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ABSTRACT

Local explainability methods — those which seek to generate an explanation for
each prediction — are increasingly prevalent. However, results from different
local explainability methods are difficult to compare since they may be parameter-
dependant, unstable due to sampling variability, or in various scales and dimensions.
We propose GALE, a topology-based framework to extract a simplified representa-
tion from a set of local explanations. GALE models the relationship between the
explanation space and model predictions to generate a topological skeleton, which
we use to compare local explanation outputs. We demonstrate that GALE can
not only reliably identify differences between explainability techniques but also
provides stable representations. Then, we show how our framework can be used to
identify appropriate parameters for local explainability methods. Our framework
is simple, does not require complex optimizations, and can be broadly applied to
most local explanation methods.

1 INTRODUCTION

Increasingly complex machine learning (ML) models are being deployed in industries such as
healthcare, cybersecurity, and banking. While industries welcome the performance boost from these
ML models, organizations are also starting to require their models to provide clear explanations
for their predictions, as necessitated by regulations, such as GDPR. Thus, explainable artificial
intelligence (XAI) techniques are especially relevant, particularly those which provide explanations
for individual samples.

There are many techniques which provide local explanations for predictive models (Ribeiro et al.,
2016). These techniques typically generate a real-valued vector which represents the attributions of
the input features to the prediction. However, even using a single explanation technique, it is common
to observe different outcomes based on different parameters, which can be hard to tune. Furthermore,
since some local explainability methods rely on random sampling, there may also exist sampling
variability, which can further impact the stability of the explanation output. Since there are many local
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Figure 1: GALE transforms local explanations into a topological representation used to compare
local explanation methods.

explanation methods, each with their own set of parameters, it raises an important question — how do
we assess and compare explanations from different local explainability frameworks? By doing so, for
a given prediction problem, we can develop a quantitative sense of “consensus” among various local
explanation frameworks for different prediction tasks, which can be useful for benchmarking.

We propose GALE (globally assessing local explanations), a simple approach to assess the difference
between sets of local explanations. We do so through an analysis of the topological properties of a
given explanation space for binary classification problems. Specifically, we model an explanation
method as a scalar function that captures the relationship between the explanation space and the
predictions. Using this function, we compute its topological skeleton. This skeleton is used to
generate a topological signature which is then used to compare explanation methods. We can
calculate distances between signatures produced by different local explanation methods to compare
their similarity. GALE is easy to implement and lacks complex optimizations or parameter tuning.

To the best of our knowledge, our approach is the first to use computational topology for comparing
XAI methods. We view topology as a promising direction for understanding and comparing explana-
tion methods and GALE, a powerful yet accessible framework, is the first step in that direction. The
contributions of this work can be summarized as follows:

1. GALE (Global Assessing Local Explanations) a topology-based approach to generate a global
signature for a given local explanation method’s output. By providing a domain-agnostic signature
for explanation techniques, our approach allows comparison across heterogeneous explanation
approaches.

2. We demonstrate that GALE is both stable and can elucidate differences between explanations
through experiments on gradient-based and surrogate model techniques with real-world and
synthetic data.

3. We show that GALE can be used to find appropriate parameters for local explanation methods by
comparing topological signatures for different sets of parameters.

2 RELATED WORK

To balance the desire for machine learning model performance improvements along with growing calls
for explainable model decisions, practitioners are increasingly turning to posthoc local explainability
methods (Weld & Bansal, [2019). These local explanation methods typically produce a vector
representing the attributions of input features, and are generally well-received by users. For example,
LIME (Ribeiro et al.,|2016) and SHAP (Lundberg & Lee, |2017) are two common posthoc, model-
agnostic methods that produce local feature attributions. However, it is hard to compare results
across different explainability methods. Jeyakumar et al.[(2020) find, through surveys with hundreds
of non-technical users, that explanation-by-example and LIME were the preferred explanation
styles. Barr et al.| (2020) propose synthetic data generation with known ground truth to explore
explainability. Taxonomies, such as Explainability Fact Sheets, also provide some guidance on a
unified language around explainability and raise important questions for explainability researchers to
address (Doshi-Velez & Kiml [2017; Sokol & Flachl 2020).

Some local explanation methods, like integrated gradients, rely on baselines to generate feature
attributions. |Haug et al.| (2021) show that popular local explanation methods are sensitive to the
choice of baseline. |Sundararajan & Najmi|(2020) propose Baseline Shapley and prove its desirable
properties. Sturmfels et al.|(2020) visually investigate choices of baselines and note that while one can
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compare baselines through visual inspection, this approach is difficult to scale to enable a large-scale
study of interpretability. Furthermore, Mohseni et al.|(2021) identify user biases in the subjective
rating of model saliency explanations.

To assess and compare the attributions from local explanation methods, a straightforward way is to
ablate the top K features ranked by the attributions and observe the decrease of the predicted output
score (Sturmfels et al.l [2020). To avoid simply removing the top K features without considering
the correlations among features, we can ablate the center of mass of the input instead (Ghorbani
et al.,|2019). Also, to avoid issues of model extrapolation on ablated inputs, we can retrain the model
on the ablated data and measure the performance degradation (Hooker et al.,|2018]). Furthermore,
local explanation methods can also be assessed by comparing their behavior between a randomly
parameterized model and a trained model (Adebayo et al., 2018). Besides ablation, we can measure
the quality of explanations with metrics such as (in)fidelity and sensitivity under perturbations (Yeh
et al.| [2019), or impact score that measures the feature importance on decision marking process (Lin
et al.,|2019). If the apriori of feature importance of the dataset is known, the feature importance of
input across different models can also be assessed (Yang & Kim, [2019).

Although topological data analysis (TDA) is beginning to be considered for explainability purposes,
the field is still nascent. One example of TDA for explainability purposes is shown by Elhamdadi
et al.| (2021), who use TDA to study face poses used in affective computing and find that their
topology-based approach captures known patterns. ivan Veen! (2020) proposed visual constraints on
TDA output to aid interpretability, specifically for viewing global, cluster and local explanations.
However, there is little work on applying TDA to the outputs of explanation methods in order to
compare heterogeneous explanations or quantitatively measure consensus among explanations.

3 METHODS

3.1 TOPOLOGICAL BACKGROUND

Reeb Graph and Mapper. Consider a scalar function f : Ml — R, that maps from a manifold M to
R. The level set f~!(a) at a given scalar value a is the set of all points that have the function value a.
The Reeb graph (Reeb, [1946) of f is computed by contracting each of the connected components of
the level sets of f to a single point, resulting in a skeleton-like representation of the input.

However, many real-world data sets are available as functions defined on a set of discrete high-
dimensional points rather than as continuous functions. The Mapper algorithm (Singh et al.,[2007)
computes an approximation of Reeb graph of some user-defined function (often called lens or filter
function) of such data. Essentially, the Mapper algorithm divides the function range into a set of
overlapping intervals and approximates the level sets to be the set of points that fall within each
interval. The connected components of these approximate level sets are then computed by clustering
the points that are part of a given interval. Each cluster then forms a node of the approximate Reeb
graph and an edge is present between two nodes if they share one or more input points.

Persistence. Given a scalar value a, the sublevel set f ~1((—o0, a]) is defined as the set of all points
on the domain that have a function value less than or equal to a. Consider a filtration of the input that
sweeps the input scalar function f with increasing function values. As the function value increases,
the topology of the sublevel sets changes at the critical points of the function (where its gradient is
zero), and remains constant at other points.

In particular, at a critical point, either a new topology is created, or some topology is destroyed.
Here, topology is quantified by a class of k-dimensional cycles (or k-cycles). For example, a O-cycle
represents a connected component, a 1-cycle is a loop that represents a tunnel, and a 2-cycle bounds
a void. A critical point is a creator if a new topology appears and a destroyer otherwise. Given a set
of critical points c1, ¢z, . . ., ¢, OnE can pair up each creator ¢; uniquely with a destroyer c¢; which
destroys the topology created at c;. We say that a topological feature is born at ¢; and it dies at c;.
The topological persistence (Edelsbrunner et al.|[2002) of this topological feature that is created at c;
is defined as f(c;) — f(c;), which intuitively indicates the lifetime of this feature in this sweep.

Since we work with functions defined over discrete points, we use the graph computed by the Mapper
algorithm to compute the topological persistence (Edelsbrunner et al.,|2002)) of the features of the
input. Here, the filtration is defined on the nodes and edges of the graph as follows. Each node is
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Figure 2: Comparing two sets of explanations using GALE. First, the explanation spaces are
summarized using Mapper. From the Mapper output, we create persistence diagrams. Topological
features correspond to points in the persistence diagram. In this example, we see that while the two
Mapper outputs are similar, the Mapper output from the SHAP explanations is different from that of
the LIME explanations (nodes in upper right differ, nodes in lower left overlap).

assigned a function value equal to the mean of the function values of the clustered points represented
by that node. The order of the nodes added during the filtration is defined by the function value of the
nodes. An edge is added during the step of the filtration as soon as both its endpoint nodes are added.

Persistence Diagrams. A persistence diagram plots the topological features as a 2-dimensional
scatter plot (Edelsbrunner et al., 2002)). Each point in the plot corresponds to a single feature and
has x and y coordinates equal to its birth and death values respectively obtained from the extended
filtration (Figure 2} lower left). Persistence diagrams provide a useful mechanism to assess the
structure of scalar functions. Moreover, it has also been shown that persistence diagrams are robust
to noise (Cohen-Steiner et al.,2007). We can also calculate the distance between two persistence
diagrams. In this work, we use the bottleneck distance. Bottleneck distance measures the similarity
between two persistence diagrams by finding the shortest distance b for which there exists a perfect
matching between the two persistence diagrams, along with all points on the diagonal, such that any
pair of matched points have at most a distance of b between them. Formally,

dy(Pa, Pp) = ingUP |z — ()|l )

where P4 and Pg are persistence diagrams, which are multisets, x € P4, y € Pp and y ranges over
all bijections from P4 to Pp.

3.2 GALE: GLOBALLY ASSESSING LOCAL EXPLANATIONS

In this section, we introduce our approach to globally assessing local explanations (GALE). Let
X CR"beadatasetand P : X — [0, 1] a binary classification model, where P(x) € [0, 1] is the
probability of x € X belonging to the “1” class. Given X and the model P, a local explanation
method can be seen as a mapping from the data set to the explanation space £ : X — R?, where
E(x) provides the “importance” of the different attributes for the classification of z € X. While
d = n for most approaches, d can be greater than n if the explanation method outputs more than a
scalar value for each attribute of the input. The mapping X’ = E(X) gives rise to a point set in R,
which is the explanation manifold. We can define a function f : X’ — [0, 1] as f(z') = P(x), where
x' = E(x),z € X. In GALE, we use the function f as the lens function from which Mapper builds
a summary representation G. Intuitively, f captures the relationship between the explanations and
the classification probabilities. From GG, we can produce its persistence diagram D.
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Figure 3: End-to-end pipeline showing the initial data, learned decision boundary, LIME and
SHAP explanations, and the topological representations for three different 2-dimensional synthetic
classification problems.

Since the explanation manifold can drastically vary across methods and parameters, a direct com-
parison of the geometry of these manifolds is not possible. However, studying the topology of such
functions allows us to analyze how explanation methods differ and thus, we can make geometry
agnostic comparisons. To do so, we can take the distance between two persistence diagrams arising
from two different explanation methods. If the distance is low, then the topologies of the explanation
spaces are similar.

Furthermore, each topological feature (a point in the persistence diagram) can be easily mapped back
to a set of input data points in X, thus allowing us to also compare how the explanation space is
spread across the input data. We show an example of GALE on three synthetic data sets in Figure 3]

3.3 TUNING MAPPER PARAMETERS

Mapper requires three parameters: 1) the resolution r of the lens function that defines the number of
intervals into which the scalar function range is divided; 2) the gain g, which defines the percentage
overlap between successive intervals; and 3) the clustering algorithm used (which may carry its own
parameters). The value of these parameters determines the structure of the resultant graph, and hence
the persistence diagram.

In an ideal scenario, increasing the resolution and decreasing the overlap would result in the graph
computed using the Mapper algorithm converging to the Reeb graph. However, in real-world data,
too high a resolution or too low a gain can result in the graph being a set of disconnected nodes.
In our implementation, we use agglomerative clustering. Due to the varying spaces arising from
different explanation methods, we set the agglomerative clustering distance threshold parameter to a
fraction of the range of the explanation space.

Depending on the data, small changes in the Mapper parameters can drastically change the resulting
graph, and hence the persistence diagram. Poor selections of Mapper parameters can produce graphs
which are disjointed or unstable under small perturbations to the input. Blaser and Aupetit suggest
that direct measures for measuring the quality of Mapper output could be a combination of cluster
quality and their consistency (Blaser & Aupetit, 2020). We are interested in identifying a set of
Mapper parameters that not only produces a “stable” graph computation but also a graph with clear
structure (i.e., a small number of connected components.)

To measure the aforementioned stability, we use bootstrapping (Chazal et al.l 2017) to compute the
confidence intervals for the bottleneck distances between persistence diagrams. Consider a set of
input explanation values £ = {ey, ea, ..., e, } and the persistence diagram D generated by its Mapper
graph G. G is generated from some parameter set containing the resolution, gain and clustering
distance threshold. Then, for each iteration in the bootstrap, we sample with replacement from E to
construct E* = {e}, e}, ..., el }, compute Mapper graph G* and persistence diagram D* from G*,
and calculate dy, (D, D*). Using the distribution of distances created by these iterations, we can then

find the value b, such that
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P(dy(D, D*) > by) = o 2

A parameter set which is stable will produce a low value for ba. Additionally, for each iteration, we
count the number of connected components in G*. We can find the value ¢, such that

P(connected components of G* > é,) = « 3)

To tune the Mapper parameters, we perform a grid search over the resolution, gain and distance
threshold parameters. For each parameter combination, we use 100 bootstrap iterations to estimate ba
and ¢, for o = 0.05. Using the estimated stability and connected components for every combination
of parameters, we then iterate through the parameter set and greedily select the best combination.
While this approach does not guarantee an optimal solution (e.g., we could arrive at a parameter
set which has a low b, but a high ¢,), we find that a greedy strategy works well on a wide array of
synthetic and real world data.

4 EVALUATION

4.1 COMPARING BASELINES IN GRADIENT-BASED METHODS

Here, we illustrate how GALE can be used to understand and compare different explanation methods.
In particular, we aim to address a common challenge in using local explanation techniques—what
should be the baseline for gradient-based explanation methods?

Baselines act as references to compare the relative importance of features for an input so that attribu-
tions can be calculated. We apply three explanation methods—Integrated Gradients (Sundararajan
et al.,|2017), DeepLIFT (Shrikumar et al.,[2017), and SHAP with five different baselines: (1) zero
baseline (an input with all values being zeros), (2) maximum distance baseline (Sturmfels et al., 2020),
(3) Gaussian baseline (Smilkov et al., 2017} |Sturmfels et al., 2020), (4) uniform baseline (Sturmfels
et al., [2020), and (5) a trained baseline (Izzo et al., 2020), resulting in 15 explanations for each
experiment.

Our goal is to illustrate how GALE can be used to identify explanation methods that behave differently.
To do so, we generate a synthetic data set with 5 features and determine the labels with an extremely
simple logic—the input will be labeled as “1” if any of the columns contain a “zero” as value.
Otherwise, they are labeled as “0”. When working with real data sets, it is normal for them to contain
zero values that may provide important information. Under our construction, only zero values are
important to the classification. Thus we expect the zero baseline is the only reference that is not a
neutral input to the classifier. We created 20 different synthetic data sets under the aforementioned
conditions, where each set varied in its rate of “0” labeled instances.

We first calculate a pairwise distance matrix for each of the 20 data sets. Then, we average the
distance matrices, and show the result in Figure 4] We can see that there are three rows and columns
which have much greater average distances (yellow color) than others, meaning that the persistence
diagrams generated by these explanations differ greatly as compared to the other explanations. Such
observation is consistent with the fact that zero baselines produce different feature attributions by
treating the important values as neutral references. Furthermore, when we explore the corresponding
topological skeletons, we observe that these explanations typically have a more scattered graph
compared with the others. Such visual evidence provide a sense that the explanation values differ
greatly among the inputs in the data set. This evidence can be found statistically as well. When
computing the variances of the explanation values among different outcomes, the variances are
generally high among the outputs with scattered topological graphs.

4.2 EVALUATING TOPOLOGICAL STABILITY

Many methods, like LIME, rely on stochastic behavior, which can produce different explanations,
even when given the same parameters. It is important that GALE is resistant to sampling variability
incurred by local explanation methods. In this section, we benchmark GALE’s stability with regards
to the variation induced by local explainability methods. Additionally, we show how our greedy
approach to Mapper parameter selection aids in finding stable topological representations.
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Figure 4: Pairwise distance matrix showing the average bottleneck differences among gradient-based
explanation methods across 20 synthetic datasets. We see that the methods which use the zero-
baseline (rows/columns denoted with “zero””) have higher bottleneck distances to the explanations
using other baselines.

Data Row-Wise Distance C(f)(l)llllll)l(fl(;g;(:s
Greedy Fixed Greedy | Fixed

Spirals 0.00 0.83 2.0 4.1
Circles 1.88 2.56 6.1 10.5
Corners 1.22 1.61 9.0 14.6

Lin. Sep. 0.00 0.00 4.0 4.0

Toy 0.03 0.00 2.0 3.0

Toy-Flip 0.00 0.00 2.0 2.2

Toy-Int. 0.16 0.00 2.0 5.0
Diabetes 0.38 2.70 4.3 36.4

Table 1: Average row-wise sum of distance matrix and average connected component counts after
using parameters found by our greedy parameter search. We find that our parameter tuning procedure
produces more connected and stable Mapper output.

To determine the robustness of GALE against local explanation method variability, for each synthetic
data set and the diabetes data set, we run LIME 30 times. We restrict our experiments to these data
sets for computational purposes. For each run, we generate two Mapper outputs: one which uses the
Mapper parameters found via a greedy search, as described in Section[3.2] and one which uses fixed
parameters: a resolution of 15, a gain of 0.3 and an agglomerative distance threshold of 0.3 times the
range of the explanation space. We then generate two bottleneck distance matrices — one for distances
between the optimized Mappers and another for distances between the fixed parameter Mappers. In
Table[T} we report the average row-sum for each of these matrices for each synthetic data set, as well
as the average number of connected components in the Mapper graphs. The higher the row-sum, the
less consensus there is among the explanation topologies produced by Mapper. We see that by using
our greedy Mapper parameter search, our output is resistant to variation in LIME output.

4.3 USING GALE 1O TUNE EXPLAINABILITY METHOD PARAMETERS

Many local explainability methods use a variety of parameters which guide the output. For example,
in SHAP, one can specify parameters such as the number of times to re-evaluate the model when
explaining each prediction in Kernel SHAP, or the limit on the number of trees used in Tree SHAP.
Choosing an appropriate set of parameters is important, as there can be significant variability in
explanations coming from even just slightly different parameters (Visani et al.,[2020). Here, we show
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Figure 5: Row-wise sum of distance matrix for Mapper graphs computed on LIME explanations of
different feature counts. Since the average row-wise distance stays constant when using 4 or more
features for LIME, we know that the produced topologies are similar for these parameter values.

how to use GALE to tune the parameters of a local explainability method — LIME. We consider a toy
synthetic dataset with six independent features, where only four are used for the prediction. We train
a random forest classifier on this data using the default sklearn parameters. Our goal is to determine
the number of features to use for our LIME explanation, which we know to be four. We set the size
of the neighborhood to 50 observations.

Using our Mapper parameter tuning technique to find appropriate parameters, we compute the
corresponding graph for explanations using k features, where k € {2,...,6}. Then, we calculate
the bottleneck distance between each of the persistence diagrams. Next, we calculate the row-wise
sum of the distance matrix. Persistence diagrams which differ strongly from others will have a high
row-wise sum. We plot the row-wise sum in Figure[5] We see that when the number of features is
four or higher, the returned topological signatures are identical. Thus, one may conclude that the
addition of a fifth or sixth feature in the LIME explanations has no effect on the overall topology
of the explanations. Likewise, by only including two or three features in LIME, one may not be
estimating appropriate explanations.

5 CONCLUSION

We present GALE, a topology-based framework to globally summarize the outputs of local explana-
tion methods. To do so, we compute a topological skeleton that captures the relationship between the
explanations and model predictions. Then, using this skeleton, we find its persistence diagram, which
represents the topological features in the explanation space. Finally, we calculate the distance between
the different explanations’ corresponding persistence diagrams to derive a measure of similarity
between explanations. GALE (1) allows for easy comparison of heterogeneous local explanations, (2)
is resistant to outliers and variation, and (3) can be used to optimize explanation method parameters.
While GALE sheds no light on what are the correct explanations for a given prediction problem, it is
a powerful and simple tool to quantitatively compare heterogeneous local explanations, compared to
visual inspection or user studies.

Limitations. Although topological data analysis shows promise in tackling challenges encountered
in XAI applications, there are still several shortcomings which we plan to address in the future.
While we focus on binary classification with tabular data, which is a canonical machine learning task,
extending GALE to consider multiclass problems, as well as text or image models, will be a key
line of future work. Additionally, although we did not evaluate GALE on regression problems, the
approach would be similar, except for changing the lens function from the class predictions to the
regression output.
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