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Abstract
We present an overview of recent developments related to superfluid helium quantum
interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid
helium coupled together and describe the quantum oscillations that result from varying the
coupling strength. We explain the principles behind SHeQUIDs that can be built based on
these oscillations and review some techniques and applications.
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1. Introduction

Macroscopic quantum systems such as superconductors,
superfluids and Bose–Einstein condensed gases exhibit
Josephson oscillations between two samples weakly coupled

together [1]. The oscillations are driven when a chemical
potential difference !µ is applied across the weak link and
the resultant Josephson frequency is given by

fJ = !µ

h
, (1)
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where h is Planck’s constant. These phenomena can be
exploited in interferometer devices. The widely used SQUID
[2] (superconducting quantum interference device) is the best
known of these devices. This paper focuses on the recently
developed superfluid helium quantum interference device
(SHeQUID).

We begin by explaining the SHeQUID principle and
follow by describing the physics of the Josephson oscillations
that lie at the heart of the technology. We then return to discuss
various related SHeQUID techniques that enhance the utility
of the devices. The appendices contain several related topics.

2. SHeQUID principles

In this section, we discuss how superfluid weak-link Josephson
oscillations can be used to construct a novel helium quantum
interferometer. For the benefit of this discussion we must
assume for the moment that these oscillations exist. The
following discussion will detail the weak-coupling physics and
the oscillation phenomenon itself.

To illustrate the basic principle behind superfluid
quantum interference, we will first focus on the double-path
configuration: see figure 1. A torus filled with superfluid
helium (specifically 4He or 3He–B) is interrupted by two weak
links. Superfluids are described by an order parameter (often
called a wavefunction) containing a complex phase factor: eiφ

where the phaseφ varies in space and is related to the superfluid
velocity by the formula [3]

vs = h̄

m
∇φ. (2)

Here m is the atomic mass of the superfluid’s constituent
particles (i.e. 4He atoms or two 3He atoms). When a constant
chemical potential difference is established across these
junctions, one weak link oscillates as Ic,1 sin(ωJt) and the other
as Ic,2 sin(ωJt + !φext), where Ic,1 and Ic,2 are the oscillation
amplitudes, ωJ = 2πfJ is the Josephson frequency, and !φext

is the phase shift between the two oscillations. The total current
is a sum of the two oscillations, which can be written as

I = Ic,1 sin(ωJt) + Ic,2 sin(ωJt + !φext) = I ∗
c sin(ωJt), (3)

where

I ∗
c = (Ic,1 + Ic,2)

√
cos2(!φext/2) + γ 2 sin2(!φext/2) (4)

with γ = (Ic,1 − Ic,2)/(Ic,1 + Ic,2). The overall oscillation am-
plitude I ∗

c is now a function of the external phase shift !φext.
This is analogous to a superconducting quantum interference
device (dc-SQUID), where a similar argument leads to electri-
cal current oscillation with amplitude modulated with external
magnetic flux. In the superfluid helium case, two complex
order parameters (the so-called wavefunctions) describing the
neutral system interfere so that the total mass-current oscil-
lation amplitude modulates with varying external phase shift.
The device is then an interferometer. In the simplest case of
Ic,1 = Ic,2, I ∗

c reduces to 2Ic,1| cos(!φext/2)|.
Two essential elements of the device are that the

oscillations exist and that the phase difference can be induced
as a function of external influences of interest. We will describe

Figure 1. Superfluid interferometer. Two junctions (indicated by
crosses) are placed in a superfluid torus as in the case of a
dc-SQUID.

the nature of these oscillations in the next section and then
discuss how certain physical interactions give rise to phase
shifts between two weak links when configured as in figure 1.

3. Weakly coupled quantum fluids

3.1. Josephson equations

A superfluid such as 4He or 3He–B is described by the Landau
two-fluid model [4] augmented by a macroscopic wavefunction
& = √

ρseiφ , where ρs is the superfluid density and φ, the
quantum mechanical phase, is a rescaled velocity potential for
the superfluid velocity as shown in (2). The wavefunction
is properly normalized with the condensate mass density. The
phase and current equations to appear later in the paper involve
the superfluid mass density appropriately, but this distinction
is ignored in the simple heuristic model here.

Consider the situation depicted in figure 2. Two superfluid
reservoirs are linked at a junction labelled X. If the coupling
between the two reservoirs is sufficiently weak, the two super-
fluids are described by wavefunctions, &L = √

ρs,LeiφL and
&R = √

ρs,ReiφR . The time-dependent Schrödinger equation
(ih̄∂&/∂t = Ĥ&) applied to this coupled system gives [5, 6]

ih̄
∂&L

∂t
= µL&L + h̄χ&R (5)

and

ih̄
∂&R

∂t
= µR&R + h̄χ&L, (6)

where µL and µR represent the chemical potentials of the two
reservoirs and h̄χ represents the effect of coupling across the
junction. Here, χ has the dimension of frequency, and it gives
a measure of &L leaking into &R and vice versa. The chemical
potentials µL and µR are the energies required to bring one
additional constituent particle from infinity to the respective
reservoirs. Inserting &L and &R into (5) and (6), one obtains
two equations:

∂ρs,L

∂t
= −∂ρs,R

∂t
= 2χ

√
ρs,Lρs,R sin(φR − φL) (7)

and
∂

∂t
(φR − φL) = −1

h̄
(µR − µL). (8)

A mass current, I , between the two reservoirs is
proportional to the ∂ρs/∂t terms in (7). By defining the phase
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Figure 2. A schematic view of the overlapping wavefunctions.

difference!φ = φR−φL and the chemical potential difference
!µ = µR − µL, one can rewrite these equations as

I = Ic sin!φ (9)

and
∂!φ

∂t
= −!µ

h̄
, (10)

where Ic is proportional to the coupling strength χ . These
equations were first encountered by Josephson in the context
of superconducting tunnelling through a thin insulator [1].
Equation (9) is often called the dc-Josephson equation (or the
Josephson current-phase relation) and applies only to weakly
coupled quantum systems. On the other hand, equation (10),
often called the phase-evolution equation, is much more
general [7, 8]. Equation (10) is generally applicable to the time
evolution of phase difference between any two locations in
superfluids, superconductors and Bose–Einstein condensates
whether weakly coupled or not. In essence, it is a statement of
Newton’s law of motion cloaked via (2) in quantum symbolism.

Equations (9) and (10) predict a striking phenomenon. If
a fixed chemical potential difference is established between
two weakly coupled superfluids, (10) implies that the phase
difference increases linearly in time as !φ = −(!µ/h̄)t .
Inserting this result into (9) immediately leads to the prediction
that a constant dc chemical potential difference (e.g. a fixed
force pushing superfluid from one side toward the other) should
(counter-intuitively) produce an oscillating mass current:

I = Ic sin (!µ/h̄)t. (11)

We refer to this phenomenon as a Josephson oscillation and its
frequency fJ = !µ/h as the Josephson frequency (1). For
the range of chemical potential differences that will be relevant
here, fJ typically lies in the audio region, in marked contrast
to superconductors where the typical frequency range is in the
microwave region.

3.2. Weak-link criterion: the healing length

To observe Josephson oscillations described above, two
macroscopic quantum systems need to be ‘weakly’ coupled.
In superconducting Josephson junctions, this is achieved by
either connecting two superconductors with a thin insulator
(SIS junction [9]), a normal metal barrier (SNS junction [9]), or
linking the two systems with a narrow superconducting bridge
[10] whose dimension is on the order of the superconducting
healing length. This healing length, ξ , is the minimum distance
over which there will be an appreciable change in |&|, and
the suppressed superconductivity in that length scale acts as

the necessary weak link in the microbridge configuration. A
tunnel-type connection is not feasible in a superfluid helium
system because an atom is too massive to exhibit appreciable
tunneling. One is then left with the option of connecting two
superfluid reservoirs using a constriction/aperture whose size
is comparable to the superfluid healing length.

For superfluid 3He one finds (at zero ambient pressure)

ξ3 = 65 nm
(1 − T/Tc)1/2

, (12)

where the transition temperature Tc = 1 mK [11].
This characteristic size came within the capability of
nanofabrication techniques about 25 years ago, which
corresponds to the first report of an observed sin φ current–
phase relation [12].

In contrast the healing length of 4He has been found to be
represented by [13]

ξ4 = 0.3 nm
(1 − T/Tλ)0.67

, (13)

where the superfluid transition temperature Tλ = 2.17 K at
zero ambient pressure. An aperture one atom in diameter in a
wall one atom thick may be too fragile to handle. Furthermore,
even if it could be incorporated into an apparatus, the mass
current to be detected would be below that accessible to present
technology. This is the main reason why the discovery of
Josephson phenomena in superfluid 3He and their application
to build interference devices preceded those of superfluid 4He
by almost two decades.

Early evidence of sin φ current-phase behavior in
superfluid 4He was presented by Sukhatme et al [14] followed
soon after by the direct observation of Josephson oscillations
by Hoskinson et al [15]. Their work took advantage of the
growth of ξ4 near Tλ as given in (13). This variation predicts
ξ4 ∼ 60 nm when Tλ − T ∼ 1 mK. The 4He Josephson
work has progressed rapidly since then given the ease of
cryogenics involved at 2 K compared with 1 mK required for
superfluid 3He.

3.3. Superfluid Josephson weak links

A superfluid weak link is conceptually similar to a
microbridge—a narrow constriction connecting two volumes
of superfluid helium. The requirement for the constriction is
that the length and at least one of its transverse dimensions must
be on the order of the superfluid healing length. Although the
simplest geometry that satisfies this condition is a single hole,
the Josephson mass current through a single aperture of healing
length dimensions is too small to detect with present methods.
Therefore, one needs to increase this current. One option is
to employ a slit-like aperture for which only one transverse
dimension is on the order of the healing length (and the other
dimension much larger). Another option is to employ an array
of apertures, which (hopefully) behave quantum coherently so
that all apertures experience the identical instantaneous phase
difference.

The former approach was pursued by Avenel and
Varoquaux [12]. In their early work on 3He Josephson
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Figure 3. Experimental apparatus used for Josephson work at
Saclay. Two chambers are connected through a small slit orifice and
a larger parallel channel. The parallel channel shorts out dc pressure
differentials but permits circulation changes in the closed path that
passes through both the channel and orifice. Reprinted with
permission from [17]. Copyright 1985 by the American Physical
Society.

phenomenon, they used ion milling to cut a 300 nm by 5 µm
slit structure in a 200 nm thick nickel foil. The latter approach
(i.e. using an array of apertures) was pursued at the University
of California at Berkeley, and they showed that a large array
(∼4000) of apertures (square in cross section, 100 nm in
size, etched in a 50 nm thick silicon nitride window) behaved
quantum coherently, thus amplifying currents by the number
of holes [16]. A few array types have been employed since
then, first for the 3He Josephson work and then for the
4He equivalent. With hindsight, it might appear perfectly
reasonable to have used arrays of slits or apertures to amplify
the overall mass-current oscillation amplitude. However, the
idea that an array will behave quantum coherently and add
currents constructively to amplify the signal was not (and to
some extent still not) at all obvious, especially for the 4He work.
This mystery of synchronicity or coherence among apertures
is discussed in appendix B.

3.4. 3He Josephson oscillation

The first experimental evidence for a superfluid sin φ current–
phase relation was reported for a 3He system by Avenel
and Varoquaux in 1988 [12]. Figure 3 shows their original
apparatus configuration [17]. A slit-like weak link (300 nm by
5 µm) is used to connect two superfluid reservoirs but it is
shunted by a larger tube and coupled to a diaphragm to form a
hydrodynamic resonator. The diaphragm’s motion is tracked
with a device similar to the superconducting displacement
transducer devised by Paik [18]. The diaphragm is coated with
a superconducting metal. A superconducting coil containing a
persistent electrical current is positioned below the diaphragm.
Motion of the diaphragm (indicating fluid flow through both the
tube and the orifice) changes the coil’s inductance and induces
changes in the persistent current flowing in the coil, which are
then detected with an rf-SQUID coupled to the circuit.

Fluid flow through the two parallel flow paths can be
characterized by a kinetic inductance L and the diaphragm can
be represented by an effective capacitance C [19]. Therefore

the system has a hydrodynamic resonance at a frequency
1/

√
LC. As in the superconducting Josephson inductance [9],

the weak link inductance is a function of the phase difference
across it: LJ = κ3/(2πIc cosφ) where κ3 ≡ h/2m3 is the
circulation quantum for superfluid 3He. Thus the oscillator
is nonlinear as a function of its amplitude. The observation
of nonlinearity in the hydrodynamic resonator behavior then
provides the evidence for the presence of weak-link physics.

Avenel and Varoquaux analyzed their resonator dynamics
by parametrizing the relation between the mass current and
the quantum phase using a model introduced by Deaver and
Pierce for superconductors [20]. They assume that the slit-
like aperture consists of a linear inductance in series with a
purely sinusoidal one. For the latter, I (θ1) = Ic sin θ1. For the
linear inductance, I (θ2) = h̄θ2/2m3Ll . Here θ1 is the phase
difference across the sine-like element, θ2 is the phase drop
across the linear inductance Ll and !φ = θ1 + θ2 is the total
phase drop across the combined system. The model can be
characterized in terms of Ic and the ratio of two inductances
α = Ll/LJ. Here LJ is the kinetic inductance of the ideal weak
link evaluated with zero phase bias (θ1 = 0). The overall
current–phase relation can be written parametrically: I =
Ic sin θ1, !φ = θ1 +α sin θ1. The amplitude of the oscillator is
measured as a function of driving force and frequency, and the
peak amplitude of the oscillator motion is shown in figure 4.
Staircase-like patterns arise from circulation changes in the
closed path that passes through both the large parallel channel
and a weak-link orifice. The solid line is a fit from a numerical
simulation with Ic and α as fitting parameters [21]. Good
fits using this model provided the first experimental evidence
consistent with a Josephson-like current–phase relation. We
will come back to this model in appendix A where we discuss
the current–phase relation for superfluid 4He.

The most striking feature of weakly coupled quantum
liquids is the existence of Josephson oscillations resulting from
a constant dc chemical potential difference. This was first
observed in superfluid 3He in 1997 [16]. For superfluid helium,
chemical potential difference is given by

!µ = m∗(!P/ρ − s!T ), (14)

where ρ is the fluid density, s is the specific entropy, !P and
!T are pressure and temperature differentials and m∗ is the
effective mass of superfluid constituents [3]. For superfluid
4He, m∗ is m4, the atomic mass of 4He. For superfluid 3He,
m∗ equals twice the 3He atomic mass due to the pairing of
3He atoms. For superfluid 3He at its associated temperature of
∼1 mK, the pressure term of the chemical potential difference
completely dominates over the temperature term. Then the
Josephson frequency relation reduces to

fJ = !µ

h
= 2m3

ρh
!P = 187 Hz mPa−1. (15)

Establishing a pressure difference across a weak-link element
should therefore cause the fluid to oscillate at a frequency
proportional to the applied pressure differential.

A direct observation of such oscillations was reported
by Pereversev et al [16] using an apparatus schematically
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Figure 4. Observed staircase patterns in 3He. Solid lines are fits
using the Deaver–Pierce current-phase model. Reprinted from [21],
copyright 1992 by Elsevier.

shown in figure 5. The experimental cell consists of a
cylindrical container bounded on top and bottom by flexible
membranes. Both membranes are metal coated, the top one
with a superconducting film and the bottom one with a normal
metal. Electrodes are placed above and below the cylinder. A
65×65 array of 90 nm apertures e-beam lithographed in 50 nm
thick silicon nitride [22] is used as a weak link and is glued
into the lower membrane. The use of two membranes permits
independent measure and control of pressure differential, thus
allowing feedback techniques to render !P constant over
many seconds of measurement. Motion of the top diaphragm
is sensed with a Paik-type displacement sensor [18]. The
significant differences compared with the apparatus of Avenel
and Varoquaux are (1) the use of an N ×N array of nominally
square nanoscale apertures instead of a single slit-like aperture
and (2) the absence of an additional large channel shunting the
weak link. Now the flow is associated only with the weak link
leading to a direct interpretation of the weak-link properties.

A step voltage is applied between the top diaphragm and
its adjacent electrode, thereby pulling up on the membrane.
This creates a pressure difference !P across the weak link. If
the aperture array is characterized by I ∝ sin φ, the application
of this chemical potential difference should cause the fluid to
oscillate across the aperture array. Since the applied pressure is
typically in the mPa range, as suggested in (15), the oscillation
should be in the audible range. These Josephson oscillations
are indeed observed [16].

Figure 5. Experimental apparatus used for 3He Josephson work at
Berkeley. Two reservoirs of superfluid helium are coupled through a
weak-link junction. Reprinted by permission from Macmillan
Publishers Ltd: Nature [16], copyright 1997.

Due to dissipation [23] the pressure head decays over
time and the output of the displacement sensor displays an
oscillation signal in the audio range, sweeping downward in
frequency. From such a transient, when the signal in a small
time interval is Fourier transformed, it displays a clear peak. In
each time interval, the average displacement of the diaphragm
from equilibrium yields the pressure head!P . Figure 6 shows
the frequency of the oscillation as a function of pressure across
the weak link. A fit gives 194 ± 15 Hz mPa−1, verifying the
Josephson frequency relation within the systematic error of the
pressure gauge calibration.

Many 3He weak-link experiments followed this direct ob-
servation of Josephson oscillations revealing fascinating sim-
ilarities and dissimilarities with superconducting Josephson
systems. The 3He research culminated in the demonstration
of a superfluid analog of a dc-SQUID. This superfluid 3He
quantum interference device (SHeQUID) exhibits a predicted
modulation of the amplitude of the quantum oscillation when
the device is reoriented with respect to the Earth’s rotation axis
(discussed in section 5.1). Although enlarging the pickup loop
dimensions could yield a device useful for sensitive rotation
measurements, the sub-mK technology associated with super-
fluid 3He makes it an unlikely candidate for practical use. A
review of the 3He experiments is provided in [19].

3.5. 4He Josephson oscillation

In 2001, hydrodynamic signatures consistent with sin φ
current–phase relation in superfluid 4He were reported by
Sukhatme et al [14]. The experimental apparatus contains
a shunted weak link similar to the experiment of Avenel and
Varoquaux depicted in figure 3. A single row of 24 slit-
like apertures (170 nm by 3 µm in size separated by 10 µm)
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Figure 6. Frequency of Josephson oscillations versus the applied
pressure difference for a 3He weak-link array. Reprinted by
permission from Macmillan Publishers Ltd: Nature [16], copyright
1997.

fabricated in a 150 nm thick membrane is used as the weak-
link element and is shunted by a larger flow path. A diaphragm
is coupled to form a hydrodynamic resonator, and a SQUID-
based displacement sensor of sensitivity 2 × 10−13 m Hz−1/2

is used to monitor the motion of the diaphragm. The resonator
is driven at resonance and variations of the resonant frequency
(due to the nonlinear inductance of the weak-link) are recorded
as the drive level is changed. The experiment is carried out at
temperatures 80 mK > Tλ − T > 20 µK to take advantage of
the diverging healing length near Tλ. The observed nonlinear
response is consistent with a current–phase characteristic
showing a sinusoidal form very close to Tλ, indicative of a
weakly coupled Josephson regime. Staircase patterns observed
in the amplitude versus drive data and the best fit model for the
current–phase characteristics are shown in [14].

The discovery of Josephson oscillations in superfluid 4He
was reported by Hoskinson et al in 2005 [15]. The apparatus
operationally is similar to that used in the Berkeley 3He
experiments and is sketched in figure 7. A cylindrical inner
reservoir (diameter 8 mm, height 0.6 mm) is bounded on the
top by a thin flexible diaphragm coated with a superconducting
film. A 65 × 65 array of 70 nm apertures spaced 3 µm
apart from each other is mounted in a rigid plate forming
the walls and bottom of the inner reservoir. A SQUID-based
displacement sensor with a sensitivity of 2×10−15 m Hz−1/2 is
used to track the diaphragm motion. As in the 3He experiment
of [16], a single flow path through a weak-link element is used
without any parallel channel. The experiment is carried out
in the temperature range of 2.9 mK > Tλ − T > 1.7 mK.
A pressure difference (and hence the chemical potential
difference) is established across the aperture array by the
application of voltage step on the diaphragm, and Josephson
oscillations are directly observed.

For superfluid 4He, the temperature term in the chemical
potential difference (14) is often just as important as the
pressure term and cannot be neglected (as was the case in the
3He work) in testing the Josephson frequency formula. In the

Figure 7. Experimental apparatus used for 4He Josephson work at
Berkeley. E: fixed electrode. D: soft diaphragm. A: aperture array.
P: a SQUID-based transducer which monitors the position of the
diaphragm.

Figure 8. Frequency of 4He Josephson oscillation versus initial
pressure difference. Reprinted by permission from Macmillan
Publishers Ltd: Nature [15], copyright 2005.

experiments of [15], there was no mechanism to determine
the temperature difference between the inside and outside of
the apparatus. However, at the initial instant (t = 0) of the
pull on the diaphragm, the temperatures on both sides of the
aperture array are equal, and the entire!µ is determined by the
initial pressure head !P0. Therefore at t = 0, the Josephson
frequency should be given by

fJ = !µ

h
= m4

ρh
!P0. (16)

In figure 8, the measured frequency of the observed oscillation
is plotted against the initial pressure difference !P0. A fit
to the data gives a slope of 78 Hz mPa−1 with a systematic
uncertainty of 20% arising from the pressure calibration. This
agrees with (16), which predicts the value 68.7 Hz mPa−1.

Both the 4He experiment described above and the 3He
work of [16] demonstrate the Josephson frequency relation
when the oscillations are driven solely by pressure differentials.
To test the more general form of frequency relation with both
!P and !T terms, Penanen and Chui suggested thermally
driving Josephson oscillations [24]. This was accomplished
by Hoskinson and Packard in superfluid 4He [25]. The
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experimental apparatus used is similar to that shown in figure 7
but with a heater installed in the inner reservoir.

When the heat is applied, the temperature differential !T
between the inner cell and the outside bath is determined by the
balance of four heat flows in the cell. The power applied to the
heater Wh causes the inner temperature to increase. Normal
current flowing out of the inner cell, −In, causes the inner
temperature to decrease. Superfluid current Is flowing into
the inner cell causes cooling. Finally, thermal conduction
through the walls of the inner cell acts to reduce !T . It can
be shown [25] that !T evolves according to

Cp
d!T

dt
= −sT

(
Is − ρs

ρn
In

)
− !T

R
+ Wh, (17)

where ρs and ρn are the superfluid and normal fluid densities,
R is the thermal resistance between the 4He inside the inner
cell and the 4He outside, and Cp is the heat capacity of helium
in the inner reservoir.

The normal fluid flow through the apertures obeys a
Navier–Stokes equation with the addition of a ∇T term [3].
Flow through a constriction takes the form

In = −ρnβ

η

(
ρn

!P

ρ
+ ρss!T

)
, (18)

where β is a geometrical factor that can be determined [26]
from normal flow measurements above Tλ, and η is the fluid
viscosity. With this, (17) is numerically integrated to determine
!T throughout the thermally driven Josephson oscillations.
Figure 9 shows the time evolution of m4!P/ρ and m4s!T as
well as the complete chemical potential difference as a function
of time after a step heat is applied at t = 0. One can see
that the equilibrium state of zero chemical potential difference
is attained after the increases in temperature and pressure
differentials. Hoskinson and Packard divided the transient
into a sequence of small time intervals and determined the
oscillation frequency in each interval using Fourier transforms.
The frequency of oscillation as a function of !µ is shown in
figure 10. All points lie on a single line whose inverse slope
gives 1.02 ± 0.02h, in excellent agreement with the general
Josephson frequency formula fJ = !µ/h.

4. Strongly coupled quantum fluids

In the previous section, we have discussed the physics of two
weakly coupled quantum fluids. As mentioned in section 3.2,
the degree of coupling is determined by the ratio of aperture
dimensions to the superfluid healing length. In this section, we
discuss the case of strong coupling where the healing length is
small compared with the apertures used to link two superfluid
reservoirs. Surprisingly, even in this limit a type of oscillation
occurs at the Josephson frequency.

4.1. Critical velocity and vortex dynamics

A superfluid is associated with a coherent ground state
described by a wavefunction & ∼ eiφ . Applying the current
operator J = −(ih̄/2m)(&∗∇& − &∇&∗) leads to (2):
vs = (h̄/m)∇φ. This is a fundamental equation connecting

Figure 9. Evolution of m4!P/ρ, m4s!T and !µ as a function of
time. The pressure !P(t) is directly measured while !T (T ) is
determined from the competing heat flows Tλ − T = 1.5 mK.
Reprinted with permission from [25]. Copyright 2005 by the
American Physical Society.

Figure 10. Frequency of Josephson oscillation versus the entire
chemical potential difference (with both !P and !T terms). The
gaps in frequency data correspond to intervals in which the
oscillation amplitude has dropped below the background noise.
Reprinted with permission from [25]. Copyright 2005 by the
American Physical Society.

the two-fluid model of Landau with the macroscopic quantum
picture introduced by London, Onsager and Feynman.

We consider again two baths of superfluid connected by
a channel. If the channel is large compared with the healing
length, the two baths are said to be strongly coupled and the
Josephson current–phase relation does not hold. Rather, since
I ∝ vs ∝ ∇φ ∝ !φ, the mass current is a linear function
of phase difference. When a chemical potential difference
is established between two baths, the phase difference across
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the channel evolves at a rate proportional to the magnitude
of the applied !µ according to (10). The resultant gradient
in phase is equivalent to the flow of superfluid through the
aperture according to (2). A dc chemical potential difference
then results in an accelerating unidirectional mass flow (unlike
in the weakly coupled regime).

One of the defining properties of a superfluid is that it flows
without dissipation up to some critical velocity. The Landau
two-fluid model predicts an upper critical velocity of about
58 m s−1 after which elementary excitations can be copiously
produced leading to dissipation. However, experiments show
that for flow in narrow channels dissipation sets in at speeds
about two orders of magnitude lower than the Landau limit.
In these cases, dissipation takes place via the stochastic
creation of quantized vortices, a characteristic superfluid flow
phenomenon introduced by Onsagar [27] and Feynman [28].

If accelerated by a dc chemical potential difference, when
the flow velocity at the channel’s wall reaches a particular
critical velocity, a quantized vortex is stochastically nucleated.
This vortex moves across the channel, growing larger as
time progresses, until it completely traverses the channel.
Presumably, it finally encounters a boundary and is broken
up into smaller and smaller segments, eventually becoming
part of the background excitation bath, i.e. the normal fluid.
Anderson [29] has shown that the vortex’s traversal of the
channel removes a fixed amount of energy from the channel
flow and the phase difference across the channel drops by
2π . In this so-called 2π phase slip process, the flow velocity
decreases by !vs = κ/leff , where κ = h/m∗ is the quantum
of circulation and leff is the effective hydrodynamic length of
the aperture.

In superfluid 4He, individual phase slip events were first
observed by Avenel and Varoquaux [17] using the apparatus
shown in figure 3. The resonator system is driven on resonance
with an ac drive synchronized to the displacement sensor out-
put. This results in the oscillation amplitude growing in time.
When the velocity in the orifice reaches a critical velocity,
a dissipative phase slip event takes place, resulting in the di-
aphragm’s oscillation amplitude abruptly dropping. After such
an event, the fluid is driven again over many cycles of oscil-
lation until the velocity again reaches the critical velocity to
repeat the same process. The peak amplitude of the diaphragm
oscillation as a function of time is shown in figure 11. Individ-
ual phase slip events are apparent in the figure. The temper-
ature dependence of the critical velocity [30–33] is consistent
with a stochastic nucleation mechanism where an energy bar-
rier for vortex creation is overcome by thermal fluctuation with
a nucleation rate given by an Arrhenius law [34]. Relevant en-
ergy barriers and statistical variations in the critical velocity
have been measured [35, 36] and explained phenomenologi-
cally [37, 38] although the nature of phase slip dynamics very
close to Tλ is less well known.

Although in superfluid 4He experiments reveal the onset
of dissipation (due to vortex nucleation) at velocities much
less than the Landau critical velocities, that is not the case
with superfluid 3He–B phase. There the first excitations are
often quasiparticles produced by pair-breaking near 3 cm s−1

(at zero ambient pressure). Therefore the physics of phase slip

Figure 11. Peak amplitude of diaphragm oscillation versus time.
Abrupt drops in the membrane oscillation amplitude mark
individual phase slip events. Reprinted with permission from [17].
Copyright 1985 by the American Physical Society.

oscillations to be discussed in the next section applies only to
superfluid 4He.

We also note that superflow and critical behavior in 3He–
A phase are rather complicated due to textual effects at low
velocities. These topics are beyond the scope of this review.
Interested readers should refer to [11] and references within.

4.2. Phase slip oscillation

In the experiments of Avenel and Varoquaux that revealed
individual phase slips, a double-path hydrodynamic resonator
was driven with a sinusoidal drive at resonance. It is also
possible to observe such phase slip events using the apparatus
shown in figure 7 and by applying a dc chemical potential step
across the aperture(s). The time derivative of (2) combined
with (10) shows that the fluid acceleration is proportional to the
applied chemical potential difference. Therefore, if one applies
a constant chemical potential difference across an aperture,
the fluid velocity increases linearly in time until it reaches
the critical velocity vc, at which point it abruptly decreases
by an amount !vs. It is then followed by a linear increase
in velocity and the process is repeated. The velocity profile
of the superfluid flow through an aperture then resembles an
asymmetric sawtooth. If there are no fluctuations in vc, the
abrupt phase slip events should take place with a regular time
interval

!tslip = !vs

v̇s
= κ

leff

(
h̄

m4
∇φ̇

)−1

= h

!µ
. (19)

The frequency of such phase slip events is then

f = 1
!tslip

= !µ

h
, (20)

which happens to be identical to the Josephson frequency
relation discussed in relation to the weakly coupled regime.
This is not a coincidence since the phase-evolution equation
(10) implies, for periodic phase changes of 2π , the frequency
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of those changes must be simply !µ/h. In apertures smaller
than ∼1 µm, simple 2π phase slippages are the characteristic
dissipation events.

The temperature dependent phase slip critical velocity
decreases towards zero as the temperature is increased toward
Tλ. However, the velocity drop !vs is independent of
temperature. Therefore when vc < !vs, the flow actually
reverses direction whenever a phase slip occurs. When vc

drops to ∼!vs/2, the phase slip oscillation would resemble a
sawtooth of amplitude !vs/2 centered on 〈vs〉 = 0. This is
the temperature regime where the the healing length becomes
comparable to the aperture dimensions and the current–phase
relation should become sine-like. The Josephson critical
current (per aperture) Ic then must be on the order ofρsσa!vs/2
whereσa is the effective cross-sectional area of the aperture and
ρs is the suppressed superfluid density within the aperture.

The fact that the oscillations in both the weak-link case
as well as that of strong coupling occur at the same frequency,
!µ/h, implies a smooth morphing of one phenomenon to the
other. These two distinct regimes as well the intermediate
cross-over regime have been investigated in superfluid 4He
and are discussed further in appendix A. The significant
point here is that in both regimes one can operate superfluid
interferometers.

5. Quantum interference devices: proof-of-principle
experiments

5.1. The SHeQUID as a Sagnac interferometer

One of the potentially practical applications for a superfluid
quantum interference device is rotation sensing through the
Sagnac effect [39]. When a SHeQUID such as that depicted
in figure 1 is placed in a rotating frame, the superfluid is
forced into quasi-solid body motion in a direction normal to the
partition walls containing the weak links. If the interferometer
is rotating with angular velocity +2, the fluid in the connecting
tubes moves with it and gives rise to a phase difference
!φext = 4π +2 · +A/κ . Here +A is the loop area vector. One
can view this as the superfluid version of the optical Sagnac
phase shift !φ = 2 +A · +2ω/c2, where now the effective photon
mass h̄ω/c2 is replaced by the mass of the superfluid atom.

It follows from (4) that the overall oscillation amplitude
from two junctions should modulate as a function of !φext ∝
+2 · +A, making the device a rotation sensor. The potential
sensitivity of this device compared with optical Sagnac
interferometers stems from the fact that h̄ω/c2 for visible
photons is 10 orders of magnitude smaller than the helium
atomic mass. This is the basic advantage of matter wave
interferometers compared with optical devices. We note
that the Sagnac phenomenon has been studied extensively
in beams of light [40], neutrons [41] and atoms [42–44].
Some fundamental and practical differences and relative merits
between various rotation sensors are briefly discussed in
appendix F and G.

The first superfluid helium equivalent of a dc-SQUID,
a device we refer to as a SHeQUID, was constructed using
superfluid 3He [45]. Its operation was demonstrated with

Figure 12. Schematic of 3He interferometer. The shaded regions
are filled with superfluid 3He. The closed path through two weak
links (indicated by the dotted line) defines the instrument’s sensing
area A. The diaphragm position is detected with a SQUID-based
displacement transducer. Reprinted by permission from Macmillan
Publishers Ltd: Nature [45], copyright 2001.

interference through the Sagnac effect induced by the Earth’s
rotation. The apparatus schematic is shown in figure 12. A
superfluid torus is interrupted by two weak links (each one with
65×65 array of nominally 100 nm apertures etched in a 60 nm
thick silicon nitride membrane) with a diaphragm, electrode,
and a displacement sensor placed near the junctions as in the
case of a single weak-link experiment. The area vector of
the loop points horizontally in the laboratory which is located
at approximately 38◦N. Since the Earth is spinning with an
angular vector pointing north, the rotation ‘flux’ ( +2 · +A) in the
loop can be varied by reorienting the interferometer about the
vertical axis in the lab frame.

This reorientation method has also been used in superfluid
4He to show that rotation flux could vary the phase slip critical
velocity in an aperture [46, 47], and in superfluid 3He to change
the frequency in a nonlinear Helmholtz oscillator containing
a single Josephson weak link [48]. These devices use only
one weak link rather than two and resemble rf-SQUIDs. They
have been called phase slip gyroscopes or gyrometers and are
briefly discussed in appendix F.

For the apparatus shown in figure 12, the sensing area
A ∼ 6 cm2 is chosen so that the rotation of the Earth,
2E , can induce more than one cycle of the modulation
pattern while reorienting the cryostat 180◦ in the lab frame.
The mass current oscillation amplitude is measured with the
same Fourier transform techniques used for the single weak-
link experiments and is plotted as a function of +2 · +A in
figure 13. The result shows a classic double-path interference
pattern, making this the first direct analog of a dc-SQUID
in a superfluid system. This experiment, which employed
superfluid 3He–B, was carried out below 1 mK using nuclear
adiabatic demagnetization cryogenics.

Soon after the discovery of Josephson oscillations in
superfluid 4He, a 4He quantum interference device was
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Figure 13. 3He mass-current oscillation amplitude versus rotation
flux +2 · +A. Reprinted by permission from Macmillan Publishers
Ltd: Nature [45], copyright 2001.

constructed [49]. The apparatus used for proof-of-principle
rotation sensing is depicted in figure 14. The device with a
sensing area of ∼10 cm2 operates on the same Sagnac principle
as the 3He gyroscope discussed above but at a temperature
two thousand times higher. Two 65 × 65 arrays of nominally
90 nm apertures are placed in a loop of superfluid 4He. The
interference pattern as a function of rotation flux is shown in
figure 15. Larger amplitude modulation patterns are obtained
in a strongly coupled phase slip regime while smaller ones are
taken closer to Tλ (deeper in the Josephson regime). The fact
that the interference pattern persists when the current–phase
relation is no longer sinusoidal shows the robust nature of this
phenomenon.

The sensitivity of this type of device can be estimated
by multiplying the steepest inverse slope of figure 15 by
the smallest detectable current δI = ρaωδx, where a =
0.5 cm2 is the diaphragm area, ω is the Josephson frequency,
and δx ∼ 3 × 10−15 m is the smallest displacement that
can be detected in a 1 Hz bandwidth (limited by electronic
noise in the displacement sensor circuit). The intrinsic phase
sensitivity of the first prototype device is ∼3×10−2 rad Hz−1/2,
which corresponds to angular velocity resolution of ∼2 ×
10−7 rad s−1 Hz−1/2.

The device sensitivity improves with several variables
including the enclosed sensing area, the number of apertures
in the junction, the number of turns in the sensing loop and
the operating frequency. It is also possible to make a grating
structure rather than a double-path configuration and also to
amplify the interference signal using nonlinear dynamics. We
describe some of these techniques in section 6. Although
analysis of the thermal noise limits of related devices has been
performed [50], the corresponding limit for this neutral matter
interferometer is not yet known. Phase fluctuations (∼N−1/2

where N ∼ 1021 is the number of atoms in the device) may be
the ultimate noise source but a practical limitation is normally
the vibration and rotation coupling from the environment.
Successful development of this interferometer to detect minute
phase changes (i.e. small rotation rates) would require a rigid

Figure 14. Schematic of 4He interferometer. The Xs indicate the
positions of the two aperture arrays. The unshaded regions are filled
with superfluid 4He. Pressure differential across the aperture arrays
is created by application of an electrostatic force between the
diaphragm and electrode. The resistor R is a heater which can
contribute to the chemical potential difference. The interferometer
sits inside a can (outer shaded border), and the can is immersed in a
temperature regulated 4He bath. Reprinted with permission
from [49]. Copyright 2006 by the American Physical Society.

Figure 15. 4He mass-current oscillation amplitude versus rotation
flux +2 · +A. The modulation height increases with lowering of the
temperature. From top to bottom, the modulation curves are taken at
temperatures Tλ − T = 12, 7, 4, 3, 2, 1.5, 0.9, 0.6, 0.4, and 0.3 mK.
Reprinted with permission from [49]. Copyright 2006 by the
American Physical Society.

structure placed in a quiet environment as is done with large
laser interferometers [51].

5.2. The SHeQUID as a phase gradient meter

Because of its sensitivity to externally induced quantum
phase gradients, a superfluid quantum interference device can
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Figure 16. Apparatus for measuring phase gradients driven by a
heat current. Flexible diaphragm (D) and electrode (E) form an
electrostatic pressure pump. A resistive heater (R) and a thin Cu
sheet (S) serve as a heat source and a temperature sink, respectively.
Crosses indicate the aperture arrays. Each array consists of
100 × 100 30 nm apertures spaced on a 3 µm square lattice in a
60 nm thick silicon nitride window. Reprinted with permission
from [53]. Copyright 2007 by the American Physical Society.

be employed to probe aspects of fundamental physics that
have remained elusive in the past. One such example is
an experiment that investigated the connection between the
wavefunction picture [52] of superfluid helium and Landau’s
two-fluid model [4]. As mentioned in section 4.1, applying
a current density operator to a wavefunction & ∼ eiφ

yields the relation (2): vs = (h̄/m)∇φ, where this velocity
is interpreted as that of the superfluid component in the
framework of Landau’s two-fluid model. This relation has
been used to understand various physical phenomena such as
the existence of vortices and quantized circulation. However
a direct verification of (2) has been elusive due to the lack
of an appropriate phase-measuring device. This situation has
changed with the invention of a 4He SHeQUID.

The experimental apparatus is depicted in figure 16 [53].
The topmost tube (of length l and cross-sectional area σ )
contains a resistive heater at one end and a thin copper sheet at
the other. These serve as a heat source and a sink, respectively.
When power Q̇ is applied to the heater, the two-fluid model
predicts that the normal component flows away from the heat
source while the superfluid component flows toward it with
velocity

|vs| = ρn

ρρsT sσ
Q̇. (21)

Here ρ and ρn are total and normal fluid densities, T is the
temperature and s is the specific entropy [3]. Thus the power
in the heater produces a uniform vs, which should correspond to
a constant phase gradient ∇φheat along the top arm. The phase
difference between the ends of the two vertical arms !φheat =
l∇φheat can be monitored by configuring the top tube as part of
a SHeQUID loop as shown in figure 16. If the wavefunction
picture and the two-fluid model are consistent with each other,
the interferometer output should modulate with oscillation

Figure 17. Mass-current oscillation amplitude versus power
injected into the top tube [53]. These data are taken at
Tλ − T ≈ 16 mK. The cryostat is oriented to catch just the right
amount of rotation flux from the Earth in the interferometer loop so
that the mass-current oscillation amplitude is at maximum with zero
power injected into the top tube. Reprinted with permission
from [53]. Copyright 2007 by the American Physical Society.

amplitude ∝
√

cos2(!φext/2) + γ 2 sin2(!φext/2), where

!φext = m

h̄

l

σ

ρn

ρρsT s
Q̇. (22)

Figure 17 shows the measured interferometer output as
a function of heat input in the top tube. The solid line is
a fit using (22). The periodic variation in the output as a
function of Q̇ shows that there is indeed a uniform phase
gradient across the topmost tube such that ∇φ ∝ vs. The
distance between two adjacent maxima seen in figure 17 is
the power that leads to a 2π phase change across the heat
current tube. Figure 18 shows these powers (Q̇2π ) measured
at different temperatures. From the formulation above, one can
write Q̇2π = (h/m)β(T ), where β(T ) ≡ (σ/l)(ρρsT s/ρn).
The function β(T ) can be computed with published tabulation
on ρs, ρn, ρ and s, and the designed values of l and σ . This
function multiplied by a constant to fit the data is shown as
the solid line in figure 18. The best multiplication factor is
(9.1 ± 0.9) × 10−8 m2 s−1, which agrees with the expected
value of h/m = 9.97 × 10−8 m2 s−1 within the systematic
uncertainty involved in length l and the unknown velocity
profile. This result directly demonstrates the fundamental
relation linking the macroscopic wavefunction picture and the
two-fluid description of superfluid helium while showing the
novel nature of the superfluid interferometer as a quantum
phase-measuring device.

5.3. Flux-locking with a heat tube: linearization of the
SHeQUID

Interferometers typically have a transfer function wherein
the output amplitude is a cosinusoidally varying function
of some variable of interest. For example, in the case
of a SHeQUID, the interference amplitude is given by
∝F(!φ/2) ≡ [cos2(!φ/2) + γ 2 sin2(!φ/2)]1/2. This
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Figure 18. Power needed to cause the oscillation amplitude to move
from one maximum to the next. Reprinted with permission
from [53]. Copyright 2007 by the American Physical Society.

nonlinearity is problematic because the sensitivity of the device
then varies with the signal of interest. To achieve practical
utility, it is useful to have a method to linearize the instrument’s
response at the point of maximum sensitivity. The heat
current technique that injects phase variations into a superfluid
interferometer (discussed in the preceding section) can be used
as a feedback element necessary for linearization.

A circuit equivalent to the apparatus shown in figure 16
is represented in figure 19. If !φext is the phase shift due to
some external influence and !φheat is the phase shift due to a
heat current in the top arm, the overall oscillation amplitude
should be modulated as ∝F(!φext/2 + !φheat/2) [54]. The
key for linearization is to adjust!φheat to always nullify!φext.
Figure 20 demonstrates this operation. As a proof-of-principle
experiment, the Sagnac phase shift due to the Earth’s rotation
has been used as the external phase shift. As seen in section 5.2,
!φheat ∝ Q̇. The Sagnac signal !φext ∝ +2 · +A. Then the
interference amplitude varies with ∝F(a +2 · +A + bQ̇), where
a ≡ 2πm/h and b ≡ (l/σ )(πm/h)(ρn/ρρsT s) are constants
at given temperature. Figure 20(a) shows the signature
sinusoidal interference pattern due to the reorientation of
the device loop about the vertical with no feedback applied.
Figure 20(b) shows the same measured amplitude, this time
with power applied to the heater thereby creating a phase
shift in the heater tube. The changes in rotation flux are
cancelled by manually adjusting the appropriate heater power
to keep the argument of F constant. The interferometer is
thus maintained at fixed oscillation amplitude and the total
loop phase shift is locked at the point of steepest slope in the
interference curve. Within the noise level of the experiment,
a +2 · +A + bQ̇ = constant. Figure 20(c) shows the heater power
injected plotted against rotation flux. It is seen that Q̇ ∝ +2 · +A.
Thus the amount of power needed for this purpose provides a
linear measure of the change in rotation flux: | +2 · +A| = bQ̇/a.

In practice, this feedback scheme works for injected heater
power values lower than that corresponding to 250 complete
cycles in figure 20(a). For heater power values greater than this
limit, a rapid onset of quantum turbulence is seen, rendering
the interferometer useless for measuring external phase shifts.

Figure 19. Equivalent SQUID circuit. !φext is the phase shift
produced by some (possibly globally acting) external influence,
which the SHeQUID is being used to measure. !φheat is the phase
shift due to injected heater power.

Figure 20. (a) Interferometer output modulation due to Sagnac
effect. (b) Modulation compensated by injected heater current thus
making the interferometer output independent of the rotation flux.
(c) Feedback heater power needed for a given value of rotation flux
to maintain the interferometer output constant. Reprinted with
permission from [54]. Copyright 2007, American Institute of
Physics.

Recently a technique called ‘history tracing method’ has
been suggested by Zheng et al [55] to achieve wider dynamic
range for practical rotation sensing with a SHeQUID. This
technique has not yet been tested.

If the heat flow pipe is filled with a packed powder or other
porous medium, the critical velocity for the onset of vortex
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creation and motion may be raised, leading to a wider dynamic
range of linearization. This pinning technique also has not yet
been tested, and increase in flow impedance as well as fountain
pressure effects need to be considered.

The flux-lock feedback technique described in this proof-
of-principle experiment involves Fourier transforming the
Josephson oscillation signal in real time to determine its
amplitude and thus the location in the modulation curve. The
response time for such operation is limited by the Josephson
frequency. For example, if 20 cycles of a 5 kHz signal are
used for Fourier transforms, each measurement takes 4 ms.
The system will not be able to remain locked to external
phase influences that change at much faster rates. Using the
chemical potential battery technique described in section 6.1
may remove this limitation. At this time the limiting slew rate
of a SHeQUID using this technique is not known.

5.4. Detection of quantized vortex motion: the onset of
quantum turbulence

As mentioned in section 4.1, if a quantized vortex line passes
across a channel containing axial superflow, the vortex could
grow in size at the expense of the channel’s flow energy.
A vortex completely crossing the channel leads to a 2π
decrease in the quantum mechanical phase difference between
the two ends of the channel. In macroscopic tubes (i.e.
dimensions transverse to flow greater than 1 µm), the onset of
dissipation (i.e. vortex crossing) usually occurs abruptly due
to an instability and growth of preexisting pinned vorticity
[56, 57]. Although the growth of quantum turbulence and
the associated dissipation in large channels has been studied
for over five decades, there is not yet a complete picture that
describes the initial instability and the subsequent dynamics of
the quantum vortices [58]. Since the SHeQUID is sensitive to
changes in quantum phase, it provides a new tool to investigate
vortex motion in a macroscopic passage.

In an apparatus such as that depicted in figure 16, the
interferometer monitors the phase difference !φ across the
topmost tube. If a vortex initially pinned at the wall moves
transversely across the tube, !φ will change by 2π . In
operation, the interferometer output is given by (4). Therefore,
as the power Q̇ is increased, the phase difference !φ

increases proportionally, and the interferometer signal varies
cosinusoidally with !φ. For a fixed power, !φ is constant
in time (see figure 21(a)). However at some critical power
Q̇c, previously pinned vortices start to traverse the channel,
causing!φ to cycle from 0 to 2π and the interferometer signal
oscillates in time. Such an oscillation caused by a series of
smoothly evolving 2π phase slippages is shown in figure 21(b).
In the operating temperature range of the SHeQUID used in
this experiment [59], the values of vc (obtained from (2) and
the observed value of Q̇c) are temperature independent with a
mean of 1 mm s−1 and a standard deviation of 0.2 mm s−1.

The frequency of phase slippage as a function of
axial superfluid velocity is shown in figure 22 for various
temperatures. It is apparent that in addition to the sudden
onset of the phase variation at a critical velocity vc, there
are transitions to different oscillation frequencies creating

Figure 21. Interferometer output versus time. (a) Q̇ < Q̇c and (b)
Q̇ > Q̇c. These data are taken at Tλ − T ≈ 16 mK. Note that the
slow frequency of vortex crossing (∼1 Hz) represents another
example of the Josephson frequency relation. Reprinted with
permission from [59]. Copyright 2007 by the American Physical
Society.

plateaus. This unexpected discovery is just one more example
of how a novel instrument uncovers new phenomena. There is
as yet no explanation for this observation.

The investigation of 4He properties in the presence of
finite heat flux close to Tλ has drawn much interest [60, 61]
since superfluid is considered to be a clean system suited for
studying nonlinear critical phenomena. However, if the flow
reaches the critical velocity for vortex crossing and dissipation
sets in, the superfluid is no longer such an ideal testing ground.
Traditionally the onset of extrinsic processes has been detected
by a change in some macroscopic property such as the pressure
head across the ends of the flow passage [62] or by attenuation
of second sound [63] or propagating ion beams [64]. Since
these techniques require a minimum amount of quantized
turbulence to raise the signal of interest above the instrumental
noise, they are not sufficiently sensitive to monitor the motion
of a single vortex. The SHeQUID with its sensitivity to the
motion of even a single vortex may be an ideal instrument to
employ in these studies.

Recently, small hydrogen particles [65] and fluorescent
techniques [66] have been used successfully as tracers in
superfluid 4He allowing the observation of vortex cores.
Combined with such methods, a SHeQUID that allows the
measurement of quantum phase changes may become a useful
tool in studying the initial instability process of trapped
vorticity and may yield further insights into the mechanisms
that lead to the growth of quantum turbulence.

13



Rep. Prog. Phys. 75 (2012) 016401 Y Sato and R E Packard

Figure 22. Vortex crossing frequency versus superfluid velocity in
the channel. Zero frequency means that the interferometer signal is
constant in time. Reprinted with permission from [59]. Copyright
2007 by the American Physical Society.

6. Techniques

6.1. Chemical potential ‘battery’

In operating SHeQUIDs as described thus far, a flow transient
is created by applying a static electrostatic force to a flexible
diaphragm pump. With this method it is important to consider
the measurement time required for particular applications.
Superfluid 4He quantum oscillations obey the Josephson
frequency relation fJ = !µ/h, where !µ = m(!P/ρ −
s!T ). These oscillations are accompanied by a finite dc fluid
flow component driven by!µ. This dc flow causes the applied
!µ to decay over time, lowering the Josephson frequency and
eventually ending the oscillations as fJ → 0. Using feedback
techniques [67], it is possible to hold the frequency constant for
a short interval, but the measurement time is typically less than
30 s. This time limit is set by the limit of feedback voltage that
can be applied to the diaphragm and also by the dynamic range
of superconducting electronics utilized in the displacement
transducer. This corresponds to, for example, a few 10 000
oscillation cycles for a ∼1 kHz signal for one pull on the
diaphragm (or a few thousand Fourier spectra to average over
if transforms are taken from ∼30 cycles of oscillation in time
domain). This is sufficient for many experiments where one
can induce a phase shift of interest and measure it at the same
time. However, it is not ideal for applications where much
longer measurement times are required or in cases where one
needs to wait for a signal of interest to arrive (e.g. application
in seismic studies). A technique we call a constant chemical

potential battery has been developed to maintain a fixed !µ

for indefinite times.
This technique was first demonstrated in a single array

apparatus [68] and then applied to a double-path quantum
interference device [69]. The interferometer configuration is
similar to that shown in figure 16. When power is applied
to a second heater placed in the small inner volume (between
the junctions and the diaphragm), the superfluid fraction of
the fluid flows toward that inner volume while the normal
fraction flows out. The entropy is carried by the normal flow
and thermal conduction through the wall. If the applied heat
is small enough, after short transient behavior, a steady state
is established such that !µ = 0. However, as the applied
power is raised further, the superflow eventually reaches a
critical velocity that limits the supercurrent. A new steady
state is then established where !µ is nonzero and constant,
determined by the applied power. This constant !µ drives
Josephson oscillation continuously within the aperture arrays,
and the oscillation frequency can be varied by adjusting the
heater power. This technique allows truly continuous phase
sensing mode of operation. It is essentially equivalent to using
a battery to drive Josephson oscillation in superconducting
weak-link systems. Due to nonlinearities in the weak-link flow
properties there is a strong tendency for the chemical potential
battery technique to force the quantum oscillations to occur
at a cell resonance. Cell resonances excited by the quantum
oscillations produce a homodyne mixing (see the following
section) which creates additional dc currents thus keeping the
“battery” potential constant for even lower heater powers. As
yet the details of this mechanism is not well understood.

6.2. Fiske amplification

Since the mass-current oscillation is detected by a flexible
diaphragm hydraulically coupled to the oscillating superfluid,
the signal can interact with acoustic resonances within the
apparatus, leading to substantial amplification with remarkable
stability at particular frequencies. This is related to the
superconducting Fiske effect [70], where the interaction
of the Josephson oscillation with internal electrodynamic
resonances in the junctions causes dc currents. This nonlinear
phenomenon has been investigated in more detail in a
single weak-link 3He system in the context of resonant dc
current enhancement [71] (see figure 23 for example), but its
application as an amplifier has only been demonstrated for a
4He quantum interference device.

The diaphragm velocity oscillation amplitude as a function
of !φext for a 4He interferometer is shown and marked
as curve (a) in figure 24 [69]. For this curve, using the
constant !µ method, Josephson oscillations are driven in
a spectral region where no resonant features exist. The
modulation amplitude (i.e. difference between maxima and
minima) seen in these particular data is representative of
those observed in other experiments discussed in section 5.
This curve should now be compared with curve (b) taken
on resonance. A significant signal amplification is clearly
visible. The sensitivity enhancement is ∼34 comparing these
two curves. We emphasize that, to harness this type of resonant
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Figure 23. Amplitude of 3He Josephson oscillation versus the
oscillation frequency. Significant enhancement in mass current can
be seen at several distinct resonant mechanical modes. Reprinted
with permission from [71]. Copyright 1998 by the American
Physical Society.

Figure 24. (a) 4He interferometer output versus !φ. (b) The same
pattern probed on resonance with Fiske amplification. Reprinted
with permission from [69]. Copyright 2010 by the American
Physical Society.

amplification, sufficient vibration isolation is necessary. Any
excess environmental noise kicks up the resonances rendering
the reliable observation of Josephson amplitude modulation
difficult at those exact frequencies.

The Fiske amplification tends to make the chemical
potential battery technique unusable at arbitrary frequency. If
the oscillation frequency driven by the heater is near a cell
resonance, the Fiske dc current increases the current in the
apertures and pulls !µ to that value that would continue to
excite the resonance. This enhances the frequency stability
of the interferometer. In the future, investigation with ac
pressure and thermal drives in conjunction with modeling and
simulation may allow one to engineer a particular resonance
into an apparatus to further enhance the sensitivity.

The intrinsic phase sensitivity for the device demonstrated
here with Fiske amplification is measured to be 8 ×
10−4 rad Hz−1/2. This is equivalent to a circulation change
of ∼10−4κ4, comparable to the fractional magnetic flux
changes seen in the early development of dc-SQUIDs.
Used as a gyroscope (with ≈10 cm2 enclosed area), this
translates to a rotational resolution of 8×10−9 rad s−1 Hz−1/2,

Figure 25. Interferometer with four junctions. The Xs indicate the
weak-link junctions. D: soft diaphragm. E: fixed electrode. H: heat
source. S: heat sink. Reprinted with permission from [78].
Copyright 2008 by the American Physical Society.

which surpasses typical sensitivities of conventional atom
interferometers [72–74] and comes within an order of
magnitude to the short-term sensitivity of the best reported
dual atom interferometer (6 × 10−10 rad s−1 Hz−1/2 [42]).

6.3. A superfluid interference grating

Since superfluid interferometry relies on measuring the change
in quantum oscillation amplitude as a function of external
phase shift, the sensitivity of the device is proportional to the
slope of the interference pattern at its steepest point. This
sensitivity can be increased by placing more than two arrays
in parallel thus narrowing the peaks in the interference pattern.
In the context of superconducting devices, Feynman suggested
the importance of such a device as a magnetometer (often called
a superconducting quantum interference grating (SQUIG)) [5].
This technique was first demonstrated experimentally with six
point contacts in 1966 [75]. A similar configuration can in
principle be employed in a superfluid system.

The device shown in figure 25 consists of four weak-link
junctions placed in parallel in a loop filled with superfluid 4He.
Each weak link is a 50×50 array of nominally 90 nm diameter
apertures (spaced 3 µm apart) etched in a 60 nm thick silicon
nitride membrane. The topmost tube contains a heat source and
sink, which are used to inject external phase shift by means of
a heat current as described in section 5.2. If N identical weak
links (each with current amplitude I0) are used in the grating,
the system should behave like a single junction with effective
amplitude that modulates as [76, 77]

I0

∣∣∣∣
sin(N!φ/2)

sin(!φ/2)

∣∣∣∣ . (23)

Numerical analysis of this equation shows that the slope at
the steepest part of the interference pattern (|dI/d!φ|(max))
increases as [77]

|dI/d!φ|grating(max)

|dI/d!φ|2-path(max)

≈ 0.2N2, (24)
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Figure 26. Mass-current oscillation amplitude versus !φ. The solid
line is a fit where I2 = 0.90I1, I3 = 1.41I1 and I4 = 0.46I1. These
data are obtained at Tλ − T ≈ 4 mK. Reprinted with permission
from [78]. Copyright 2008 by the American Physical Society.

where |dI/d!φ|2-path(max) is the maximum slope of the
double-path interferometer. This implies, for example,
that a grating structure with 10 weak links should give
a phase change sensitivity ∼20 times greater than that
of a double-path interferometer. If the weak links used
are not identical with different oscillation amplitudes I0,
I1, I2 . . . , IN−1, the total mass-current oscillation amplitude
can be written as [A[0] + 2

∑N−1
k=1 A[k] cos(k!φ)]1/2, where

A[k] ≡
∑N−1−k

q=0 IqIq+k .
In addition to the N2 sensitivity enhancement there is

another more subtle advantage to using a grating structure.
This involves the effect of the inevitable variations among
weak-link junctions used in the interferometer. Because of the
limitations of nanofabrication, all the junctions cannot be made
identical. However, in a grating configuration the modulation
depth is affected less by nonuniformities compared with a
conventional double-path setup. For example, in the extreme
case where one of the junctions has zero oscillation amplitude,
a grating structure will still exhibit deep modulation and can
be used as a sensitive interferometer. In contrast, a double-
path interferometer would show no modulation, giving zero
sensitivity.

Figure 26 is an example of experimental data showing
mass-current oscillation amplitude as a function of !φ for
a four-path SHeQUID [78]. A striking similarity to four-
slit optical interference pattern can be seen. The slope at
the steepest part of the interference pattern for this grating is
found to be ∼4.3 times larger than that of a previous superfluid
4He double-path interferometer operating at the same
temperature.

In the case of a SQUIG, the interference pattern becomes
more complex due to slight differences in the ‘loop’ sizes
[79]. Similarly, the interference pattern from a superfluid
grating structure increases its complexity as !φ is increased.
Although this degrades the dynamic range of the device,
it gives rise to a unique by-product: sensitivity to absolute
quantum phase differences. This interesting aspect is
discussed in appendix E.

Figure 27. Apparatus used to demonstrate interference from a
single junction. A: aperture array. E: fixed electrode. R: heat source
used to create phase gradient. P: SQUID-based transducer which
monitors the position of the diaphragm (D). Reprinted with
permission from [80]. Copyright 2011 by the American Physical
Society.

6.4. Single junction interference

The superfluid weak links described herein consist of an array
of apertures rather than a single orifice. In experiments
described thus far, an aperture array has behaved essentially
as a single weak link with amplified overall mass current.
Thus a main approach to superfluid interferometry has been
having an array act as a single junction and using two
or more arrays to interfere with each other. However,
there is a different approach, which is to do interferometry
with a single array by inducing phase differences between
neighboring apertures. Collective coherent oscillations from
individual aperture elements play a key role in such a scheme,
and quantum interference from a single array has been
demonstrated only recently in superfluid 4He [80].

An experimental apparatus is schematically depicted in
figure 27. Unshaded regions are filled with superfluid 4He.
An aperture array (labelled A) is configured as a part of a wall
surface of a horizontal channel of cross-sectional area σ . A
heat source (R) is placed at the closed end of this channel,
and the fluid outside the channel behaves as a heat sink. The
application of power to the heater generates a phase gradient
along the channel: ∇φ = (m/h̄)(ρn/ρρsT sσ )Q̇ as discussed
in section 5.2. The resultant phase difference along the array
of apertures allows the investigation of collective dynamics in
a superfluid Josephson junction.

Figure 28 shows the measured Josephson mass-current
oscillation amplitude as a function of heat input in the channel.
The externally induced phase differences cause each column of
apertures to oscillate with a fixed phase difference with respect
to that of the adjacent columns. This is in close analogy to the
characteristic of a diffraction grating. Combining all the mass
currents leads to the grating-like modulation of the overall
oscillation amplitude. The observed non-chaotic behavior
implies that different apertures maintain temporal coherence of
Josephson oscillations with a well-defined frequency of!µ/h
in the background of applied phase differences.

A silicon nitride film that contains the aperture array is
installed with one of the array axes aligned with the heat current
channel, and the device consists of

√
N rows of

√
N oscillators

(each with oscillation amplitude I0) with phase lags given by
∇φl where l = 2 µm is the distance between the apertures. By
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Figure 28. Mass-current oscillation amplitude versus heater power.
The solid lines are fits, yielding σ = 1.1, 1.1, 1.08 × 10−5 m2 for
three different temperatures, which should be compared with the
design value of σ = 1.22 × 10−5 m2. Reprinted with permission
from [80]. Copyright 2011 by the American Physical Society.

defining d to be the aperture diameter, the overall oscillation
amplitude for the junction array can be written as [81]

√
N

∣∣∣∣
sin(!φj /2)

!φj /2

∣∣∣∣

∣∣∣∣∣
sin(

√
N!φT /2)

sin(!φT /2)

∣∣∣∣∣ , (25)

where !φj = ∇φd is the phase shift contained in a single
aperture and !φT = ∇φl is the phase shift between the
neighboring apertures. We emphasize the close analogy with
optical diffraction phenomena for many slit structures. The
expected oscillation amplitudes as functions of Q̇ have been
fitted to the data and are shown in figure 28 as solid lines.

The superfluid experiment described here resembles that
of the size effect investigation of the critical current in
superconducting Josephson phenomena. In superconducting
Josephson junctions, the critical current exhibits Fraunhofer
patterns with magnetic field applied parallel to the junction
[82, 83]. Viewing the superfluid aperture array as a web of
a multi-junction interferometer, the system is also similar to
granular superconducting thin film junctions and two- and
three-dimensional superconducting Josephson junction arrays
[84]. It may be possible to fabricate a longer array of apertures
and utilize it in practical single junction interferometry in the
future.

7. Future applications

We have already described how a SHeQUID may be used to
monitor small changes in rotation rate (the Sagnac effect).

Figure 29. Quantum coherent matter is confined to a toroidal
container that is positioned in a radial electric field and an axial
magnetic field [88].

This may have applications in geodesy via monitoring small
changes in the Earth’s rotation rate. Such measurements are
currently determined via very long baseline interferometry
(VLBI) using an array of radio telescopes distributed across
the globe. Optical Sagnac interferometers with enclosed area
as large as 850 m2 are also employed for such measurements.
It is also conceivable that a SHeQUID could be employed to
observe the long sought frame dragging effect predicted by
general relativity. However, any such measurement would
probably have to be performed in a satellite to escape the much
larger nuisance effects due to the Earth’s rotation experienced
by a SHeQUID positioned on the land.

We have also shown how the interferometer can be used
to study the onset of quantum turbulence in superfluids.
One naturally asks what other physical phenomena might be
accessible with this novel device. In this section, we describe
such a work in progress: an attempt to observe an Aharonov–
Bohm (AB) effect in neutral quantum matter.

In 1959, Aharonov and Bohm predicted that electrons
travelling outside a perfect solenoid would exhibit observable
interference effects even though no classical force (but only a
vector potential) exists in the spatial region traversed by the
electrons [85]. Subsequent experiments proved the prediction
to be correct [86]. In 1995, Wei et al predicted [87] a
similar topological phase shift for neutral, nonpolar matter and
suggested an experimental arrangement to test their prediction.
The physical configuration involves neutral particles with
no permanent electric dipole moment moving in a plane
containing a radial electric field and a uniform magnetic field
perpendicular to it. The applied electric field induces an
electric dipole in the particles that then exhibit an AB phase
shift. We briefly review this prediction and then describe a
possible experiment in which a 4He SHeQUID may be utilized
to investigate the predicted phenomenon [88].

The existence of the AB phase shift in neutral matter can
be seen by analyzing the situation shown in figure 29. For a
wave packet of a particle of charge q moving around a perfect
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Figure 30. A possible experimental geometry [88]. A
counter-wound helical interferometer loop is embedded within
cylindrical capacitors (C) in the bore of a high field magnet (M).
A diaphragm (D) is placed over two aperture arrays (A). Courtesy
of A Joshi.

solenoid, the AB shift is given by

!φAB = q

h̄
4, (26)

where 4 is the magnetic flux contained within the solenoid.
The radial electric field shown in the figure 29 polarizes

a neutral particle and induces an electric dipole. This dipole
d can be thought of as a pair of equal and opposite charges
q at distances r+ and r− with respect to the symmetry axis of
the radial electric field: d = q(r+ − r−). As these charges
traverse closed circular paths (of radii r+ and r−) in a region
where the magnetic field exists, they individually experience a
shift in quantum phase according to (26). The phase shift for
the positive charge is given by

!φ+ = 1
h̄

qBπr2
+ . (27)

Similarly, the phase shift for the negative charge is

!φ− = −1
h̄

qBπr2
−. (28)

The total phase shift, which is the sum of the two, can
be written as !φ = 2πBrd/h̄, where r is the radius of the
particle’s trajectory. The dipole moment induced by an electric
field is d = αE where α is the particle’s polarizability. If the
radial electric field is created between concentric cylindrical
electrodes (characterized by inner radius a and outer radius
b) biased at potential difference V , E = V/rln(b/a) in
cylindrical coordinates. The phase shift is then given by

!φ ≈ 2παBV

h̄ln(b/a)
. (29)

As pointed out by Wei et al, if superfluid is the medium in the
torus, since the phase gradient is related to particle velocity,
the predicted phase difference above should correspond to a
persistent superfluid current in the torus.

Figure 30 shows a possible apparatus configuration to
observe the AB phase shift in neutral superfluid. The sensing
loop of a SHeQUID plays the role of the torus depicted

in figure 29. The loop in figure 30 contains two counter-
wound parts to remove phase shifts caused by rotation-noise
around the axis of the apparatus. Both halves of the loop
are embedded in individual coaxial capacitors (only one set
is shown). The outer cylindrical electrodes fit inside the bore
of a superconducting magnet (parallel to the cylinder axis).

The polarizability of helium is 2 × 10−41 F m2 [89]. For
concentric cylinders with b/a ratio of 1.1, the predicted phase
shift is 1.3×10−5BV rad. If the magnet generates 7 T and one
applies 5 kV between the cylindrical electrodes, !φ ∼ 0.5 rad
for a single loop. By including approximately six turns in each
half of the loop, the phase shift will be ∼π thus sweeping out
an entire cycle of the interference pattern. Seeing one complete
interference cycle should make the most convincing test of the
prediction.

There are some fundamental questions that may be
clarified in this type of experiment. In the conventional
description of AB effects, quantum wave packets traverse
the two paths of an interferometer. It is the recombination
of the packets that displays the interference. This is a
valid picture for free-atom interferometers or electron beams
used for AB type experiments, since in these instruments
the particles, in a classical sense, actually do traverse the
region where electromagnetic potentials exist. In contrast, in
the superfluid 4He interferometer, although the helium atoms
very slowly drift due to the induced phase gradient, they do
not physically traverse the interferometer path on the time
scale of the measurement, which can be as short as a single
Josephson oscillation cycle ∼10−3 s. Instead, the space filled
with superfluid 4He is described by a single macroscopic
wavefunction with a phase that depends on time and space. All
the atoms are in a single macroscopic entangled state, which is
globally determined by the fields covering the region occupied
by the fluid. The successful observation of the predicted phase
shift in superfluid helium may suggest that the AB paradigm
is more general than that needed to describe free particle
propagation.

8. Accessibility of technology

The discovery of Josephson (and phase slip) oscillations at
2 K has moved the SHeQUID from a laboratory curiosity
to a practical instrument. Commercial cryocoolers are
now available that can maintain an appropriate temperature
continuously without the need for the periodic transfer of liquid
helium. Although cryocoolers have intrinsic vibration noise
that may be difficult to eliminate, a properly designed dewar
system without a cryocooler could maintain the required 2 K
environment for at least one year.

With the continuous advancement in various lithography
techniques and characterization tools, nanoscale aperture ar-
rays necessary as weak-link elements are becoming easily ac-
cessible, even from commercial sources. Displacement trans-
ducers with 10−15 m Hz−1/2 resolution (initially developed for
gravity wave detection [18]) are also now well established us-
ing commercial SQUID systems. Thermometry with sub-nK
resolution, originally developed for space-based fundamental
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physics experiments [90], can be readily employed in Joseph-
son work near Tλ for temperature stability [91]. These several
developments permit any interested person to bring the power
of the SHeQUID to bear on novel problems. One can even
envision field instruments for geodesy or inertial navigation
operating for long periods of time with little human interven-
tion or cryogenic expertise.

At the time of this writing, the foremost hurdle to exploit
the full resolution of a SHeQUID is environmental noise. This
is certainly unfortunate, as experiments have shown that the
device sensitivity is currently not close to any fundamental
limitations, and various techniques are available to further
enhance the intrinsic sensitivity. Superconducting SQUIDs
can operate in a magnetically quiet environment using screened
rooms and/or superconducting shielding. There are no such
perfect shields for vibrational and rotational noise. Cryostat
design that emphasizes rigidity and site positioning (e.g. in
underground low vibration laboratories [92]) can go a long way
to mitigate these nuisance background signals. Furthermore,
the astatic coil configuration being developed for the AB
experiment (figure 30) can help make the SHeQUID less
susceptible to nuisance motion.

9. Conclusion

Josephson weak links between samples of macroscopic
quantum systems such as superconductors, superfluids and
Bose–Einstein condensates provide a unique tool with which
to explore quantum mechanics and an opportunity for
applications based on macroscopic quantum physics. Starting
with the 3He Josephson work in the millikelvin regime and
accelerated by the discovery of 4He weak-link physics near 2 K,
various physical phenomena such as Josephson oscillations,
phase slip oscillations, the Fiske effect, Shapiro effect, plasma
mode and dynamical bifurcation have been observed. Many of
these unique phenomena have now been quantified and utilized
to construct superfluid quantum interference devices as well
as to significantly enhance their intrinsic sensitivity for both
fundamental and applied sciences. A new field of research has
emerged wherein the superfluid interferometer can be used
not only to study the quantum properties of superfluid helium
but also to probe some aspects of fundamental physics that
have heretofore remained elusive. We hope that readers of this
review will be able to understand the SHeQUID principles and
relevant technology.

Fascinating phenomena continue to be discovered in the
field of macroscopic quantum physics, and analogies between
the phenomena presented here and those in superconductors
and Bose–Einstein condensates also point the way toward
investigations of similar effects in other quantum systems.
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Appendix A. Transition from strongly coupled to
weakly coupled quantum fluids

The system depicted in figure 7 is adequate to observe both
Josephson oscillations in the weakly coupled regime and
phase slip oscillations in the strongly coupled regime. Since
the coupling is determined by the ratio of aperture size d
to the temperature dependent healing length ξ4, the system
can be brought from one limit to the other by varying the
temperature.

Figures A1 and A2 show sections of two flow transients
excited by the application of a voltage-induced pressure step
across the array of apertures. The time traces show the
displacement of the diaphragm as the fluid is driven through
the apertures under the influence of a time-dependent chemical
potential gradient. In figure A1, ξ4/d = 0.4. The regularly
spaced slope discontinuities in the first half of the plot are the
signatures of phase slips that occur whenever the accelerating
flow reaches a critical velocity vc. By contrast, in figure A2,
ξ4/d = 1.8 and the system is in the Josephson weak-
link regime. The sharp phase slip discontinuities have been
smoothed out into sinusoidal Josephson oscillations. The !µ
induced by the initial pressure step relaxes to equilibrium
throughout each transient. When !µ reaches 0, quantum
oscillations (Josephson or phase slip oscillations) cease, and
lower frequency oscillations proceed due to interplay of
the fluid inertia in the channel and the restoring force of

Figure A1. Diaphragm position versus time. Cusps in the first half
of the transient are the phase slips that display a sudden reversal of
flow. Tλ − T = 7.4 mK. Reprinted by permission from Macmillan
Publishers Ltd: Nature Phys. [94], copyright 2006.
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Figure A2. Diaphragm position versus time. Near t = 0.6 s where
the Josephson oscillations decay into the plasma mode oscillations,
!φ approaches a local maximum of just less than π . The current
I ∝ dx/dt slows here, reflecting the sinusoidal nature of Is(!φ).
Tλ − T = 0.8 mK. Reprinted by permission from Macmillan
Publishers Ltd: Nature Phys. [94], copyright 2006.

Figure A3. Evolution of current–phase relation. The corresponding
Tλ − T is indicated in millikelvin to the right of each curve. Each
curve has been normalized by its maximum value Ic and shifted
vertically. Reprinted by permission from Macmillan Publishers Ltd:
Nature Phys. [94], copyright 2006.

the diaphragm. These are called the plasma mode (or the
Helmholtz mode) oscillations and can be seen as the larger
displacement oscillations in the second halves of figures A1
and A2.

The dynamics of coupled quantum liquids is determined
by the current–phase relation Is(!φ). Superfluid current
is proportional to superfluid velocity, which, by (2), is
proportional to the phase gradient, which itself is proportional
to !φ. Therefore, for the strongly coupled channel, Is(!φ)
should be a linear function. By contrast, in a weakly coupled

Figure A4. Fits to normalized current–phase relation using the
Deaver–Pierce model. Reprinted by permission from Macmillan
Publishers Ltd: Nature Phys. [94], copyright 2006.

regime, Is(!φ) should be sinusoidal as governed by the
Josephson equation (9).

The general method for extracting current–phase relation
from 4He flow data is conceptually similar to that used by
Backhaus et al for a 3He system [93]. From transients such
as those shown in figures A1 and A2, the current I (t) is
determined by differentiating the displacement x(t). The
phase difference across the apertures, !φ(t), is determined by
integrating the phase-evolution equation (10), with the phase
offset determined by the fact that !φ = 0 when Is = 0.
Elimination of the common variable t between Is(t) and!φ(t)

yields the current–phase relation Is(!φ).
The measured current–phase functions for several

different temperatures are shown in figure A3 [94]. The
values shown within the plot are Tλ − T in mK. A smooth
transformation occurs from the low-temperature strong-
coupling regime where Is(!φ) is linear into the weak-coupling
regime, where Is(!φ) morphs into a sine function.

The measured Is(!φ) is well described by an empirical
model (mentioned in section 3.4) consisting of a linear kinetic
inductance in series with a purely sinusoidal one. The
model prediction is plotted in figure A4 for four different
temperatures along with the actual measured Is(!φ). The
striking agreement lends insight into how the evolution of
Is(!φ) can be viewed as the transition from a multiple-valued
hysteretic function to one that is single valued.

We have shown in section 5 that both types of oscillations
(Josephson and phase slips) can be used to construct superfluid
quantum interference devices. The significant feature for such
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devices is that the oscillations have a well-defined frequency,
and that the entire sample of superfluid remains quantum
coherent throughout.

We note that the current–phase relation for a superfluid
3He system shows a more complicated evolution with bi-
stability and π states (without phase slips), and the Deaver–
Pierce parameterization is found to not always work [95–97].
We leave the detailed discussion to [19].

Appendix B. Array synchronicity

In this appendix we briefly discuss why all the individual
apertures within an array might oscillate synchronously: i.e.
in phase. One of the main reasons why the observation of
4He Josephson phenomena in an array of apertures/slits was
a surprise is that thermal fluctuations were thought to destroy
the temporal phase coherence in a given aperture as well as
spatial coherence (synchronicity) among the array.

In a single weak link, the observation of temporally
coherent Josephson phenomena requires EJ / kBT , where
EJ is the Josephson energy arising from the spatial overlap of
the wavefunctions [9]. Zimmermann has argued that, for a
single weak link in superfluid 4He, EJ < kBT near Tλ [98].

For treating spatial phase coherence in a weak-link array,
one can consider an array of apertures spaced D apart from
each other. For a slab of superfluid with area D2 and thickness
τ , one can equate the kinetic energy in that volume 1

2ρsD
2τv2

s

to thermal energy 1
2kT . Using (2), phase fluctuation due to

thermal energy can then be written as

!φfluc ∼ m

h̄

√
kT

τρs
. (B1)

For a superfluid 3He system at its associated temperature
of 1 mK, τ ∼ 100 µm gives !φfluc ∼ 2 × 10−4 rad, which is
small enough that spatial phase coherence (i.e. synchronous
behavior) may be expected for a 3He nanoaperture array. In
contrast,

√
T/ρs is 3–4 orders of magnitude larger for a 4He

system near 2 K. Therefore, this simple line of argument would
suggest that spatial phase coherence might not prevail for a 4He
Josephson system near Tλ.

Although temporal coherence in a given aperture and
spatial phase coherence in an array of apertures are both
expected to be compromised by thermal fluctuations in
superfluid 4He, 4He Josephson oscillations have been observed
for aperture arrays. Furthermore, measurement of the
oscillation amplitude indicates that the overall oscillation from
an array of N apertures is roughly N times that which is
expected for a single aperture deep in a Josephson regime.

In a phase slip regime, phase slips which occur
simultaneously closer to Tλ seem to lose their simultaneity
as the temperature is lowered [99, 100]. In figure B1,
the measured phase slip oscillation amplitude is plotted as
a function of temperature along with the expected value
for a fully synchronous case (estimated from a measured
current–phase relation). Close to Tλ, where phase slip
oscillation starts to morph into Josephson oscillation, the
oscillations are found to be synchronous. That behavior

Figure B1. Phase slip oscillation amplitude versus temperature.
Circles show the measured values, and crosses indicate the expected
values for a fully synchronous case. Reprinted with permission
from [99]. Copyright 2006 by the American Physical Society.

weakens considerably as the temperature is lowered, a fact that
discourages using lower temperatures to boost the oscillation
amplitude. Several attempts have been made to explain this
unexpected temperature dependence.

Chui et al have presented a thermodynamic treatment of a
superfluid Josephson junction in the Josephson regime [101].
By rigidly locking N junctions in parallel, they argue that the
overall fluctuations should be suppressed by a factor of

√
N , a

result consistent with the observation of Josephson oscillation
in an array of junctions even though EJ may be less than kBT
for a single junction at 2 K.

For the lower temperature phase slip regime, Pekker
et al have presented a model that couples all the apertures
through the bulk superfluid allowing one to investigate how
the critical velocity distribution among various apertures
affects the experimental observables [102]. The results that
they obtain with a mean-field approximation and numerical
analysis for a small number of apertures capture the general
experimental findings.

One possible mechanism for the observed loss of
synchronicity at lower temperatures may involve variations in
the surface microstructure among the array of apertures. With
the fluid flowing fastest near asperities, the critical velocity for
an aperture must be affected by the surface structure. Since
the superfluid healing length is a function of temperature, how
much of these nanoscale inhomogeneities the fluid actually
‘sees’ should depend on temperature as well. The healing
length decreases from ∼10 to ∼1.5 nm as the temperature is
lowered from Tλ − T ≈ 10 mK to Tλ − T ≈ 160 mK. If the
surface variations are on the order of a few nanometers, this
could very well provide a critical velocity distribution whose
width increases with decreasing temperature while allowing
the individual apertures to maintain well-defined periodic
oscillations.

At this time, the variation in apparent critical current
reflected in figure B1 remains a profound mystery, and more
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work is required to find an explanation. If future understanding
leads to designs wherein the oscillation amplitude continues
to increase as temperature is decreased, one can hope to
make even more sensitive devices based on the Josephson
oscillations. However, there is a ‘silver lining’ to figure B1.
As we have shown, SHeQUIDs exhibit changes in oscillation
amplitude due to some external phase shifting phenomenon.
Temperature also changes the oscillation amplitude, and
these experiments near Tλ typically require a high-resolution
thermometer [90, 91] as a feedback element to achieve the
necessary temperature stability. The temperature independent
plateau existing near Tλ − T ∼ 60 mK lets one relax the
required temperature stability of the SHeQUID, thus rendering
the technology more accessible to the experimentalist.

Appendix C. Bifurcation: Josephson parametric
amplification

As demonstrated with the Fiske amplification, nonlinear
dynamics can be taken advantage of in various ways to
achieve signal enhancement. In this appendix, we discuss
another nonlinear phenomenon, bifurcation, and its possible
application as an amplifier. Consider the apparatus depicted in
figure 7. In an ideal weak-coupling limit, an aperture array
coupled to a spring-like diaphragm behaves as a nonlinear
oscillator. One can parametrize the junction with a nonlinear
hydrodynamic inductance LJ = (κ/2π)(dI/dφ)−1 =
κ/(2πIc cosφ).

The junction inductance is shunted in parallel by a
hydrodynamic capacitance C associated with the presence of
a diaphragm and heat capacity and compressibility of the fluid
that it displaces. The combined system is an LC oscillator with
the dynamics described by a phase particle with coordinateφ in
a so-called washboard potential U = (κIc/2π)(1−cosφ) [9].
The oscillation within this potential well is referred to as the
plasma mode, and its natural frequency ωp = 1/

√
LJC is

called the plasma frequency. One can also view the system
as a rigid pendulum with the phase difference φ playing
the role of the pendulum’s displacement angle. One of
the simplest models for such a system is a damped, forced
oscillator with a cubic nonlinearity [103]: ẍ +γ ẋ +αx +βx3 =
B cos(ωdt), where B is the driving parameter, ωd is the
drive frequency, and γ , α and β represent the strengths of
damping, stiffness and nonlinearity, respectively. This is the
so-called Duffing oscillator model with a soft spring condition
(β < 0) [104, 105]. The expected oscillator response is
plotted as a function of detuning parameter 2Q(ωd/ω0 − 1)

in figure C1 for increasing values of the dimensionless driving
amplitude f ≡

√
β/α3.

For small driving strength, the sinusoidal potential is
well approximated by a parabola, and therefore the particle
behavior is harmonic with its Lorentzian response. However,
for large amplitude oscillations, nonlinear terms act to reduce
the oscillation frequency, causing the peak to bend toward
the left. For even stronger drives, the bending of the peak
becomes so much that the oscillator bifurcates from a single
valued to a bistable regime. At locations such as the one
indicated by a vertical line in figure C1, the system can have

Figure C1. Predicted bifurcation behavior for increasing drive
levels. Reprinted with permission from [106]. Copyright 2010 by
the American Physical Society.

Figure C2. Amplitude of plasma oscillation and oscillation phase
relative to the drive. Reprinted with permission from [106].
Copyright 2010 by the American Physical Society.

two possible oscillation states with different amplitudes and
phases. Increasing the oscillation amplitude at such bias
points eventually causes the system to switch between the two
dynamical states (from point L to point H, for example), giving
rise to a sharp step on the lower frequency side of the distorted
peak.

Nonlinear bifurcation has been observed for a superfluid
4He Josephson junction [106]. The apparatus used is similar to
the one shown in figure 7 with a weak link formed by a 75×75
array of 60 nm apertures. The diaphragm is driven at frequency
ωd and the amplitude of superfluid plasma oscillations as well
as oscillation phase relative to the drive is recorded. Figure C2
is an example of such data, while sweeping the drive frequency
ωd. When the drive is kept minimal, both amplitude and phase
plots show behavior expected for a linear resonant system.
However, as the excitation is increased to push the system
into a nonlinear regime, the resonant peak bends toward lower
frequency as predicted, and an abrupt step appears on the
left side of the peak as the system bifurcates and transitions
from one state to another. This effect is also pronounced in
the phase plot where a smooth zero-crossing evolves to an
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abrupt switching between two oscillation states as the drive is
increased.

This bifurcation could form a basis for signal
amplification, in close analogy with rf-driven Josephson
bifurcation amplifiers currently utilized in quantum computing
research [107]. As long as the system remains in the
Josephson regime, the Josephson oscillation amplitude and
plasma frequency are related as ω2

p ∝ Ic, and a signal from
small change in ωp will be enhanced greatly at the bifurcation
point. Therefore, the bifurcation phenomenon itself becomes
a sensitive threshold detector for the change in Josephson
oscillation amplitude. Applied to a SHeQUID, the system
could act as a sensitive switch for a change in the quantum
mechanical phase that appears in the superfluid loop. The
Josephson current-phase characteristic in 4He exists very close
toTλ, a regime where the small value ofρs substantially reduces
Ic. Using smaller apertures and employing larger numbers of
them may allow one to utilize bifurcation phenomena at lower
temperatures without having to lose any signal size.

Appendix D. Interferometer size limitations

A sensitive device is only as good as the noise environment.
For the data shown in figure 24, the phase noise from the
environment is already about four times higher than the
smallest phase change that the device is capable of detecting
if only limited by electronic noise. One may be able to
use an astatic sense loop configuration to make the device
more independent of rotational/vibrational noise from the
surroundings. With these environmental limitations in mind,
we mention some techniques that can be used to enhance the
SHeQUID beyond that already achieved.

All the phase shifts induced by external fields are
proportional to the length of the SHeQUID loop, and one
might imagine making ever larger devices to take advantage
of that feature. However there is a limit to such size increase.
Analogous to superconducting weak links, a superfluid weak-
link kinetic inductance is given by L = (κ/2π)(dφ/dI ). In the
weak-link limit near zero phase difference, this becomes LJ =
κ/2πIc. A simple tube of length l has a kinetic inductance
given by Lt = l/ρsσ where σ is the tube’s cross-sectional area.
If the length of the torus becomes too large, the loop inductance
dominates the array inductance and the external phase shift is
appreciably reduced along the tube rather than the apertures.
This decreases the modulation depth of the interference pattern,
diminishing its sensitivity. Probably the best compromise is for
the loop inductance to match the array inductance. This sets a
lower limit on the tube’s internal radius which can be estimated
to be rmin ≈

√
dlN where d is the aperture diameter and N

the number of apertures. With this estimate, an interferometer
with loop circumference ∼1 m requires a tube radius of ∼1 cm.
It is unknown at this time if the SHeQUID can be scaled to these
(and even larger) dimensions. A superfluid interferometer with
53 cm path length and 225 cm2 sensing area in counter-wound
reciprocal geometry has been recently developed [108].

The Josephson mass-current oscillation of magnitude Ic

gives rise to velocity oscillations of the diaphragm. With
the technology used thus far, the diaphragm’s displacement

amplitude is detected. For a sinusoidal fixed amplitude mass
current, the displacement scales inversely with the frequency.
On the other hand, operating at higher frequencies will in
principle increase the signal to noise due to a higher sampling
rate. If a sensitive velocity transducer is employed instead of
a displacement transducer, one could operate at much higher
Josephson frequencies. This may help not only in investigating
more robust resonant features at higher frequencies for Fiske
amplification (away from low frequency building noises) but
also in reducing the response time in the flux-lock mode of
operation, allowing reliable measurements of phase changes
that occur in a much shorter time scale.

Appendix E. Absolute gauge for quantum
mechanical phase differences

SHeQUIDs provide researchers with a novel method to probe
aspects of fundamental physics by registering changes in phase
difference. However, a measurement of “absolute” phase
difference has always remained elusive. We emphasize that
double-path interferometers monitor changes in phase shift
!φ. When the devices are turned on, there can already be
some phase shift, either from external influences or from
trapped vortices. Such initial phase offset, !φ0, cannot be
determined because the two-slit pattern is 2π periodic and thus
physically indistinguishable from!φ0±2πn. Having a means
to measure absolute phase difference (i.e. without the modulo
2πn) between two locations in quantum coherent matter could
be important in understanding the nature of quantum phase and
the quantum mechanics that governs it. This situation may be
remedied with an asymmetric quantum interference grating.

We have discussed the grating interferometer in
section 6.3. To make an absolute !φ gauge, one may
utilize a grating structure but with purposefully designed
geometrical asymmetry. For example, this can be achieved
by varying the areas enclosed by the multiple loops present
in the grating. This approach has been taken with
superconducting SQUIDs to make absolute measurements of
small magnetic field [109, 110]. These true magnetometers
utilize varying enclosed areas in the SQUID array to achieve
magnetic flux to electric current transfer function that is not
2π periodic.

In a similar manner, a SHeQUID with area variations
results in phase to mass-current transfer function that is not
2π periodic. This effect can be seen in the four-slit superfluid
quantum interference grating discussed in section 6.3. The
interference pattern at low !φ values is shown in figure 26,
and its evolution (increasing complexity with increasing !φ)
can be seen in figure E1. In designing that particular
experiment, care was taken to minimize any geometrical
differences. However, the finite width of four phase probing
pipes introduced finite asymmetry, giving rise to the changing
shape of the modulation pattern.

By balancing the dynamic range and the degree of change
required per period in an interference pattern, a device could
be optimized and used as an absolute measure for quantum
phase shift. In practice, an asymmetric grating interferometer
may have some advantages since their performance is not
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Figure E1. Interference patterns for large !φ for a four-slit
interferometer. Reprinted with permission from [78]. Copyright
2008 by the American Physical Society.

degraded by spreads in the Josephson junction parameters
(as mentioned in section 6.3) or deviations in the loop sizes.
One can argue that their performances as absolute gauges rely
on such differences instead. Developed further, this type of
superfluid device could provide insights to equilibrium state
and non-equilibrium dynamics of phase coherent quantum
matter and may become useful for researchers investigating
Kibble–Zurek scenarios [111, 112] of formation of topological
defects, where a knowledge of absolute phase difference can
play a crucial role.

Appendix F. Related devices: superfluid gyrometers

The quantum interference devices described thus far are built
upon the principle that matter waves from multiple junctions
interfere with relative phase shifts determined by external
influences. Although they might not technically fit this
category, there have been other superfluid devices that work
as rotation sensors. To differentiate from dc-SQUID type
interference devices and for historical reasons, we call these
devices gyrometers. We briefly discuss two such examples.

Consider a toroidal container, partitioned by a wall
containing a small aperture (depicted in figure F1). When
the torus is made to rotate at an angular velocity 2, the

Figure F1. Superfluid-filled torus, partitioned by a wall containing
a small aperture. Reprinted with permission from [115]. Copyright
2003, American Institute of Physics.

moving partition forces the fluid in the body of the torus to
go into a solid body motion. The phase integral condition
(
∮

∇φ · dl = 2πn) for a closed path that threads the aperture
and the arms of the torus gives the phase difference across the
orifice !φ = −4π +2 · +A/κ , where A is the area spanned by
the torus. This phase difference corresponds to the induced
superfluid backflow in the aperture to cancel the solid body
flow contributions. Using (2), the rotation-induced velocity in
the aperture can be written as vap = −2 +2 · +A/leff , where
leff is the effective hydrodynamic length of the aperture.
Since the torus area A is macroscopic while the aperture
length leff is microscopic, the device behaves as a rotational
velocity amplifier. This rotation-induced velocity [113] was
first measured [114] by Avenel and Varoquaux with a 4He
apparatus depicted in figure F2. The basic structure is similar
to their double-hole resonator apparatus shown in figure 3, but
the orifice is now connected to the parallel channel through a
two-turn pickup loop, forming the equivalent of a torus with
an effective area of 4 cm2. An orifice is a 0.17 × 2.8 µm2

slit in a 0.2 µm thick Ni foil. As described in the 4He phase
slip section (section 4.1), the Saclay team drove the soft
membrane with a sinusoidal force at the resonant frequency of
the oscillator, ramping up the amplitude and eventually driving
phase slips in succession. The amplitude of the membrane
at which the phase slips occur is directly proportional to the
critical velocity. However, the observed critical velocity in the
orifice is now shifted by the rotation-induced backflow vap =
−2 +2 · +A/leff . Therefore, the critical velocity measurement
becomes a rotation sensing method in this configuration. Such
data are shown in figure F3. Modulation in the critical
velocity is seen as the apparatus is reoriented in the lab frame,
capturing different amount of rotation flux from the spinning
Earth. This experiment was carried out with superfluid 4He
at T ∼ 12 mK. An experiment with better accuracy has
been reported by the same authors [47], and independent
corroboration has been provided by Schwab et al [46]. Later
work by Bruckner and Packard [115] employed a sensing area
two orders of magnitude larger than the work of Schwab et al,
leading to 3 × 10−6 rad s−1 Hz−1/2 sensitivity at T ∼ 300 mK.
Further increase of the pickup area and hence the sensitivity
enhancement (without introducing extra intrinsic noise) is
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Figure F2. Gyrometer schematic. A weak link is shunted by a long
parallel tube. The closed path through the weak link and the tube
has sufficient enclosed area that reorientation of the cell in the
Earth’s rotational field creates phase shifts. Reprinted with
permission from [114]. Copyright 1996, Springer.

Figure F3. Velocity circulation as a function of apparatus
orientation about vertical. Reprinted with permission from [114].
Copyright 1996, Springer.

reported to be feasible. We note that phase slip gyrometers
discussed above are in the form of an rf-SQUID [2], where
a loop of quantum coherent matter is interrupted by a single
junction. However, the Josephson relation (9) is not essential
for these devices to work as their operation principle is based
on phase slip phenomena.

An example of rf-SQUID type gyrometers that make use of
the Josephson relation is the single junction 3He gyro reported
by Mukharsky et al [48]. The device is very similar to the one
shown in figure F2, but it is operated with superfluid 3He in
the Josephson regime below 1 mK. The weak link is an array
of 198 80 nm holes with 2 µm spacing fabricated in a 100 nm
thick SiN window. For a nonlinear current–phase relation,
a weak-link inductance is a function of the phase difference.
Since the phase difference is now a function of rotation flux
(i.e. !φ = −4π +2 · +A/κ), resonant frequency changes can
be used to read the amount of rotation captured in the pickup
loop. Resonant frequency as a function of rotation flux is
shown in figure F4. From the power spectrum of the noise,
the authors deduce the sensitivity of this 3He gyrometer to be
1.4 × 10−7 rad s−1 Hz−1/2.

We note that one of the main differences between these
single junction devices and multi-junction devices described

Figure F4. Resonant frequency versus rotation flux. Reprinted
from [48], copyright 1992 by Elsevier.

in earlier sections is the acquisition rate. In superfluid
gyrometers (rf-SQUID equivalent), the acquisition rate is
typically ∼10 Hz, limited by their natural resonant frequency.
For dc-SQUID-like superfluid devices, the acquisition rate can
be three orders of magnitude higher as it is only limited by
Josephson frequency. On the other hand, the inductance of the
rf-SQUID type devices (and thus the loop area) can be made
larger than that of the dc-SQUID type devices. Therefore, the
comparison of the ‘ultimate’ performances of these devices
is a rather complex issue. See a review on gyrometers by
Avenel et al [116].

Appendix G. Atom and laser interferometers

As mentioned in section 5.1, gyroscopes based on Sagnac
interferometry have been employed with light as well as atoms.
A rotation with an angular velocity +2 induces a shift in the
interference fringe by amount !φ = 4πm +A · +2/h, where
+A is the area vector of the interferometer loop, and m is the

mass of the interfering particle. Because of the large mass,
the Sagnac phase with the same area A is much larger for
neutral atoms than it is for photons. For example, comparing
cesium atoms with a HeNe laser, the same amount of rotation
should cause ∼6 × 1010 times larger phase shifts for atom
interferometers compared with photons. On the other hand,
light interferometers gain advantage by the much larger sensing
areas made possible by high finesse mirrors. The G ring laser
in the underground laboratory of the Geodetic Observatory in
Wettzell [92] has, for example, a sensing area of 16 m2, leading
to a rotation sensitivity of 1.5 × 10−10 rad s−1 Hz−1/2.

For atom interferometers, which typically enclose areas
on the order of tens of mm2 [43], the limitation for increasing
the effective sensing area often comes from the lack of better
beam splitters. It is also difficult to employ curved geometry
in atom interferometry due to dispersive coupling of motion
between the guide direction and confining direction in curved
atomic waveguides [117]. Rather than transporting atoms in
a curved guide, a scheme to move a straight waveguide while
enclosing an area in a folded figure 8 configuration has been
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recently demonstrated [118]. In the case of superfluid helium
quantum interference devices, curved geometry is not an issue
since the whole volume within the guide is occupied by the
fluid that is macroscopically quantum coherent. However,
the limitation for increasing the sensing area comes from
increased hydrodynamic inductance associated with the longer
loop [108]. Although one may be able to increase the cross-
sectional area of the tube to compensate for the increase in the
loop length, such configurations have not been systematically
tested and it is not clear how the significant increase in
overall fluid volume will affect the device performance. We
note that a scheme to transfer rotation flux from a longer
pickup loop to a coupled neutral interferometer loop has
been suggested recently by Golobashkin et al for superfluid
quantum interference devices [119, 120]. The feasibility of
such a scheme is not clear to us at the time of this writing and
needs to be investigated in more detail.

We refer readers to [42, 43, 92] for details on the
short-term sensitivity and long-term stability of atom and
laser interferometers. Recently, Josephson effects have
been observed in BECs [121, 122], opening up an exciting
possibility for constructing a unique quantum interference
device with coherent clouds of atoms similar to the ones
described in this review.
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