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We report on an investigation into confined geometry effects and critical currents 
of  superfluid 3He in a single circular cylindrical channel. The diameter of  the 
channel, 0.71xm, is of  the order of  the (temperature-dependent) coherence 
length and its aspect ratio is ~ 10. The reduction of  the critical temperature 
demonstrates diffuse scattering on the solid walls of  the microchannel. Using 
the Ginzburg-Landau formulation, we derive a model for the critical current 
and the critical temperature in a small, infinitely long, cylindrical channel with 
a circular cross section. The measured reductions of  these quantities are in 
reasonable agreement with the predictions of  the model 

1. I N T R O D U C T I O N  

In the investigation of the properties of  the three known quantum fluids 
(He II,  3He, and superconductors) the detailed structure of  the order para- 
meters is often not apparent  when experiments are carried out on bulk or 
unbounded material. This is because the length scales for local variation 
of the order parameter  are usually much smaller than the sample sizes used. 
Therefore, some of the most revealing experiments on superconductors have 
been carried out in restricted geometries)  

The object of  this work is to study the effects of  flow on superfluid 3He 
confined to a single cylindrical channel whose diameter is of  the order of  
the ( temperature-dependent)  coherence length. This well-characterized 
restricted geometry allows knowledge to be gained about details of  the 
spatial variation and form of the order parameter.  
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The outline of the paper is as follows: Section 2 introduces the main 
theoretical effects of the existence of channel boundaries on the order 
parameter and on various critical velocities. Section 3 discusses the depairing 
critical current in different geometries, with the main emphasis on our own 
model of the present problem. Section 4 gives details of the experiment and 
measurement techniques and discusses the primary data acquired, while 
Section 5 compares the relevant measured parameters with existing theoreti- 
cal models. Section 6 is a brief summary of  our conclusions. 

2. CONFINED GEOMETRY EFFECTS AND CRITICAL FLOW 

2,1.  Order  Parameter  and Quas ipar t i c l e  Scat ter ing  

The free energy functional of a superfluid state depends not only on 
the magnitude of the order parameter 0, but also on its spatial variation. 
In the simplest s-wave superfluid the Ginzburg-Landau (GL) free energy 
density f is given by 2'3 

f =  _61012 + ~ [~p[4 + 2 -~  IV I//[ 2 (1) 

1 

where 6 and /3 are GL coefficients with known properties in the weak 
coupling limit and M is the mass of the condensed object (which for 3He 
is 2m3). The last term (h2/2M)]VOI 2 sets a lower limit for the length scale 
of spatial changes of 0. This length ~:- h/(2Md,) ~/2 is called the superfluid 
coherence length and it diverges near the superfluid transition temperature 
T~ as ( 1 -  T~ Tc) -1/2. 

In a p-wave superfluid such as 3He the order parameter is given by a 
tensor A,i which has the dimensions of energy. Its components transform 
as a vector in spin space with respect to /x and as a vector in momentum 
space with respect to L 3 A solid wall suppresses different components of 
A~i by amounts that are determined by the type of quasiparticle scattering 
at the w a l l .  4-7 

The two extreme boundary conditions are specular (or mirror) reflection 
and diffuse (or random) reflection. Numerical calculations on the behavior 
of the different components of the order parameter have been performed 
by solution of  the gap equation in the GL region 4 and by quasiclassical 
Green's functions method. 5-7 The first approach reveals the boundary struc- 
ture of the components at temperatures close to To, while the latter approach 
extends the study to all temperatures. 

With the existence of a boundary we denote the components parallel 
to the wall as A,I I and the components perpendicular to it as A~,±. Specular 
scattering affects appreciably only the perpendicular component A~,±. The 
longitudinal components A~,II remain almost identical to the bulk value A°i, 
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but the perpendicular component  is suppressed to zero at a wall and heals 
to its bulk value over a distance several times ~(T). By contrast, in diffuse 
scattering all components  are suppressed near the wall. The perpendicular 
component  behaves as in the specular scattering case and, in addition, the 
longitudinal components are suppressed as well. At the wall A~I I <0.5A°i  
and heals in a length of about ~(T). 

Physical effects of  diffuse and specular boundary reflection on the 
superfluid state in a cylindrical channel have been studied by Barton and 
Moore 8 and Kjfildman et aL 9 Experimentally one can distinguish the correct 
scattering limit by, for example, observing the superfluid transition tem- 
perature in the channel. Specular reflection theories predict no depression 
of To, whereas diffuse reflection theories predict 8'9 

=ex [ o ( )21 
in the GL temperature region. T~ is the transition temperature in the pore, 
R is the channel radius, a = 2.40, and ~o is the coherence length at T = 0. 
Numerical calculations of  T~/Tc versus ~o/R have been performed by 
Kj~ildman et al. 9 using the gap equations and extending to T = 0. Barton 
and Moore 8 studied the GL equations for a cylindrical channel and they 
predicted that phase transitions occur in such restricted geometries in the 
vicinity of  To. These phase transitions have so far not been confirmed by 
experiment. 

2.2. Critical Flow Effects 

In the B phase of 3He at least two effects can set an upper  limit to 
superfluid velocities. The competition between these depends on the 
geometry of the flow channel and the temperatures involved. The two 
relevant velocities are: 

(a) The velocity characteristic of  the intrinsic maximal current. This 
is called the depairing critical velocity vc and it is of  the order of  A/pF, 
where A is the energy gap [A ~ 1.76kBTc(1 - T~ To) ~/2] and PF is the Fermi 
momentum of 3He at this pressure. 

(b) The velocity for the creation of quantized vortices is given by 
v ~ ( h / m a d ) l n ( d / a ) .  Here m3 is the mass of  the 3He atom, d is the 
characteristic channel size, and a is the size of  the vortex core. 

We wish to study depairing effects in this experiment. Therefore it is 
necessary to suppress vortex creation in the channel. Since vo depends 
strongly on channel size, one can choose the geometry such that vortex 
creation is unfavorable at all velocities up to the depairing critical velocity 
vc. The channel diameter at which v~ = vc is seen in Fig. 1 to be d - 2/~m. 
In our apparatus d =0.7 /~m,  well below the crossover diameter d~. The 
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Fig. 1. The velocity for creation of single quantized vortex rings v, ~ ( h / m 3 d )  l n ( d / a )  
(with a = 0.1 ,am) and the depairing critical velocity vc - Ao/PF as a function of channel 
diameter. Ao is the B-phase energy gap at P = 0 and T = 0. 

c o n d i t i o n  d < dc fo r  a l o n g  cy l ind r i ca l  3He c h a n n e l  m a k e s  this  e x p e r i m e n t a l  

a r r a n g e m e n t  an  a n a l o g u e  o f  a l d  s u p e r c o n d u c t i n g  m i c r o b r i d g e .  1 

3. D E P A I R I N G  dc I N  U N B O U N D E D  A N D  
R E S T R I C T E D  G E O M E T R I E S  

In  this  sec t ion  we d iscuss  the  in t r ins ic  m a x i m a l  s u p e r c u r r e n t  Jc, o f t en  

ca l l ed  the  d e p a i r i n g  cr i t ica l  cur ren t .  

In  t he  a b s e n c e  o f  f low a n d  in u n b o u n d e d  B p h a s e  the  o r d e r  p a r a m e t e r  
can  be  e x p r e s s e d  as 3 

(' / A = A 1 e ~ (3) 

1 
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if one neglects the rotation of spin components with respect to spatial 
components due to the small dipolar coupling energy. Here h is the 
(spherical) energy gap of  the B phase: A 2= a/10/3, where 

a = ½N(0)(1 - T~ T~) 

= [ 7 ~ ( 3 ) / 2 4 0 ~ r Z ] N ( O ) ( k B T ~ )  -2 

with N(0)  the density of states of one spin projection at the Fermi surface, 
if(3) the Riemann zeta function, and ~b the overall phase of the order 
parameter. 

The presence of flow distorts the energy gap, giving it a nonspherical 
form. The component of A parallel to the flow is reduced, yielding 1°'11 (o) 

A = A a e 'qz (4) 

\ c 

This represents uniform flow in the z direction with a superfluid velocity 
vs = ( h / 2 m 3 ) q .  Using this form for A, one finds the maximal mass current 
density Jc to be (in GL theory) ~°-12 

8~.v/5 p k . T ~  1 - - - ~  

J~ - 917C(3)] ~/: PF 
(5) 

Here p is the density of liquid 3He. This calculation has been extended to 
all temperatures by Vollhardt et  aL 1° and Kleinert. H 

Jacobsen and Smith ~3 have calculated Jc in the vicinity of the transition 
temperature for a one-dimensional polar phase. Their prediction is that the 
temperature-independent prefactor of the critical current is reduced to about 
one-half of its bulk value. Monien and Tewordt ~4 have studied for the case 
of specular boundary scattering the current-phase characteristic of a short 
channel with rectangular cross section. 

We introduce here a variational approach that is not rigorous, but 
produces confined-geometry effects at least semiquantitatively. 

The model we choose presents A in cylindrical polar coordinates in 
the form 

A = a r )e  'qz (6) 

c 

Here the flow axis, the channel axis, and the z axis coincide. The reasons 
for the choice of Eq. (6) are the following: For bulk fluid, A is of the form 
given by Eq. (4) and since we assume perfect cylindrical symmetry and no 
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vorticity in the channel, the effects of  the walls on A will depend only on 
the radial variable r. We choose all the components to have the same radial 
variation, namely 

f ( r )  = 1 - exp[(r  - R)/~(  T)] (7) 

This form simulates diffuse reflection at the wall r = R, where R is the radius 
of  the channel. Setting the r and ~b components of  A equal in Eq. (6) is 
not rigorous, but this choice avoids mathematical complications in the form 
of the resulting free energy that require the existence of singularities along 
the central axis of  the flow channel. 

For this model the relevant free energy density contains the condensa- 
tion free energy density fo and the kinetic/bending free energy density fK : 

o% =f0+j~ .  
Buchholtz and Fetter 15 show the general expression for f0 and fk in 

cylindrical polar coordinates. For the order parameter  of  Eq. (6) one obtains 
from these equations in the weak coupling limit 

f0 = - a (2a z + c2)f 2 + fl (8a 4 -4- 3 c 4 + 4a2c2)f 4 (8)  

and 

fk = K (4a2f '2 + c2f '2 + 2a 2fZq2 + 3 cZfZq 2) (9) 

Here K = N(0)~:2/5 a n d f ' ( r )  ~- df(r)/dr. The components a and c are taken 
to be real, since one can readily see from the original free energy expansion 15 
that the phases of  these two components are equal if o~ is minimized. 
Minimizing the average free energy per unit volume ( ~ ) =  tr -~ ~ dA o~, 
where o- is the cross-sectional area of  the channel, yields 

1 a ( f  2) 1 K ( f  '2) 
a 2 (10) 

10 fl(f4) 4 f l ( f 4 )  

and 

c2 = 1 c~(f 2) 1 K ( f  2) q2 (11) 
10 fl(/4) 2 /3(f  a) 

Thus, only the longitudinal component  is explicitly affected by the superflow. 
From Eq. (10), a 2 = 0 at a temperature T~ that depends on R. At temperatures 
above this the minimization of the average free energy per unit volume with 
a 2 = 0 yields 

c 2 _ _  a ( f  2) -- K ( f  '2) - 3(f2)Kq 2 
6fl(/4) (12) 
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T~ represents a transition temperature above which the liquid is in a polar 
phase. (For our experimental arrangement T1/Tc = 0.6 at P = 0 and TJ Tc = 
0.7 at P = 2.4 bar.) 

The superfluid mass current density in the z direction is given by 

Jz = ( 4m3K / h )( 2a2 + 3c2)f Z q (13) 

according to the general expression for Jz in cylindrical polar coordinates. 
S u b s t i t u t i n g  a 2 and c 2 from Eqs. (10) and (11), or from (12) when a2----0, 
yields 

Jz -2maK(f2)  [{a(f2) K(f'2)~ 3K(f2) ] 
h L\~-~~ ~ ( f4 ) /q  j~(f4> q3 (14) 

This has a maximum value 

4 m3K ( f  2) (o/(f  2) - K (f,2) ) 3/2 
JP (15) =-9 h (K(f2))l/2fl(f 4) 

which occurs at q = qc, where 

F <i2>- ;<i,=>l', 2 
q<= L -9 -K -~  J (16) 

In the unbounded liquid (f2) = (f4) = 1 and (f,2) = 0, thus giving the bulk 
critical current Jc. Scaling the critical current in the channel JP by the bulk 
critical current Jc yields, after evaluation of the averages using f from Eq. 
(7), 

J----~P = [1 - ~ u - l +  ( ~ -  4e-"  -~e-2")u-2] 3/2 
L 

(7 d,,) u 1 --2u~ --2-11/2 x [ 1 - 3 u - ~ + t s - - , ~  - i e  /u j , 

x [ l _ ~ u - , + ( ~ 2 5 _ 8 e - , + , - 2 ~  8 -3~ ~e - ~ e  + ~ e - ' " ) u - 2 ]  - '  (17) 

Here u = (R/£o)(1 - T/T~) ~/2. From Eq. (17) one finds that J¢ and c 2 vanish 
where u 1= 0.513. This means that the critical temperature in the pore T p 
is reduced from the bulk critical temperature by the amount  

T~/T~ = 1 - \---~---/ (18) 

where 7=0.513.  Taking the first term in the Taylor series in Eq. (2) yields 

rr=  2 

T~ - \ ~ - ~ /  (19) 

in close agreement with our estimate. 
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Below T p, JP depends on temperature in this model approximately as 
(1 -- T~ TP) 3/2. Dividing through by Jc/(1 - T~ T~) 3/2 as given in Eq. (5) gives 
the reduction factor j, where 

j=JPc(T=O)/J~(T=O) (20) 

which is shown in Fig. 2 together with TP/T~ as a function of ~:o/R. Predicted 
values of  TP/T~ and j are the central results of  our model. 
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Fig. 2. The reduction of the critical temperature inside the channel 
from ( "  ") Eq. (2) and ( - - )  our model, and the reduction of the 
critical current j = JP( T = O)/J,.( T = 0) as a function of ~:o/R, where 
R is the channel radius. 
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4. EXPERIMENTAL 

4.1. Refrigeration 

A conventional mK cryostat using a commercial dilution unit (SHE- 
DRP36) and a demagnetization stage made of a solid bar of  copper is 
employed. Due to high base temperatures of  the mixing chamber (20-26 mK) 
and an anomalous heat capacity at the lowest temperatures, the 3He sample 
had a minimum temperature of 0.7 inK. After a few weeks' running, the 
ambient heat leak on the copper stage was (~ = 1 nW. These conditions 
allowed 3-6 h of measurement below 0.9 mK (= T p at P = 0) in each demag- 
netization cycle. At P = 2.4 bar the effective measurement time was 1L2-24 h. 

4.2. Etched Nuclear Track Channel Production 

We have described the technique of producing single channels in plastic 
diaphragms in detail elsewhere. 16 

A polycarbonate foil with thickness 6 /zm is exposed to a single fission 
fragment from a 252Cf source. This penetrating fragment produced a so- 
called latent track in the foil, which acts as a preferred target for etching 
by NaOH. By choosing the etch time, one can reproducibly fabricate in 
this material quite circular cylindrical channels with diameters from 0.3 to 
10/xm. Examination of the channel using a scanning electron microscope 
reveals a surface roughness inside the channel that is no more than 10% 
of the radius. 

We calibrate the etch rate of nuclear tracks using electron microscopy 
(TEM and SEM) and gas flow experiments. The single channel we employed 
was intended to have a diameter of 0.8/zm. The 4He gas flow measurements 
at 77 K and liquid 3He flow measurements at 1 K indicated a diameter of 
0.7/zm. Much of our further analysis is based on this number. 

4.3. Experimental  Chamber 

Figure 3 shows the essential features of the 3He chamber. It has two 
approximately equal compartments separated by a flexible electrode made 
from a 10-/xm polycarbonate foil. A 1000-A gold layer is deposited on both 
sides. The lower metallic face is grounded and the upper one is electrically 
isolated. On both sides of this diaphragm are rigid electrodes at a distance 
of about 20/xm. 

The 6-/xm foil containing the flow channel is mounted using an indium 
O-ring such that it can be replaced by another without damage to the cell. 
The absence of parallel internal leaks is verified by replacing the flow 
channel holder by a solid brass piece. A mass spectrometer-based 4He leak 
detector is connected to one compartment while admitting 4He gas to the 
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Fig. 3. A diagram of the experimental chamber used for the superflow measurements .  

other. This test is carried out at 77 K. Absence of a 4He signal at the detector 
indicates absence of a parallel flow path. 

Both compartments  have silver powder heat exchangers of surface area 
of 50 m 2 (approx.) to maintain thermal equilibrium with the cooper cooling 
stage. Nuclear susceptibility of  platinum powder in the liquid 3He is used 
for thermometry. The thermometer  calibration constant is determined at 
the bulk transition temperature To, which was detected both by a change 
of the heat capacity of  the 3He sample and as a (characteristic) anomaly 
in the capacitance of the position sensor while cooling or warming through 
Tc (see Fig. 4). 

The 3He was admitted to the cell through two separate fill lines. To 
study flow through the microchannel,  it was necessary to remove the parallel 
flow path through these fill lines. Two methods were used to do this. 

(a) In early runs the fill lines were isolated from the cell using two 
mechanical needle valves mounted on the 1 K plate. 

(b) In later runs the two halves of  the cell were interconnected with 
a long, thin capillary of  diameter 100/zm and length 3 m. This had a very 
high flow impedance at lowest temperatures because of the high normal 
fluid viscosity of 3 H e ,  r / =  (0 .2 /T 2) kg mK2/msec. The resulting flow time 
constant through this parallel path was 2-5 h which means that the amount  
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Fig. 4. The position of the measurement diaphragm as a function of time 
as T passes through T,. This characteristic feature provides the calibration 
point for the thermometry (see text). 

of  parallel normal mass current during measurements of  superflow is negli- 
gible. 

The cryovalve permitted measurements with no parallel flow path, but 
its location at the 1 K plate caused serious noise problems in the cell. The 
two fill lines, running separately below the closed valve, feel temperature 
variations in different parts of  the refrigerator. This results in pressure 
fluctuations at the cell. 

The high-impedance interconnection method had the advantage that 
at the saturated vapor  pressure it is possible to have the free surface of  3He 
just above the interconnection point and inside a 2-cm 3 ballast volume at 
the mixing chamber. This method reduced the noise level by a factor of  
300 relative to the double cryovalve system. The final noise level of  the 
displacement transducer is 8 × 10 -12 m / H z  ~/2. Expressed as a pressure noise, 
this is 1.6 x 10  - 4  P a / H z  ~/2. 

4.4. Measurement  Techniques 

The capacitance C between the rigid metal electrode in the top half 
of  the cell and the electrically isolated top side of  the diaphragm is the 
basic parameter  measured in the experiment. The rate of  change of C (=  t)) 
is proportional  to the current Js through the channel, and the deviation of 
C from its equilibrium value (AC) is proportional  to the instantaneous 
pressure drive Ap across the channel. The lower capacitor formed by the 
rigid electrode in the bot tom half of the cell and the lower side of  the 
diaphragm can be biased at some voltage U, thus providing the drive to 
induce J~ and Ap. The capacitance is measured using a bridge consisting 
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of  a frequency synthesizer, an isolation transformer, a low-temperature 
(1 K) silver-mica capacitor (470 pF), a preamplifier, and a vector lock-in 
amplifier. The bridge excitation voltage was 100 mV p-p at 5 kHz and the 
lock-in time constant was 1 sec. 

The dynamics of  the experiment are described by two equations. One 
is the instantaneous balance equation for the position of the diaphragm, 
which equates the drive force per unit area to the sum of the elastic restoring 
force per unit area of the diaphragm and the pressure drop across the 
channel, i.e., 

g o U  2 = A p  + Ax  (21) 

Here go is a constant of the drive capacitor, U is the applied voltage, x is 
the spatial average displacement of the position-sensing diaphragm, and h 
is its restoring constant in units of  pressure per unit displacement. The 
numerical values for our apparatus are go = 9 x 10  - 4  Pa/V 2 and h = 2 x 10  7 

Pa/m. 
The second equation governing the position of the diaphragm is 

obtained from mass conservation, 

crJs = p A m X  - K p V A P  (22) 

The left-hand side is the mass flux through the channel. The first term on 
the right is the mass displaced by a moving diaphragm of area Am, where 
p is the mass density of  the fluid. The second term on the right (which in 
our case is about 2% of the first) accounts for the c o m p r e s s i o n ~ d e c o m -  

pression of  the liquid. Here K is the compressibility of liquid 3He, and V 
is the reduced volume of  the container, V - I =  V l l - [  - V21, where VI and V2 
are the volumes of the compartments. Equations (21) and (22) are used to 
extract the relevant quantities Js and Ap from the primary data. 

4.5.  P r i m a r y  D a t a  

Toward the end of  the demagnetization cycles one observes the transi- 
tion into the superfluid state as is shown in Fig. 4. The drift in the baseline 
both above and below Tc is caused by the increase of the flow impedance 
of the two capillaries and the resulting unequal flow through them as a 
response to the small pressure changes at the top of the 3He column. Due 
to this impedance mismatch, the balance of  the capacitor is lost and is 
regained only when the temperature falls below T p, because here the 
pressure could be quickly equilibrated by superflow through the microchan- 
nel. An example of this process is shown in Fig. 5. 

Once the equilibrium is established, the apparatus is ready for measure- 
ment. The fluid is driven through the channel by applying a stepwise voltage 
of  variable magnitude (between 0.8 and 5.0 V) to the drive capacitor. This 
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P = O  

/ T 
balance 
reached 

displacement 
of diaphragm 

Time I 

5 min 
I I 

Fig. 5: The position of the measurement diaphragm as superflow through the 
channel equilibrates the initial pressure difference between the two volumes 
when the temperature first falls below T p. When the two sides are at the same 
pressure the flow stops abruptly. 

causes  the  capac i t ance  m e a s u r e d  at the u p p e r  capac i to r  to change  at a rate 
p r o p o r t i o n a l  to Js. E x a m p l e s  o f  p r imary  da t a  are  shown in Fig. 6. A typica l  
expe r imen ta l  run consists  o f  measurement s  o f  Js with different  A P  and  at 
different  t empera tu re s  T~ To. 

5. C R I T I C A L  C U R R E N T  A N D  C R I T I C A L  T E M P E R A T U R E  

Measu remen t s  o f  (~ versus U 2 show tha t  (~ essent ia l ly  sa turates  with 
dr ive  p ressure  above  10 mPa.  This  sa tu ra t ion  of  C is t aken  to represen t  the  
cri t ical  current .  The ini t ia l  onse t  o f  d i ss ipa t ion ,  i.e., the  flow character is t ics  
when  A P  < 10 mPa ,  will  be  d iscussed  in a separa te  paper .  17 Two runs,  one 
at P = 0 and  the o ther  at P = 2.4 bar ,  are shown in Fig. 7. 

The first obvious  fea ture  o f  the  da t a  in this  figure is that  they show 
tha t  the m e a s u r e d  m a x i m u m  current  falls  to zero at  a t empe ra tu r e  much  
be low the bu lk  t rans i t ion  t empe ra tu r e  To. This  depress ion  o f  Tc in the  po re  
is in close agreement  with that  p red ic t ed  with  our  mode l  for  diffuse quas ipa r -  
t i d e  scat ter ing at the walls.  9 It also agrees well with our  model ,  which  is 
r ep resen ted  by  the so l id  l ine in Fig. 7. 
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Fig. 6. Flow transients at various temperatures. 
Initially the capacitor is in balance and there is no 
flow. At point 1 a voltage of 4.1 V is applied to the 
drive side of  the diaphragm. This is equivalent to 
a pressure A p  = 14 mPa+ First there is a small com- 
pressional j ump  in the diaphragm position and 
then superflow begins to equilibrate the pressure 
head with a current proportional to the time rate 
of  change of the diaphragm position. This current 
is independent  of  Ap  in this region of  large Ap. 
At point 2, when the pressure head has relaxed by 
only a few mPa, the voltage is turned off and the 
equilibrium position of the diaphragm returns to 
its original one. Superflow now equilibrates the few 
mPa built up initially, but in this small-AP region 
the current clearly depends on Ap, as seen by 
" rounding"  of  the trace. This will be discussed in 
a separate paper, t7 The critical current is also seen 
to decrease with temperature. Ap  at any point in 
the falling traces is proportional to the vertical 
distance from the equilibrium line. 
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Fig. 7. (a) The critical current in the channel J~ as a function of T~ T~ at P = 0 from 
(- - )  our model and (0 )  the data. The critical current predicted by considering only 
unbounded fluid is of-scale (at T~ T¢ = 0.86, Jc = 0.16 kg m -2 sec-l). The systematic 
error in the temperature scale is 0.03 mK at most, and T,_ = 1.04 inK. (b) The critical 
current in the channel as a function of T~ T c at P = 2.4 bar from (--)  our model and 
(0 )  the data, and (--) from theory considering only unbounded fluid. The systematic 
error of the temperature scale is 0.03 mK at most, and Tc = 1.39 mK. 

The second important feature of  the data in Fig. 7 is that the magnitude 
of  the critical current is much reduced from that predicted for bulk 
liquid. 1°-12 Here again the agreement between the measured J~ and that 
predicted by our variational estimate is good,  as seen in the figure. At both 
pressures where measurements were taken the absolute reduction of  the 
critical current is quite large. 

At P = 0 the temperature dependence is somewhat  uncertain due to 
the restricted range of  temperatures reached. The best fit is obtained with 
the temperature dependence (1 - T~ T~)", with n = 1.2. At P = 2.4 bar the 

TABLE I 

Results of Measurements and Calculations of TP~/Tc, Current Reduction j, and the Exponent 
n of the Temperature Dependence of J~ at pressures 0 and 2.4 bar" 

T~/L J 

Present Present 
P, bar ~o/R Measured model GL 8'9 Measured b model C Measured GLIO 12 

0 0.20 0.87 0.85 0.87 0.46 0.53 1.2 1.5 
2.4 0.15 0.94 0.92 0.93 0.70 0.63 1.5 1.5 

~The zero-temperature coherence length Co is from the specific heat measurements of ref. 20. 
bFrom the best fit of the form J~ =jJ,.(O)(1 - T , / T ~ )  1"5, where, J,.(O) = 
{8~.5t/2/917~(3)]]/2}pkBT~/pv.  

~j = J~(  T = O)/J,. ( T = 0). 
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Fig. 8. The cri t ical  current  as a func t ion  of  (1 - T~ TP~) 
f rom three different  runs  at  P = 0. (--) F rom our  model .  

p n best fit to the data is obtained with temperature dependence ( 1 -  T~ To) , 
where n = 1.5 ±0.2. Three runs at P = 0 are shown in Fig. 8, plotted on a 
double logarithmic scale. Comparison of our experimental values of the 

Tc,J, and the exponent n with their predicted values is presented parameters P " 
in Table I. 

6. CONCLUSIONS 

The observed large suppression of the transition temperature in the 
channel TP/Tc is a definite verification of diffuse scattering of quasiparticles 
at the walls of the microchannel. This has also been suggested by some 
earlier measurements on packed powders and random arrays of multiple 
micropores.18'19 The measured suppression of  the magnitude of the supercur- 
rent clearly indicates diffuse scattering also and since the results of  our own 
Ginzburg-Landau calculation closely agree with the observed effects of 
confined geometry on superflow, our choice of order parameter seems to 
be a reasonably good approximation. Our calculation suggests that the 
stable state of 3He inside the narrow channel is a polar phase under our 
experimental conditions except at the lowest temperatures when P = 2.4 bar. 
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