplitude abruptly drops by an amount corre-
sponding to the energy removed by an Anderson 27
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phase slip. This observation has recently been confirmed
elsewhere.’

For several decades before the AV experiment, the
predominant method for studying the critical velocity
problem involved trying to measure the largest flow ve-
locity at which fluid could pass through an orifice
without any accompanying pressure drop.! Typically an
initial pressure difference, AP, is applied across the orifice
and, as AP relaxes to zero, the correlation between aver-
age mass current and pressure head is recorded. In the
Anderson picture, the ideal current versus AP charac-
teristic would exhibit a vertical line at AP =0 extending
to a critical current. The curve would then follow an al-
most horizontal line, thus demonstrating that the flow is
saturated at the critical value. For finite AP, the number
of 27 phase slips per second would be given by* the
Josephson-Anderson frequency, f;, =AP /p,k.

Actual data differs in several ways from the above ideal
picture. The current versus AP curve exhibits a rapid but
smooth transition to the dissipative regime. In addition,
the mass current does not seem to totally saturate even
when the pressure head is substantially higher than
zero.»® Commonly the observed current is noticeably
different for the two directions of flow through the
hole.>!° Finally, there appears to be two different critical
current regimes: one being large and temperature depen-
dent and a second smaller current which is temperature
independent. How can such seemingly complex behavior
be reconciled with the phase-slip picture that seems so
clearly demonstrated in the AV experiment?

The central clues to answer this question come from
several experimental observations. The first fact is that
the phase-slip critical velocity, measured below 1 K in
the small orifice experiments, is a linearly decreasing
function of increasing temperature:

v, =v,(1—T/Ty) . (D

Here v, is approximately 10 m/s and 7,.=2.5 K. The
second observation is that the velocity at which a phase
slip occurs has a small random variation about the mean
value.»’
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A final point comes from a recent experiment using an
AV-type oscillator with one single orifice. It is observed
that, although the critical velocity is the same for flow in
both directions through the hole, slips may be all of size
27 for one direction yet be 27n (where n is integer) for
the other direction.’

The first point we wish to address is the explanation of
why dc intrinsic critical velocities (i.e., the temperature
dependent v,) depend on the magnitude of the driving
pressure head. We will derive the form of the v, versus
AP characteristic curve and show that its departure from
the simplified picture mentioned above is due to the sta-
tistical nature of the of the phase-slip events.

It has been pointed out that,!! in ac experiments, the
observed linear temperature dependence of v., given by
Eq. (1), can be deduced by assuming that the phase slip is
initiated by a thermally activated process. The linear
temperature dependence of v, will follow if the activation
energy E, is a linearly decreasing function of superfluid
velocity:

E,=Ey(1—v /vy) 2)

where the energy E and the velocity v, are phenomeno-
logical constants connected to the fluctuation process.

The statistical nature of the thermal activation process
leads to a finite width in the observed distribution func-
tion characterizing the critical velocity. The authors of
Ref. 12 show that, if thermal activation is the sole source
of phase-slip nucleation, then the observed values of the
phase-slip critical velocity, v,, should have a width, Av,,
which is proportional to temperature. The actual data
displayed in Ref. 12 suggest that thermal process are
(especially at low temperatures) not the only mechanisms
involved in the phase-slip problem. Nevertheless, a fit to
the data, in a temperature ranage where the data appear
linear, yields the value'? of E,/kp =106 K. Although it
is not known whether this is a universal value character-
izing the energy barrier, we will use it to make numerical
estimates in what follows.

To derive the v, versus AP curve for dc flow, we start
from the same statistical assumptions and calculate the
observed critical velocity seen in a pressure-driven flow
experiment on a hole characterized by 27 phase slips.
The important point in the derivation is that the total
probability for a phase slip to occur near a velocity v,
g(v)dv, depends on two factors. The first is the condi-
tional probability rate, A(z), that the system experiences
the slip at time #, provided that it did not occur previous-
ly. This function depends on the velocity v (¢). Using the
activation energy given in Eq. (2),

AMt)=T exp{ —(BEy)[1—v(t)/v,]} , (3)
where I is an attempt frequency and 8=(kpzT) ..

The second factor is the time the system spends near a
given velocity, a time that is determined by the accelera-
tion of the fluid. We consider the situation where the
fluid in the orifice with effective length, L, experiences a
constant pressure-driven acceleration a =AP/p,L. The
probability density, g(v), for having a phase slip at veloci-
ty v if the fluid is accelerated from an initial velocity v; is
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Alv) v Mv')
= |— — | ——dv'|. 4
g(v) . |cXP fv,_ 2 dv ] 4)
Performing the integral gives, for v > v;,
g(v)= Ae”70"Oexp[ —(Av,o/BE,)

BEqv /v, _eBEoui/vo)

X (e )

with 4=(T/a)e ).

For the kind of orifices that are used in real experi-
ments, a phase slip always makes the fluid velocity drop
well below the values for which the probability density is
significantly larger than zero. Thus, v; in Eq. (5) can be
replaced by zero without affecting the result of the fol-
lowing calculations.

By multiplying Eq. (5) by v and integrating over all
possible velocities, we calculate the mean velocity at
which a phase slip occurs, (v, ). After some effort one
finds

(v.)=v[l—(kgT/Ey)n(a,p,L /AP)], (6
where the number
a,=1.78(kgT/Ey)T v, (7)

and the numerical factor comes from evaluating a definite
integral.

To the extent that the temperature dependence of the
logarithmic term is very weak, Eq. (6) recovers the
observed linear temperature dependence  with
To=(Ey/kg)/In(a,p,L /AP).

One feature, very relevant for dc flow experiments, is
the explicit dependence of (v, ) on driving pressure head.
The logarithmic increment in critical velocity is given by

(v,) 'd{v.)/d(InAP)=(kzT/E)/(1=T/Ty) .  (8)

Using, in Eq. (8), the values of E; and T given by ex-
periment, we predict that the magnitude of the logarith-
mic increment, at 1.39 K, is 0.029. In a dc orifice-flow
experiment, Hess reported® that, in the temperature
range where Eq. (1) is obeyed, the logarithmic increment
of the average velocity is 0.026+0.003 at T=1.39 K.
Though this velocity is not exactly a measurement of
(v.) (see below), the agreement with the prediction of
Eq. (8) is suggestive although possibly coincidental.

A second prediction from Eq. (6) is that, in a dc experi-
ment, the observed temperature intercept T, will depend
logarithmically on AP. In the AV type of oscillator ex-
periment one can directly measure the distribution func-
tion of phase slips and its associated width Av.. The
analysis in Ref. 12 predicts this width to be

Av, /{v,)=(2/In2)(kz T /Ey)/(1—T/T,) , O

which, except for the numerical factor, is precisely the
same as the expression for the logarithmic increment Eq.
(8). This explicitly shows that the increase in average
critical velocity due to pressure head is due to the statisti-
cal width of the phase-slip distribution function.
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At a sufficiently low temperature, quantum tunneling
processes can dominate thermal fluctuations to produce a
temperature-independent distribution width.!® By the
simplest argument one might estimate the crossover tem-
perature to the quantum limit. By equating the charac-
teristic Boltzmann factor exponent E,/kgzT to the ex-
ponent for tunneling through a square barrier of width w
and energy height E,, we find the characteristic quantum
temperature T:

To=(hEy?)/Q2mwm'’?) . (10)

It is not obvious what the value of the mass m or
length w should be in this equation. In Ref. 1 it is sug-
gested that the characteristic length scale in the vortex
nucleation process is on the order of 1078 m. If we use
this length and let the mass be the bare “He mass, one
finds a value of Ty =0.35 K. At such a temperature one
woulid expect that the fractional width in the distribution
function would be determined approximately half by
thermal fluctuations and half by quantum fluctuations.

In actual measurements of the distribution width, Ref.
12 reports a linear temperature dependence superimposed
on a temperature-independent part. The two parts are
comparable at about 0.5 K. The similarity between this
temperature and the estimate of T given above may be
coincidental. Clearly additional experiments and more
detailed theory are needed to determine the role of quan-
tum tunneling in the vortex nucleation problem.

Another point we will discuss is the relation between
the average critical velocity measured in a dc experiment
and the critical velocity characteristic of 27 phase slips.
In the simplest dissipation event, a small vortex segment
is created through some thermal fluctuation.! After
creation the segment evolves in the flow field, crossing all
the flow lines and annihilating at a boundary. It is also
possible for the thermally created vortex to evolve in a
more complicated manner, perhaps undergoing a few
twists and reconnections before finally annihilating. This
will lead to a 27n phase slip and the energy dissipated
will be n times greater than the 27 event.

The magnitude of the temperature-dependent phase-
slip critical velocity {v,) is symmetric with respect to
flow direction. This is because, for pure potential flow in
the absence of vortices, the flow pattern depends only on
the boundaries and must be independent of direction.
However, once a vortex is created, its motion can be very
dependent on direction of flow and geometry.

An oscillator experiment of the AV type measures
directly the velocity which initiates the phase slip. This
critical velocity, v, ), is independent of the n value of
the slip. In contrast, a pressure-driven dc flow experi-
ment measures the average mass current through the
orifice. The average velocity (v ), which characterizes
the mass current, is not simply the critical velocity (v, ).

It is straightforward to calculate the relation between
(v) and (v,). We assume that the average current
through an aperture is characterized by phase slips of
size 27n. The applied pressure head AP causes the in-
stantaneous velocity in the hole to increase linearly with
time with acceleration a=AP /p,L, where L is the
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effective length of the orifice.”> When the velocity

reaches the critical velocity, the phase slip of 27n causes
the velocity to drop from the (v.) to (v, )—nk/L.
(Here « enters from the expression for the energy dissi-
pated in a 27 phase slip.) The instantaneous velocity thus
consists of periods of constant acceleration to {v,.) fol-
lowed by abrupt drops. The process repeats at the fre-
quency fj, /n.

The time average of such a pattern is easily shown to
be

(v)=(v,)—nk/2L . (11)

Thus, the current through the orifice, which is propor-
tional to (v ) is not an indicator of (v, ) unless the multi-
ple number »n is known. If the slip number, n is a random
variable, depending on T and AP, the dependence of {v )
on AP would not necessarily reflect the simple tempera-
ture dependence given in Eq. (8). The disparity between
some dc flow experiments may be contained in Eq. (11).
For a typical effective length, L=10"° m, and a typical
(v, ) =5 m/s, the second term in Eq. (11) is about an n%
change in (v ) relative to (v, ).

In recent experiments’ using a submicron orifice, it was
observed that, using the oscillator technique of AV, flow
through the hole in one direction always produced single
27 phase slips, whereas flow in the opposite direction ex-
hibited slips of n > 1 at the same (v, ). In a dc flow mea-
surement on the same hole, the flow in the direction
characterized by single phase slips exhibited an average
velocity very close to the (vc) in the oscillator experi-
ment. However, dc flow in the opposite direction
displays an average velocity substantially less than that of
the former case. In the latter case, expansion of the sen-
sitivity of the flow detector actually permits observation
of the individual large deceleration events. It is found
that, when the current is small, the fluid is undergoing
deceleration events characterized by large-n values.

The discussion above considers dissipation arising from
discrete phase-slip events which are thermally initiated
and finite in time. However, it is possible for dissipation
to occur in quite a different manner. If the hole is
sufficiently large, it is possible for a single, thermally ac-
tivated vortex to grow indefinitely into a tangle of twisted
vorticity.!® In such an instance, the vortex tangle re-
moves large amounts of energy continuously from the
pressure drive. The average velocity in the orifice will
then be small and temperature independent. This is the
type of dissipation typically seen in holes larger than
107% m. The limiting velocity of such flow has no con-
nection with the thermal activation (v, ) and can only be
characterized by complex numerical simulations.

Some experiments have reported seeing spontaneous
and uncontrollable switching between a large
temperature-dependent flow to a small temperature-
independent flow.>!® This would fit with the discussion
above.!’

It is interesting to note that, even in an oscillator ex-
periment with a hole larger than 10~ ® m, if the actual on-
set event leading to turbulence is detected, the critical ve-
locity for this event is the large temperature-dependent
value, even though subsequent motion of the oscillator is
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heavily damped due to the sustained vortex tangle near
the orifice.'®

We summarize the above comments by pointing out
that we have explained several important points related
to the understanding of the superfluid critical velocity.
We have shown that the average velocity where phase
slips occur is a function of the pressure head across the
orifice. The effect arises due to the finite width of the
phase-slip distribution function. We showed that the
current through an orifice is characterized by both the
critical velocity and the size of the phase slip. Differing
dc measurements can be reconciled by assuming one criti-
cal velocity but differing multiple numbers for the slips.
We point out that the existence of two different critical
current regimes is consistent with the picture that the
temperature-independent regime is characterized by sus-
tained vortex evolution.'®

The important remaining questions dealing with the
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onset of dissipation at low temperatures concern the (pos-
sibly tractable) problem to determine the size of v, and
E, as well as the probably more complex question of try-
ing to predict the time evolution of nascent vorticity
within an orifice. The role of possible quantum fluctua-
tions is also of interest.
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