
Agama reference

Eugene Vasiliev
email: eugvas@protonmail.com

June 26, 2024

Contents

1 Overview 3

2 Structure of the Agama C++ library 4
2.1 Low-level foundations . 4

2.1.1 Math routines . 4
2.1.2 Units . 9
2.1.3 Coordinates . 10
2.1.4 Particles . 11
2.1.5 Utilities . 11

2.2 Potentials . 12
2.2.1 Analytic potentials . 12
2.2.2 Multipole expansion . 13
2.2.3 Azimuthal harmonic expansion . 14
2.2.4 Potential factory . 15
2.2.5 Modifiers and time-dependent density/potential types 24
2.2.6 Utility functions . 26

2.3 Orbit integration and analysis . 26
2.4 Action/angle variables . 28

2.4.1 Isochrone mapping . 28
2.4.2 Spherical potentials . 28
2.4.3 Stäckel approximation . 29
2.4.4 Torus mapping . 30

2.5 Distribution functions . 30
2.5.1 Disky components . 31
2.5.2 Spheroidal components . 34
2.5.3 Spherical DFs constructed from a density profile 35

1

2.5.4 Spherical isotropic models . 36
2.6 Galaxy modelling framework . 37

2.6.1 Moments of distribution functions . 38
2.6.2 Conversion to/from N -body models 41
2.6.3 Iterative self-consistent modelling . 42
2.6.4 Schwarzschild orbit-superposition modelling 44

3 Interfaces with other languages and frameworks 47
3.1 Python interface . 47
3.2 Fortran interface . 64
3.3 C interface . 65
3.4 Interoperability with Galpy . 65
3.5 Interoperability with Gala . 66
3.6 Amuse plugin . 67
3.7 Nemo plugin . 67
3.8 Arepo and Gadget4 plugins . 69

4 Tests and example programs 70

A Technical details 77
A.1 Developer’s guide . 77
A.2 Mathematical methods . 86

A.2.1 Basis-set approximation of functions 86
A.2.2 B-splines . 88
A.2.3 Spline interpolation . 90
A.2.4 Penalized spline regression . 95
A.2.5 Penalized spline density estimate . 98
A.2.6 Gauss–Hermite series . 102
A.2.7 Sampling . 107

A.3 Coordinates . 109
A.4 Potentials . 112

A.4.1 Multipole expansion . 112
A.4.2 CylSpline expansion . 114

A.5 Orbit integration and the variational equation 119
A.6 Action/angle transformation . 123

A.6.1 Stäckel approximation . 123
A.7 Distribution functions . 127

A.7.1 Spherical anisotropic DFs . 127
A.7.2 Spherical isotropic DFs and the phase-volume formalism 128

A.8 Schwarzschild modelling . 131

References 141

2

1 Overview

Agama (Action-based Galaxy Modelling Architecture) is a software library intended for a
broad range of tasks within the field of stellar dynamics. As the name suggests, it is centered
around the use of action/angle formalism to describe the structure of stellar systems, but
this is only one of its many facets. The library contains a powerful framework for dealing
with arbitrary density/potential profiles and distribution functions (analytic, extracted from
N -body models, or fitted to the data), a vast collection of general-purpose mathematical
routines, and covers many aspects of galaxy dynamics up to the very high-level interface for
constructing self-consistent galaxy models. It provides tools for analyzing N -body simula-
tions, serves as a base for the Monte Carlo stellar-dynamical code Raga [72], the Fokker–
Planck code PhaseFlow [73], and the Schwarzschild modelling code Forstand [76] (in
turn, derived from the earlier code Smile [71, 75]).

The core of the library is written in C++ and is organized into several modules, which are
considered in turn in Section 2:

� Low-level interfaces and generic routines, which are not particularly tied to stellar dy-
namics: various mathematical tasks, coordinate systems, unit conversion, input/output
of particle collections and configuration data, and other utilities.

� Gravitational potential and density interface: the hierarchy of classes representing
density and potential models, including two very general and powerful approximations
of any user-defined profile, and associated utility functions.

� Routines for numerical computation of orbits and their classification.

� Action/angle interface: classes and routines for conversion between position/velocity
and action/angle variables.

� Distribution functions expressed in terms of actions.

� Galaxy modelling framework: computation of moments of distribution functions, in-
terface for creating gravitationally self-consistent multicomponent galaxy models, con-
struction of N -body models and mock data catalogues.

� Data handling interface, selection functions, etc.

A large part of this functionality is available in Python through the eponymous exten-
sion module. Many high-level tasks are more conveniently expressed in Python, e.g., finding
best-fit parameters of potential and distribution function describing a set of data points,
or constructing self-consistent models with arbitrary combination of components and con-
straints. A more restricted subset of functionality is provided as plugins to several other
stellar-dynamical software packages (Section 3).

The library comes with an extensive collection of test, demonstration programs and
ready-to-use tools; some of them are internal tests that check the correctness of various code
sections, others are example programs illustrating various applications and usage aspects of

3

the library, and several programs that actually perform some useful tasks are also included
in the distribution. There are both C++ and Python programs, sometimes covering exactly
the same topic; a brief review is provided in Section 4.

The main part of this document presents a comprehensive overview of various features of
the library and a user’s guide. The appendix contains a developer’s guide and most technical
aspects and mathematical details. The science paper describing the code is [74].

The code can be downloaded from http://agama.software.

2 Structure of the Agama C++ library

2.1 Low-level foundations

2.1.1 Math routines

Agama contains an extensive mathematical subsystem covering many basic and advanced
tasks. Some of the methods are implemented in external libraries (Gsl, Eigen) and have
wrappers in Agama that isolate the details of implementation, so that the back-end may
be switched without any changes in the higher-level code; other parts of this subsystem are
self-contained developments. All classes and routines in this section belong to the math::

namespace.

Fundamental objects throughout the entire library are functions of one or many vari-
ables, vectors and matrices. Any class derived from the IFunction interface should provide a
method for computing the value and up to two derivatives of a function of one variable f(x);
IFunctionNdim represents the interface for a vector of functions of many variables f(x),
and IFunctionNdimDeriv additionally provides the Jacobian of this function (the matrix
∂fi/∂xk). Many mathematical routines operate on instances of classes derived from one of
these interfaces.

For one-dimensional vectors we use std::vector when a dynamically-sized array is
needed; some routines take input arguments of type const double[] or store the output in
double[] variables which may be also statically-sized arrays (for instance, allocated on the
stack, which is more efficient in tight loops).

For two-dimensional matrices there is a dedicated math::Matrix class, which provides a
simple fixed interface to an implementation-dependent structure (either the Eigen matrix
type, or a custom-coded flattened array with 2d indexing, if Eigen is not available). Matrices
may be dense and sparse; the former provide full read-write access, while the latter are
constructed from the list of non-zero elements and provide read-only access. Sparse matrices
are implemented in Eigen or, in its absense, in Gsl starting from version 2.0; for older
versions we substitute them internally with dense matrices (which, of course, defeats the
purpose of having a separate sparse matrix interface, but at least allows the code to compile
without any modifications).

4

http://agama.software

Numerical linear algebra routines in Agama are wrappers for either Eigen (consider-
ably more efficient) or Gsl library. There are a few standard BLAS functions (matrix-vector
and matrix-matrix multiplication for both dense and sparse matrices) and several matrix de-
composition classes (LUDecomp, CholeskyDecomp, QRDecomp, SVDecomp) that can be used to
solve systems of linear equations Ax = b.

LU decomposition of a non-degenerate square matrix A (dense or sparse) into a product
of lower and upper triangular matrices is the standard tool for solving full-rank systems
of linear equations. Once a decomposition is created, it may be used several times with
different r.h.s. vectors b.

Cholesky decomposition of a symmetric positive-definite dense matrix A = LLT serves
the same purpose in this more specialized case (being twice more efficient). It is informally
known as “taking the square root of a matrix”: for instance, a quadratic form xTAx may be
written as |LTx|2 – this is used in the context of dealing with correlated random variables,
where A would represent the correlation matrix.

QR decomposition represents a generic M × N matrix (M rows, N columns) as A =
QR, where Q is a M × M orthogonal matrix (i.e., QQT = I) and R is a M × N upper
triangular matrix (i.e., elements below the main diagonal are zero). It can be used, e.g., for
orthogonalizing a set of basis vectors (with M = N); the previous two decompositions are
more efficient for solving a non-degenerate square linear system.

Singular-value decomposition (SVD) represents a generic M × N matrix (M ≥ N) as
A = U diag(S)VT , where U is a M ×N orthogonal matrix, V is a N ×N orthogonal matrix,
and the vector S contains singular values, sorted in descending order. In the case of a
symmetric positive definite matrix A, SVD is identical to the eigenvalue decomposition, and
U = V. SVD is considerably more costly than the other decompositions, but it is a more
powerful tool that may be applied for solving over-determined and/or rank-deficient linear
systems while maintaining numerical stability. If M > N , there are more equations than
variables, and the solution is obtained in the least-square sense; if the nullspace of the system
is non-trivial (i.e., Ax = 0 for a non-zero x), the solution with the lowest possible norm is
returned.

Root-finding is handled differently in one or many dimensions. findRoot searches for
a root of a continuous one-dimensional function f(x) on an interval [a..b], which may be
finite or infinite, provided that f(a) f(b) ≤ 0 (i.e., the interval encloses the root). It uses a
combination of Brent’s method with an optional Hermite interpolation in the case that the
function provides derivatives. findRootNdim searches for zeros of an N -dimensional function
of N variables, which must provide the Jacobian, using a hybrid Newton-type method.

Integration of one-dimensional functions can be performed in several ways. integrateGL
uses fixed-order Gauss–Legendre quadrature without error estimate. integrate uses variable-
order Gauss–Kronrod scheme with the order of quadrature doubled each time until it at-
tains the required accuracy or reaches the maximum; it is a good balance between fixed-

5

order and fully adaptive methods, and is very accurate for smooth analytic functions.
integrateAdaptive handles more sophisticated integrands, possibly with singularities, using
a fully adaptive recursive scheme to reach the required accuracy, but is also more expensive.

Multidimensional integration over an N -dimensional hypercube is performed by the
integrateNdim routine, which serves as a unified interface to either Cubature or Cuba li-
brary [30]; the former is actually included into the Agama codebase. Both methods are fully
adaptive and have similar performance (either one is better on certain classes of functions).
The input function may provide M ≥ 1 values, i.e., several functions may be integrated
simultaneously over the same domain.

Sampling from a probability distribution (sampleNdim) serves the following task: given
a N -dimensional function f(x) ≥ 0 over a hypercube domain, construct an array of M
random sample points xk such that the density of samples in the neighborhood of any point
is proportional to the value of f at that point. Obviously, the function f must have a finite
integral over the entire domain, and in fact the integral may be estimated from these samples
(however it is not as accurate as the deterministic cubature routines, which are allowed to
attribute different weights to each sampled point). This routine uses a multidimensional
variant of rejection algorithm with adaptive subdivision of the entire domain into smaller
regions, and performing the rejection sampling in each region (a more detailed description
is given in Section A.2.7).

Optimization methods A broad range of tasks may be loosely named “optimization
problems”, i.e., finding a minimum of a certain function (objective) of one or many variables
under certain constraints.

For a function of one variable, there is a straightforward minimization routine findMin

that can operate on any finite or (semi-)infinite interval [a..b], and finds min f(x) on this
interval (including endpoints); if there are multiple minima, then one of them will be found
(not necessarily the global one), depending on the initial guess. The starting point x0 such
that f(x0) < f(a), f(x0) < f(b) may be optionally be provided by the caller; in its absense
the routine will try to come up with a guess itself. Only the function values are needed by
the algorithm.

For a function of N variables x, there are several possibilities. If only the values of the
function f(x) are available, then the Nelder–Mead (simplex, or amoeba) algorithm provided
by the routine findMinNdim may be used. If the partial derivatives ∂f/∂x are available,
they may be used in a more efficient quasi-Newton BFGS algorithm provided by the routine
findMinNdimDeriv.

A special case of optimization problem is a non-linear least-square fit: given a function
g(x;d), where xi are N parameters that are being optimized, and dk are M data points,
minimize the sum of squared differences between the values of g at these points and target
values vk: min f(x) =

∑M
k=1[g(x; dk)−vk]2. This task is solved by the Levenberg–Marquardt

algorithm, which needs the Jacobian matrix of partial derivatives of g w.r.t. its parameters

6

x at each data point dk. It is provided by the routine nonlinearMultiFit. Of course, if the
function g is linear w.r.t. its parameters, this reduces to a simpler linear algebra problem,
solved by the routine linearMultiFit. And if there is only one or two parameters (i.e., a
linear regression with or without a constant term), this is solved by the routines linearFit
and linearFitZero.

In the above sequence, more specialized problems require more knowledge about the
function, but generally converge faster, although all of them may be recast in terms of a
general (unconstrained) minimization problem, as demonstrated in test_math_core.cpp.
All of them (except the linear regression routines) need a starting point or a N -dimensional
neighborhood, but may move away from it in the direction of (one of possible) minima; again
there is no guarantee to find the global minimum.

If there are restrictions on the values of x in the form of a matrix A of element-wise
linear inequality constraints Ax ≼ b, and if the objective function f is linear or quadratic in
the input variables, these cases are handled by the routines linearOptimizationSolve and
quadraticOptimizationSolve. They depend on external libraries (GLPK and/or CVX-
OPT; the former can only handle linear optimization problems).

Interpolation There are various classes for performing interpolation in one, two or three
dimensions. All methods are based on the concept of piecewise-polynomial functions defined
by the nodes of a grid x0 < x1 < · · · < xNx−1; in the case of multidimensional interpolation
the grid is rectangular, i.e., aligned with the coordinate lines in each dimension. The ad-
vantages of this approach are locality (the function value depends only on the adjacent grid
points), adaptivity (grid nodes need not be uniformly spaced and may be concentrated in
the region of interest) and efficiency (the cost of evaluation scales as log(Nx) – time needed
to locate the grid segment containing the point x, plus a constant additional cost to evaluate
the interpolating polynomial on this segment).

There are linear, cubic and quintic (fifth-order) interpolation schemes in one, two and
three dimensions (quintic – only in 1d and 2d). The former two are defined by the values of
the interpolant at grid nodes, and the last one additionally requires its (partial) derivatives
w.r.t. each coordinate at grid nodes. All these classes compute the function value and up to
three (1d) or two (2d/3d) derivatives at any point inside the grid; 1d functions are linearly
extrapolated outside the grid.

An alternative formulation of the piecewise-polynomial interpolation methods is in terms
of B-splines – Nx+N−1 basis functions defined by the grid nodes, which are polynomials of
degree N on each of at most N +1 consecutive segments of the grid, and are zero otherwise.
The case N = 1 corresponds to linear interpolation, N = 3 – to (clamped) cubic splines1.
The interpolating function is defined as f(x) =

∑
α AαBα(x), where α is a combined index

1A general cubic spline in 1d is defined by Nx + 2 parameters: they may be taken to be the values of
spline at Nx grid nodes plus two endpoint derivatives, which is called a clamped spline. The more familiar
case of a natural cubic spline instead has these two additional parameters defined implicitly, by requiring
that the second derivative of the spline is zero at both ends.

7

in all dimensions, Aα are the amplitudes and Bα are the basis functions (in more than one
dimension, they are formed as tensor products of 1d B-splines, i.e., Bij(x, y) = Bi(x)Bj(y)).
Again, the evaluation of interpolant only requires O(log(Nx)+N

2) operations per dimension
to locate the grid segment and compute all N possibly nonzero basis functions using a N -step
recursion relation. This formulation is more suitable for constructing approximating splines
from a large number of scattered points (see next paragraph), and the resulting B-splines
may be subsequently converted to more efficient linear or cubic interpolators. This approach
is currently implemented in 1 and 3 dimensions.

B-splines can also be used as basis functions in finite-element methods: any sufficiently
smooth function can be approximated by a linear combination of B-splines on the given
interval, and hence represented as a vector of expansion coefficients. Various mathematical
operations on the original functions (sum, product, convolution) can then be translated
into linear algebra operations on these vectors. The 1d finite-element approach is used in
the Fokker–Planck code PhaseFlow, which is included in the library, and in a few other
auxiliary tasks (e.g., solution of Jeans equations).

Spline interpolation is heavily used throughout the entire Agama library as an efficient
and accurate method for approximating various quantities that are expensive to evaluate
directly. By performing suitable additional scaling transformations on the argument and/or
value of the interpolator, it is possible to achieve exquisite accuracy (sometimes down to
machine precision) with a moderate (O(102)) number of nodes covering the region of in-
terest; for one-dimensional splines a linear extrapolation beyond that region often remains
quite accurate under a carefully chosen scaling (usually logarithmic). Quintic splines are
employed when it is possible to compute analytically the derivatives (or partial derivatives
in the 2d case) of the approximated function at grid nodes during the spline construction
in addition to its values – in this case the accuracy of approximation becomes 1 − 2 or-
ders of magnitude better than that of a cubic spline. (Of course, computing the derivatives
by finite-differencing or from a cubic spline does not achieve the goal). In addition, all
1d interpolators (cubic/quintic splines and B-splines) provide methods for computing ana-
lytic integrals, convolutions with arbitrary kernels, and determination of roots and extrema.
Mathematical foundations of splines are described in more detail in the Appendix (sections
A.2.2 and A.2.3).

Penalized spline fitting There are two kinds of tasks that involve the construction of a
spline curve from an irregular set of points (as opposed to the values of the curve at grid
nodes, as in the previous section).

The first task is to create a smooth least-square approximation f(x) to a set of points
{xi, yi}: minimize

∑
i[yi − f(xi)]

2 + λ
∫
[f ′′(x)]2 dx, where λ is the smoothing parameter

controlling the tradeoff between approximation error (the first term) and the curvature
penalty (the second term). The solution is given by a cubic spline with grid nodes placed at
all input points {xi} [29]; however, it is not practical in the case of a large number of points.
Instead, we approximate it with a cubic spline having a much smaller number of grid nodes

8

{Xk} specified by the user. The class SplineApprox is constructed for the given grid {Xk}
and x-coordinates of input points; after preparing the ground, it may be used to find the
amplitudes of B-splines for any {yi} and λ, and there is a method for automatically choosing
the suitable amount of smoothing.

The second task is to determine a density function P (x) from an array of samples {xi},
possibly with individual weights {wi}. It is also solved with the help of B-splines, this time
for lnP (x), which is represented as a B-spline of degree N defined by user-specified grid
nodes {Xk}. The routine splineLogDensity constructs an approximation for lnP for the
given grid nodes and samples, with adjustable smoothing parameter λ.

Both tasks are presently implemented only for the 1d case, but in the future may be
generalized to multidimensional data represented by tensor-product B-splines. More details
on the mathematical formulation are given in the Appendix (sections A.2.4 and A.2.5).

2.1.2 Units

Handling of units is a surprisingly difficult and error-prone task. Agama adopts a somewhat
clumsy but consistent approach to unit handling, which mandates a clear separation between
internal units inside the library and external units used to import/export the data. This
alone is a rather natural idea; what makes it peculiar is that we do not fix our internal units
to any particular values. There are three independent physical base units – mass, length, and
time, or velocity instead of time. The only convention used throughout the library is that
G = 1, which is customary for any stellar-dynamical code. This leaves only two independent
base units, and we mandate that the results of all calculations should be independent of the
choice of base units (up to insignificant roundoff errors at the level ∼ 10−4 ÷ 10−6 – typical
values for root-finder or integration tolerance parameters). This places heavier demand on
the implementation – in particular, all dimensional quantities should generally be converted
to logarithms before being used in a scale-free context such as finding a root on the interval
[0..∞). But the reward is greater robustness in various applications.

In practice, the units:: namespace defines two separate unit classes. The first is
InternalUnits, defining the two independent physical scales (taken to be length and time)
used as the internal units of the library. Typically, a single instance of this class (let’s call it
intUnit) is created for the entire program. It does not provide any methods – only conver-
sion constants such as from_xxx and to_xxx, where xxx stands for some physical quantity.
For instance, to obtain the value of potential expressed in (km/s)2 at the galactocentric
radius of 8 kpc, one needs to write something like
double E = myPotential.value(coord::PosCyl(8 * intUnit.from_Kpc, 0, 0));

std::cout << E * pow_2(intUnit.to_kms);

The second is ExternalUnits, which is used to convert physical quantities between the
external datasets and internal variables. External units, of course, do not need to follow
the convention G = 1, thus they are defined by three fundamental physical scales (length,
velocity and mass) plus an instance of InternalUnits class that describes the working units

9

of the library. An instance of unit converter is supplied as an argument to all functions that
interface with external data: read/write potential and distribution function parameters, N -
body snapshots, and any other kinds of data. Thus the dimensional quantities ingested by
the library are always in internal units, and are converted back to physical units on output.

When the external data follows the convention G = 1 in whatever units, no conversion
is necessary, thus one may provide an ExternalUnits object with a default constructor
wherever required (it is usually a default value for this argument); in this case also no
InternalUnits need to be defined. The reason for existence of two classes is that nei-
ther of them can fulfill both roles: to serve as an arbitrary internal ruler for testing the
scale-invariance of calculations, and to have three independent fundamental physical scales
(possibly different for various external data sources). In practice, one may create a single
global instance of ExternalUnits with a temporary instance of arbitrary InternalUnits as
an argument; however, having a separate global instance of the latter class is handy because
its conversion constants indicate the direction (to or from physical units).

The Python interface supports the unit conversion internally: the user may set up a
global instance of ExternalUnits, and all dimensional quantities passed to the library will
be converted to internal library units and then back to physical units on output. Or, if no
such conversion has been set up, all data is assumed to follow the convention G = 1. In
the future, we might adopt an alternative unit handling approach that would be seamlessly
integrated with the units subsystem of the Astropy library [3].

2.1.3 Coordinates

The coord:: namespace contains classes and routines for representing various mathematical
objects in several coordinate systems in three-dimensional space.

There are several built-in coordinate systems: Cartesian, Cylindrical, Spherical, and
ProlSph – prolate spheroidal. Their names are used as tags in other templated classes and
conversion routines; only the last one has an adjustable parameter (focal distance).

Templated classes include position, velocity, a combination of the two, an abstract in-
terface IScalarFunction for a scalar function evaluated in a particular coordinate system,
gradient and hessian of a scalar function, and coefficients for coordinate transformations
from one system to the other. Templated functions convert these objects from one coordi-
nate system to the other: for instance, toPosVelCyl converts the position and velocity from
any source coordinate system into cylindrical coordinates; these routines should be called
explicitly, to make the code self-documenting. An even more powerful family of functions
evalAndConvert take the position in one (output) coordinate system and a scalar function
defined in the other (evaluation) system, calls the function with transformed coordinates,
and perform the transformation of gradient and hessian back to the output system. The
primary use of these routines is in the potential framework (Section 2.2) – each potential
defines a method for computing it in the optimal system, and uses the conversion routines to
provide the remaining ones. Another use is for transformation of probability distributions,

10

which involve Jacobian matrices of coordinate conversions. In the future, we may add other
coordinate systems (e.g., heliocentric) into the same framework.

Some routines (e.g., in the galaxymodel:: namespace, Sections 2.6.1, 2.6.4) can use an
“observed” coordinate system XY Z that is arbitrarily oriented with respect to the “intrin-
sic” coordinate system xyz of the model, parametrized by three Euler rotation angles (see
Section A.3 for details and illustrations).

2.1.4 Particles

A particle is an object with phase-space coordinates and mass; the latter is just a single num-
ber, and the former may be either just the position or the position and velocity in any coordi-
nate system. Particles are grouped in arrays (templated struct ParticleArray<ParticleT>).
Particle arrays in different coordinate systems can be implicitly converted to each other, to
simplify the calling convention of routines that use one particular kind of coordinate system,
but accept all other ones with the same syntax.

Agama provides routines for storing and loading particle arrays in files (readSnapshot
and writeSnapshot), with several file formats available, depending on compilation options.
Text files are built-in, and support for Nemo and Gadget binary formats is provided
through the Unsio library (optional).

Particle arrays are also used in constructing a potential expansion (Multipole, BasisSet
or CylSpline) from an N -body snapshot, and created by routines from the galaxymodel

module (Section 2.6), e.g., by sampling from a distribution function.
The particle array type and input/output routines belong to the particles:: name-

space.

2.1.5 Utilities

There are quite a few general-purpose utility functions that do not belong to any other
module, and are grouped in the utils:: namespace. Apart from several routines for string
manipulation (e.g., converting between numbers and strings), and logging, there is a self-
sufficient mechanism for dealing with configuration files. These files have a standard INI
format, i.e., each line contains name=value, and parameters belonging to the same subject
domain may be grouped in sections, with a preceding line [section name]. Values may be
strings or numbers, names are case-insensitive, and lines starting with a comment symbol #
or ; are ignored.

The class KeyValueMap is responsible for a list of values belonging to a single section; this
list may be read from an INI file, or created by parsing a single string like "param1=value1
param2=1.0", or from an array of command-line arguments. Various methods return the
values converted to a particular type (number, string or boolean) or set/replace values.
The class ConfigFile operates with a collection of sections, each represented by its own
KeyValueMap; it can read and write INI files.

11

2.2 Potentials

Agama provides a versatile collection of density and potential models, including two very
general and efficient approximations that can represent almost any well-behaved profile of an
isolated stellar system. All classes and routines in this section are located in the potential::
namespace.

All density models are derived from the BaseDensity class, which defines methods for
computing the density in three standard coordinate systems (derived classes choose the
most convenient one to implement directly, and the two other ones use coordinate transfor-
mations), a function returning the symmetry properties of the model, and two convenience
methods for computing mass within a given radius and the total mass (by default they
integrate the density over volume, but derived classes may provide a cheaper alternative).

All potential models are derived from the BasePotential class, which itself descends
from BaseDensity. It defines methods for computing the potential, its first derivative (gra-
dient vector) and second derivative (hessian tensor) in three standard coordinate systems.
By default, density is computed from the hessian, but derived classes may override this
behaviour. Furthermore there are several derived abstract classes serving as bases for po-
tentials that are easier to evaluate in a particular coordinate system (Section 2.1.3): the
function eval() for this system remains to be implemented in descendant classes, and the
other two functions use coordinate and derivative transformations to convert the computed
value to the target coordinate system. For instance, a triaxial harmonic potential is easier
to evaluate in Cartesian coordinates, while the Stäckel potential is naturally expressed in a
prolate spheroidal coordinate system.

Any number of density components may be combined into a single CompositeDensity

class, and similarly several potential components may be combined into a Composite poten-
tial.

2.2.1 Analytic potentials

There are several commonly used models with known expressions for the potential and its
derivatives.

Spherical models include the Plummer, Isochrone, NFW (Navarro–Frenk–White) poten-
tials, and a generalized King (lowered isothermal) model which is specified by its distribution
function f(E), as given by Equation 1 in [28]. Moreover there is a wrapper class that turns
any user-provided function Φ(r) with two known derivatives into a form compatible with the
potential interface. A point mass (Kepler) potential is obtained by constructing a Plummer

potential with zero scale radius.
Axisymmetric models include the MiyamotoNagai and OblatePerfectEllipsoid poten-

tials (the latter belongs to a more general class of Stäckel potentials [26], but is the only one
implemented at present). There is another type of axisymmetric models that have a ded-
icated potential class, namely a separable Disk profile with ρ(R, z) = Σ(R)h(z). A direct
evaluation of potential requires 2d numerical quadrature, or 1d in special cases such as the

12

exponential radial profile, which is still too costly. Instead, we use the GalPot approach
introduced in [37, 25]: the potential is split into two parts, DiskAnsatz that has an analytic
expression for the potential of the strongly flattened component, and the residual part that
is represented with the Multipole expansion.

Triaxial models include the Logarithmic, Harmonic, Dehnen [22] and Ferrers poten-
tials. The first two have infinite extent and are usable only in certain contexts (such as orbit
integration), because most routines expect the potential to vanish at infinity. Ferrers (n = 2)
models are strictly triaxial, and have analytic expressions for the potential and its derivatives
[47]. Dehnen models may have any symmetry from spherical to triaxial; in non-spherical
cases, the potential and its derivatives are computed using a 1d numerical quadrature [42], so
this is rather costly (and also inaccurate at large distances). A preferred way of using an ax-
isymmetric or triaxial Dehnen model is through the Multipole expansion constructed from
a Spheroid density profile. This class describes general triaxial two-power-law (αβγ) density
profiles2 [79] with an optional exponential cutoff. Many well-known models are special cases
of this profile: Dehnen, Plummer, Isochrone, NFW, Gaussian, Einasto, Prugniel–Simien.
This class only provides the density profile and not the potential, so it needs to be used
in conjunction with the Multipole potential solver. Some models are defined in terms of
the radial profile of the surface density, from which the 3d density may be reconstructed by
deprojection. These include the two-power-law Nuker model and the exponential Sersic
model; both provide only the density but not potential, and can also be flattened or tri-
axial (note that the deprojected spherical density profile is constructed first, and then it
is compressed/stretched along y and z axes). Generalized spherical King models (with an
adjustable strength of the outer cutoff, as in [28]) provide both the density and the poten-
tial. A time-dependent potential of two point masses orbiting each other is represented by
the KeplerBinary class, and a spatially uniform but time-dependent acceleration field is
provided by the UniformAcceleration class.

2.2.2 Multipole expansion

Multipole is a general-purpose potential approximation that delivers highly accurate results
for density profiles with axis ratio not very different from unity (say, at most a factor of few).
It represents the potential as a sum of spherical-harmonic functions of angles multiplied by
arbitrary functions of radius: Φ(r, θ, ϕ) =

∑
l,m Φl,m(r)Y

m
l (θ, ϕ). The radial dependence

of each term is given by a quintic spline, defined by a rather small number of grid nodes
(Nr ∼ 20 ÷ 50), typically spaced equally in log r over a range rmax/rmin ≳ 106; the suitable
order of angular expansion lmax depends on the shape of the density profile, and is usually
≲ 10.

The potential approximation may be constructed in several ways:

2α here corresponds to 1/α in the original paper: higher values of α produce sharper transitions between
inner and outer asymptotic slopes.

13

� from another potential (makes sense if the latter is expensive to compute, e.g., a triaxial
Dehnen model);

� from a smooth density profile, thereby solving the Poisson equation in spherical coor-
dinates;

� from an N -body model (an array of particle coordinates and masses) – in this case a
temporary smooth density model is created and used in the same way as in the second
scenario;

� by loading a previously computed array of coefficients from a text file.

This type of potential is rather inexpensive to initialize, very efficient to compute, pro-
vides an accurate extrapolation to small and large radii beyond the extent of its radial grid,
and is the right choice for “spheroidal” density models – from spherical to mildly triaxial,
and even beyond (i.e., a model may have a twist in the direction of principal axes, or contain
an off-centered odd-m mode).

A related BasisSet potential approximation is based on expanding the radial dependence
of spherical-harmonic terms Φl,m(r) into a sum over functions from a suitable basis set
[32, 79]. For several reasons, this approach is less efficient: the choice of the family of basis
functions implies certain biases in the approximation, and the need to compute a full set of
them (involving rather expensive algebraic operations) at each radius is contrasted with a
much faster evaluation of a spline (essentially using only a few adjacent grid points). For
analytic density profiles, Multipole usually provides much higher accuracy than BasisSet

for a comparable (or lower) computational cost. When initialized from an N -body snapshot,
the accuracy of both expansions is limited by discreteness noise in the coefficients, typically
saturating at lmax ∼ 6− 8 and twice as many radial grid points [59].

DensitySphericalHarmonic is a class derived from BaseDensity, which uses the same
mechanism (spherical-harmonic expansion in angles with coefficients given by spline func-
tions in radius) to represent an arbitrary density profile, without an associated potential.
It is used as an intermediate step in constructing a Multipole potential from an N -body
snapshot, or as an internal representation for some spherically symmetric density profiles
such as King (in this case, with lmax = 0).

2.2.3 Azimuthal harmonic expansion

CylSpline3 is another general-purpose potential approximation that is more effective for
strongly flattened (disky) systems, whether axisymmetric or not. It represents the poten-
tial as a sum of Fourier terms in the azimuthal angle (ϕ), with coefficients of each term
interpolated via a 2d quintic spline spanning a finite region in the R, z plane. The accuracy
of approximation is determined by the number and extent of the grid nodes in R and z
(also scaled logarithmically to achieve a high dynamic range) and the order mmax of angular

3an improved version of the method presented in [75]

14

expansion; in the axisymmetric case only one term is used, but generally it may represent
any geometry, e.g., spiral arms and a triaxial bar.

This potential may also be constructed in the same four ways as Multipole, but the
solution of Poisson equation is much more expensive in this case; still, for typical grid sizes
of a few dozen in each direction, it takes between a few seconds and minutes on a single CPU
core (and is almost ideally parallelized). After initialization, the computation of potential
and forces is as efficient as Multipole. In many cases, it delivers comparable or better
accuracy than the latter, but is not suitable for cuspy density profiles and for extended tails
of density at large radii, since it may only represent it over a finite region (the potential and
its first derivative is still quite accurately extrapolated outside the grid, but the density is
identically zero there). Its main advantage is the ability to handle disky systems which are
not suitable for a spherical-harmonic expansion4.

To summarize, both potential approximations have wide, partially overlapping range of
applicability, are equally efficient in evaluation (but not construction), and deliver good ac-
curacy (see Figures 9, 10 in the Appendix, with more technical details given in Section A.4).
We note that application of these methods to represent the potential of a galaxy like the
Milky Way is computationally more demanding than simple models based e.g. on a combi-
nation of Miyamoto–Nagai disks and spherically-symmetric two-power-law profiles, but only
moderately (by a factor of 2–3), and allows much greater flexibility and realism (especially
if non-axisymmetric features are required).

A related class DensityAzimuthalHarmonic is used to represent an arbitrary density
profile as a Fourier expansion in ϕ, with each term being a 2d cubic spline in R, z. This class
is typically not constructed directly, but together with DensitySphericalHarmonic, serves
as an interpolator for the density profiles in the iterative self-consistent modelling procedure
(Section 2.6.3). All potential and density expansions can be stored to and loaded from text
files, as described in the next section.

2.2.4 Potential factory

All density and potential classes may be constructed using a universal “factory” interface
– several routines that return new instances of PtrDensity or PtrPotential according to
the provided parameters. The parameters can be supplied in several ways. The routines
readDensity and readPotential read them from a text file (referred to as INI file there-
after) containing one or several components of the potential described in separate sections
[Potential], [Potential2], [Potential disk], etc. (all section names should start with
“Potential”) for readPotential, or similarly a file with one or more density components
listed in sections [Density], [Density1], etc. for readDensity. These sections may con-
tain coefficients of density or potential expansion previously written by writeDensity /

4Potential of separable axisymmetric disk density profiles can be efficiently computed using a combination
of DiskAnsatz and Multipole (the GalPot approach), but this applies only to this restricted class of
systems, and is comparable to CylSpline in both speed and accuracy.

15

Table 1: Static density and potential models and their parameters
Name Formula Parameters

Density-only models

Disk

ρ = Σ0 exp
(
−
[
R
Rd

] 1
n − Rcut

R

)
×

δ(z) if h = 0
1
2h

exp
(
−
∣∣ z
h

∣∣) h > 0
1

4|h| sech
2
(∣∣ z

2h

∣∣) h < 0

surfaceDensity (Σ0) or mass,
scaleRadius (Rd), scaleHeight (h),
innerCutoffRadius (Rcut),
sersicIndex (n)

Spheroid
ρ = ρ0

(
r̃
a

)−γ [
1 +

(
r̃
a

)α] γ−β
α

× exp
[
−
(

r̃
rcut

)ξ]
densityNorm (ρ0) or mass, alpha (α),
beta (β), gamma (γ), scaleRadius (a),
axisRatioY (p), axisRatioZ (q),
outerCutoffRadius (rcut),
cutoffStrength (ξ)

Nuker

deprojection of Σ =

Σ0

(
R
a

)−γ [1
2
+ 1

2

(
R
a

)α] γ−β
α

× exp
[
−
(
R
rcut

)ξ]
surfaceDensity (Σ0) or mass, alpha (α),
beta (β), gamma (γ), scaleRadius (a),
axisRatioY (p), axisRatioZ (q),
outerCutoffRadius (rcut),
cutoffStrength (ξ)

Sersic
deprojection of
Σ = Σ0 exp

[
− bn (R/a)

1/n
] surfaceDensity (Σ0) or mass,

scaleRadius (a), sersicIndex (n),
axisRatioY (p), axisRatioZ (q)

Density/potential models
Plummer Φ = − M√

a2+r2
mass (M), scaleRadius (a)

Isochrone Φ = − M
a+

√
r2+a2

mass (M), scaleRadius (a)

NFW Φ = −M
r
ln
(
1 + r

a

) mass (M is the mass enclosed in ∼ 5.3a, the total

mass is ∞), scaleRadius (a)

MiyamotoNagai Φ = − M√
R2+(a+

√
z2+b2)

2

mass (M), scaleRadius (a), scaleRadius2
or scaleHeight (b)

PerfectEllipsoid ρ = M
π2 q a3

[
1 + R2+(z/q)2

a2

]−2 mass (M), scaleRadius (a),
axisRatioZ (q)

Dehnen ρ = M (3−γ)
4π p q a3

(
r̃
a

)−γ (
1 + r̃

a

)γ−4 mass (M), gamma (γ), axisRatioY (p),
axisRatioZ (q), scaleRadius (a)

Ferrers ρ = 105M
32π p q a3

[
1−

(
r̃
a

)2]2 mass (M), scaleRadius (a),
axisRatioY (p), axisRatioZ (q)

King specified by f(E), see text mass, scaleRadius (rc), W0, trunc (g)

Logarithmic Φ = 1
2
v20 ln(r2core + r̃2)

v0 (v0), scaleRadius (rcore),
axisRatioY (p), axisRatioZ (q)

Harmonic Φ = 1
2
Ω2 r̃2 Omega (Ω), axisRatioY (p), axisRatioZ (q)

R =
√
x2 + y2 is the cylindrical radius and r̃ =

√
x2 + (y/p)2 + (z/q)2 is the ellipsoidal radius

16

Table 2: Time-dependent potential models and their parameters
Name Formula Parameters
KeplerBinary two moving point masses mass, binary_q, binary_sma,

binary_ecc, binary_phase
UniformAcceleration Φ = −a(t)x file

Evolving piecewise-constant or piecewise-
linear sequence of other potentials

(see Section 2.2.5)

Table 3: Density and potential expansion types
Name (density) Name (potential) Parameters
— BasisSet nmax, eta, r0, lmax, mmax, symmetry,

fixOrder

DensitySphericalHarmonic Multipole gridSizeR, rmin, rmax, lmax, mmax,
symmetry, fixOrder

DensityAzimuthalHarmonic CylSpline gridSizeR, gridSizeZ, Rmin, Rmax,
zmin, zmax, mmax, symmetry, fixOrder

Table 4: Density and potential modifiers
Name Parameter Description (see Section 2.2.5) Result
Shifted center 3 numbers or a file with x0(t) Φ(x− x0)
Tilted orientation three Euler angles α, β, γ ⇒ rotation matrix R Φ(Rαβγ x)
Rotating rotation a single value or a file with ψ(t) Φ(Rψ00 x)
Scaled scale two values or a file with A(t), S(t) AS−1Φ(x/S)

Table 5: Symmetry types and their implications

Name Invariant transformations
Sph.-harm. coefs
identically zero

None — —

Reflection
{x, y, z} → {−x,−y,−z}
(twofold discrete symmetry)

odd l

Bisymmetric
same or z → −z, also implies {x, y} → {−x,−y}
(fourfold discrete symmetry, e.g., a two-arm spiral)

same + odd m

Triaxial
same or x→ −x or y → −y
(eightfold discrete symmetry, e.g., a bar)

same + negative m

Axisymmetric
same or rotation about z axis by any angle
(continuous symmetry in ϕ)

same + any m ̸= 0

Spherical
same or rotation about origin by any angle
(continuous symmetry in both θ and ϕ)

same + any l ̸= 0

17

writePotential routines, or references to other INI files with yet other parameter sets, etc.
Alternatively, the routine createDensity and several overloaded routines createPotential
take a KeyValueMap object (Section 2.1.5) corresponding to a single section from an INI file
(it may be read from the file, or constructed manually, e.g., from named arguments in the
Python interface, or from command-line parameters for console programs, or from a single
string like "key1=value1 key2=value2"). These parameters may describe the potential
completely (e.g., if this is one of the known analytical models), or define the parameters of
Multipole, BasisSet or CylSpline potential expansions to be constructed from the user-
provided density or potential object, or from an array of particles – in the latter case these
objects are also passed to the factory routines.

Below follows the list of possible parameters of a single potential or density component
for the factory routines (not all of them make sense for all models, but unknown or irrelevant
parameters will simply be ignored); see Table 1 for complete information:

� type determines the type of potential used; should be the name of a class derived from
BasePotential – either a static analytic potential listed in the first column of Table 1,
or a time-dependent potential from Table 2, or an expansion listed in the second column
of Table 3, or a modifier listed in Table 4. It is usually required, unless this section
contains a file parameter referring to another INI file with potential parameters.

� density – if type is a potential expansion, this parameter determines the density
model to be used; should be the name of a class derived from BaseDensity (or, by
consequence, the name of an analytic potential from Table 1, except unbound potentials
– Logarithmic or Harmonic).
There is one exception to the rule that type must encode a potential class: it may also
contain the names of the density profiles originally used in GalPot – Disk, Spheroid,
Nuker or Sersic. All such components are collected first, and used to construct a
single instance of Multipole potential with default parameters, plus zero or more
instances of DiskAnsatz potentials (according to the number of disk profiles). The
source density for this Multipole potential contains all Spheroid, Nuker, Sérsic and Disk
components, plus negative contributions of DiskAnsatz potentials (i.e., with inverted
sign of their masses). Of course, one may use them also as regular density components
(e.g., type=CylSpline density=Disk, which yields comparable accuracy), but in that
case each one would create a separate potential expansion, which is of course not
efficient. In order to lift this limitation, one may construct all density components
individually, manually combine them into a single CompositeDensity model, and pass
it to the constructor of a potential expansion (this approach is used for self-consistent
multicomponent models, Section 2.6.3).

� symmetry defines the symmetry properties of the density model passed to the potential
expansion. All built-in models report this property automatically; this parameter is
needed if the input is given by an array of particles, or by a user-defined routine

18

returning the density or potential in Python and Fortran interfaces. It could be either
a text string with one of the standard choices from Table 5 (only the first letter is used),
or a number encoding a more complicated symmetry (see the definitions in coord.h).

� file can serves several purposes. It may refer to another INI file with one or more sec-
tions describing density or potential parameters, which may also contain Multipole,
BasisSet or CylSpline potential expansion coefficients (if used with readPotential),
or likewise DensitySphericalHarmonic / DensityCylindricalHarmonic coefficients
(if used with readDensity) previously written by writePotential / writeDensity

routines. In this case the type parameter should not be provided.
Alternatively, it may point to an N -body snapshot file used to create such an expan-
sion (in this case the type of expansion needs to be specified, possibly with some other
parameters).
Finally, for the UniformAcceleration potential type, this file contains the time-
dependent acceleration field, and should have 4 columns – time (monotonically in-
creasing) and three acceleration components, which will be interpolated in time as reg-
ularized cubic splines (see Figure 3) and linearly extrapolated beyond the endpoints.
One may provide the same 2d array directly as a text string in the file argument, se-
rialized as follows: [[t1,ax1,ay1,az1],[t2,ax2,ay2,az2],...] – when called from
Python, this argument may contain a numpy array, which is automatically converted
into a string in this format and then parsed inside the C++ code.

Parameters defining an analytic density or potential model (if type is a potential expansion,
they refer to the density argument, otherwise to type); default values are given in brackets:

� mass [1] – total mass of an analytic model5.

� scaleRadius [1] – the first (sometimes the only) parameter with the dimension of
length that defines the profile.

� scaleHeight [1] or scaleRadius2 – the second such parameter (e.g., for Miyamoto–
Nagai or exponential disk models).

� outerCutoffRadius [∞] – another length-scale parameter defining the radius of ex-
ponential truncation, used for Spheroid or Nuker models (∞ means no cutoff).

� innerCutoffRadius [0] – similar parameter for Disk that defines the radius of an inner
hole.

5Except the NFW profile, in which the total mass is formally infinite, and the parameter M refers to the
mass within ∼ 5.3a, where a is the scale radius. It is related to the so-called virial mass Mvir and so-called
concentration c by Mvir = M [ln(1 + c) − c/(c + 1)]. An NFW profile sharply cut at the virial radius is
equivalent to setting outerCutoffRadius to the virial radius (a c) and cutoffStrength to a very large
value (however, this may lead to numerical artifacts).

19

� surfaceDensity [0] – normalization of surface density (its value at R = 0 for the expo-
nential Disk or Sersic profiles (not at the half-light radius!), or at R =scaleRadius
for the Nuker profile).

� densityNorm [0] – value that defines the volume density at the scale radius for the
Spheroid profile. Alternatively, instead of this or the previous parameter, one may
provide the total mass of the corresponding model (these two parameters have a priority
over mass), but this can’t be done for infinite-mass models, so the density normalization
remains the only option.

� alpha [1] – parameter controlling the steepness of transition between two asymptotic
power-law slopes for Spheroid or Nuker.

� beta [4] – power-law index of the outer density profile for Spheroid or Nuker; should
be > 2 except when there is an outer cutoff, otherwise the potential is unbound.

� gamma [1] – power-law index of the inner density profile: ρ ∝ r−γ as r → 0 for Dehnen
(should be 0 ≤ γ ≤ 2) or Spheroid (γ < 3) models, or Σ ∝ R−γ for Nuker model
(0 ≤ γ < 2).

� cutoffStrength [2] – parameter ξ controlling the steepness of the exponential cutoff
in Spheroid or Nuker models: ρ ∝ exp

[
− (r/rcut)

ξ
]
. It can also be used to create the

Einasto profile, in which ρ(r) ∝ exp
[
− cn (r/rhalf)

1/n
]
, where cn ≈ 3n− 1/3+ 0.0075

n−0.05
is

the root of 2Γ(3n, cn) = Γ(3n) and n is the Einasto index: in this case set γ = β = 0,
ξ = 1/n, rcut = rhalf/c

n
n and densityNorm = 3M/[4π r3cut Γ(3n+ 1)].

� sersicIndex – shape parameter n of the Sersic profile (larger values correspond to a
models with steeper inner and shallower outer profiles, default is the de Vaucouleur’s
value of 4), or the same parameter for the Disk profile (default is 1 corresponding to
the exponential disk). Please note that the meaning of scaleRadius is not the same
for the two cases: it corresponds to the projected half-light radius for the Sersic

profile, but differs from it by a constant factor that depends on n and bn(n) (see the
expressions in Table 1; bn ≈ 2n− 1/3 is computed automatically) for the Disk profile.
The projected density of the Disk profile matches the Sérsic profile (after appropriate
rescaling of length) only in the face-on orientation, and the flattening is also specified
differently (q=z/x for the Sersic profile and scaleHeight for the Disk profile).

� p or axisRatioY [1] – the axis ratio y/x of equidensity surfaces of constant ellipticity
for Dehnen, Spheroid, Nuker, Sersic or Ferrers models, or the analogous quantity
for the Logarithmic or Harmonic potentials.

� q or axisRatioZ [1] – the axis ratio z/x, same list of models plus PerfectEllipsoid.

20

� W0 – dimensionless potential depth of generalized King (lowered isothermal) models:
W0 = [Φ(rt) − Φ(0)]/σ2; larger values correspond to more extended envelopes (larger
ratio between the outer truncation radius rt and the scale radius). In the above ex-
pression, the velocity dispersion σ is not an independent parameter: the model in
dimensionless units is specified by W0 and the truncation strength parameter g; the
potential, the truncation radius, and the total mass in dimensionless units are all de-
termined by integrating a second-order ODE, and then the length and mass units are
rescaled to match the given total mass M and the scale radius (also called King radius
or core radius).

� trunc [1] – truncation strength parameter of lowered isothermal models (denoted by
g in [28]); should be between 0 and 3.5 (0 corresponds to Woolley, 1 – to King, 2 – to
Wilson models), larger values result in softer density fall-off near the truncation radius.

� Omega [1] – frequency of oscillation in the Harmonic potential.

� v0 [1] – asymptotic circular velocity for the Logarithmic potential.

� binary_sma [0] – semimajor axis a for the KeplerBinary potential. This model repre-
sents a time-dependent potential of two point masses orbiting each other in the x− y
plane, with the center of mass specified by the center parameter. a = 0 means a single
point mass (the same effect is produced by a Plummer model with scaleRadius=0).

� binary_q [0] – mass ratio q of the KeplerBinary potential (0 means a single massive
object, otherwise the masses of the two components are m1 = m/(1 + q), m2 = qm0).

� binary_ecc [0] – orbital eccentricity e of the KeplerBinary potential (0 ≤ e ≤ 1).

� binary_phase [0] – orbital phase ϕ0 of the KeplerBinary at time t = 0. The po-
sitions of two point masses at time t are given by x1 = a q

1+q
(cos η − e), y1 =

a q
1+q

√
1− e2 sin η for the first one and x2 = −x1/q, y2 = −y1/q for the second one,

where the eccentric anomaly η(t) is the solution of Kepler’s equation: η − e sin η =
Ωt+ ϕ0, and Ω ≡

√
m/a3 is the orbital frequency.

Parameters defining the density or potential expansions (default values in brackets are all
sensible and only occasionally need to be changed):

� gridSizeR [25] – the number of grid nodes in spherical (Multipole, BasisSet and
DensitySphericalHarmonic) or cylindrical (CylSpline and DensityAzimuthalHarmonic)
radius; in the latter case this includes the 0th node at R = 0.

� gridSizeZ [25] – same for the grid in z direction in CylSpline and DensityAzimuthal-
Harmonic, including the z = 0 node.

21

� rmin [0] – the radius of the innermost nonzero node in the radial grid (for all expansion
classes); zero means automatic determination.

� rmax [0] – same for the outermost node; zero values mean automatic determination.

� zmin [0], zmax [0] – same for the vertical grid in CylSpline/DensityAzimuthalHarmonic;
zero values mean take them from the radial grid. Note that the grid auto-setup mech-
anism is currently less optimal in CylSpline than in Multipole, so a sensibly chosen
manual grid extent may be beneficial for accuracy.

� lmax [6] – the order of Multipole, BasisSet and DensitySphericalHarmonic expan-
sion in cos θ; 0 means spherical symmetry.

� mmax [lmax] – the order of azimuthal Fourier expansion in ϕ for all classes; 0 means
axisymmetry, and mmax should be ≤ lmax. Of course, the actual order of expansion in
all cases is also determined by the symmetry properties of the input density model –
if it reports to be axisymmetric, no m ̸= 0 terms will be used anyway. Moreover, if all
terms in the computed expansion beyond a certain order are zero, the actual values
of lmax and mmax can be smaller than the requested ones. Note that for CylSpline,
values of mmax > 12 significantly increase the cost of construction of the potential
from a density profile (though not of its evaluation, which is roughly proportional to
mmax + 1 in any case).

� fixOrder [false] – whether to restrict the number of integration points in angles θ and ϕ
to the minimum necessitated by the requested expansion order lmax, mmax. A spherical-
harmonic transformation of a band-limited input function needs lmax/2+ 1 points in θ
(or twice as many if the input is not z-reflection-symmetric), and a Fourier transfor-
mation needs mmax + 1 points in ϕ (or twice as many for non-y-reflection-symmetric
inputs). However, the routines typically use more than this minimum number, because
the input is rarely band-limited (e.g., when mmax=0, the expansion will be axisymmet-
ric, but it still needs to integrate the input model over ϕ to produce a correct result).
By default (when fixOrder=false) the internally constructed expansions have an or-
der max(12, {l/m}max+6) and query the input models at the corresponding number of
angular points, then are truncated to the requested output order. On the other hand,
when the input density is expensive to compute (e.g., in the context of DF-based self-
consistent models), one may limit this internal expansion order to exactly the output
order, thus having a more explicit control on the number of input density evaluations.

� smoothing [1] – the amount of smoothing applied to the non-spherical harmonics
during the construction of the Multipole potential from an array of particles.

� nmax [12] – the order of radial expansion in BasisSet potential.

22

� eta [1] – parameter controlling the shape of basis functions in the Zhao basis set [79].
The zeroth-order function is a double-power-law (Spheroid) profile with α = 1/η,
β = 3 + 1/η and γ = 2− 1/η; the default value η = 1 corresponds to the widely used
Hernquist–Ostriker basis set [32], although values up to 2 and even higher may provide
more accurate results for cuspy models.

� r0 – scale radius of basis functions. If not provided, it is set to the half-mass radius of
the density profile (unless the latter has infinite mass, in which case one needs to specify
r0 explicitly), and this choice is close to optimal for the approximation accuracy.

These keywords, with some modifications, are also used in potential construction rou-
tines in Python and Fortran interfaces and in the Amuse, Galpy and Gala plugins
(Sections 3.1, 3.2, 3.6, 3.4, 3.5). For instance, Python interface allows to provide a user-
defined function specifying the density or potential profile in the density= or potential=
argument, or an array of particles in the particles= argument.

All dimensional values in the potential factory routines can optionally be specified in
physical units and converted into internal units by providing an extra unit conversion pa-
rameter (Section 2.1.2). For instance, masses and radii in the INI file may be given in solar
masses and parsecs. This conversion also applies during write/read of density or potential
coefficients to/from text files. Of course, if all data is given in the same units and follows
the convention G = 1, no conversion is needed.

The coefficients of a density or a potential expansion can be stored to a text file by
writeDensity / writePotential routines (which in fact refer to the same routine), and
subsequently loaded back by the readDensity / readPotential routines. The write***

routine, in fact, accepts any density/potential class, including composite and modified mod-
els, but it can only write the parameters and coefficients of expansion models, and simply
stores the name of any other model without additional parameters or modifiers (rather than
throwing an error) – note that these other models may not be correctly loaded back unless
you manually edit the file and add the missing properties. Its main purpose is indeed to
store the non-parametric (expansion) models. The storage format is compatible with the
INI file – in fact, the density/potential model, or each component of a composite model, is
written to a separate [Density***] or [Potential***] section, with the type parameter
specifying the name of the expansion model, followed by the parameters of the grids and
expansion orders, and then the coefficients themselves after a line containing a single word
Coefficients. When loading a density or a potential from an INI file, these coefficients
are then used to reconstruct the appropriate expansion (note that they do not follow the
INI format of key=value parameters, but are simply appended after all such parameters at
the end of each INI section). All components of a composite density or potential object are
stored in a single file, one after another.

23

2.2.5 Modifiers and time-dependent density/potential types

All potential and density classes provide functions for evaluating them at an arbitrary mo-
ment of time (0 by default), although almost all built-in models are time-independent (except
KeplerBinary and UniformAcceleration). However, there are two ways in which even a
static density or potential can be made time-dependent:

� By constructing an Evolving potential from an INI file (or a section in such a file) which
has the following format: a line with type=Evolving, an optional line interpLinear=
[true/false], optional modifier parameters discussed below, followed by a line with
a single word Timestamps, and the remaining lines in this section containing a table
with two columns – timestamps and names of corresponding INI files with potential
parameters. The actual potential at the given time t is either taken from the nearest
timestamp, or linearly interpolated between the two potentials associated with times-
tamps t1 ≤ t ≤ t2, if the parameter interpLinear is set to true (note that this is twice
more expensive than taking the nearest one). Of course, the individual INI files may
contain coefficients of potential expansions, or specify composite or time-dependent
potentials of arbitrary complexity.

� By applying one or more “modifiers” from Table 4. The modifiers are not named
explicitly, but are constructed whenever a corresponding parameter appears in the sec-
tion of an INI file or in a KeyValueMap object passed to the factory routines, and their
effects are described below: Φ(x, t) refers to the original potential and Φ̃(x, t) – to
the modified one; all these modifiers can be applied to density objects as well.
center displaces the potential center by a time-dependent vector x0(t): Φ̃(x, t) =
Φ
(
x− x0(t), t

)
. A Shifted potential or density automatically degrades symmetry to

None.
orientation changes the orientation of its principal axes. The transformation between
the original and the modified coordinate system is effected by a rotation matrix R spec-
ified by a triplet of Euler angles α, β, γ6; see Section A.3 for a definition of R and illus-
tration of the two coordinate systems. Lowercase letters x, y, z denote the coordinates
supplied to the modified potential Φ̃, and uppercase X, Y, Z are the rotated coordi-
nates fed to the original (underlying) potential Φ; in other words, Φ̃(x, t) = Φ

(
Rx, t

)
.

A Tilted density/potential has at most a Reflection symmetry.
rotation makes the potential figure rotate about the z axis by an angle ψ(t) that is
an arbitrary function of time. The transformation from the modified to the underlying
coordinate systems is again given by a (simpler) rotation matrix, in which ψ is the
first Euler angle, and the other two angles are zero. For instance, if ψ(t) = Ω t, the
underlying potential steadily rotates anticlockwise with an angular frequency Ω. The
symmetry of a Rotating model is at most Bisymmetric (except when the model is

6no relation to the parameters of a Spheroid potential! These three angles are not named explicitly, but
rather given as a space- or comma-separated string, e.g., orientation=1,2,3.

24

already spherical, in which case the rotation is meaningless anyway).

scale varies the mass normalization A(t) and spatial scale S(t) with time: Φ̃(x, t) =
A(t)S−1(t) Φ

(
S(t)x, t

)
. The factor S−1 ensures that when changing the spatial scale

S, the total mass remains the same (unless, of course, adjusted by A). A Scaled model
retains its original symmetry.
The parameters of these transformations can be constant or time-dependent, except
orientation, whose triplet of Euler angles is kept fixed. For the other three modifiers,
if the corresponding parameter is a single (for rotation), two (for scale), or three (for
center) space- or comma-separated numbers, it is fixed in time, otherwise it is inter-
preted as a 2d table describing the time-dependent variation of this parameter, or the
name of a text file containing such a table. A text file should contain timestamps in the
first column, and the value(s) of the parameter in the remaining columns, and will be
converted into a regularized cubic spline (linearly extrapolated beyond the endpoints of
the specified time interval). To extrapolate as a constant, make the next-to-last point
identical to the last point. The file may contain not only values but also time deriva-
tives of the parameter (e.g., have 7 columns for center: t, x, y, z, ẋ, ẏ, ż), in which case
a Hermite spline will be constructed (it is extrapolated with a slope that is explicitly
set by the derivative at the endpoint). Instead of a text file, the same table can be
provided directly in the corresponding parameter, serialized as follows (example given
for the rotation modifier): [[t1,a1],[t2,a2],[t3,a3]]. This is most useful when
constructing the potential from the Python interface and providing a nested list or a 2d
numpy array directly. For example, a common case of a constant rotation frequency Ω
with an initial phase ϕ0 may be specified as rotation=[[0,phi0],[1,phi0+Omega]].
If a section of the INI file or a KeyValueMap object prescribes multiple modifiers, they
will be applied in the following, most natural order (regardless of their order of ap-
pearance in the INI file): the underlying potential is modulated in amplitude and size,
then made rotating about its z axis, then its principal axes are tilted w.r.t. the ex-
ternal inertial reference frame (in which it will be evaluated), and finally the origin
of the potential is shifted. For instance, one can make the potential spin about an
arbitrary axis, not just z, by providing both rotation and orientation. Evaluating
this multiply-modified potential or its derivatives unfolds the chain of modifiers in the
reverse order to their creation, i.e., the input point is shifted, tilted, rotated and scaled,
then fed into the underlying potential, and the result is propagated back through this
sequence of transformations.
When constructing a multicomponent density/potential from an entire INI file or a vec-
tor of KeyValueMaps, the routines readPotential / createPotential will group the
components sharing the same modifier parameters into separate “bunches” of elemen-
tary or composite potentials, which will then be wrapped into the corresponding mod-
ifier classes, thereby making the potential evaluation more efficient. The readDensity
routine that constructs a possibly composite density from an INI file will apply modi-
fiers to each component separately without attempting to group them.

25

On the other hand, one can add modifiers to an already existing density or potential
object in the same way as creating a density/potential expansion. In this case, the
original density/potential instance is provided to the factory routine createDensity

/ createPotential together with a KeyValueMap containing the parameters of modi-
fiers to be added. This makes possible to apply multiple modifiers in a different order
from the default one, by calling the factory routine several times and ”dressing up”
the model one layer at a time.

The time-dependent potentials are fully supported by the orbit integration routine, but
not by the rest of the library (i.e., all utility functions, sampling from the density profile,
construction of action finders, etc., evaluate the potentials at the default time 0).

2.2.6 Utility functions

Methods of the BaseDensity class include enclosedMass (compute the mass enclosed within
a given spherical radius) and totalMass, which both use 3d integration by default, but may
be reimplemented more efficiently by derived classes. potential_base.h contain several util-
ity functions that operate on any potential object: determination of the radius that encloses
a given mass; projection of density or force along arbitrary lines of sight specified by Euler
angles (Section A.3). It also provides wrapper classes Sphericalized/Axisymmetrized for
both density or potential inputs, which perform on-the-fly symmetrization by averaging over
angles (unless the input model already has the desired symmetry level).

potential_utils.h provides routines for conversion between energy E, angular momen-
tum of a circular orbit Lcirc, and radius; epicyclic frequencies κ, ν,Ω as functions of radius7;
peri- and apocenter radii of an orbit with given E,L in the z = 0 plane, etc. They are im-
plemented as standalone functions (generally using a root-finding routine to solve equations
such as Φ(r) = E for r), and as two interpolator classes that pre-compute these values on a
1d or 2d grid in E or E,L, and provide a faster (but still very accurate) alternative to the
standalone functions. These interpolators are used, e.g., in the spherical and axisymmetric
action finder/mapper classes. The standalone functions accept potentials of any symme-
try, but produce an exact result only if the potential is axisymmetric; otherwise the input
potential is axisymmetrized on the fly, which usually gives a meaningful result that one is
interested in (e.g., a “typical” orbital period). The interpolators, on the other hand, refuse
to work with a non-axisymmetric input potential.

2.3 Orbit integration and analysis

Orbits of particles in a [possibly time-dependent] potential are computed using the class
orbit::OrbitIntegrator, specifically its method run, in any of the three standard coordi-
nate systems, plus optionally a rotating reference frame (see Section A.5 for details). Note

7defined as κ2 ≡ ∂2Φ

∂R2
+

3

R

dΦ

∂R
, ν2 ≡ ∂2Φ

∂z2
, Ω2 ≡ 1

R

dΦ

∂R
=

(
Lcirc

R2

)2

, evaluated at z = 0.

26

that in the of a rotating reference frame (with angular frequency Ω directed along z axis),
the velocity (both in the initial conditions and in the output trajectory) is still specified in an
inertial frame that is instantaneously aligned with the rotating frame at the corresponding
moment of time (i.e., has the same value independently of the pattern speed). For instance,
an orbit trapped into a 1:1 corotation resonance with a bar would have a fixed position
in the rotating frame, but a nonzero azimuthal velocity. On the other hand, if a Rotating

modifier is applied to the potential itself and the orbit integration is performed in the inertial
reference frame, then the trajectory is also stored in the inertial frame. This setup is more
general since the angle of rotation may vary arbitrarily (not just linearly with time, as in
the case of a constant angular frequency), but extra steps would be needed to convert the
trajectory into the instantenously corotating frame.

There are various tasks that can be performed during orbit integration, using classes
derived from orbit::BaseRuntimeFnc. The simplest one (orbit::RuntimeTrajectory)
is the recording of the trajectory either at every timestep of the ODE solver, or at regular
intervals of time, which are unrelated to the internal solver timestep (that is, the position and
velocity at any time are obtained by interpolation provided by the solver – so-called dense
output feature). More complicated tasks involve storage of some other kind of information,
e.g., in the context of Schwarzschild modelling, or in some cases, even modifying the orbit
itself (random perturbations mimicking the effect of two-body relaxation in the Monte Carlo
code Raga).

The class orbit::RuntimeVariational handles the integration of the variational equa-
tion, which contains the second derivatives of the potential and describes the evolution of de-
viation vectors (infinitesimally small perturbations to the orbital initial conditions). In other
words, this provides the time-dependent Jacobian J(t) = ∂w(t)/∂w(t0), where w ≡ {x,v}
is the 6d phase-space vector, making the orbit computation differentiable at the expense of
a moderate increase in cost (between 25% and 200%).

Orbit analysis refers to the determination of orbit class (box, tube, resonant boxlet,
etc.) and degree of chaoticity. This is performed using a Fourier transform of position as a
function of time and detecting the most prominent “spectral lines”; the ratio between their
frequencies is an indicator of orbit type [10, 16], and their rate of change with time is a
measure of chaos [69]. These methods were implemented in [71], but as the focus of Agama
in galaxy modelling is shifted from discrete orbits to smooth distribution functions, we have
not yet included them in the library.

A finite-time estimate of Lyapunov exponent λ is another measure of stochasticity, which
also uses the variational equation (see [17, 61] for reviews). The orbit::RuntimeVariational
task can integrate a single deviation vector or a full set of them, and in either case records
the evolution of the magnitude of the largest vector |w|. For a regular orbit, it grows at
most linearly with time, while for a chaotic orbit it eventually starts to grow exponentially.
Once the orbit integration is finished, this class reports the slope of ln(|w|) as a function of
time, normalized to the characteristic orbital time (so that orbits at different energies can
be more directly compared); if no exponential growth has been detected, it returns λ = 0.

27

2.4 Action/angle variables

As the name implies, Agama deals with models of stellar system described in terms of
action/angle variables. They are defined, e.g., in Section 3.5 of [11].

In a spherical or axisymmetric potential, the most convenient choice for actions is the
triplet {Jr, Jz, Jϕ}, where Jr ≥ 0 (radial action) describes the motion in cylindrical radius,
Jz ≥ 0 (vertical action) describes the motion in z direction, and Jϕ ≡ Rvϕ (azimuthal action)
is the conserved component Lz of angular momentum (it may have any sign). In a spherical
potential, the sum Jz + |Jϕ| is the total angular momentum L. Actions are only defined for
a bound orbit – if the energy is positive, they will be reported as NAN (except Lz which can
always be computed).

The actions:: namespace introduces several concepts: Actions and Angles are the
triplet of action and angle variables, ActionAngles is their combination, Frequencies is the
triplet of frequencies Ω ≡ ∂H/∂J (derivatives of Hamiltonian w.r.t. actions). The transfor-
mation from {x,v} to {J ,θ} is provided by action finders, and the inverse transformation
– by action mappers. There are several distinct methods discussed later in this section,
and they may exist as standalone routines and/or instances of classes derived from the
BaseActionFinder and BaseActionMapper classes. The action finder routines can output
any combination of actions, angles and frequencies, skipping the computation of unneeded
quantities.

The following sections describe the methods suitable for specific cases of spherical or
axisymmetric potentials (see [58] for a review and comparison of various approaches). At
present, Agama does not contain any methods for action/angle computation in non-axisym-
metric potentials, but they may be added in the future within the same general framework.
The file action_factory.h provides driver routines for computing actions and creating
action finder/mapper instances, which automatically choose the appropriate implementation
among the ones described below, depending on the potential.

2.4.1 Isochrone mapping

The spherical isochrone potential, specified by two parameters (mass M and scale radius
b) admits analytic expressions for the transformation between {x,v} and {J ,θ} in both
directions. These expression are given, e.g., in Eqs. 3.225–3.241 of [11]. The standalone rou-
tines evalIsochrone/mapIsochrone providing these transformations, and the corresponding
wrapper class ActionFinderIsochrone, are located in actions_isochrone.h.

2.4.2 Spherical potentials

In a more general case of an arbitrary spherical potential, the radial action is given by

Jr =
1

π

∫ rmax

rmin

√
2[E − Φ(r)]− L2/r2 dr,

28

where rmin,max(E,L) are the roots of the expression under the radical. The standalone
routines evalSpherical/mapSpherical in actions_spherical.h perform the action/angle
transformation in both directions, using numerical root-finding and integration functions in
each invocation. If one needs to compute actions for many points (≳ 103) in the same poten-
tial, it is more efficient to construct an instance of ActionFinderSpherical class that pro-
vides high-accuracy interpolation from the pre-computed 2d tables for rmin,max(E,L) (using
the helper class potential::Interpolator2d) and Jr(E,L), the inverse mapping E(Jr, L)
also provided via an interpolation table, and the complete inverse mapping {J ,θ} ⇒ {x,v}.

2.4.3 Stäckel approximation

In a still more general axisymmetric case, the action/angle variables can be exactly computed
for a special class of Stäckel potentials, in which the motion is fully integrable and separable
in a prolate spheroidal coordinate system. This computation is performed by the standalone
routine evalAxisymStaeckel in actions_staeckel.h, which operates on an instance of
potential::OblatePerfectEllipsoid class (the only example of a Stäckel potential in
Agama). The procedure consists of several steps: numerically find the extent of oscillations
in the meridional plane in both coordinates λ, ν of the prolate spheroidal system; numerically
compute the 1d integrals for Jλ, Jν (which correspond to Jr, Jz); and if necessary, find the
frequencies and angles (again by 1d numerical integration).

For the most interesting practical case of a non-Stäckel axisymmetric potential, the ac-
tions can only be approximated under the assumption that the motion is integrable and
is locally well described by a Stäckel potential. This is the essence of the “Stäckel fudge”
approach [6]. In a nutshell, it pretends that the potential is of a Stäckel form (without
explicitly constructing it), computes the would-be integrals of motion in this presumed po-
tential, and then performs essentially the same steps as the routines for the genuine Stäckel
potential. Actions computed in this way are approximate, in the sense that even for a reg-
ular (non-chaotic) motion, they are not exactly conserved along the orbit; the variation of
J is smallest for nearly-circular orbits close to the equatorial plane, but typically remains
≲ 1−10% even for rather eccentric orbits that stray far from the plane (note that the method
does not provide any error estimate). However, if the actual orbit is chaotic or belongs to
one of minor resonant families, the variation of estimated actions along the orbit is rather
large because the method does not account for resonant motion.

In order to proceed, the Stäckel approximation requires the parameter of the prolate
spheroidal coordinate system – the focal distance ∆; the accuracy (variation of estimated
actions along the orbit) strongly depends on its value. Importantly, we do not need to have
a single value of ∆ for the entire system, but may use the most suitable value for the given
set of integrals of motion (depending on {x,v}). The ActionFinderAxisymFudge class pre-
computes a table of best-fit values of ∆ as a function of E,Lz (this takes a couple of seconds)
and uses interpolation to obtain a suitable value at any point, which is then fed into the
standalone routine evalAxisymFudge that compute the actions, angles and/or frequencies.

29

This is the main workhorse for many higher-level tasks in the Agama library.
A variation of this approach is to pre-compute the actions Jr, Jz as functions of three

integrals of motion (one of them being approximate) on a suitable grid, and then use a
3d interpolation to obtain the values of actions at any point. The construction of such
interpolation table takes another couple of seconds, and the evaluation of actions through
interpolation is ∼ 10× faster than using the Stäckel approximation directly. However, the
accuracy of this approach is somewhat worse (not because of interpolation, but due to
the approximate nature of the third integral); nevertheless, it is still sufficient in many
contexts. It is implemented in the same ActionFinderAxisymFudge class with the parameter
interpolate=true.

More technical details are provided in Section A.6.1.

2.4.4 Torus mapping

The transformation from {J ,θ} to {x,v} in an arbitrary axisymmetric potential is per-
formed using the Torus mapping approach [9]. A single torus is constructed for a given
triplet of actions J , which takes some time and might not always succeed (depending on
the properties of the potential and the required accuracy); the subsequent mapping for any
values of angles θ is relatively fast. The class ActionMapperTorus implements the torus
construction “on-the-fly”, with each unique triplet of actions producing a new torus, which
is then cached and reused in subsequent calls that use the same J but different θ. The
torus code is adapted from the original TorusMapper package, with several modifications
enabling the use of an arbitrary potential and a more efficient angle mapping approach;
however, it does not quite comply to the coding standards adopted in Agama (Section A.1)
and in the future might be replaced by a fresh implementation.

2.5 Distribution functions

By Jeans’ theorem, a steady-state distribution of stars or other species in a stationary poten-
tial may depend only on integrals of motion, taken here to be the actions J . The df:: names-
pace contains the classes and methods for working with such distribution functions (DFs)
formulated in terms of actions. They are derived from the BaseDistributionFunction

class, which provides a single method for computing the value f(J) at the given triplet of
actions. All physically valid DFs must have a finite mass M = (2π)3

∫∫∫
f(J) d3J , com-

puted by numerical integration (the pre-factor comes from a trivial integration over angles)
and returned by the totalMass method of the DF instance. The same DF corresponds to
different density profiles in different potentials (Section 2.6.1), but the total mass of the
density profile is always the same.

Agama provides several DFs suitable for various components of a galaxy, described in the
following sections. In addition there is a concept of a multi-component DF: since computing
the actions – arguments of the DF – is a non-negligible cost, it is often advantageous to

30

evaluate several DFs at the same set of actions at once. There is also a “DF factory” routine
createDistributionFunction for constructing various DF classes from a set of named
parameters described by a KeyValueMap object (Section 2.1.5); the choice of model is set by
type=..., and model-specific parameters are described in the following sections.

Importantly, the DF formulated in terms of actions does not depend on the potential.
However, some models use the concept of epicyclic frequencies to compute the value of f(J).
These frequencies are represented by a special proxy class potential::Interpolator, which
is constructed from a given potential, but then serves as an independent entity (essentially
an array of arbitrary functions of one variable), so that f(J) has the same value in any other
potential. This is important in the context of iterative construction of self-consistent models
(Section 2.6.3).

All built-in DF classes provide analytic derivatives ∂f/∂J .

2.5.1 Disky components

There are two classes of disk DFs in Agama: the first, QuasiIsothermal, expresses the DF
in terms of auxiliary functions that are related to a particular potential, while the second,
Exponential, is written in an entirely self-contained form. We describe them in turn.

Stars on nearly-circular (cold) orbits in a disk are often described by a Schwarzschild
or Shu DF, which have Maxwellian velocity distribution with different dispersions in each
direction. A generalization for warm disks [23] expressed in terms of actions [8] is provided
by the QuasiIsothermal class, which represents the following DF:

f(J) =
Ω

2π2 κ2
Σ0

1− qJϕ
expq

(
− Rc

Rdisk

, −qJϕ
)

× κ

(1− qJr) σ̃
2
r

expq

(
−K(J)

σ̃2
r

, −qJr
)
× ν

(1− qJz) σ̃
2
z

expq

(
−ν Jz
σ̃2
z

, −qJz
)
,

K(J) ≡
{
κ Jr if Jϕ ≥ 0,
κ Jr − 2Ω Jϕ if Jϕ < 0,

Rc = Rc(Ĵ), Ĵ ≡
√
J̃2 + J2

min, J̃ ≡ |Jϕ|+ krJr + kzJz,

σ̃2
r(Rc) ≡ σ2

r,0 exp(−2Rc/Rσ,r) + σ2
min,

σ̃2
z(Rc) ≡ σ2

z,0 exp(−2Rc/Rσ,z) + σ2
min or σ̃2

z(Rc) ≡ 2h2disk ν
2(Rc) + σ2

min,

expq(x, q) ≡
{

exp(x) if q = 0,
(1 + qx)1/q if − 1 < q < 0.

In these expressions, Rc(Lz) is the radius of a circular orbit as a function of the z-
component of angular momentum, but evaluated at an argument Ĵ(J). The epicyclic fre-
quencies κ, ν,Ω and the two quantities with a dimension of squared velocity σ̃2

r , σ̃
2
z are, in

turn, evaluated at a radius Rc. The function expq(−x,−q) is a generalization of the usual
exponent exp(−x), which is identical to it when q = 0, but falls off more slowly when

31

0 < q < 1. To construct such a DF, one needs to provide an instance of potential, which
is used to initalize the function Rc(Lz) and the epicyclic frequencies κ, ν,Ω as functions of
radius. Other parameters listed in the QuasiIsothermalParam structure are:

� Sigma0 is the overall normalization of the surface density profile Σ0; alternatively, one
may provide the total mass, from which the normalization will be computed automat-
ically.

� coefJr [1], coefJz [0.25] are the dimensionless coefficients kr, kz ∼ O(1) in the linear
combination of the actions J̃ ≡ |Jϕ|+krJr+kzJz. This J̃ is then summed in quadrature

with Jmin to form Ĵ , which is used as the argument of Rc instead of the angular
momentum. The reason for this is that J̃ better corresponds to the average radius of
a given orbit than Jϕ alone: for instance, a star with Jϕ ≈ 0 does not in reality stay
close to origin if the other two actions are large.

� Jmin [0] is the lower limit Jmin imposed on the argument of the circular radius function
Rc(Ĵ). It is introduced to prevent a pathological behaviour of DF in the case of a
cuspy potential, when epicyclic frequencies tend to infinity as Rc → 0.

� Rdisk sets the scale length of the disk Rdisk.

� Hdisk if provided, determines the scale height of the disk hdisk and the vertical velocity
dispersion, which are related through the vertical epicyclic frequency ν.

� Alternatively, sigmaz0 and Rsigmaz can be used instead of Hdisk to make the verti-
cal velocity dispersion profile close to an exponential function of radius, with central
value σz,0 and radial scale length Rσ,z; this choice has been used historically for quasi-
isothermal DFs [8, 13], but it does not generally produce constant-scaleheight disk
profiles.

� sigmar0 and Rsigmar control the radial velocity dispersion profile, which is nearly
exponental with central value σr,0 and radial scale Rσ,r. Typically Rσ,r, Rσ,z ∼ 2Rdisk.

� sigmamin [0] is the minimum value of velocity dispersion σmin, added in quadrature to
both σ̃r and σ̃z; it is introduced to avoid the pathological situation when the velocity
dispersion drop so rapidly with radius that the value of DF at Jr = Jz = 0 actually
increases indefinitely at large Jϕ. A reasonable lower limit could be (0.02 .. 0.05)σ0.

� qJphi [0] is responsible for the shape of the radial profile of the surface density: the
default value of zero creates nearly-exponential profiles, whereas a positive value makes
it less steeply declining with radius.

� qJr [0], qJz [0] play a similar role for the velocity distributions in: they should be
approximately isothermal when these parameters are zero, and have fat tails when
they are positive.

32

As stressed above, both epicyclic frequencies and Rc(Ĵ) are merely one-dimensional functions
that are once initialized from an actual potential, but no longer need to be related to the
potential in which the DF is later used. If these two potentials are close enough, then
this DF produces density profiles and velocity dispersions that approximately correspond to
the exponential disks (at least when the q... coefficients are zero): the surface density Σ(R)
is close to exponentially declining with central value Σ0 and radial scale length Rdisk, the
vertical profile is roughly isothermal with scale height hdisk, and the radial velocity dispersion
is similar to σ̃r, although the actual profiles are somewhat different from the tilded functions.

If the potential has a nearly flat rotation curve with circular velocity v◦, then Rc(J̃) ≈
J̃/v◦, and epicyclic frequencies are∝ v2◦/J̃ . This motivates the introduction of another family
of disk-like DFs, which has a similar functional form, but does not itself contain any reference
to the potential, simplifying the construction of self-consistent models (Section 2.6.3). It is
represented by the Exponential class:

f(J) =
M

(2π)3
Jd
J2
ϕ,0

expq

(
− Jd
Jϕ,0

, −qJϕ
)

× Jv
J2
r,0

expq

(
− JvK(J)

J2
r,0

, −qJr
)
× Jv
J2
z,0

expq

(
− Jv Jz

J2
z,0

, −qJz
)

K(J) ≡
{
Jr if Jϕ ≥ 0,
Jr − Jϕ if Jϕ < 0,

Jd ≡
√
J̃2 + J2

d,0, Jv ≡
√
J̃2 + J2

v,0

Its parameters listed in the ExponentialParam structure are:

� norm is the overall scaling with the dimension of mass (M); alternatively, one may
provide the total mass, from which the normalization will be computed automatically.

� Jphi0 determines the scale length of the disk: Jϕ,0 ∼ Rdiskv◦.

� Jz0 controls the scale height and vertical velocity dispersion: Jz,0 ∼ hdiskv◦ ∼ Rσz(R).

� Jr0 plays a similar role for the radial velocity dispersion and the extent of radial
excursion ∆R of a typical orbit: Jr,0 ∼ ∆Rv◦ ∼ Rσr(R).

� coefJr [1], coefJz [0.25] are the coefficients kr, kz in the linear combination of actions
J̃ ≡ |Jϕ|+ krJr + kzJz.

� addJden [0] and addJvel [0] are the lower limits Jd,0 and Jv,0 for the arguments of
the q-exponential functions, which are introduced to tweak the behaviour of density
and velocity dispersion profiles, correspondingly, in the limit of small actions. Their
role is similar to Jmin for the QuasiIsothermal model: since the rotation curves of
realistic potentials cannot be flat all the way down to the center, the unmodified DF
would produce too low density and too high velocity dispersions at small radii, which
is compensated by these additional parameters. Their values should typically be of
order Jd,0 ∼ Jr,0 and Jv,0 ∼ Jϕ,0.

33

� qJr, qJz, qJphi play the same role (creating fat tails) as in the QuasiIsothermal

model.

2.5.2 Spheroidal components

A suitable choice for DFs of elliptical galaxies, bulges or haloes is the DoublePowerLaw

model, which is similar to the ones presented in [7, 52], with a different notation:

f(J) =
M

(2π J0)3

[
1 +

(
J0
h(J)

)η]Γ/η [
1 +

(
g(J)

J0

)η]−B/η

×
[
1− β

(
Jcore
h(J)

)
+

(
Jcore
h(J)

)2
]−Γ/2

exp

[
−
(
g(J)

Jcutoff

)ζ] (
1 + κ tanh

Jϕ
Jϕ,0

)
,

g(J) ≡ grJr + gzJz + (3− gr − gz) |Jϕ|,
h(J) ≡ hrJr + hzJz + (3− hr − hz)|Jϕ|.

The parameters of this model are listed in the structure DoublePowerLawParams and have
the following meaning (default values in brackets):

� norm is the overall normalization M with the dimension of mass; the actual total mass
differs from M by a numerical factor ranging from 1 to a few tens, which depends on
other parameters of the model. Alternatively, one may provide the total mass, from
which the normalization will be computed automatically.

� J0 is the characteristic action J0 corresponding to the break in the double-power-law
profile; it sets the overall scale of the model.

� slopeIn is the power-law index Γ in the inner part of the model, below the character-
istic action; must be < 3.

� slopeOut is the power-law index B in the outer part of the model; must be > 3.

� steepness [1] is the parameter η controlling the steepness of the transition between
the two asymptotic regimes.

� coefJrIn [1], coefJzIn [1] are the coefficients hr, hz in the linear combination of
actions, controlling the flattening and anisotropy in the inner part of the model; the
third coefficient is implied to be 3− hr − hz, and all three must be non-negative.

� coefJrOut [1], coefJzOut [1] are the similar coefficients gr, gz for the outer part of the
model.

34

� Jcore [0] introduces an optional central core, forcing the DF to have a finite central
value even when the inner slope Γ is nonzero [20]; in this case, the auxiliary coefficient
β is assigned automatically from the condition that the total normalization of the DF
remains the same (although this is only true when Jcore ≪ min(J0, Jcutoff) or when the
coefficients gr = hr, gz = hz, otherwise it still changes somewhat).

� Jcutoff [0] additionally suppresses the DF at large actions (beyond Jcut), 0 means
disable.

� cutoffStrength [2] sets the steepness ζ of this exponential cutoff at large J .

� rotFrac [0] controls the amount of streaming motion by setting the odd-Jϕ part of DF
to be κ times the even-Jϕ part; κ = 0 disables rotation and κ = ±1 correspond to
models with maximum rotation.

� Jphi0 [0] sets the extent Jϕ,0 the central core with suppressed rotation.

This DF roughly corresponds to the αβγ Spheroid model, with the asymptotic power-law
indices B = 2β − 3 and Γ = (6 − γ)/(4 − γ) in the self-consistent case. An example
program example_doublepowerlaw.cpp helps to find the values of these parameters that
best correspond to the given spherical isotropic model.

2.5.3 Spherical DFs constructed from a density profile

The previously described types of DFs were defined in terms of an analytic functions of
actions, and the density profiles that they generate in a particular potential (Section 2.6.1)
are not available in a closed form. The alternative approach is to start from a given density
profile and a potential, and determine a DF that generates this density profile, using some
sort of inversion formula. So far this approach has been mostly used in spherical systems,
with the most well-known case being the Eddington inversion formula for a spherical isotropic
DF. We implement a more general version of this formula [21], which produces a DF with
the following velocity anisotropy profile:

β(r) ≡ 1− σ2
t

2σ2
r

=
β0 + (r/ra)

2

1 + (r/ra)2
.

β0 is the limiting value of anisotropy in the center, and if ra <∞, the anisotropy coefficient
tends to 1 at large r (Osipkov–Merritt profile), otherwise stays equal to β0 everywhere. The
usual isotropic case is obtained by setting β0 = 0, ra = ∞.

The DF, expressed in terms of energy E and angular momentum L, has the following
form:

f(E,L) = f̂(Q) L−2β0 , Q ≡ E + L2/(2r2a).

35

The function f̂(Q) is computed numerically for the given choice of parameters, density
and potential, as explained in Section A.7.1), and represented in an interpolated form on
a suitable grid in Q. For some combinations of parameters, this produces a DF which is
negative in some range of Q, in particular, when the central slopes of the density profile
γ ≡ −d ln ρ/d ln r, the potential δ ≡ −d ln(−Φ)/d ln r, and the coefficient β0 violate the
so-called slope–anisotropy theorem [2]: γ ≥ 2β + (1/2 − β)δ. For the self-gravitating case,
δ = 0 if the potential is finite at origin, or δ = β − 2 otherwise. If the computed DF is
negative, it is replaced by zero.

This type of DF has the following parameters:

� beta0 [0] is the central value of velocity anisotropy, must be in the range−0.5 ≤ β0 < 1.

� r_a [∞] is the anisotropy radius, must be positive (in particular, infinity means a
constant-anisotropy model).

In addition, one needs to provide one-dimensional functions representing the radial profile
of the density and the potential (if they are taken from the same model, only the latter
is needed). Any spherically-symmetric instances of Density and Potential classes can be
used.

The DF is traditionally expressed in terms of E,L, and in this form can only be used in
the same potential Φ as it was constructed in. However, it can be put on equal grounds with
other action-based DFs, which are manifestly independent of potential, using the following
approach. An instance of ActionFinderSpherical class, constructed for the original poten-
tial Φ, is attached to the instance of a QuasiSpherical DF. To compute the value of DF
at the given triplet of actions J , we map them to E,L using this original spherical action
finder, and then feed these values to the DF. Crucially, in this form the actions J(x,v | Φ̃)
may be computed in any other potential Φ̃ (not necessarily spherical), not just the original
Φ. This corresponds to the DF being adiabatically transformed from the original potential
to the new one, without changing its dependence on actions. This is especially convenient for
iterative construction of multicomponent self-consistent models (Section 2.6.3): the DFs of
spheroidal components (bulge, halo) may be obtained using the Eddington inversion formula
or its anisotropic generalization in the initial spherically-symmetric approximation of the to-
tal potential, and then expressed as functions of actions J . The resulting DF is then viewed
as a function of actions only. In subsequent iterations, the potential is no longer spherical,
but the density and anisotropy profiles of these components, obtained by integration of their
DFs over velocity, are nevertheless quite close to the initial ones.

2.5.4 Spherical isotropic models

In a special case of spherical isotropic models, the DF has the form f(E). There is an
alternative formulation which makes it invariant with respect to the potential, retaining the
convenience of action formalism without the need to compute actions explicitly. Namely, we

36

use the phase volume h instead of E as the argument of the DF. It is defined as the volume
of phase space enclosed by the given energy hypersurface:

h(E) ≡
∫∫∫

d3x

∫∫∫
d3v H

[
E −

(
Φ(|x|) + |v|2/2

)]
, where H is the step function,

=

∫ rmax(E)

0

4π r2 dr

∫ vmax(E,r)

0

4π v2 dv =
16π2

3

∫ rmax(E)

0

r2
[
2
(
E − Φ(r)

)]3/2
dr.

The advantages of using h instead of E are that the total mass of the model is simply
M =

∫∞
0
f(h) dh, that the same DF may be used in different potentials, etc. The bi-

directional correspondence between E and h is provided by a helper class PhaseVolume,
constructed for a given potential. The derivative dh(E)/dE ≡ g(E) is called the density of
states ([11], eq. 4.56), and is given by

g(E) ≡ 16π2

∫ rmax(E)

0

r2
√
2
(
E − Φ(r)

)
dr = 4π2 L2

circ(E)Trad(E).

Any non-negative function of one variable (the phase volume h) may serve as an isotropic
distribution function in a spherically-symmetric potential, provided that it satisfies the con-
dition that

∫∞
0
f(h) dh is finite. One possible way of computing such a DF is through the

Eddington inversion formula for any density profile in any given potential (not necessarily
related), implemented in the routine createSphericalIsotropicDF. The other is to con-
struct an approximating DF from an array of particles sampled from it, using the log-density
estimation approach (Section A.2.5), provided by the routine fitSphericalIsotropicDF.
More information on these models is given in section A.7.2.

These one-dimensional DFs may also be put on equal grounds with other action-based
DFs, using a proxy class QuasiSphericalIsotropic. It provides the mapping J → E → h
via ActionFinderSpherical and PhaseVolume classes, both constructed in a given poten-
tial; the value h is then used as the argument to an arbitrary function f(h) provided by
the user. Similarly to the case of disky DFs (Section 2.5.1), the potential is only needed
to construct the intermediate mappings between actions and the arguments of the DF; the
resulting object is then viewed as a function of actions only, and could be used in any other
potential. When the original DF is constructed using the Eddington inversion formula, it
is easier to use the QuasiSpherical class from the previous section directly, avoiding the
additional transformation E ↔ h.

2.6 Galaxy modelling framework

This module, residing in the namespace galaxymodel::, broadly encompasses all tasks that
involve both a DF and a potential, and additionally an action finder constructed for the
given potential and used for transforming {x,v} to J . As stressed previously, using J as
the argument of f has the advantage that the DF may be used with an arbitrary potenial

37

without any modifications (because the possible range of actions does not depend on the
potential, unlike, e.g., the possible range of energy).

Various routines described below work with instances of the GalaxyModel class, which
is a simple aggregate of a potential, action finder, DF, and a fourth concept – selection
function (SF). The SF is a function of the 6d position/velocity space S(x,v) with values
ranging from 0 to 1, which is multiplied by the value of the DF at the corresponding point in
action space J . By providing a non-trivial SF to these routines, one may limit the volume
of phase space over which the integration is carried. A simple example of a SF is provided
by the SelectionFunctionSpatial class: S(x,v) = exp

[
− (|x − x0|/R0)

ξ
]
, where x0 is

a fixed point in the coordinate space, R0 is the cutoff radius, and ξ is the cutoff steepness
(0 implies no cutoff, ∞ – a sudden transition from S = 1 inside the sphere of radius R0 to
S = 0 outside this radius, and anything in between – to a more gradual decay of the SF).

2.6.1 Moments of distribution functions

Routines in this group make a distinction between the “intrinsic” coordinate system xyz of
the model and the “observed” coordinate system XY Z, whose orientation with respect to
xyz is parametrized by three Euler angles α, β, γ, or equivalently by an orthogonal rotation
matrix R (Section A.3). The position X, velocity V or other vectors in the observed system
are related to x, v in the intrinsic system by X = Rx, etc. When all three angles are zero,
the two systems coincide; generally, β is the most useful angle, specifying the inclination.
The Z axis in the observed coordinate systems is the line of sight, and some of the routines
come in two variants – computing the intrinsic quantities at the given point {X, Y, Z} or
projected quantities at {X, Y } integrated by Z. Naturally, adding another dimension of
integration increases the cost by an order of magnitude.

When the DF consists of several components, and one needs the moments of each DF
component separately, it is more efficient to compute them in a single operation, since the
most expensive task – conversion from x,v to J – is shared between all components. All
three routines described below have an additional argument separate, which provides this
option if set to true.

DF moments (density, velocity dispersion, etc.) are defined as the DF integrated over
the velocity, weighted by the SF and various combinations of velocity components:

ρ(X) ≡
∫∫∫

d3V f
(
J(x,v)

)
S(x,v),

V ≡ ρ−1

∫∫∫
d3V V f

(
J(x,v)

)
S(x,v),

V ≡ ViVj ≡ ρ−1

∫∫∫
d3V ViVj f

(
J(x,v)

)
S(x,v).

The routine computeMoments calculates any combination of these quantities at the given
point X by numerically integrating f over v and transforming the result to the observed

38

frame; the DF may be single- or multi-component. This is not a cheap operation, as the inte-
gration requires ≳ 103 evaluation of DF and hence calls to the action finder; the computation
of density is the major cost in self-consistent modelling (Section 2.6.3). The first moment of
velocity may have only one non-zero component (vϕ) in the intrinsic coordinate system, but
possibly all three components of V can be nonzero in the observed system. Likewise, the
symmetric tensor of second velocity moments V can be diagonalized (and in axisymmetric
systems one of its principal axes is aligned with the ϕ coordinate, while the other two lie
in the meridional plane), but all six components of V are reported and can be non-zero for
a general orientation of the observed system. The first and second velocity moments at a
fixed 3d point in the two coordinate systems are related by the rotation matrix R: V = Rv,
V = R v RT .

A variant of this routine computes the projected moments (surface density Σ, mean sky-
plane velocities vX , vY , mean line-of-sight velocity vZ and the full tensor of second moments)
by integrating the corresponding intrinsic moments along the line of sight Z:

Σ(X, Y) ≡
∫ ∞

Z=−∞
dZ ρ(X, Y, Z), VZ ≡ 1

Σ(X, Y)

∫ ∞

Z=−∞
dZ ρ(X, Y, Z)VZ , etc.

These moments cannot be easily transformed to another rotated frame X ′Y ′Z ′, since the
direction of integration axis also changes.

Velocity distribution functions offer a more detailed description of model kinematics.
The one-dimensional VDFs in each of the three orthogonal directions Vk (k ∈ {X, Y, Z} are
the axes of the observed coordinate system) are defined as the DF×SF integrated over the
other two velocity axes, and optionally along Z for the projected variant:

f(X; V1) ≡
1

ρ(X)

∫∫
dV2 dV3 f

(
J(x,v)

)
S(x,v),

fproj(X, Y ; Vk) ≡
1

Σ(X, Y)

∫
dZ ρ(X, Y, Z) f(X, Y, Z; Vk).

VDFs in each dimension (intrinsic or projected) are represented as B-splines of degree

N : f(k)(Vk) =
∑Nbasis

j=1 A
(k)
j B

(k)
j (Vk), where the basis functions B

(k)
j are defined by the nodes

of the grid in velocity space. The grid(s) may be provided by the user (separately for each
of the three velocity axes) or constructed automatically to cover the entire available range
of velocity from −vesc to vesc ≡

√
−2Φ(x) with a specified number of points, typically ∼ 50.

The VDFs are normalized so that
∫ vesc
−vesc f(Vk) dVk = 1, and the density ρ or the surface

density Σ is computed as a by-product. To determine the coefficients of expansion A
(k)
j , we

follow the finite-element approach by integrating the DF weighted with each basis function to
obtain f(. . . , Vk)B

(k)
j (Vk) dVk, and solving the resulting linear system (Section A.2.1). Thus

all three VDFs are computed at once in the course of a single 3-dimensional integration
(or 4-dimensional for projected VDFs), which is, however, rather expensive (typically ∼ 106

39

function evaluations). The simplest case N = 0 corresponds to a familiar velocity histogram,
but a more accurate one is given by N = 1 (linear interpolation) or N = 3 (cubic spline);
note that in the latter case, the interpolated f(V) may attain negative values, but on average
better approximates the true VDF. The VDFs or projected VDFs are constructed by the
routine computeVelocityDistribution<N>, N = 0, 1, 3 and returned as three sets of B-

spline coefficientsA
(k)
j , k ∈ {X, Y, Z}; in the recommended caseN = 3 these can be converted

into a conventional cubic spline interpolator (Section A.2.3).

Projected DF provides another mechanism for integrating the DF over velocity and along
the line of sight, which is most useful when some of the velocity components in the observed
coordinate system have known values Vobs with some measurement uncertainties ϵV :

fproj(X, Y,Vobs, ϵV) ≡
∫ ∞

Z=−∞
dZ

∫∫∫
d3V

3∏
k=1

E(Vk; Vobs,k, ϵV,k) f
(
J(x,v)

)
S(x,v),

where E(Vk; Vobs,k, ϵV,k) ≡

1√

2π ϵV,k
exp

[
−1

2

(Vk − Vobs,k)
2

ϵ2V,k

]
when ϵV,k is finite,

1 when ϵV,k = ∞

In other words, for every velocity component that has a measured value Vobs,k with a finite
uncertainty ϵV,k, the DF is convolved with a Gaussian of the appropriate width (or not
convolved at all if the uncertainty is zero), while for an infinite uncertainty (in absence
of any measurement), the DF is integrated over the entire available velocity range. The
case of infinite uncertainty is essentially the limiting case of a large uncertainty ϵV,k ≫ vesc
(the argument of the exponent is nearly constant over the entire available velocity range),
but the different normalization convention ensures that the result does not vanish. The
routine computeProjectedDF is most useful for evaluating the likelihood of a model against
a set of discrete kinematic tracers (e.g., stars with measured line-of-sight velocities and/or
proper motions in any combination), regardless of whether the measurement uncertainties
are negligible, small or large compared to the characteristic velocity range of the model.
The only limitation is that the uncertainties of the two velocity components in the image
plane ϵVX , ϵVY should both be either finite or infinite (which is driven by computational
convenience as well as practical considerations – the two components of the proper motion
are simultaneously known or not).

The various quantities computed by these three routines satisfy the following relations,
which should hold up to integration errors (≲ 10−3):

� The surface density Σ(X, Y) and the 3d density ρ(X) are reported by projected and
non-projected variants of computeMoments and computeVelocityDistribution, re-
spectively. Of course, the latter case is much more expensive, and the density comes
out as a by-product of normalizing the VDFs. Moreover, computeProjectedDF with
all three velocity uncertainties ϵV,k set to infinity is also equivalent to Σ(X, Y), with a

40

computational cost comparable to computeMoments, but using different internal scaling
transformations of the integrand (whereas moments and VDF use velocity coordinates
aligned with the intrinsic system of the model, projected DF operates with the ob-
served velocity components and may be less accurate if the velocity ellipsoid of the
model is very anisotropic and misaligned with the observed coordinates).

� Mean velocity V and diagonal elements of the tensor of second velocity moments V can
be obtained by integrating the VDF multiplied by the corresponding power of velocity,
e.g., V 2

k =
∫ vesc
−vesc f(Vk)V

2
k dVk, both in the projected and non-projected variants. Non-

diagonal elements of V cannot be recovered from the VDF (which also implies that
VDFs computed in different orientations of the observed coordinate systems cannot be
easily transformed into each other).

� The value of the interpolated projected VDF f
(k)
proj(X, Y ; Vobs,k) multiplied by the sur-

face density Σ(X, Y) is equivalent to the projected DF computed for the given value of
the k-th velocity component Vobs,k (with zero uncertainty ϵV,k) and infinite uncertaintes
for the remaining two components. Constructing the entire VDF is significantly more
expensive than computing the projected DF for a single value of velocity, but is more
efficient than repeated calls to computeProjectedDF if one needs to evaluate the VDF
many times for different values of Vobs,k. The spline-interpolated VDF can also be
cheaply and accurately convolved with a Gaussian function, producing an equivalent
result to a projected DF with a finite uncertainty ϵV,k.

There are analogous routines for spherical isotropic DFs of the form f(h), defined in
galaxymodel_spherical.h and used by the mkspherical tool (Section 4).

2.6.2 Conversion to/from N-body models

As the DF is a probability distribution function (PDF), it can be sampled with a large
number of points to create an N -body model of the system. There are two possible ways of
doing this:

� Draw samples of actions from f(J), used as a three-dimensional PDF. Then create
(possibly several) {x,v} points for each value of actions with a random choice of
angles, using the torus mapping approach (Section 2.4.4). This is performed by the
routine sampleActions.

� Draw samples directly from the six-dimensional {x,v} space, evaluating the product
f
(
J(x,v)

)
S(x,v) with the help of an action finder. This is performed by the routine

samplePosVel.

Both approaches should in principle deliver an equivalent discrete representation of the
model, but may have a different cost; generally, the second one is preferred. It also has a

41

separate, more efficient implementation for spherical isotropic DFs f(h) in spherical poten-
tials Φ(r) (without a SF); it is used by the mkspherical tool (Section 4).

There is also a related task for sampling just the density profile ρ(x) with particles,
without assigning any velocity to them; this may be used to visualize the density model,
and is performed by the routine sampleDensity (of course, it does not use any action
finder). All these tasks employ the adaptive multidimensional rejection method implemented
in math::sampleNdim.

The inverse procedure for constructing a DF from a given N -body model is less well
defined. In the case of a spherical isotropic system (Section 2.5.4), the one-dimensional func-
tion of phase volume f(h) is estimated non-parametrically with the penalized density fitting
method and represented as a spline in scaled coordinate (the routine fitSphericalDF). In
principle this may be generalized for the case of a three-dimensional f(J), but this has not
been implemented yet. The alternative is to fit a parametric DF to the array of actions, com-
puted for the N -body particles in the given potential (of course, a suitable self-consistent
Multipole or CylSpline potential itself may also be constructed from the same N -body
model). This approach is demonstrated by one of the example programs (Section 4).

2.6.3 Iterative self-consistent modelling

As explained above, the same DF gives rise to a different density profile in each potential.
A natural question is whether there always exists a unique potential-density pair ρ,Φ such
that ρ(x) =

∫
d3v f

(
J(x,v |Φ)

)
corresponds to Φ(x) via the Poisson equation, with the

mapping {x,v} =⇒ J constructed for the same potential. While we are not aware of a
strict mathematical proof, in most practical cases the answer is positive, and such potential
may be constructed by the iterative self-consistent modelling approach [7, 48]. In a more
general formulation, one may have several DF components fc(J), c = 1..Ncomp and optionally
several additional (external) density or potential components. The procedure consists of
several steps, which use various pieces of machinery described previously:

1. Create a plausible initial guess for the total potential Φ(x).

2. Construct the action finder for this potential (Section 2.4).

3. Compute the density profiles ρc(x) of all components with DFs (Section 2.6.1).

4. Calculate the updated potential by solving the Poisson equation ∇2Φ = 4π
∑

c ρc
for the combined density of all components (plus any external density or potential
components such as a central supermassive black hole (SMBH), which are called static
since they are not updated throughout the iterative procedure), using one or both
general-purpose potential expansions (Sections 2.2.2, 2.2.3).

5. If desired, add new components or replace a static component with a DF-based one.

6. Repeat from step 2, until the potential changes negligibly between iterations. This
typically requires O(10) steps.

42

This approach is implemented with the help of several classes derived from BaseComponent,
the SelfConsistentModel structure which binds together the array of components, the po-
tential, the action finder, and the parameters of potential expansions, and finally the routine
doIteration, all defined in galaxymodel_selfconsistent.h. All these concepts are also
available in the Python wrapper (Section 3.1), and a complete annotated example illustrating
the entire workflow is presented both in the C++ and Python variants.

There are several important things to keep in mind when adapting these examples to
other systems:

� Each component (whether DF-based or a static density profile) needs to be assigned
to either spheroidal or disk-like subsets. The former include profiles that are not
strongly concentrated towards the equatorial plane, can have a central density cusp
or an extended envelope, and will be represented by a Multipole expansion. The
latter may be strongly flattened, but need to have a finite central density and a finite
extent, or at least sharply declining density at large radii, and will be represented
by a CylSpline potential. Importantly, all disky components will be represented
by a single CylSpline object, and similarly all spheroidal components by a single
Multipole object. The density of each DF-based component is first computed on a
suitable grid of O(102 − 103) points, then extended to the entire space with the help
of a corresponding density interpolator (DensitySphericalHarmonic – Section A.4.1,
or DensityAzimuthalHarmonic – Section A.4.2), and the latter is then used in solving
the Poisson equation. In addition, there may be static components with already known
potentials (e.g., a Plummer potential with a very small scale radius representing the
central SMBH), which will be added directly to the total potential.

� The parameters of the grids used to construct the intermediate density interpolators
and the final potential expansions should be selected with care (there are no auto-
matically assigned parameters here!). The computational cost is mainly determined
by the resolution of the density grid (which is typically different for each component).
For spheroidal components, these include the inner/outer boundaries and the num-
ber of points in a logarithmic grid in radius, plus the order of the angular expansion
lmax. For disky components, one needs to specify the minimum grid segments and the
overall extent in R and z directions, as well as the number of nodes (spaced linearly
at small radii, gradially transitioning towards logarithmic spacing). In particular, the
innermost segments should be comparable (perhaps twice smaller) than the relevant
spatial scale (e.g. the size of the density core, if present, or the vertical scale height
of the disk), but not much smaller, whereas the outer radius should enclose almost all
of the total mass of each component (say, up to ∼ 10 scale radii). The grids for the
global Multipole and CylSpline potential solvers are specified separately, and should
typically have a larger spatial extent and somewhat denser spacing. Failure to assign
suitable values for grid parameters may result in obscure errors during model iterations
(e.g., “non-monotonic potentials” and similar numerical artifacts).

43

� The final model will always end up close to equilibrium, given enough iterations, but
it may end up looking rather different from the initial guess for the potential, if the
parameters of the potential and the DF are not in agreement. For disk components,
the scale length, scale height, and central surface density should be synchronized be-
tween the Disk density profile and the QuasiIsothermal DF; the velocity dispersion
parameters have no counterpart in the density profile, but if the dispersion is too high,
the density generated by the DF in the central parts may be reduced compared to the
initial density profile. For spheroidal components, the easiest way to ensure agreement
is to use QuasiSpherical DF constructed from the given density profile; alternatively,
when using DoublePowerLaw DFs, one may need to adjust the initial density profile
retrospectively after examining the final one. This synchronization is only relevant
when there are QuasiIsothermal DF components, which need a potential for initial-
ization, and if this potential is very different from the final self-consistent one, the
properties of the model may change in rather unpredictable ways.

Despite these caveats, the approach is fairly general and powerful (though restricted to
axisymmetric models, due to the lack of more general action finders), and the resulting
DF-based models can be converted to N -body models with arbitrarily large number of
particles, or used to compute observable quantities (moments, velocity distributions, etc.)
with great accuracy. A typical disk-bulge-halo model takes a few CPU minutes per iteration
for reasonable choices of grid parameters, and is efficiently parallelized over multiple CPU
cores.

2.6.4 Schwarzschild orbit-superposition modelling

Schwarzschild modelling approach [60] is an alternative method for creating self-consistent
models, in which the DF is determined numerically as a weighted superposition of individual
building blocks. In the original approach, these blocks are numerically computed orbits
(hence the alternative name “orbit-superposition method”), which are essentially δ-functions
in the space of integrals of motion, but a more general definition might use finite-size building
blocks, or bunches of individual orbits. In what follows, we use the original formulation.

There are several ingredients in these models:

� The total gravitational potential Φ(x) used to integrate the orbits.

� One or more Target objects, which define various kinds of constraints: 3d density
distribution, intrinsic (3d) or projected (line-of-sight) kinematics, etc. The required

values of these constraints are denoted as U
(t)
n , with the index t = 1..Ntar enumerating

Targets, and n = 1..Ncons,t – constraints of each target.

� The orbit library (collection of Norb orbits and their weights wi in the model), and

associated arrays u
(t)
i,n of contributions of i-th orbit to n-th constraint of t-th target.

The modelling workflow is split into several steps:

44

1. Initialize the potential Φ and Ntar Target objects.

2. Create initial conditions (IC) for the orbit library.

3. Integrate orbits while recording the arrays u
(t)
i,n.

4. Determine the orbit weights that satisfy the constraints.

5. (Optional) create an N -body representation of the model.

The potential for Schwarzschild models needs to be specified in advance, in contrast to
the DF-based iterative self-consistent models (Section 2.6.3). Often it will be computed from
the deprojected surface density profile, e.g., parametrized by a Multi-Gaussian Expansion
(MGE); there are several Python routines for manipulating these parametrizations.

Target objects provide an abstract interface for discretizing both the data and the model
into an array of constraints. There are 3 types (5 variants) of 3d density discretization
schemes, described in the Appendix A.8, one target (4 variants) for representing the spheri-
cally averaged 3d kinematic profiles, and one target (4 variants) for recording the line-of-sight
velocity distributions (LOSVD). All these schemes use B-splines (Section A.2.2) for defin-
ing the discretization elements, and variants of the same scheme differ by the order of the
B-spline basis. A Target object does not contain any data itself, it only provides the meth-
ods for computing discretized representations of various other entities and storing them in
external arrays. For instance, a density target acting on a Density model produces the
array of masses associated with each discretization element (in the simplest case, the mass
contained in each cell of the 3d density grid), while a LOSVD target acting on a Density

model computes the integrals of the PSF-convolved surface density profile over each spatial
region (aperture) on the sky plane. The same LOSVD target applied to a GalaxyModel

object computes the PSF-convolved LOSVDs produced by the combination of the DF and
the potential in each aperture. Any target applied to an N -body snapshot computes the
relevant quantities U

(t)
n from the array of particles, weighted by their masses. And finally,

any target can be attached to the orbit integrator to construct the discretized representaion
of the i-th orbit u

(t)
i,n (this is conceptually similar to recording the orbit as a collection of

points sampled from the trajectory, with weights proportional to the time intervals between
adjacent points, and then applying the target to this N -body snapshot, although in practice
it is implemented on-the-fly, without actually storing the trajectory). The LOSVD target is
used to constrain the model by observed kinematics, but this involves an additional step to
convert the internal B-spline representation of the datacube into observable quantities (for
details, see Appendix A.8).

The IC for the orbit library may be generated by one of the complementary approaches for
constructing dynamical models. This is achieved by first sampling positions from the actual
3d density profile of the galaxy or one of its components, then assigning velocities drawn
from a suitable DF or from a Jeans model. For spheroidal systems or galaxy components, the
Eddington inversion or its anisotropic generalization (Section 2.5.3) provide a suitable DF,
while for strongly flattened and rotating disk components (including bars), velocities may be

45

drawn from a Gaussian distribution with the dispersions computed from the axisymmetric
anisotropic Jeans equations. In either case, the resulting IC are not necessarily in equilibrium,
but merely provide a convenient starting point for the orbit-based modelling. Moreover, one
may stack together several sets of IC created with different parameters (e.g., to provide a
denser sampling of orbits at high binding energies near the galactic center).

The orbit weights wi ≥ 0 that satisfy the constraints are determined from the system of
linear equations ∑Norb

i=1
wi u

(t)
i,n = U (t)

n , t = 1..Ntar, n = 1..Ncons,t.

In practice, the constraints may not be satisfied exactly, especially if they come from noisy
observations. In this case, the best solution is obtained by minimizing the L2-norm of the
residual in the above equation system, weighted by the observational uncertainties ϵ

U
(t)
n
.

Additionally, one may employ some sort of regularization to make the solution more well-
behaved. In practice, this is achieved by adding a regularization term proportional to the
sum of squared orbit weights to the objective function to be minimized, which encourages
a more uniform distribution of orbit weights in the solution. The objective function is thus
written as

Q ≡
Ntar∑
t=1

Ncons,t∑
n=1

(∑Norb

i=1 wi u
(t)
i,n − U

(t)
n

ϵ
U

(t)
n

)2

+ λ

Norb∑
i=1

(
wi
wi,0

)2

.

Here λ is the regularization coefficient, wi,0 are the priors on orbit weights (in the simplest
case, uniform). If some constraints need to be satisfied exactly, the corresponding uncer-
tainties should be set to zero; these constraints will not contribute to Q. The minimization
of the objective function, subject to the non-negativity constraints wi ≥ 0, is performed by
the quadratic optimization solver CVXOPT.

In the case of constructing models constrained by observed LOSVD kinematics, one
may use the same orbit library multiple times to represent systems with different mass
normalizations Υ, rescaling the velocities by

√
Υ as described in the Appendix A.8).

Finally, the orbit-superposition model can be converted into an N -body representation,
e.g., to test its stability or provide initial conditions for a simulation. In order to do this, one
needs to record the trajectories during orbit integration along with the other arrays u

(t)
i,n, and

then select a certain number of points from each orbit’s trajectory in proportion to its weight.
In the case that the number of points recorded during orbit integration was insufficient to
represent an orbit with a particularly high weight, this orbit needs to be re-integrated while
storing the points more frequently. There is a Python routine sampleOrbitLibrary that
performs this task in a transparent way.

All computationally heavy operations of this approach are implemented in the C++ library,
but the top-level modelling workflow is more conveniently expressed in Python.

46

3 Interfaces with other languages and frameworks

3.1 Python interface

The Python interface provides a large subset of Agama functionality expressed as Python
classes and routines. Presently, this includes:

� A few mathematical tasks such as multidimensional integration and sampling, penal-
ized spline fitting and density estimate, linear/quadratic optimization solvers.

� Unit handling.

� Potential and density classes.

� Orbit integration.

� Action finders (both classes and standalone routines).

� Distribution functions.

� Galaxy modelling framework: computation of DF moments, drawing samples from
density profiles and DFs, iterative self-consistent and Schwarzschild orbit-superposition
modelling.

The shared library agama.so can be used directly as a Python extension module8. Both
Python 2.6–2.7 and Python 3.x are supported, but the library must be compiled separately for
either version (in case of version mismatch, you get an obscure error like ”dynamic module

does not define init function”). In addition, there are a few auxiliary routines written
in Python (they reside in py/pygama.py). To simplify the usage, the package initialization
(__init__.py) imports everything from both agama.so and py/pygama.py into a single
namespace, which is what you get by writing import agama in your Python script9.

The Density, Potential, DistributionFunction, SelectionFunction, Target classes
serve as universal proxies to the underlying hierarchy of C++ classes, and their constructors
take a variety of named arguments covering all possible variants (including those requiring
a more complicated setup in the C++ code). Additionally, density, potential, DF and SF
objects may also be represented by arbitrary user-defined Python functions – this can be
used in all contexts where a corresponding interface is needed, e.g., in constructing a poten-
tial expansion from a density profile, or in computing DF moments, which greatly increases
the flexibility of the Python interface. Most routines or methods that operate on individual
points in C++ (such as action finders or potentials) can accept numpy arrays in Python, which

8for the most common implementation of Python interpreter, named CPython – not to be confused with
Cython, which is a distinct compiled language. The Python interface layer in Agama relies solely on the
Python C API, and does not use any third-party libraries such as swig or boost::python.

9note that if the file agama.so is found in the current directory, it will have a priority over the Python

modules stored in site-packages or other standard locations specified by PYTHONPATH. Thus in this case
import agama will only load the C++ extension module but not the auxiliary Python routines, possibly
leading to obscure complaints about missing attributes of the module.

47

again leads to a more concise code with nearly the same efficiency as a pure C++ implementa-
tion. Moreover, operations on such arrays are internally OpenMP-parallelized in the Python
extension module, except if they include callbacks to user-defined Python functions10. One
may adjust the number of OpenMP threads by calling agama.setNumThreads(N), either for
the entire script, or in a context manager to temporarily change it – most usefully, to avoid
unnecessary thread-switching overheads when using user-defined callback functions:
with agama.setNumThreads(1): do_something_with_user_callbacks()

Below follows a brief overview of the classes and routines provided by the Python in-
terface. As usual, writing help(agama.Whatever) brings up a complete description of the
class or routine and its arguments. Moreover, there are several test and example programs
demonstrating various aspects of usage of the Python interface to Agama; some of them
have exact C++ equivalents.

Density class instances can be constructed with the following syntax:
d = agama.Density(type="...", mass=..., scaleRadius=..., otherParameters=...)

using the parameters listed in Section 2.2.4; argument names are case-insensitive, as are the
names of density models. Note that the list of parameters relevant for a specific model de-
pends on the type argument, but no error will be issued if other parameters are provided
(they will simply be ignored). Alternatively, to combine several density objects d1, d2, etc.,
one may list them as the unnamed arguments of the constructor (these could be proper
Density objects, dictionaries with density parameters, or user-defined functions providing
the Density interface, see below):
comp = agama.Density(d1, dict(type="Plummer", mass=42), d2)

Elements of such composite density objects can be accessed by index or iterated over:
for i in range(len(comp)): print(comp[i])

for d in comp: print(d)

Note that an elementary density or potential has zero length and thus cannot be indexed,
but a density/potential wrapped into a modifier is represented as a length-one object, and its
0th element gives access to the underlying non-modified object (modifiers can be chained as
well). Modifiers can be attached at the time of creation of the density or potential object, or
later (in this case, the original object remains unmodified); the parameters of time-dependent
modifiers can be provided in the form of arrays, with one line per timestamp (in the example
below, creating a density moving on a straight line with velocity vx, vy, vz):
shifted_d = agama.Density(type="Plummer", center=[1,2,3])

moving_d = agama.Density(d, center=[[0,0,0,0],[1,vx,vy,vz]])

print(moving_d[0] == d) # True

Another possibility is to construct a spherically-symmetric density model from a cumulative
mass profile – a 2d array with two columns: r, M(< r). The following example corresponds

10this restriction is due to the global interpreter lock (GIL) mechanism in CPython, precluding its simul-
taneous access from multiple threads.

48

to a γ = 1 Dehnen (aka Hernquist) profile:
r = numpy.logspace(-3,3)

M = (r / (r+1))**2

d = agama.Density(cumulMass=numpy.column_stack((r, M)))

In this case the Density object is internally represented by a DensitySphericalHarmonic

C++ class. Both this class and DensityAzimuthalHarmonic are also utilized in the iterative
self-consistent modelling framework (Section 2.6.3); such density expansions can be written
out to a text file and loaded back by
d.export("hernquist_model.ini")

d = agama.Density("hernquist_model.ini")

The Density class provides only a couple of methods: first of all, the computation of the
density itself – the argument is a single point or a N × 3 array of N points (the Python

interface always deals with cartesian coordinates to avoid confusion):
print(d.density(1,0,0))

print(d.density([[1,0,0],[2,3,4]]))

To compute a time-dependent density at an arbitrary moment of time, provide an extra
t=... argument to the density method (note that all other methods still evaluate it only
at time 0). t could be a single number or an array of the same length as points, in which
case each the density at each point is evaluated at its own time.

projectedDensity(points [, alpha, beta, gamma]) computes the surface density (in-
tegral of density along the line of sight) at a 2d point (or an array of points) in the image
plane, using an arbitrarily rotated coordinate system, whose orientation is specified by Euler
angles α, β, γ (Section A.3). The angles may be the same for all points or provided individ-
ually for each point.

Another useful method is totalMass, with an obvious role; the mass may well be infinite,
e.g., for NFW or Logarithmic models. Likewise, enclosedMass(radius) estimates the mass
enclosed within the given radius (a single value or an array of radii).

The principalAxes method determines the shape and orientation of the density profile.

Finally, the density profile may be sampled with particles, producing two arrays – coordi-
nates (N × 3) and masses (N):
pos, mass = d.sample(10000)

The density framework can be augmented with user-defined Python functions that return
the density at a given point (or, rather, an array of points). Such a function must be a free
function (not a class method) or a lambda expression, accepting one argument, which should
be treated as a N × 3 array of points (even when N = 1). This function would typically be
called from the C++ code with more than one input point, to reduce overhead from switching
between C++ and Python. The following two equivalent examples define a spherical Plummer
model:

49

fnc1 = lambda x: 3/(4*numpy.pi) * (1 + numpy.sum(x**2, axis=1))**-2.5

def fnc2(x): return 3/(4*numpy.pi) * (1 + numpy.sum(x**2, axis=1))**-2.5

One may create an instance of Density class wrapping a user-defined Python callback func-
tion. For simple operations such as evaluation of 3d and projected density, it is sufficient to
pass the user-defined function as a single unnamed argument to the constructor of Density
class; however, for other operations (computation of total mass, creation of density or po-
tential expansions, etc.), the symmetry of the model needs to be specified explicitly (there
is no default value!), because the cost of these operations is significantly reduced in typical
cases of at least triaxial symmetry:
print(agama.Density(fnc1).projectedDensity(1,2))

print(agama.Density(fnc2, symmetry="s").totalMass())

Alternatively, one may directly pass the Python callback function, or even a tuple consist-
ing of several Density objects, dictionaries with their parameters, or user-defined callback
functions, in all contexts where a Density object is expected, such as the Potential and
DistributionFunction constructors, without creating a wrapper instance of Density class:
pot1 = agama.Potential(type="Multipole", density=(fnc1, d), symmetry="s")

In case that the density is expensive but needs to be evaluated many times (e.g., to com-
pute surface density), it may be approximated with either DensitySphericalHarmonic or
DensityAzimuthalHarmonic interpolators (their applicability is similar to Multipole or
CylSpline potentials, respectively):
dsh = agama.Density(type="DensitySphericalHarmonic", density=fnc1,

symmetry="s", lmax=0, gridSizeR=25, rmin=0.01, rmax=100)

This is most useful to represent a density generated by a DF – the same idea is used in
the iterative self-consistent modelling framework (Section 2.6.3), and a pure-Python reim-
plementation of this workflow is illustrated in one of the test programs.

Remember that the callback function must return finite values for any input point used by the
code – pay special attention to possible indeterminacies, e.g., at R = 0! (If the density is sin-
gular at origin, it may still be used in the Multipole potential or DensitySphericalHarmonic
density, but not in CylSpline / DensityAzimuthalHarmonic).

Potential class is inherited from Density and provides access to the entire hierarchy of
C++ potentials. It can be constructed in a variety of ways:
p = agama.Potential(type="...", mass=..., otherParameters=...)

i.e., in the same way as a Density object, using named arguments listed in Section 2.2.4;
p = agama.Potential("MWPotential2014.ini")

reads the potential parameters from an INI file, where each section [Potential1], [Potential
disk], etc., corresponds to a single component (see below for special rules about the con-
struction of composite potentials). Such an INI file, or any of its sections, may contain
potential expansion coefficients previously stored by the export method.

50

One may also introduce a custom potential model by defining a function returning the value
of the potential at the provided 2d array of points (similarly to a user-defined density model):
def fncPlummerPot(x): return -(1 + numpy.sum(x**2, axis=1))**-0.5

Again, this function may be wrapped into an instance of Potential class, thus providing a
variety of other methods such as force and density (which are evaluated via finite differ-
ences), or used in orbit integration. However, this is rather inefficient, and for most practical
purposes, it is advisable to create a Multipole or CylSpline potential approximation for
the custom potential (see example p5 below or a more elaborate illustration).

If type="Multipole" or "CylSpline", then a potential expansion is constructed from the
given density or potential profile in one of the following mutually exclusive ways. First,
one may specify the input density for the potential expansion, either as the name of a
built-in density model (e.g., density="Spheroid"), or an instance of a Density class, or
a user-defined function providing the Density interface as described above (in this case the
symmetry of the input model needs to be specified explicitly11), or a tuple of several such
instances. Second, one may provide the input potential rather than density; this again can
be either an instance of a Potential class (this may be useful e.g. for creating sphericalized
or axisymmetrized versions of an existing potential), or another user-defined function that
returns the potential at a given 2d array of points (with the same calling convention as a
density function; in this case one should explicitly specify its symmetry)12. Third, this could

11When constructing a CylSpline potential from a non-axisymmetric density profile, the latter is first
used to create an internal DensityAzimuthalHarmonic expansion, which is used in the subsequent solution
of the Poisson equation for each m term (integrating the density over R, z as described in Section A.4.2).
On the other hand, if the input density is axisymmetric, it is used directly. For built-in density models,
this is usually more efficient, avoiding the creation of the intermediate interpolator, but for a user-defined
Python function the outcome is opposite, since evaluating the density directly is much more costly than
evaluating the intermediate interpolator. The number of calls to the user-defined density function is much
lower when constructing the interpolator that during the solution of the Poisson equation, so it is advisable
to trick the code into creating the interpolator, by specifying symmetry="t", or even better, by manually
constructing a DensityAzimuthalHarmonic approximation of the Python function and providing it as input
to the CylSpline potential.

12The relation between lmax, mmax and symmetry may be explained as follows. When the input density
or potential is one of built-in models (even complex multicomponent ones with modifiers), its symmetry is
known to the code and any provided value is ignored. However, when the input is an N -body snapshot or
a user-defined model, the symmetry should be assigned explicitly. In the example p3, the input density is a
sum of two models, the user-defined function fnc1 and another Multipole potential p1, and symmetry="s"

is applied only to the user-defined density function, while the built-in model automatically reports its axisym-
metry, also making the new Multipole potential axisymmetric with a default order of angular expansion.
Now, if lmax=0 for a Multipole or a BasisSet potential, it will be necessarily spherically symmetric, but in
order to create this sphericalized potential, we still need to know the symmetry of the input model, because
it significantly affects the cost of construction (e.g., axisymmetric input profiles will only be queried in the
x − z plane, and triaxial – only in one quadrant of the 3d space). Likewise, setting mmax=0 for any of the
potential or density expansions makes them axisymmetric, but the input models will be queried in different
ways depending on their reported symmetry, significantly reducing the cost of construction in most common
cases of partial (e.g., triaxial) symmetry of inputs. In short: symmetry describes the property of input model

51

be an N -body snapshot provided as a tuple of two arrays (coordinates and masses), or a file
containing such snapshot:
p1 = agama.Potential(type="Multipole", density="Plummer", axisRatioZ=0.5)

p2 = agama.Potential(type="Multipole", density=agama.Density(type="Plummer"))

p3 = agama.Potential(type="Multipole", density=(fnc1, p1), symmetry="s")

p4 = agama.Potential(type="Multipole", potential=agama.Potential(type="Plummer"))

p5 = agama.Potential(type="Multipole", potential=fncPlummerPot, symmetry="s",

gridSizeR=15, rmin=0.01, rmax=100) # may explicitly specify the grid parameters
p6 = agama.Potential(type="Multipole", particles=(pos,mass), symmetry="t")

p7 = agama.Potential(type="Multipole", file="nbody_snapshot.txt", symmetry="n")

The construction of potential expansions (especially CylSpline) from user-defined Python

density models may be quite expensive. In order to save computational effort by reducing
the number of points at which the density function is evaluated, one may restrict the order
of internal harmonic expansion to the minimum necessitated by the output order (parameter
fixOrder=true, see its description in Section 2.2.4), and/or create an intermediate density
interpolator (DensitySphericalHarmonic or DensityAzimuthalHarmonic).

A composite potential can also be created from several other Potential objects:
p8 = agama.Potential(p1, p2, p3)

Like a composite Density, elements of such composite potential can be accessed by index
or iterated over. Another way of creating a composite potential is to provide a list of dict
instances containing the parameters for each potential to the constructor:
disk_par = dict(type="Disk", mass=5, scaleRadius=3, scaleHeight=0.4)

bulge_par= dict(type="Sersic", mass=1, scaleRadius=1, axisRatioZ=0.6)

halo_par = dict(type="Spheroid", densityNorm=0.01, scaleRadius=20,

axisRatioZ=0.7, gamma=1, beta=3, alpha=1) # oblate NFW profile
potgal = agama.Potential(disk_par, bulge_par, halo_par)

This is equivalent to providing all these parameters in separate sections of an INI file and
then constructing the potential from this file.

If we examine the potential created in the last line,
print(potgal) # CompositePotential{ DiskAnsatz, Multipole }
it becomes apparent that some rearrangement took place behind the stage. Indeed, in the
case when the potential is constructed from several sets of parameters (but not from sev-
eral existing potential instances), the code attempts to optimize the efficiency by using the
GalPot approach. In this example, the Disk density profile was split into two parts – the
DiskAnsatz potential class and the residual density profile; other spheroidal density compo-
nents (Sersic and Spheroid) were combined with this residual profile, and used to initialize
a single instance of Multipole potential. This is advantageous if one needs to evaluate the
potential many times (e.g., in action computation), but makes it difficult to examine the

when it is not known to the code, while lmax and mmax specify the properties of the resulting expansion.

52

contribution of each mass component separately. In order to do so, we may instead create
another potential used only for visualization:
potvis = agama.Potential(agama.Potential(disk_par),

agama.Potential(bulge_par), agama.Potential(halo_par))

An instance of Potential class provides the same methods as the Density class (and may
be used in all places where a density instance is needed), plus the following ones:

potential(points [, t=t0]) evaluates the potential at one or several input points (which
should be either 3 numbers, or a 1d list/array of length 3, or a 2d array of size N × 3) at
time t0 (0 by default; may be a single number or an array of the same length as points).

force(points [, t=t0]) computes the acceleration (force per unit mass) at time t0, i.e.,
minus the derivative of potential, returning 3 numbers or an N × 3 array.

forceDeriv(points [, t=t0]) computes the forces and force derivatives (−∂Φ/∂xi ∂xj in
the following order: xx, yy, zz, xy, yz, zx) at time t0:

r = numpy.linspace(0,20)

points = numpy.column_stack((r, r*0, r*0)) # a N × 3 array
force,deriv = potgal.forceDeriv(points) # ⇒ N × 3 and N × 6 arrays
kappa = numpy.sqrt(-deriv[:,0] - 3*force[:,0]/r) # radial epicyclic frequency κ
nu = numpy.sqrt(-deriv[:,2]) # vertical epicyclic frequency ν

Plotting the rotation curve of the above constructed potential and all its components:
plt.plot(r, numpy.sqrt(-r*potvis.force(points)[:,0]))

for pot in potvis: plt.plot(r, numpy.sqrt(-r*pot.force(points)[:,0]))

projectedEval(points [, pot, acc, der, alpha, beta, gamma]) performs the same
task as projectedDensity (integration along the line of sight), but for the potential, ac-
celeration and its derivatives, as requested by the boolean arguments pot, acc, der. The
input arguments are the 2d point (or an array of points) X, Y in the image plane, whose ori-
entation with respect to the intrinsic model coordinates is specified by Euler angles α, β, γ
(Section A.3), and the output consists of one, two or three arrays, depending on the re-
quested quantities to be computed. If pot=True, the first array contains the integral(s)∫∞
−∞ dZ

[
Φ(X, Y, Z)−Φ(0, 0, Z)]; the second term is introduced to compensate the logarith-

mic divergence of the integral at large |Z|. If acc=True, the next array contains the integrals
of the X, Y components of acceleration (the Z component integrates out to zero). Finally,
if der=True, the last array contains the integrals of −∂2Φ/∂X2, −∂2Φ/∂Y 2, ∂2Φ/∂X∂Y ;
the remaining components are also identically zero and are not reported.

Tcirc(E) computes the characteristic time (period of a circular orbit with the given energy);
for convenience it may also be called with an N × 6 input array of position/velocity coordi-
nates: Tcirc(points).

Rcirc(E=...) or Rcirc(L=...) return the radius of a circular orbit in the equatorial plane
corresponding to the given energy or z-component of the angular momentum.

53

Rmax(E) returns the maximum radius accessible with the given energy, i.e., the root of
Φ(Rmax) = E.

Rperiapo(E, L) returns the pericenter and apocenter radii for an orbit with the given en-
ergy and angular momentum; for convenience, it may also be called with an N × 6 input
array of position/velocity coordinates, and of course, with a N × 2 array of E,L values for
multiple input points (all methods can accept vectorized input). This and the previous three
functions operate with orbits in the equatorial plane and give exact results for spherical or
axisymmetric potentials; otherwise the result refers to the axisymmetrized version of the
potential and is therefore approximate.

export(filename) stores the potential into an INI file, which can be used later to read it
back (by passing the filename as the parameter to the constructor). This operation only
makes sense for the potential expansions (Multipole or CylSpline) without any modifiers;
other potentials just store their name but nothing else (and hence are unusable or even
incorrectly loaded back!) – as explained above, due to the rearrangements of constituent
parts during the construction of a multicomponent potential, it is not always possible to
reconstruct the original parameters from the existing objects. Note that all components of
a composite potential are stored in a single file, each one in its own section [Potential],
[Potential1], etc.

ActionFinder is the Python class constructed for the given potential:
af = agama.ActionFinder(pot, [interp=True|False])

where the optional second argument chooses between the interpolated (faster, less accu-
rate) and non-interpolated version of Stäckel fudge. If the potential is an Isochrone or
an arbitrary spherical potential, the underlying C++ implementation will use the specialized
ActionFinderIsochrone or ActionFinderSpherical classes, otherwise the ActionFinder-
AxisymFudge class (interpolated or not).
This class has only one method __call__ (i.e., can be applied as a function), computing any
combination of actions, angles and/or frequencies, for the given 6d position/velocity point
or an N × 6 array of points:

act = af(points) # 0th column is Jr, 1st – Jz, 2nd – Jϕ
act, ang, freq = af(points, angles=True, frequencies=True)

There is also a standalone routine actions performing the same task, which may be used
without constructing an instance of action finder:

agama.actions(points, potential [, fd=focal_distance]

[, actions=True] [, angles=False] [, frequencies=False])

for a non-spherical potential one needs to provide the focal distance ∆ (the ActionFinder

class retrieves it from an internally constructed interpolation table).

ActionMapper class performs the inverse operation – transform from actions/angles to
position/velocity coordinates. Depending on the potential, it will use either the Isochrone, a

54

generic spherical mapping, or Torus machinery (Section 2.4.4) for axisymmetric potentials.

am = agama.ActionMapper(pot)

When applied to one or more sextets of actions and angles, it returns the corresponding x,v,
and optionally frequencies in a separate array:

xv, freq = am([[J_r1, J_z1, J_phi1, theta_r1, theta_z1, theta_phi1],

[J_r2, J_z2, J_phi2, theta_r2, theta_z2, theta_phi2]],

frequencies=True)

Note that in the case of Torus mapping, each unique triplet of actions will trigger the con-
struction of a new torus (a non-negligible computation cost), whereas mapping many angles
for a single value of actions is relatively cheap. Previously constructed tori are cached for
subsequent calls. The Torus mapping is not thread-safe and thus not OpenMP-parallelized;
Spherical and Isochrone mapping are free of these limitations.

DistributionFunction class provides the Python interface to the hierarchy of C++ DF
classes. It is constructed either from a list of keyword arguments,

df = agama.DistributionFunction(type="...", [mass=..., other params])

where type may be one of the following: DoublePowerLaw, QuasiIsothermal, Exponential,
QuasiSpherical, and the other parameters are specific to each type of DF (Section 2.5), or
from a list of existing DistributionFunction objects, creating a composite DF:

dfcomp = agama.DistributionFunction(df1, df2, myfnc)

Similarly to the Density class, one may provide a custom Python function myfnc which
returns the DF value at the given triplet of actions {Jr, Jz, Jϕ} (again the calling convention
is to process a 2d array of such triplets, even if with one row).

The QuasiIsothermal DF (Section 2.5.1) additionally needs an instance of Potential to
initialize the auxiliary functions Rc(J), κ, ν,Ω, σ.

The QuasiSpherical DF (Section 2.5.3) is constructed from the provided instances of
Density and Potential, using the generalized Eddington inversion formula to create f(E,L)
and then a spherical action finder to convert it to an action-based form.

The DF object applied to a triplet of actions or an array of shape N × 3 returns the values
of the DF (summed together if the DF is composite). If called with an optional argument
der=True, it additionally returns derivatives of the DF w.r.t. actions.

SelectionFunction class provides an example of a position-dependent selection function
(SF) for the GalaxyModel class: S(x,v) = exp

[
− (|x − x0|/R0)

ξ
]
. This function has 3

parameters: the fiducial point x0, cutoff radius R0, and optional cutoff steepness ξ (by
default ξ = ∞, meaning a sharp transition between S = 1 at distances smaller than R0 to
S = 0 at larger distances, but one can make it more gradual). In addition, an arbitrary user-
defined Python function can be used instead of an instance of SelectionFunction class.

55

The built-in class
sf = agama.SelectionFunction(point=(x0,y0,z0), radius=r0, steepness=xi))

is mathematically equivalent to
sf = lambda x: numpy.exp(

-((x[:,0]-x0)**2 + (x[:,1]-y0)**2 + (x[:,2]-z0)**2) / r0**2)**(xi/2))

but of course, the latter is less computationally efficient due to extra costs in using a Python
callback function from the C++ code.

GalaxyModel is the combination of a potential, an action finder (which can be con-
structed internally for the given potential, or provided to the constructor if it was already
created), a DF, and optionally a SF:
gm = agama.GalaxyModel(pot, df [, af][, sf=sf])

This class provides methods for computing DF moments and drawing position/velocity sam-
ples from it. These operations are rather expensive, and if the input consists of several points,
the computation is internally parallelized using OpenMP (except when the DF or SF are user-
defined Python functions). In all examples below, the input may contain a single point
(with the dimension D depending on the function), or an N×D array of several points. The
input point and the output quantities are given in the “observed” coordinate system XY Z,
which may be arbitrarily oriented with respect to the “intrinsic” coordinate system xyz of
the model, as specified by the three Euler rotation angles alpha, beta, gamma (Section A.3).
When all three angles are zero (default), both coordinate systems coincide. The inclination
angle beta is the most useful of these parameters.

dens, meanvel, vel2 = gm.moments(points, dens=True, vel=True, vel2=True, ...)

computes the density ρ, mean velocity V , and six second moments of the velocity ViVj at
the provided point(s) (Section 2.6.1); one may choose which of these quantities are needed,
eliminating unnecessary computations (by default only dens and vel2 are computed). This
method comes in two variants: the first version computes the moments at the given 3d point
with Cartesian coordinates {X, Y, Z} in the observed coordinate system, and the second
one computes the projected moments at the given 2d point {X, Y }, additionally integrating
along the line of sight Z. Thus points should be either a triplet/pair of numbers for a single
point, or an N × 3 /N × 2 array of points. The velocity moments also refer to the observed
coordinate system.

fproj = gm.projectedDF(points, ...)

computes the projected DF integrated along the line of sight Z and optionally over some or
all of the velocity components, weighted with Gaussian measurement uncertainties. A single
point is specified by 8 numbers: X, Y coordinates, three velocity components VX , VY , VZ ,
and three corresponding velocity uncertainties ϵV , all in the observed coordinate system.
The uncertainties can range from zero to infinity inclusive: a zero uncertainty means no
integration along this velocity axis, an infinite uncertainty means the integration over the
entire available range of velocity, and a finite uncertainty invokes a convolution with a Gaus-

56

sian, as explained in the corresponding section.

fVX, fVY, fVZ = gm.vdf(points [, gridv], ...)

fVX, fVY, fVZ, dens = gm.vdf(points, dens=True [, gridv=...], ...)

constructs normalized 1d velocity distribution functions at the given point(s), represented by
cubic spline interpolators. One may compute either the full VDFs at the given 3d point(s),
or the projected VDFs additionally integrated over the Z axis; the choice again depends on
the shape of the points array (3 or 2 coordinates per point, respectively). If the optional
argument dens=True is provided, the output additionally contains the 3d density ρ or the
surface density Σ. The optional argument gridv specifies the grid in velocity space used to
represent the spline (if given as an array) or the size of this grid (if given as an integer). If
not provided, the default is to cover the range ±vescape with 50 points. The grid needs not
be too dense – a 3rd degree interpolating spline provides a substantially higher level of detail
than an equivalently spaced histogram. One may plot the velocity distribution as a smooth
function on a denser grid:

v_esc = numpy.sqrt(-2 * pot.potential(point))

gridv = numpy.linspace(-v_esc, v_esc, 200)

plt.plot(gridv, fVX(gridv))

mass = gm.totalMass()

computes the total mass of the DF inside the spatial region delineated by the SF. If the
latter is trivial, the result should be identical to df.totalMass up to integation errors, but
is naturally much more expensive to compute, because it involves integration over the 6d
phase space with actions computed at each point, rather than integration over the 3d action
space. Note that if the SF is very localized, the integration routine may fail to find the
region where the SF is nonzero and will incorrectly return a zero result; more generally, the
accuracy may be rather poor in case of sharp selection boundaries.

All four of the above methods additionally accept an optional argument separate=True,
which produces separate output for each component of a composite DF – this is more effi-
cient than computing them individually. In this case, output arrays have one extra dimension
with length equal to the number of DF components (even when it is 1).

posvel, mass = gm.sample(N)

draws N equal-mass samples from the DF multiplied by the SF (Section 2.6.2); the result is
an N × 6 array of position/velocity points and a 1d array of masses (the particle masses ap-
proximately equal gm.totalMass()/N, but here the total mass is computed by the sampling
routine). This routine is used for constructing an N -body representation of the DF-based
model. Note that if N is too small (say, ≲ 103), the sampling routine might not be able
to explore the entire volume 6d phase space in an unbiased way, and the resulting snapshot
may miss some parts of it (especially if the DF multiplied by SF is strongly concentrated in
a small volume of the phase space); the remedy is to sample a larger number of points and
retain a fraction of them.

57

One may also sample positions from a given density profile, and then assign velocities using
either the spherical anisotropic DF (Section 2.5.3) or axisymmetric Jeans equations. This is
currently achieved by the sample method of a Density object, which additionally takes an
instance of the Potential and optionally the parameters of Jeans equations. Be cautioned
that the API will be changed in the future, to harmonize the usage conventions with those
used for action-based GalaxyModels.

SelfConsistentModel is the driver class for performing iterative self-consistent modelling
(SCM; Section 2.6.3). It is initialized with a list of arguments determining the parameters
of the two potential expansions (Multipole and CylSpline) that are constructed in the
process, and optionally a list of components and/or an initial potential. To run the model,
one needs to add one or more components; the list of components and other properties of
the model may be changed between iterations.
scm = agama.SelfConsistentModel(minSph=1e-3, rmaxSph=1e3, sizeRadialSph=40,

lmaxAngularSph=0, components=[comp])

Component class is a single component of this model; it could either represent a static
density or potential profile, or provide a DF which will contribute to the density used to
compute either of the two potential expansions.

comp1 = agama.Component(df=df, density=initdens, disklike=False, **params)

creates the component with a spheroidal DF and an initial guess for the density profile (the
latter is not needed if the entire SCM has an initial guess for the potential). The extra
params depend on the disklike’ness of the component and specify the size and extent of
spatial grid for recomputing its density.

comp2 = agama.Component(density=agama.Density(type="disk", mass=0.1,

scaleRadius=1, scaleHeight=0.05), disklike=True) # a static gas disk
comp3 = agama.Component(potential=agama.Potential(type="Plummer", mass=0.01,

scaleRadius=0.001) # a softened central supermassive black hole
creates static components with a given density or potential and without a DF, which remain
unchanged in the course of iterative modelling (so do not need extra parameters for a density
grid).

scm.components = [comp1, comp2]

scm.components.append(comp3)

modifies the list of components in the SCM.

scm.iterate()

performs one iteration of the modelling procedure, recomputing the density of all components
with DFs and then reinitializing the total potential.

comp1.density

(a read-only property) contains the most recently updated density of this component (it
would give None for comp3, which instead has a potential property).

58

comp1.df

(a read-only property) returns the DF associated with the component, or None for a static
component.

scm.potential

is the instance of the total potential, which may be combined with the DF of each component
into a GalaxyModel object, and used to compute other DF moments or construct an N -body
model:
posvel, mass = agama.GalaxyModel(scm.potential, comp1.df).sample(10000)

The Component and SelfConsistentModel classes are further illustrated by several example
scripts.

Target class represents one of several possible targets in Schwarzschild models. It is ini-
tialized by providing type="..." and other parameters depending on the target type (see
Section A.8). This object can be used in two contexts: either as an argument for the orbit
routine, collecting the contribution of each orbit to each constraint in the target, or as a
function applied to a Density or GalaxyModel object or an N -body snapshot, returning the
array of constraints computed from this object.

Orbit integration is performed by the following routine:
result = agama.orbit(potential=pot, ic=posvel, time=int_time, ...)

here posvel contains initial conditions for one or several orbits (a N × 6 array), total in-
tegration time for each orbit may be different, but typically is a multiple of the dynamical
time returned by the Tcirc method of Potential (e.g., 100*pot.Tcirc(posvel)), and dots
indicate additional parameters (at least some must be provided to produce a result):
Omega specifies the pattern speed of a rotating coordinate system (note that in this case, the
velocity is still given in an inertial frame that is instantaneously aligned with the rotating
frame, as explained in Section 2.3).
trajsize and dtype together control the format in which the trajectory is represented, as
detailed below.
timestart is the initial moment of time (default 0), and similarly to the total time, may
be either a single value or an array of separate values for each orbit. The final time of each
orbit is time+timestart.
accuracy (default 10−8) is the relative accuracy of the ODE integrator.
der=True turns on the computation of deviation vectors (derivatives of the trajectory w.r.t.
the initial conditions).
lyapunov=True additionally estimates the Lyapunov exponent for each orbit (an indicator
of chaos) using the fastest growing deviation vector.
verbose=False disables the display of progress indicator that is normally shown when more
than one orbit are computed.
method specifies the ODE integration method; the default ’dop853’ is the 8th order Runge–
Kutta method, while the 4th order ’hermite’ method may be more efficient in the regime

59

of low accuracy (≳ 10−4).
targets=... optionally lists Target objects for Schwarzschild modelling.

The result returned by this routine is one or a tuple of several items, depending on the
requested output. For each Target, a N × K array is produced with the contribution of
each orbit to each of K constraints in the given target. When the output trajectory is re-
quested by providing the argument trajsize, this adds another item in the output tuple,
as detailed below. When der=True, the deviation vectors are stored in another array in the
output tuple. Finally, when lyapunov=True, yet another array of length N is appended to
the output tuple, which contains the estimates of Lyapunov exponents for each orbit. If the
output consists of a single item (typically, trajectory), it is returned directly instead of a
length-1 tuple.

Trajectories can be provided in one of the two alternative formats: as arrays of timestamps
and phase-space points, or as interpolator objects.
In the first case, each orbit k produces two arrays: timestamps (1d array of length Mk,
which may be different for each orbit) and corresponding position/velocity points (2d array
of size Mk × 6 when dtype is float32 or float64, or combining position and velocity into
real and imaginary parts of a complex number when dtype is complex64 or complex128,
so that the array has shape Mk × 3). The points can be recorded after every timestep of
the ODE integrator (typically meaning a denser sampling near the pericenter) – this regime
is triggered by setting trajsize=0 (this is not the same as not setting it at all, in which
case the trajectory is not recorded). Alternatively, one may request the output points to
be regularly spaced in time at intervals time/(trajsize-1), by setting trajsize =Mk ≥1.
If trajsize=1, only the final point is stored, otherwise both the initial and the final point
are stored in the first and the last array elements. If time< 0, the integration is carried
backward in time, and the array of times is monotonically decreasing (in any case, it goes
from the initial moment timestart to timestart+time, whatever their signs are). In case
of N > 1 orbits, the output item is a 2d array of shape N × 2, with its elements being
arrays themselves (1d arrays of timestamps in the first column and 2d arrays of trajectories
in the second); since the lengths of these arrays may differ between orbits, the overall result
may not be possible to represent as a regular 3d array. Although the orbit integration is
always performed in double precision (C++ double, equivalent to Python float), by default
the output format is single precision (numpy.float32) to save memory (with 7 digits of
precision usually being enough).
In the second case, the output trajectory is provided in the form of an interpolator – an
instance of a special class agama.Orbit, which can only be returned by the orbit routine,
and cannot be created manually. This class is little more than a thin wrapper for three quin-
tic spline interpolators (implemented by the Spline class) for each Cartesian component
of position and velocity as functions of time. Although it can be constructed from points
regularly spaced in time (if trajsize≥1), it makes more sense to use the points recorded
at every timestep of the ODE integrator (trajsize=0), and this is the default setting that

60

does not need to be specified (unlike the array output format), i.e., it is sufficient to set
dtype=object. The orbit routine produces one interpolator object per orbit, i.e., a 1d
array of length N > 1 or a single object in the case of one orbit. When used as a sequence
indexed by the [] operator, this object provides the timestamps at which the orbit was
recorded, and when used as a function of one variable (time – a single number or an array),
it provides the interpolated trajectory at the given time(s) with a typical accuracy ∼ 10−6

for position and ∼ 10−5 for velocity, which is usually sufficient. This dual interface makes
possible a rather amusing syntax, when the actually recorded trajectory is retrieved by ap-
plying an Orbit object to itself.

Examples of usage (assuming that posvel is an array of N > 1 initial conditions):

result1 = agama.orbit(potential=pot, ic=posvel, time=int_time, trajsize=1000)

result2 = agama.orbit(potential=pot, ic=posvel, time=int_time, dtype=object)

Plot the time evolution of z coordinate of each orbit:

for times,trj in result1: plt.plot(times, trj[:,2]) # regularly spaced
for trj in result2: plot(trj, trj(trj)[:,2]) # stored at every ODE timestep
for trj in result2:

times = numpy.linspace(trj[0], trj[-1], 1000)

plot(times, trj(times)[:,2]) # again regularly spaced

Plot the meridional (R− z) cross-section of each orbit:

for trj in result1[:,1]: plt.plot((trj[:,0]**2 + trj[:,1]**2)**0.5, trj[:,2])

When the computation of deviation vectors is requested by the argument der=True, they
are provided in the same format as the trajectory itself. There are six deviation vectors per
orbit, so if dtype=object, they are stored as six Orbit objects, otherwise as six arrays of
shape Mk×3 or 6. A matrix formed by column-stacking the deviation vectors at a given
point on the orbit represents the Jacobian J(t) of mapping between the initial conditions

w(0) and the current point w(t): Jij = ∂wi(t)/∂w
(0)
j :

delta = numpy.random.normal(size=6)*1e-8 # small offset in initial conditions
(time,orbit0), der = agama.orbit(potential=pot, ic=posvel[0], time=int_time,

trajsize=trajsize, dtype=float, der=True) # original orbit and dev.vectors
(time,orbit1) = agama.orbit(potential=pot, ic=posvel[0]+delta, time=int_time,

trajsize=trajsize, dtype=float) # slightly perturbed orbit
jac = numpy.dstack(der) # shape: (trajsize,6,6); jac[i] is the Jacobian matrix at time[i]
linear_dif = numpy.einsum(’ijk,k->ij’, jac, delta) # same as jac.dot(delta)
actual_dif = orbit1-orbit0

print(numpy.max(abs(actual_dif))) # max difference between nearby orbits
print(numpy.max(abs(actual_dif-linear_dif))) # error in linear prediction should be
much smaller than the actual difference, as long as both stay small (no chaotic divergence)

61

sampleOrbitLibrary routine constructs an N -body snapshot from the orbit library of a
Schwarzschild model, in which each orbit has a weight assigned by the solveOpt routine
(see Section A.8 for details):

matrix, traj = agama.orbit(potential=pot, ic=posvel, time=int_time,

dtype=object, targets=[target])

weights = agama.solveOpt(matrix, rhs)

nbody = 1000000

status, result = agama.sampleOrbitLibrary(nbody, traj, weights)

The above syntax stores the trajectories in the form of orbit interpolators, so that any num-
ber of sampling points can be drawn from each orbit (this number is proportional to its
weight in the model, so that the particle mass is the same for all orbits). On the other
hand, when the trajectories are recorded as regularly spaced arrays with a certain length
trajsize, it may not be sufficient to sample orbits with particularly high weights. In this
case, the function fails (returns status=False), and result is a tuple containing the list
of orbit indices which did not have enough points in previously recorded trajectories, and
corresponding required numbers of samples for each orbit in this list. Then one should rerun
the orbit routine with these parameters:

if not status:

indices, trajsizes = result

traj[indices] = agama.orbit(potential=pot, ic=posvel[indices],

time=int_time[indices], trajsize=trajsizes)

status, result = agama.sampleOrbitLibrary(nbody, traj, weights)

In case of success (status=True), result contains a tuple of two arrays: nbody×6 co-
ordinates/velocities and nbody masses of particles in the N -body snapshot. If an optional
argument returnIndices is set to True, result contains three arrays, the last one providing
the indices of orbits from which particles were drawn.

N-body snapshot handling is very rudimentary; the routines
agama.writeSnapshot(filename, particles[, format]) and
agama.readSnapshot(filename) can deal with text files (7 columns – x, y, z, vx, vy, vz,m),
and optionally Nemo or Gadget snapshots if the library was compiled with their support.
Here particles is a tuple of two arrays: N × 6 position/velocity points and N masses; the
same convention is used to pass around snapshots in the rest of the Python extension (e.g.,
in potential and sampling routines). A more powerful framework for dealing with N -body
snapshots is provided, e.g., by the Pynbody library [49].

Unit handling is optional: if nothing is specified explicitly, the library operates with the
natural N -body units (G = 1). However, the user may set up a unit system with three
independent basic dimensional units (mass and any two out of three other units: length,
velocity and time), and all dimensional quantities in Python will be expressed in these basic

62

units and converted into natural units internally within the library:

agama.setUnits(mass=1, length=1, velocity=1)

instructs the library to work with the commonly used Galactic units: 1M⊙, 1 kpc, 1 km/s,
with the derived unit of time being 0.98 Gyr (this is not the same as using no units at all,
because G = 4.3 × 10−6 in these units; the numerical value of the gravitational constant
is stored as agama.G, but explicitly assigning a new value to this variable is not allowed –
one should call setUnits). Importantly, this setup needs to be performed at the beginning
of work, otherwise the values returned by the previously constructed classes and methods
(e.g., potentials) would be incorrectly scaled (a warning will be issued if you call setUnits
after creating instances of other classes). If the Astropy framework [3] is installed, one may
provide instances of astropy.Quantity or astropy.Unit as arguments for agama.setUnits.
The function agama.getUnits returns the current units as a dictionary with four items:
length, velocity, time and mass, all expressed in the same base units as the arguments of
setUnits, namely: kpc, km/s, Myr and M⊙. Again, if Astropy is installed and imported,
the returned dictionary will contain astropy.Quantity instances rather than plain numbers.
At the moment there is no way to explicitly attach the units to the dimensional quantities
passed to or returned from the library: for instance, posvel would be still a plain numpy

array, with the implied convention that the first three columns are expressed in the length
unit (e.g., 1 kpc) and the second three columns – in velocity units (e.g., km/s), but it carries
no attributes containing this information. This is a deliberate design choice, as Astropy
unit conversion incurs a significant overhead cost for small amounts of data.

Coordinate transformation routines provide a simple mechanism for converting be-
tween Cartesian and celestial coordinates, or between two celestial reference frames. These
conversions are a subset of those provided by Astropy, but are faster especially for small-
to-medium size inputs, because they operate directly on numpy arrays and work only with a
specific choice of units, bypassing the overheads of the comprehensive unit conversion sub-
system of the Astropy framework:
makeRotationMatrix constructs a 3× 3 orthogonal rotation matrix R parametrized by Eu-
ler angles (Section A.3); the coordinates in the rotated frame x′ are related to the original
coordinates x via x′ = Rx;
makeCelestialRotationMatrix constructs a rotation matrix serving the same purpose, but
parametrized by a different triplet of angles;
transformCelestialCoords converts the celestial coordinates (longitude/latitude), and op-
tionally proper motions and their dispersion tensor between two celestial reference frames;
getCelestialCoords and getCartesianCoords perform the bidirectional transformation
between celestial coordinates, proper motions, line-of-sight distance and velocity to/from
Cartesian coordinates/velocities centered on the observer;
getGalacticFromGalactocentric and getGalactocentricFromGalactic perform a simi-
lar transformation, but with additional positional and velocity offsets of the observer from
the origin of the Galactocentric Cartesian reference frame.

63

Mathematical methods provided by the Python extension module include:
Spline class providing one-dimensional cubic, quintic or B-spline interpolation, optionally
computing up to three derivatives or an analytic convolution with a Gaussian kernel or
another spline function, and providing methods for analytic root-finding and determination
of extrema;
splineApprox and splineLogDensity routines for constructing a penalized cubic spline
approximation or density estimate from discrete samples (Section 2.1.1);
integrateNdim routine for multidimensional integration (implemented by the cubature

library, which is included in the C++ code);
sampleNdim routine for sampling from a user-defined multidimensional function;
solveOpt routine for solving linear or quadratic optimization problems (used in the context
of Schwarzschild modelling);
nonuniformGrid and symmetricGrid routines for constructing one- and two-sided semi-
exponentially-spaced arrays;
bsplineInterp, bsplineMatrix, bsplineIntegrals routines for dealing with B-splines (the
first one can be more efficiently replaced by the Spline class);
ghInterp, ghMoments routines for dealing with Gauss–Hermite moments (see Section A.8
for examples of usage on the last two groups).

Colormaps augment the rich collection of color schemes included in matplotlib with sev-
eral custom-designed maps, which are better-balanced analogues of hsv, RdBu, jet, rainbow,
gist_earth and inferno maps (Figure 1). They can be accessed from any matplotlib

function under the names circle, bluered, breeze, mist, earth and hell, respectively.

3.2 Fortran interface

The Fortran interface is much more limited compared to the Python interface, and provides
access to the potential solvers only.

One may create a potential in several ways:

1. Load the parameters from an INI file (one or several potential components).

2. Pass the parameters for one component directly as a single string argument.

3. Provide a Fortran routine that returns a density at a given point, and use it to create
a potential approximation with the parameters provided in a text string.

4. Provide a Fortran routine that returns potential and force at a given point, and create
a potential approximation for it in the same way as above (this is useful if the original
routine is expensive).

Once the potential is constructed, the routines that compute the potential, force and its
derivatives (including density) at any point can be called from the Fortran code. No unit
conversion is performed (i.e., G = 1 is implied). There is an example program showing all
these modes of operation.

64

3.3 C interface

There is also a minimalistic C interface, with similar functionality as the Fortran interface
(see the header file interface_c.h for details). One may question why it is needed at all,
given that the core of the library is written in C++, which is “not too different” from pure C.
However, most of the functionality is implemented in terms of objects, which are not directly
available to the C code. This interface provides routines for constructing density or potential
instances (represented by opaque pointers) from a given array of parameters or from an INI
file, evaluating the density, potential and its derivatives, and evaluating actions, angles and
frequencies, either directly for the given potential and phase-space point, or mediated by
an action finder. The C interface also serves as the basis for the Julia interface, which is
currently in the development stage.

3.4 Interoperability with Galpy

Galpy [13] is a Python-based framework for galaxy modelling, similar in scope to Agama.
It includes a collection of gravitational potentials, routines for orbit integration, action com-
putation, distribution functions and more. The interface between the two libraries is pro-
vided by the “chimera” wrapper class agama.GalpyPotential, which is a subclass of both
agama.Potential and galpy.potential.Potential, and thus can act as a regular poten-
tial in each of the two frameworks. Internally, it can represent either a native Agama
potential or a native Galpy potential – the choice is determined by the arguments sup-
plied to the constructor. If one passes an instance of a Galpy potential, or a list of such
instances (which is the approached used to represent a composite potential in Galpy), then
the wrapper object is built around the Galpy potential; the routines from Agama access
it in the same way as any other user-defined potential model (see example) – in particular,
the derivatives are computed by finite differences. In all other cases, the arguments to the
constructor are interpreted in the same way as for the agama.Potential class, and initialize
a native Agama potential object, which behaves in exactly the same way as an instance of
agama.Potential when used with the classes and routines from Agama, but also provides
the interface methods for Galpy. The same functionality (e.g., computation of accelera-
tion) is thus provided by two similar methods: the Agama-native method force(x) outputs
three components of force per unit mass for a single point or an array of points in Carte-
sian coordinates, while the Galpy-native Rforce(R,z[,phi]) outputs the component of
acceleration along the cylindrical radius for a single point or an array of points specified in
cylindrical coordinates.

An instance of the wrapper class can be used in all relevant contexts in both frameworks,
but of course, the efficiency may vary dramatically. In the case of a wrapped Agama-
native potential, it is identical to a builtin Potential object for Agama routines (e.g.,
orbit integration, action computation), and is at the level of any user-defined potential for
Galpy routines. In the opposite case of a wrapped Galpy-native potential, routines from

65

Agama (e.g. orbit integration) would be quite slow both because of a repeated transfer of
control flow between Python and C++, and because the potential derivatives are computed by
finite differences, requiring 13 or 21 evaluations per point. At the same time, routines from
Galpy would treat it in the same way as a regular potential implemented in Python (i.e.,
can not use C-accelerated variants even if the underlying potential has a C implementation).
Nevertheless, for many purposes, e.g. plotting the isopotential surfaces, the performance
penalty can be tolerated. For computationally heavy tasks such as integration of a large
number of orbits or action computation for many points, it is preferrable to use Agama-
native potentials. Even if there is no direct counterpart of the user potential among the
builtin classes, it is often possible to construct an accurate approximation for it in term of
either Multipole or CylSpline expansions, which then run at native speed.

An example, comparing the native Galpy orbit integrator and action finder with those
from Agama, is provided in the file py/example_galpy.py. Overall, the potential approx-
imations and action finders in Agama are more versatile, accurate and computationally
efficient, while Galpy provides a convenient plotting interface.

3.5 Interoperability with Gala

Gala [53] is another Python/Cython-based framework for galaxy modelling, similar in scope
to Agama. It includes a collection of gravitational potentials, routines for orbit integration,
action computation, and is well integrated with Astropy unit and coordinate subsystems.
The interaction between Agama and Gala is organized in a similar way as with Galpy,
namely, through a “chimera” wrapper class agama.GalaPotential, which is a subclass of
both agama.Potential and gala.potential.PotentialBase, and provides both interfaces
regardless of the internal representation. It can be initialized either from a native Gala
potential, in which case the routines from Agama will access it in the same way as a custom
Python function representing a potential model (in particular, derivatives are computed by
finite differences), or in any of the possible ways to initialize a native Agama potential (e.g.,
providing a list of named arguments, or a filename, or another instance of agama.Potential),
in which case it behaves identically to the wrapped object in all contexts within Agama.
In the second case, one may also provide an additional argument units=... with the same
meaning as used within Gala. If initialized with units, or when encapsulating a Gala po-
tential with units, the methods inherited from gala.potential.PotentialBase (density,
energy, gradient) will automatically convert units in input arguments and output values,
but the methods from agama.Potential do not perform such conversions (note that due to
name clash, the Agama-native method for computing density is renamed to agamadensity).
Performance-wise, the same considerations apply here as for the Galpy interface: namely,
a wrapper object hosting a native Agama potential behaves identically to it in Agama, but
a wrapper object hosting a native Gala potential will be only accessed from that library
via its Python interface, and hence built-in Gala classes written in Cython will suffer a
performance penalty. An example of usage is provided in py/example_gala.py.

66

3.6 Amuse plugin

Amuse [51] is a heterogeneous framework for performing and analyzing N -body simulations
using a uniform approach to a variety of third-party codes. The core of the framework and
the user scripts are written in Python, while the community modules are written in various
programming languages and interact with each other using a standartized interface.

Agama may be used to provide an external potential to any N -body simulation running
within Amuse. One may construct a potential using either any of the built-in models, or a
potential approximation constructed from an array of point masses provided from theAmuse
script. This potential presents a GravityFieldInterface allowing it to be used as a part of
the Bridge coupling scheme in the simulation. For instance, one may study the evolution of
a globular cluster that orbits a parent galaxy, by following the internal dynamics of stars in
the cluster with an N -body code, while the galaxy is represented by a static potential using
this plugin. This application is illustrated in the example script py/example_amuse.py.

Moreover, the stellar-dynamical simulation codeRaga (described in a separate document
readme_raga.pdf) can be used from within Amuse, as well as a standalone program (see
below).

The Amuse plugin is built automatically if the environment variable $AMUSE_DIR is de-
fined, and the interface is provided by the class amuse.community.agama.interface.Agama.

3.7 Nemo plugin

Nemo [68] is a collection of programs for performing and analyzing N -body simulations,
which use common data exchange format and UNIX-style pipeline approach to chain to-
gether several processing steps. The centerpiece of this framework is the N -body simulation
code gyrfalcON [24]. It computes the gravitational force between particles using the fast
multipole method, and can optionally include an external potential.

TheNemo plugin allows to use anyAgama potential as an external potential in gyrfal-
cON and other Nemo programs (in a similar context as the Amuse plugin). It supports all
features of the potential interface, including composite, time-dependent or off-centered mod-
els, plus a rotating reference frame. All parameters are provided in a single INI file (which,
as usual, may include references to other INI files), whose name is given as the command-
line argument accfile=... In the simplest case, it contains a single section [Potential]

with type=... specifying the potential type, plus other parameters as needed. Such a file
may contain coefficients of a Multipole or a CylSpline potential, and in more complicated
cases may contain several sections [Potential1], [Potential whatever], . . . (any name
starting with Potential is interpreted as a separate component, and as always, parameter
names and values are case-insensitive). Individual potential components may have [pos-
sibly time-dependent] offsets from origin, or represent time-dependent potentials (such as
Evolving or UniformAcceleration), see Section 2.2.4 for a full list of features. An addi-
tional Nemo-specific feature is a possibility of providing a pattern speed Ω for the potential

67

(frequency of rotation of the potential figure about z axis) as a separate command-line
argument accpars=...

The shared library agama.so itself provides the Nemo interface without any extra com-
pilation options (it does not depend on any Nemo header files). If the environment variable
$NEMOOBJ is defined during the compilation, the shared library will be automatically copied
into the folder $NEMOOBJ/acc/, where it could be found by Nemo programs.
For instance, this adds an extra potential in a gyrfalcON simulation:

gyrfalcON infile outfile accname=agama accfile=mypot.ini [accpars=1.0] ...

where the last optional argument specifies a pattern speed Ω = 1.0. All units in the INI or
coefs file here should follow the convention G = 1.

As an example, consider the evolution of an N -body model of a Plummer sphere of mass
m = 0.1 and radius a = 0.1 (satellite), which moves on a nearly-circular orbit inside a larger
Plummer sphere of mass M = 1 and radius A = 1 (host galaxy), represented by a smooth
external potential. First create the satellite:

mkplum out=sat.nemo nbody=10000 r_s=0.1 mass=0.1

Put it on an orbit with radius R = 1 and initial velocity approximately equal to the circular
velocity of the external potential at this radius V = 0.6:

snapshift sat.nemo sat_shift.nemo rshift=-1,0,0 vshift=0,-0.6,0

Create an INI file (pot.ini) with the external potential:

[Potential]

type=Plummer

mass=1

scaleRadius=1

Now run a simulation for a few orbital periods:

gyrfalcON sat_shift.nemo sat_out1.nemo eps=0.02 kmax=5 step=0.25 tstop=50 \
accname=agama accfile=pot.ini

The satellite nicely orbits around the origin, leaving a small tidal tail.
We can model the same situation in the reference frame that is centered not on the host

galaxy, but rather on the satellite [approximately]. Namely, the potential of the host galaxy
now will be moving on a circular orbit around origin of the coordinate system associated with
the simulation, in which the satellite was initially at rest and centered at origin. We need
to create two additional files describing the time-dependent offset of the external potential’s
center and the acceleration associated with the non-inertial reference frame:

import numpy

t = numpy.linspace(0,50,201) # grid in time
w = 0.6 # rotation frequency ω = V/R
x,y,z = numpy.cos(w*t), numpy.sin(w*t), t*0 # orbit coordinates

68

numpy.savetxt("center.txt", numpy.column_stack((t, x, y, z)))

ax,ay,az = -w**2*x, -w**2*y, 0*z # components of centrifugal acceleration
numpy.savetxt("accel.txt", numpy.column_stack((t, ax, ay, az)))

And add the following lines to pot.ini (the first line refers to the previous potential section,
remaining ones add a second section):

center=center.txt

[Potential 1]

type=UniformAcceleration

file=accel.txt

Now run another simulation (with the un-shifted initial conditions for the satellite):

gyrfalcON sat.nemo sat_out2.nemo eps=0.02 kmax=5 step=0.25 tstop=50 \
accname=agama accfile=pot.ini

The outcome should be similar, but expressed in a different reference frame. We can convert
it back to the host-centered frame by running the following chain of operations:

snapprint sat_out2.nemo t,x,y,z | \
awk '{print $2-cos(0.6*$1),$3-sin(0.6*$1),$4;}' | \
tabtos - sat_out3.nemo nbody=10000 block1=x,y,z

In general, the non-inertial acceleration needs not correspond to the second derivative of
the offset of the potential center – one could imagine running the simulation in an inertial
frame (hence zero acceleration), but forcing the external potential to dance around in some
unpredictable way. Finally, the INI file may contain multiple sections, each one could have
its own fixed or time-dependent offset (center), or represent an Evolving sequence of poten-
tials. . . The possibilities are boundless!
A more elaborate illustration is provided in the script example nbody simulation.py

3.8 Arepo and Gadget4 plugins

Arepo [65] andGadget4 [66] are two hydrodynamical and gravitational N -body simulation
codes sharing a common ancestry. Agama can be used to provide an external gravitational
potential for both codes in a similar way as for gyrfalcON. However, the design of these
codes does not support “plugins” in the traditional sense (external modules that can be
loaded dynamically); instead, one needs to introduce some modifications of the source code
and recompile them.

In both cases, the potential is specified in the INI file agama_potential.ini (the name
is hardcoded in the source code), and its use is turned on by a macro EXTERNALGRAVITY_-

AGAMA in the file config.sh during the compilation. It can be used instead of or in addition
to the self-gravity in the simulation. One limitation is that the simulation must be using
units in which G = 1 (specified by the GravityConstantInternal parameter), because

69

there is no mechanism for passing dimensional units to the potential constructor in the C

interface (which is used for the coupling). The external potential is unlikely to be useful for
cosmological simulations, and only works in physical (not comoving) coordinates. In case of
hydrodynamical simulations in the moving-mesh code Arepo, the simulation box extends
from zero to some BoxSize, so is not centered on zero; one can shift the Agama potential
by half box length, using the parameter center=... in the INI file.

A Python script example_nbody_simulation.py demonstrates the use of Agama to
provide an external potential for N -body simulations conducted with gyrfalcON, Arepo
or Gadget4; the latter two codes are patched before compilation.

4 Tests and example programs

The Agama framework itself is indeed just a “library”, not a “program”, but it comes with
a number of example programs and internal tests. The latter ones are intended to ensure
the consistency of results as the development goes on, so that new or improved features do
not break any existing code. All test_***.cpp and test_***.py programs are intended
to run reasonably quickly and display either a PASS or FAIL message; they also illustrate
some aspects of the code, or check the accuracy of various approximations on realistic data.
Example programs, on the other hand, are more targeted towards the library users and
demonstrate how to perform various tasks. Finally, there are several tools built on top of
the library that perform some useful tasks themselves. Some of them are described below.

tutorial potential is a Jupyter notebook illustrating various features of density, potential
and orbit integration framework, starting from the basic concepts and progressing to the
discussion of composite potentials, user-defined profiles, modifiers, and orbit integration in
the rotating frame.

tutorial equilibrium models is a Jupyter notebook demonstrating various approaches
for construction of equilibrium models, based on distribution functions or orbits.

example galpy is a Python program illustrating the use of GalpyPotential class, which
provides a common interface for native potentials from both Agama and Galpy. This
example compares the equivalent methods for potential evaluation, orbit integration and
action computation from both libraries.

example gala is a Python program illustrating the GalaPotential class, which provides
a common interface for potentials from Agama and Gala, and the equivalent methods for
orbit integration.

example basis set is a Python program comparing the BasisSet potential expansion
with equivalent classes from Galpy and Gala, which both implement a special case of it
(the Hernquist–Ostriker basis set). The coefficients of expansion can be converted from the

70

formats used in these libraries to the input file for the native and more computationally
efficient BasisSet potential.

example amuse illustrates the use of Agama to provide an external potential in an N -
body simulation performed within the Amuse framework.

example fortran demonstrates how to create and use Agama potentials in Fortran,
both for built-in density or potential models, or for user-defined Fortran functions that
provide the density or potential.

example time dependent potential is a Python script illustrating various ways of con-
structing time-dependent potentials (a star-planet system) and integrating test-particle or-
bits.

example lmc mw interaction is a more elaborate illustration of time-dependent poten-
tials, adapted from [77]. Given two extended massive galaxies (Milky Way and the Large
Magellanic Cloud), we first compute their past trajectories in the common center-of-mass
frame. Then we create a composite total potential in the reference frame associated with the
Milky Way center, which contains the Milky Way itself, the moving LMC, and the accelera-
tion caused by the non-inertial frame. Finally, we compute trajectories of a large number of
tracer stars in the Milky Way halo in this evolving potential, and display the perturbations
in their spatial and kinematic distribution caused by the LMC.

example spiral is a Python script illustrating the use of a user-defined potential model
(a three-arm spiral) for orbit integration: the Python function defining the potential can be
used directly, but it is rather inefficient, and the preferred way is to construct a CylSpline

approximation for it. See also test user profiles.py for other examples of providing user-
defined Python functions representing density, distribution function and selection function
concepts to various routines within the library.

example mw bar potential is a Python script that constructs a smooth analytic density
profile [64] and the associated CylSpline potential approximating the made-to-measure
model of the Milky Way bar [50]. example mw potential hunter24 provides an updated
variant of this potential [33] with the same bar, but different disk and halo models, which
have been fitted to the recent observational constraints.

example tidal stream is a Python program demonstrating two approaches for simulating
a sinking and tidally disrupting satellite galaxy. In the first approach, it is modelled with the
N -body code gyrfalcON (using a Python interface to it, pyfalcON), and in the second
one (restricted N -body simulation), as a collection of particles orbiting in a smooth potential
of the satellite, which itself moves in the host galaxy and is periodically updated to account
for the mass loss (this method is similar to the Raga code discussed below). In both cases,

71

the host galaxy is represented by another analytic potential and the dynamical friction on
the satellite is imposed manually.

example nbody simulation is a Python script for launching an N -body simulation of a
star cluster (or a satellite galaxy) in the Milky Way-like potential of the host system, provided
by Agama as an external potential to one of the following codes: gyrfalcON, Arepo or
Gadget4, as well as a restricted N -body simulation similar to the previous script. It creates
initial conditions (a simple Plummer model), downloads and compiles the simulation code
(if necessary), launches it, and shows the result. Of course, these simulations can be run
without a driver Python script, by feeding in appropriate initial conditions and parameter
files directly to the codes – the files produced by this script could serve as templates.

example poincare is an interactive Python program illustrating the Poincaré surface of
section and orbits in the meridional plane of axisymmetric potentials; it demonstrates the
use of spline-interpolated orbits in combination with analytic determination of roots of spline
functions.

example deprojection is an interactive Python plotting script illustrating the projection
and deprojection of triaxial ellipsoidal bodies viewed at different orientations.

example smoothing spline is a Python program showing the use of penalized smoothing
splines for fitting a curve to noisy data (splineApprox) and for estimating 1d probability
distributions from discrete samples (splineLogDensity).

example actions nbody shows how to determine the actions for particles from an N -
body snapshot taken from a simulation of a disk+halo system. It first reads the snapshot and
constructs two potential approximations – Multipole for the halo component and CylSpline

for the disk component – from the particles themselves. Then it computes the actions for
each particle and writes them to another file. This program exists both in C++ and Python

variants that perform the same task.

example torus is a Python script illustrating the use of the ActionMapper class to con-
struct an orbit, comparing it to a numerically integrated trajectory.

example df fit shows how to find the parameters of a DF belonging to a particular family
from a collection of points drawn from this DF in a known potential. It first computes the ac-
tions for these points, and then uses the multidimensional minimization routine findMinNdim
to locate the parameters which maximize the likelihood of the DF given the data. The
Python equivalent of this program additionally determines the confidence intervals on these
parameters by running a MCMC algorithm starting around the best-fit parameters.

A more elaborate Python program gc_runfit determines simultaneously the parameters
of the spherically-symmetric potential and the DF that together describe the mock data
points drawn from a certain (non-self-consistent) DF but with incomplete data (only the

72

line-of-sight velocity and the projected distance from the origin). The goal is to determine
the properties of the potential, treating the DF as nuisance parameters; it also uses the
MCMC algorithm to determine uncertainties. This program is designed to work with the
mock data from the Gaia Challenge test suite [54], but can be easily adapted to other
situations.

example doublepowerlaw performs a related task: given a spherically-symmetric den-
sity and potential profiles (not necessarily related through Poisson equation), numerically
construct a QuasiSpherical DF and approximate it with a DoublePowerLaw DF which has
an analytic form (see [35] for a similar approach).

example vdf fit bspline demonstrates the use of B-splines to construct an arbitrary non-
negative probability distribution (in this case, the velocity distribution function – VDF) from
a discrete sample of velocity measurements, while deconvolving it from the observational un-
certainties.

example adiabatic contraction presents a Python function for computing the effect of
contraction of dark matter halo due to baryonic potential, implemented in two variants: (a)
the ‘true’ adiabatic contraction with action-based DF, or (b) an approximate prescription
based on enclosed mass profiles.

example self consistent model illustrates various steps of the workflow for creating
multicomponent self-consistent galaxy models determined by DFs. It begins with initial
guesses for the density profiles of all components, and computes the total potential, which is
used to construct a QuasiIsothermal DF for the disk; the DoublePowerLaw DFs of the halo
and the bulge do not need a potential. Then it performs several iterations, updating the
density of both disk and halo components and recomputing the total potential. Finally, it
creates an N -body realization of the composite system by sampling particles from both DFs
in the converged potential. It also demonstrates the use of INI files for keeping parameters
of the model. This example is provided in equivalent C++ and Python versions.

There are a couple of closely related programs (the first one is C++, the rest are Python):
example self consistent model mw is a very similar program that creates a Milky Way
model fitted to Gaia DR2 kinematic data [12], which uses non-standard (user-defined) DF
classes for the disk and the halo components;
example self consistent model3 performs the same task for a slightly different three-
component galactic model fully specified by DFs and plots several physical quantities in the
model (velocity dispersion profiles, LOSVDs, etc.);
example self consistent model simple is a stripped-down version showing only the bare
minimum of steps in the context of a spherical model;
example self consistent model flattened is a slightly more complicated variant that cre-
ates a flattened rotating Sérsic model;
example mw nsd constructs a DF-based self-consistent model of the Milky Way nuclear

73

http://astrowiki.ph.surrey.ac.uk/dokuwiki/doku.php?id=tests:sphtri:spherical

stellar disk [63].
test self consistent model illustrates the iterative self-consistent modelling workflow by
reimplementing the Component and SelfConsistentModel classes in pure Python and test-
ing their equivalence to the C++ classes. The same approach can be used in other con-
texts besides self-consistent modelling, as a means of producing the density profile cor-
responding to the given DF – essentially, computing the zeroth moment of the DF at
a small number of points (∼ 100) and then interpolating it into the entire 3d space as
DensitySphericalHarmonic or DensityCylindricalHarmonic. This could be useful if one
needs to evaluate it at many points – for instance, to compute the integrals of density over
some finite volume (equivalent to a spatial selection function) or the surface density.

example schwarzschild triaxial and example schwarzschild flattened rotating
are two Python scripts illustrating the basic steps in Schwarzschild orbit-superposition mod-
elling. The first one creates a self-consistent triaxial model with a Dehnen density profile,
and then converts it into an N -body snapshot. The second one creates a flattened rotating
Sérsic model with a central black hole, again converts it into an N -body snapshot, and plots
various diagnostic information.

schwarzschild is a more general Python program for constructing multicomponent Schwarz-
schild models and converting them into N -body models. It reads all model parameters from
an ini file (an example of a three-component axisymmetric disk galaxy model is provided in
data/schwarzschild_axisym.ini). This program can be used in the “theoretical” context,
when the goal is to construct a single equilibrium model with given parameters, not to fit a
model to some observational data – that job is performed by the following program.

example forstand is a Python program illustrating various aspects of observationally-
constrained Schwarzschild modelling. It creates mock datasets from N -body models, runs
a grid of models, and displays results in an interactive plot. This program can serve as a
template for user scripts adapted to particular observational datasets.

measureshape is a Python program providing a function getaxes (which can be used in
other scripts) for measuring the shape and orientation of triaxial ellipsoidal N -body snap-
shots, using the moment of inertia tensor (method E1 in [78]). For analytic density models,
the same functionality is provided by the principalAxes method of the Density class.

mkspherical is a C++ program for creating and analyzing spherical isotropic models. These
models are defined by a potential Φ(r) and a distribution function f(E), or rather, f(h),
where h(E) is the phase volume (Section 2.5.4). These models may or may not be self-
consistent, i.e., the potential may be generated by the density profile corresponding to f(h),
but also contain other external components (e.g., a central massive black hole). This tool
can be used in two distinct modes: (a) creating a spherical model with prescribed properties
(given by a built-in density profile, or interpolated from a user-provided table of enclosed

74

mass within a range of radii), using the Eddington inversion formula to compute the distri-
bution function, or (b) analyzing an N -body snapshot (constructing smooth spline approxi-
mations to the spherical potential, density and isotropic distribution function). The output
consists of a text table with several variables (Φ, ρ, f , etc.) as functions of radius or energy,
and/or an N -body realization of the model, which may then serve as the initial conditions in
a simulation. Note that in the case that a given density and potential cannot be reproduced
by a non-negative isotropic DF (e.g., a constant-density core in the Kepler potential), no
error is emitted, and instead the DF is replaced with zeros whenever the computed value is
negative.

phaseflow is a C++ program for computing the dynamical evolution of a spherical isotropic
stellar system driven by two-body relaxation [73]. It solves a coupled system of Fokker–
Planck and Poisson equations for the joint evolution of Φ(r), ρ(r) and f(h) discretized on
a grid, using the formalism presented in Section A.7.2. It reads all input parameters from
an ini file; a couple of examples are given in data/phaseflow_corecollapse.ini and
data/phaseflow_bahcallwolfcusp.ini

raga is a Monte Carlo stellar-dynamical code for simulating the evolution of non-spherical
stellar systems [72]. It represents the system as a collection of particles that move in the
smooth potential, represented as a Multipole expansion with coefficients being regularly
recomputed from the particles themselves, and can include several additional dynamical
processes: explicitly simulated two-body relaxation, loss-cone effects (capture of particles by
a massive black hole), and interaction between a binary massive black hole and the stellar
system. The code is described in a separate document (readme_raga.pdf), and an example
input file is provided in data/raga.ini. The Amuse interface to Raga has extra features
compared to the standalone program, namely the possibility of adding particles or changing
the stellar masses and radii during the simulation.

75

b
ri

g
h
tn

e
ss

circle g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

hsv_r g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

bluered g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

RdBu_r g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

breeze g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

jet g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

mist g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

rainbow g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

earth g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

gist_earth g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

hell g
ra

d
ie

n
t

b
ri

g
h
tn

e
ss

inferno g
ra

d
ie

n
t

Figure 1: Custom colormaps in Agama (left) compared to the ones from Matplotlib.

76

A Technical details

A.1 Developer’s guide

Any large piece of software needs to follow a number of generic programming rules, which
are well-known standards in commercial software development, but unfortunately are in-
sufficiently widespread in the scientific community. Here we outline the most important
guidelines adopted in the development of Agama. Some of them are C++-specific [44, 67],
others are more general [39, 40]. As a practical matter, we do not use any of C++11 features,
except smart pointers, to keep compatibility with older compilers.

Code readability is extremely important in long-term projects developed and used by
several persons. All public classes, types and routines in Agama are documented in-code,
using the Doxygen syntax for comments that can be parsed and used to automatically
generate a collection of HTML pages. These comments mostly describe the intent of each
class and function and the meaning of each argument or variable, at least in their public
interface – in other words, a programmer’s reference to the library. Sometimes a more
technical description is also provided in these comments, but generally it is more likely
to be presented in this document rather than in the code (with the inevitable risk of de-
synchronizing as the code development progresses...)

Modularity is an essential approach for keeping the overall complexity at a reasonable
level. What this means in practice is that each unit of the code (a class or a function) should
be responsible for a single well-defined task and provide a minimal and clean interface to
it, isolating all internal details. The calling code should make no assumptions about the
implementation of the task that this unit of code is promised to deliver. On many occasions,
there are several interchangeable back-ends for the same interface – this naturally applies to
all class hierarchies descending from a base abstract class such as BasePotential, but also
to the choice of back-end third-party libraries dictated by compilation options, with a single
wrapper interface to all alternatives implementations.

Another facet of modularity is loose coupling, that is, instead of a single large object that
manages many aspects of its internal state, it is better to create a number of smaller objects
with minimal necessary interaction. For instance, composition (when one class has another
class as a member variable) is preferred over inheritance (when the class has full access to
the parent class’s private members), as it reduces the strength of coupling.

Programming paradigm throughout the library is a mixture of object-oriented and pro-
cedural, gently spiced with template metaprogramming.
Generally, when there is a need to provide a common interface to a variety of implementa-
tions, the choice between compile-time (templates) and run-time (virtual functions) poly-
morphism is dictated by the following considerations.
Templates are more efficient because the actual code path is hardwired at the compilation

77

time, which allows for more optimizations and diagnoses more possible errors already at this
stage. On the other hand, it is applicable when the actual workflow is syntactically the same,
or the number of possible variants is known in advance – for instance, conversion between all
built-in coordinate systems (Section 2.1.3) is hard-coded in the library. Each function that
uses a templated argument produces a separate compiled fragment; therefore it is impossible
for the user to extend built-in library functions with a new variety of template parameter.
Abstract classes (or, rather, “interfaces”) providing virtual functions that are fleshed out
in descendant classes offer more flexibility, at the expense of a small overhead (negligible
in all but the tighest loops) and impossibility to securely prevent some errors. This is the
only way to provide a fully extensible mechanism for supplying a user-defined object (e.g.,
a mathematical function implementing a IFunction interface) into a pre-compiled library
function such as findRoot.

The boundary between object-oriented and procedural paradigms is less well-defined.
There are several possible ways of coupling the code and the data:

1. data fields are encapsulated as private members of a class, and all operations are
provided through public methods of that class;

2. a collection of assorted variables is kept in a structure or array, and there is a standalone
function performing some operation on this data;

3. a standalone function takes an instance of a class and performs some operation using
public member functions of this class;

4. a class contains a pointer, reference or a copy of another class or structure, and its
member functions follow either of the two previous patterns.

The first approach is used for most classes that provide nontrivial functionality and can
be treated as immutable objects, or at least objects with full control on their internal state. If
the data needs to be modified, it is usually kept in a structure with public member fields and
no methods, so that it may be accessed by non-member functions (which need to check the
correctness of data on each call); the SelfConsistentModel struct and assocated routines
follow this pattern. The third approach is used mostly for classes that are derived from an
abstract base class that declares only virtual methods; since any non-trivial operation on
this class only uses this public interface, it does not need to be a part of the class itself, thus
loosening the coupling strength. That’s why we have many non-member functions operating
on BasePotential descendants. Finally, the fourth scenario is the preferred way of creating
layered and weakly coupled design.

Naming conventions are quite straightforward: class names start with a capital letter,
variable names or function arguments – with a lowercase, constants are in all capital with
underscores, and other names are in CamelCase without underscores. Longer and more
descriptive names are preferred – as a matter of fact, we read the code much more than
write, so it’s better to aid reading than to spare a few keystrokes in writing.

78

We use several namespaces, roughly corresponding to the overall structure of the li-
brary as described in Section 2: this improves readability of the code and helps to avoid
naming collisions, e.g., there could be two different Isochrone classes – as a potential
and as a concept in stellar evolution, living in separate namespaces. A feature of C++

called “argument-dependent lookup” allows to omit the namespace prefix if it can be de-
duced from the function arguments: for instance, if pot is an instance of class derived from
potential::BasePotential, we may call potential::writePotential(fileName, pot)

without the prefix. This doesn’t apply to name resolution of classes and templates, and to
functions which operate on builtin types (e.g., in the math:: namespace). We also do not
use the auto keyword which is only available in C++11.

When several different quantities need to be grouped together, we use struct with all
public members and no methods (except possibly a constructor and a couple of trivial conve-
nience functions). If something has an internal state that needs to be maintained consistently,
and provides a nontrivial behaviour, this should be a class with private member variables.
We prefer to have named fields in structures rather than arrays, e.g., a position in any co-
ordinate system is specified by three numbers, but they are not just a double pos[3] –
rather, each case has its own dedicated type such as struct PosCyl{ double R,z,phi; }
(Section 2.1.3). This eliminates ambiguity in ordering the fields (e.g., what is the 3rd coor-
dinate in a cylindrical system – z or ϕ? different codes may use different conventions, but
naming is unique) and makes impossible to accidentally mis-use a variable of an incorrect
type which has the same length.

Immutability of objects is a very powerful paradigm that leads to simpler design and
greater robustness of programs. We allow only “primitive” variables – builtin types, structs
with all public member fields, or arrays (including vectors and matrices) – to change their
content. Almost all instances of non-trivial classes are read-only: once created, they may not
be changed anymore; if any modification is needed, a new object should be constructed. All
nontrivial work in setting up the internal state is done in the constructor, and all member
functions are marked as const. This convention is a strong constraint that allows to pass
around complex objects between different parts of the code and be sure that they always
do the same thing, and that there are no side effects from calling a method of a class. This
also simplifies the design of parallel programs: if an object needs a temporary workspace for
some function to operate, it should not be allocated as a private variable in the class, but
rather as a temporary variable on the stack in each function; thus concurrent calls to the
same routine from different threads do not interfere, because each one has its own temporary
variable, and only share constant member variables of the class instance. There are, of course,
some exceptions, for instance, in classes that manage the input/output, string collections
(utils::KeyValueMap), and “runtime functions” that perform some data collection tasks
during orbit integration (even in this case, sometimes the data is stored in an external
non-member variable).

Another aspect of the same rule is const correctness of the entire code. Instances of

79

read-only classes may safely be declared as const variables, and all input arguments for
functions are also marked as const (see below). These rules improve readability and allow
many safety checks to be performed at compile time – an incorrect usage scenario will not
even compile, rather than produce an unexpected error at runtime.

Memory management is a non-trivial issue in C and a source of innumerable bugs in
poorly written software. Fortunately, C++ has very powerful features that almost eliminate
these problems, if followed consistently. The key element is the automatic management of
object lifetimes for all classes or structures. Namely, if a variable of some class is created in
a block of code, the destructor of this class is guaranteed to be called when the variable goes
out of scope – whether it occurs in a normal code path or after an exception has occurred (see
below). Thus if some memory allocation for a member variable was done in the constructor,
it should be freed in the destructor and not in any other place. And of course the rule applies
recursively, i.e., if a member variable of a class is a complex structure itself, its destructor is
called automatically from the destructor of this class, and then the destructor of the parent
class (if it exists) is invoked. In practice, it is almost never necessary to deal with these issues
explicitly – by using standard containers such as strings and vectors instead of char* or
double* arrays, one transfers the hassle of dynamic memory management entirely to the
standard library classes.

The picture gets more complicated if we have objects that represent a hierarchy of de-
scendants of an abstract base class, and need to create and pass around instances of the
derived types without knowing their actual type. In this case the object must be created
dynamically, and a correct destructor will be automatically called when an object is deleted
– but the problem is that a raw pointer to a dynamically-allocated object is not an object
and must be manually deallocated before it goes out of scope, which is precisely what we
want to avoid. The solution is simple – instead of raw pointers, use “smart pointers”, which
are proxy objects that manage the resource themselves. There are several kinds of smart
pointers, but we generally use only one – shared_ptr. Its main feature is automatic refer-
ence counting: if we dynamically create an object derived from BasePotential and wrap
the pointer into PtrPotential (which is defined as shared_ptr<const BasePotential>),
we may keep multiple copies of this shared pointer in different routines and objects, and the
underlying potential object will stay alive as long as it is used in at least one place, and will
be automatically deallocated once all shared pointers go out of scope and are destroyed. If
a new value is assigned to the same shared pointer, the reference counter for the old object
is also decreased, and it is deallocated if necessary. Thus we never need to care about the
lifetime of our dynamically created objects; this semantics is similar to Python. Of course, if
we know the actual type of potential that we only need locally, we may create it on the stack
without dynamical allocation; most routines only need a (const) reference to a potential
object – does not matter whether it is an automatic local variable or a dereferenced pointer.

Finally, it’s better to avoid dynamical memory allocation (including creation of std::vectors)
in routines that are expected to be called frequently (such as BasePotential::eval). All

80

temporary variables should be created on the stack; if the size of an array is not known
at compile time (e.g., it depends on the parameters of potential), we either reserve an ar-
ray of some pre-defined maximum permitted size, or use alloca routine which creates a
variable-length array on the stack.

Calling conventions refer to the way of passing and returning data between various parts
of the code. Arguments of a function can be input, output, or both. All input arguments are
either passed by value (for simple built-in types) or as a const reference (for more complex
structures or classes); if an argument may be empty, then it is passed as a const pointer
which may take the NULL value. Output and input/output arguments are passes as non-
const references to existing objects. Thus the function signature unambiguously defines
what is input and what is not, but does not indicate whether a mixed-intent argument
must have any meaningful value on input – this should be explained in the Doxygen
comment accompanying the definition. Unfortunately there is no indication of the direction
of arguments at the point where the function is called.

Usually the input arguments come first, followed by output arguments, except the cases
of input arguments with default values, which must remain at the end of the list. (Unfor-
tunately, C++ does not have named arguments, which would be more descriptive, but we
encourage their use in the Python interface). When the function outputs a single entity
(even if it is a complex object), it is usually a return type, not an output argument; in
most contexts, there is no extra cost because temporary objects are not created (copy elision
and return-value optimization rules). However, extra output information may be stored in
output arguments (sometimes optional, i.e., they may be NULL, indicating that this extra
information is not required by the caller). When the return value is not a copyable type
(e.g., if a function creates a new instance of a class derived from an abstract base class),
then it is returned as a smart pointer.

These conventions apply to ordinary non-member functions and class methods; for con-
structors they are somewhat different. If we create an object A which has a link to another
object B, it usually should not be just a reference or a raw pointer – because the lifetime of
B may be shorter than the newly created A. In these cases, B is either copied by value (like
a std::vector), or else it should be provided as a shared pointer to the actual object, and
a copy of this pointer is stored in A, increasing its reference counter. This ensures that the
actual instance of B continues to exist as long as it is used anywhere, and is automatically de-
stroyed when it is no longer needed. Thus, if a class constructor takes a shared pointer as an
argument, this indicates that a copy of this pointer will be kept in the class instance during its
lifetime; if it takes a reference, then it is only used within the constructor but not any longer.
This rule also has exceptions – several wrapper classes used as proxy object for type con-
version. For instance, when a certain routine (e.g., math::integrate) expects an argument
of const math::IFunction& type to perform some calculations on it without storing the
object anywhere else, this argument could be a temporary instance of a wrapper class (e.g.,
potential::DensityWrapper) taking a reference to a const potential::BaseDensity&

81

object in the constructor. In other words, instances of these wrapper classes should only be
created as unnamed temporary objects passed as an argument to another function, but not
as stack- or heap-allocated variables – even local ones.

Numerical issues – efficiency and accuracy – are taken very seriously throughout the
code. Floating-point operations often require great care in re-arranging expressions in a way
that avoids catastrophic cancellation errors. A classic example is the formula for the roots
of a quadratic equation: x1,2 = (−b ±

√
b2 − 4ac)/(2a). In the case of ac ≪ b2, one of the

two roots is a difference between two very close numbers, thus it may suffer from the loss
of precision. Another mathematically equivalent expression is 2c/(−b ∓

√
b2 − 4ac), and a

numerically robust approach is to use both expressions – each one for the root that has two
numbers of the same sign added, not subtracted. Going one step further, if the coefficients
a, b, c are themselves obtained from other expressions, it may be necessary to reformulate
them in such a way as to avoid subtraction under the radical, etc. These details are necessary
to ensure robust behaviour in all special and limiting cases; a good example are coordinate
conversion routines.

Efficiency is also a prime goal: this includes a careful consideration of algorithmic com-
plexity and minimization of computational effort. Some mathematically equivalent functions
have rather different computational cost: for instance, generating two Gaussian random num-
bers with the Box–Muller algorithm is a few times faster than using the inverse error function;
finding a given quantile (e.g., median) of an array can be done in O(N) operations without
sorting the entire array (which costs O(N logN) operations); and computing potential and
three components of force simultaneously is faster than doing it separately.

For numerical integration, a suitable coordinate transformation may dramatically im-
prove the accuracy – or reduce the number of function calls in the adaptive integration
routine; often a fixed-order Gauss–Legendre integration is enough in a particular case, with
the degree of quadrature selected by extensive numerical experiments. Consider, for instance,
two one-dimensional integrals Ia ≡

∫ 1

−1

√
1− x2 dx, Ib ≡

∫ 1

−1
1/
√
1− x2 dx; their analytical

values are respectively π/2 and π. Both integrands have integrable endpoint singularities
(even though the first one tends to zero as x → ±1, it is not analytic at these points), and
a näıve N -point Gauss–Legendre quadrature rule has poor convergence: relative errors are
0.003 (0.0005) with N = 5 (10) for Ia, and 0.1 (0.05) for Ib. However, if we apply transfor-
mation of the interval [−1..1] onto itself, stretching it near the endpoints, the results are far
better: for a substitution x = (3 − y2)y/2, the errors in 5- or 10-point rule are ∼ 10−6 or
10−12 for both functions, while another similar substitution x = sin(y π/2) would even make
the second integral exact. Such transformations, in exactly the same context, are used, e.g.,
in computing the actions and frequencies.

Multidimensional integration methods employ adaptive refinement of the integration do-
main, and in principle should be able to cope with strongly varying or non-analytic functions,
again at the expence of accuracy (for a fixed upper limit on the number of function eval-
uations). However, there is another reason for applying non-trivial hand-crafted scaling

82

transformations: if the function in question is very strongly localized in some small region
of the entire domain, the adaptive integration routine may simply miss some part of the
domain where none of the initially considered points yielded non-negligible function values,
and hence this part was not refined at all. Such situation may arise, e.g., when computing
the density ρ(x) =

∫
f(x,v) d3v from a DF of a cold disk, which is very narrowly peaked at

vr = 0, vz = 0, vϕ = vcirc(r); hence we employ a sophisticated transformation that stretches
the region around |v| = vcirc, facilitating the task of ”hitting the right point”.

Dimensional quantities are usually converted to logarithms before applying any scaling
transformations, to ensure a (nearly-)scale-invariance. Consider, e.g.,

∫∞
0
f(x) dx with a

näıve transformation of the interval onto [0..1]: x = y/(1 − y). If the function f(x) peaks
between x = 106 and 107 (not uncommon when dealing with astronomical scales), no reason-
able adaptive quadrature rule would be able to detect this peak crammed into a tiny interval
1 − 10−6 < y < 1 − 10−7! If, on the other hand, we employ a two-stage transformation,
x = exp(y), y = 1/(1 − z) − 1/z, then the peak lies between 0.93 < z < 0.94, which is far
more likely to be found and handled correctly. Same considerations apply to root-finding
and minimization routines; in these cases the added benefit is increased precision. If a root
in the näıvely scaled variable is at 1 − 10−10, it has only 5 significant digits; if our relative
tolerance in root-finder was 10−12, the un-scaled variable would carry a relative error of 10−2!
By contrast, in the two-stage transformation the root will be around 0.96 and we only lose
one or two digits of precision.

Consistency and reproducibility of floating-point (FP) calculations is a painful issue,
as anyone seriously working with them can attest. Theoretically, with no compiler opti-
mizations and running in a single thread, one should be able to get identical results on all
architectures conforming to the IEEE 754 FP standard (that is, almost all current ones).
However, once we wish the program to be even mildly efficiently optimized, the results can
differ between compilers and even between running the same executable on different proces-
sors. Adding the multi-threading computations surely makes things even less predictable.
For instance, computing a sum of array elements in parallel will yield different results de-
pending on the number of threads, because the sub-ranges summed by different threads will
be different, and FP addition is not commutative. When dynamic load-balancing is allowed
in runtime, these sub-ranges may be different between runs even with the same number
of threads. These issues notwithstanding, a reasonable effort has been invested to keep as
much reproducibility as possible when running on the same machine with the same number
of threads, and keep the differences at the level of FP precision when running with different
number of threads. However, even though the roundoff errors in lower-level functions stay
at the machine precision, various high-level operations (such as construction of CylSpline
potential from density or computation of DF moments, both involving multidimensional in-
tegration) have much less strict tolerances, typically at the level 10−6 to 10−4, and eventually
the results obtained on different machines or even with different compilation options could
differ by that much.

A few words about INFINITY and NAN values. Infinities are valid floating-point numbers

83

and are quite useful in some contexts where a really large number is required (for instance, as
the endpoint of the root-finder interval); they propagate correctly through most expressions
and some functions (e.g., exp, log, comparison operators). The infamous NAN is a different
story: it usually13 indicates an incorrect result of some operation, and is infectious – it
propagates through all floating-point operations, including comparison operators (that is,
a>b and a<b are both false if b is NAN; however, !(a<b) and b!=b are true in this case). This
feature is useful to pass the indication of an error to the upper-level routines, but it does
not allow to tag the origin of the offensive operation. This brings us to the next topic:

Error handling is an indispensable part of any software. Whenever something goes wrong,
this must be reported to the upper-level code – unless there is a safe fallback value that may
be returned without compromising the integrity of calculation. The standard approach
in C++ is the mechanism of exceptions. They propagate through the entire call stack, until
handled in a catch statement – or terminate the program if no handler was found. They also
carry upward any user-defined diagnostic information (e.g., a string with error description),
and most importantly, they ensure a correct disposal of all temporary objects created in
intermediate routines (of course, if these are real objects with destructors, not just raw
pointers to dynamically-allocated memory – which are bad anyway). Thus a routine does
not need to care about a possible exception occurring at a lower level, if it cannot handle
it in a meaningful way – it should simply let it propagate upwards. Exceptions should be
used to check that the input parameters are correct and consistent with the internal state
of an object, or perhaps to signal an un-implemented special case. Within a constructor
of a class, they are the only available mechanism for error signalling, because a constructor
cannot return a value, and storing an error code as a class member variable doesn’t make
sense, since the object is not usable anyway. Instead, if a constructor fails, the object is
immediately and correctly destroyed.

On the other hand, if a certain condition is never expected to occur, this may be expressed
as an assert statement – which terminates the program unconditionally if violated, and this
clearly indicates some internal inconsistency in the code, e.g., a memory corruption. It also
promotes a self-documenting code – all assumptions on input parameters and (preferrably)
results of calculation (pre- and post-conditions) are clearly visible. This mechanism should
only be used within a single unit of code (e.g., a class), which has a full control on its internal
state; if a function is part of public interface, it may not assume that the passed arguments
are valid and should check them, but in the case of incorrect values should raise an exception
rather than terminate the entire program.

Finally, it should be noted that exceptions do incur some run-time penalty if triggered,
so they should not be used just to inform about something that may routinely occur, e.g., in
a function that searches for a substring and does not find it. Sometimes propagating a NAN

is a cheaper alternative, used, for instance, in action finders if the energy is positive (does

13In some functions, NAN it is used as a special, usually a default value of an input argument, indicating
something like “value is unknown”.

84

not correspond to bound motion).

Diagnostic output is a separate issue from error handling, and is handled by a dedicated
printout routine utils::msg that may be used with different levels of verbosity and write the
messages to console or a log file. Its behaviour is controlled at runtime by the environment
variables LOGLEVEL (ranging from 0 to 3; default 0 means print only necessary messages,
1 adds some non-critical warnings, 2 prints ordinary debugging information, 3 dumps even
more debugging information on screen and to text files) and LOGFILE (if set, redirects output
to the given file, otherwise it is printed to stderr). The library’s default handler may be
reassigned to a user-provided function.

Parallelization in Agama is using the OpenMP model, which is nearly transparent for
the developer and user. Only a few operations that are supposed to occur in a serial con-
text have internal loops parallelized: this includes the construction of Multipole, BasisSet
and CylSpline potentials from ParticleArrays, initialization of interpolation tables in
ActionFinder*** constructors, sampling from a multidimensional probability density, and
a couple of other routines marked by a "\note OpenMP-parallelized loop" doxygen com-
ment. Other typical operations, such as computation of potential or action for many points
simultaneously, should be paralellized in the caller code itself, if needed. Almost all classes
and functions provided by the library can be used from multiple threads simultaneously, be-
cause they operate with read-only or thread-local data (exceptions from this rule are linear
and quadratic optimization routines, which are not thread-safe, but hardly would need to
be called in parallel); we do not have any mutex locks in the library routines. For instance,
in the Python interface, a single call to the potential or action finder may provide an array
of points to work with, and the loop is internally parallelized in the C++ extension module.

An important thing to keep in mind is that an exception that may occur in a parallel
section should be handled in the same section, otherwise the program immediately aborts.
Thus in such loops it is customary to provide a general handler that stores the error text, and
then re-throws an exception when the loop is finished. Also, the Python interface provides a
way to supply a user-defined Python callback function to some of the routines implemented
in C++, but the standard Python interpreter has a global locking mechanism (GIL) prevent-
ing its simultaneous usage from multiple threads. Therefore, when such callback functions
are used with C++ routines, they introduce a barrier (acquiring GIL in a thread that is
currently executing Python code and releasing it upon exiting from the user function), effec-
tively negating the effect of OpenMP parallelization altogether. However, these user-defined
functions are invoked with a vector of input points that may be processed in a single call
(e.g. using numpy array operations), instead of one point at a time, thus reducing the cost
of transferring the control flow between C++ and Python.

Vectorization is a complementary concept to parallelization, and means calling various
routines with names such as evalmany*** with a vector of input points rather than one
point at a time. Such routine may perform a single-threaded or an OpenMP-parallelized

85

loop over the points, or pass the entire array of points (or any intermediate array de-
rived from these points) onward to another vectorized routine. It is used whenever pos-
sible: for instance, N -dimensional integration routines call the integrand with an array of
a few dozen points at a time, N -dimensional sampling operates on blocks of 103 points,
galaxymodel::computeMoments and similar functions collect the values of DF and SF for a
bunch of points at a time while performing N -dimensional integrations, evalmany*** meth-
ods of composite density or potential classes call the corresponding methods of underlying
components, etc. Constructors of density and potential expansions collect the values of input
density or potential instances in a single call for all points used in integration. Naturally, this
extends to the user-defined functions in Python – they are usually invoked with vectorized
input.

A good illustration of vectorization coupled with parallelization is the self-consistent
modelling workflow (Section 2.6.3). The Component***::update methods create spherical-
or azimuthal-harmonic density expansions from the intermediate class DensityFromDF. The
constructors of density expansions collect the values of this intermediate density class in
one vectorized call to its evalmanyDensityCyl method, which in turn, performs an OpenMP-
parallelized loop over input points, calling computeMoments for one point from each thread
simultaneously. The latter function, in turn, involves integration over velocity, and the
integrand is called in a vectorized manner, but is not additionally parallelized (this would
make no sense).

A.2 Mathematical methods14

A.2.1 Basis-set approximation of functions

We often need to represent approximately an arbitrary function of one variable, defined on a
finite or infinite interval [a, b]. This is conventionally achieved by defining the inner product
of two functions f(x), g(x):

⟨f, g⟩ ≡
∫ b

a

f(x) g(x) dx , (1)

and introducing a complete set of basis functions Bi(x), so that any sufficiently well-behaved
function f(x) can be approximated by a weighted sum with a finite number of terms M to
any desired accuracy:

f̃ (M)(x) =
M∑
j=1

Aj Bj(x) . (2)

The coefficients of this expansion (amplitudes) Aj are determined from the requirement that
the inner product Pi of the original function f and each of the basis elements Bi is the

14In this chapter, we use boldface for column-vectors and Sans-serif font for matrices, while keeping the
ordinary cursive script for writing element-wise expressions.

86

same as the inner product of the approximated function f̃ (M) and the same basis element
(Galerkin projection):

Pi{f} ≡ ⟨f,Bi⟩ = (3a)

Pi{f̃ (M)} ≡ ⟨f̃ (M), Bi⟩ =
∫ b

a

f̃ (M)(x)Bi(x) dx =
M∑
j=1

Gij Aj , (3b)

where G is the Gram matrix of inner products of basis functions:

Gij ≡ ⟨Bi, Bj⟩ =
∫ b

a

Bi(x)Bj(x) dx . (4)

Classical basis sets are usually orthonormal, i.e., Gij = δij, and addition of each subse-
quent term does not change existing expansion coefficients (e.g., Fourier series, orthogonal
polynomials). Of course, it is possible to construct an orthogonal set by employing the
Gram–Schmidt procedure for any sequence of independent basis functions. However, it is
not always necessary, as long as we can solve efficiently the linear system GA = P (3) to
find Aj from Pi (this is the case for the B-spline basis set discussed in the Section A.2.2).

The computation of projection integrals ⟨f,Bi⟩ ideally should be performed with a
method that gives an exact result if the function f is itself a basis element (or, consequently,
a weighted sum of these elements, such as f̃); equivalently, the Gram matrix (4) needs to be
computed exactly. This implies the use of the trapezoidal rule with equidistant points for
the Fourier basis, the Gauss–Legendre rule for a basis of Legendre polynomials (spherical
harmonics), the Gauss–Hermite rule for the eponymous basis set (Section A.2.6), or again
the Gauss–Legendre rule separately on each grid segment for a B-spline basis (Section A.2.2).

We now discuss several commonly encountered tasks and the techniques for solving them
with the aid of basis sets.

Estimation of the probability distribution function f(x) from discrete samples
{xn}Nn=1 drawn from this function can be formulated in the framework of basis functions as
follows. The discrete realization of the probability density is f̂(x) ≡ 1

N

∑N
n=1 δ(x− xn), and

we identify it with the smooth approximation f̃ expressed in terms of a weighted sum of
basis functions (2). According to (3), the amplitudes A of this expansion satisfy the linear
equation system

M∑
j=1

Gij Aj = Pi{f̂} =
1

N

N∑
n=1

Bi(xn) . (5)

This expression is trivially generalized to the case of unequal-weight samples.
The drawback of this formulation is that the approximated density f̃ is not guaranteed
to be non-negative, unlike the original function f . An alternative approach, discussed in

87

Section A.2.5, is to represent the logarithm of f as a basis-set approximation, ensuring the
non-negativity property; however, it is a non-linear operation, unlike the simpler approach
introduced above. Of course, there exist various other methods for estimating the density
from discrete samples, for instance, using the kernel density estimation (KDE). However, the
latter is fundamentally a smoothing operation, producing the estimate of the convolution of
f with the kernel, rather than of the original function f . [illustration?]

Linear operators acting on the function f can be represented as linear transformations
of the vector of amplitudes of f̃ : A′

k = TkjAj. The matrix T may correspond to an exact
representation of the transformed function f̃ ′(x) ≡ T{f̃}(x), possibly in terms of a different
basis set B′

k, or to its approximation constructed in the same way as for the original function
f (by Galerkin projection of the transformed function f̃ onto the basis).

An example of the first kind is the differentiation or integration of f̃ , represented by its
expansion in terms of a similarly transformed set of basis functions. For instance, in the case
of Fourier or Chebyshev series, the transformed basis functions can be exactly represented
by the same or a related basis set (increasing the degree M in the case of integration). For
a M -th degree B-spline basis set described in the next section, the integrals or derivatives
of basis functions are also B-splines of degree M + 1 or M − 1, correspondingly, defined by
the same grid. This feature is used in the finite-element analysis to represent differential
equations in a discretized form, and solve the equivalent linear algebra equations.

An example of the second kind is a convolution operation f̃ ∗K ≡
∫ b
a
f̃(y)K(x− y) dy.

If f̃ is represented by the vector of amplitudes A, and the convolved function f̆ ≡ f̃ ∗K is
represented by the vector of amplitudes Ă, the relation between these two vectors is found
by applying the projection operator Pi to f̆ :

Pi{f̆} =
∑
j

KijAj, Kij ≡
∫ b

a

dx

∫ b

a

dy Bi(x)Bj(y)K(x− y) . (6)

Hence, according to the general rule, Ă = G−1 KA.

Change of basis: if one needs to express the function f̃(x) =
∑

j Aj Bj(x) in terms
of a different basis set as

∑
mAm Bm(x), the amplitudes of this expansion are given by

A = G−1 HA, where Hmj ≡ ⟨Bm, Bj⟩, and G is the Gram matrix of the basis set Bm. This
is, in general, a lossy operation (one may call it a reinterpolation onto the new basis), in a
sense that constructing an approximation for a function f directly in terms of the new basis
is not equivalent to the approximation for f in terms of the old basis and then a further
approximation of this f̃ in terms of the new basis. Depending on the properties of both the
function and the basis, the extra error may be negligible or not.

A.2.2 B-splines

The B-spline set of basis function is defined by a grid of points (knots) on the interval [a, b]:
a = k1 < k2 < · · · < kK = b. Each basis function is a piecewise polynomial of degree N ≥ 0

88

that is non-zero on at most N +1 consecutive segments of the grid (or fewer at the edges of
the grid). Specifically, it is a polynomial inside each grid segment, and its N−1-th derivative
is continuous at each knot (except the endpoints a, b, but including all interior knots). The
total number of basis functions is M = K +N − 1. These functions are defined through the
following recursion (de Boor’s algorithm):

B
[0]
j (x) ≡

{
1 if kj ≤ x ≤ kj+1

0 otherwise
, (7a)

B
[N]
j (x) ≡ B

[N−1]
j (x)

x− kj
kj+N − kj

+B
[N−1]
j+1 (x)

kj+N+1 − x

kj+N+1 − kj+1

. (7b)

B-splines have the following convenient properties:

� At any grid segment, at most N + 1 basis functions are nonzero. This makes the
computation of interpolant (2) very efficient – the grid segment enclosing the point
x is located in O(logM) operations, and the computation of all N possibly non-zero
basis functions takes O(N2) operations (with N typically ranging from 0 to 3), instead
of O(M) as for traditional basis sets.

� The basis is not orthogonal, but the matrix G (4) is block-diagonal with bandwidth N ,
thus the coefficients of decomposition Aj are obtained from Pi in O(N2M) operations.

� Although the number and degree of basis functions must be fixed in advance before
computing any decompositions, we may use the freedom to put the knots at the most
suitable locations to improve the accuracy of approximation.

� The basis functions are non-negative, thus to ensure that f(x) ≥ 0, it is sufficient to
have Ai ≥ 0.

� The sum of all basis functions is always 1 at any x.

The case N = 0 corresponds to a histogram (piecewise-constant function), N = 1 –
to a piecewise-linear interpolator, and N = 3 – to a cubic spline with clamped boundary
conditions (it is defined by K nodes but has K+2 independent components, unlike the more
familiar natural cubic spline, in which the extra two degrees of freedom are used to make the
second derivative zero at endpoints). It is possible to construct an equivalent representation
of a natural cubic spline in terms of a modified N = 3 B-spline basis set, in which the first
three basis functions B0, B1, B2 are replaced with two linear combinations that have zero
second derivative: B̃1 ≡ B0 +

x2−x0
x1+x2−2x0

B1, B̃2 ≡ B2 +
x1−x0

x1+x2−2x0
B1, and similarly for the

last three basis functions, see Figure 2 (left panel).
B-splines are well suited for constructing the approximating function with a relatively

small number of terms from a possibly large array of points (essentially replacing the integral
in (3) by a discrete sum, see Sections A.2.4 and A.2.5). On the other hand, if one needs
to construct an interpolating function passing through the given set of points (the standard

89

interpolation problem), B-splines are less convenient, and the evaluation of the interpolant
is also less efficient than for the “classical” textbook splines discussed in the next section.

A.2.3 Spline interpolation

The task of interpolation in 1, 2 and 3 dimensions is performed by several kinds of splines:
linear interpolators (not particularly exciting), cubic splines and quintic splines (the latter
– only in 1d and 2d). The degree of spline (1, 3 or 5) refers to the degree of the piecewise
polynomial at each grid segment (in more than one dimension, along each axis). However,
the continuity conditions at grid nodes may be different from B-splines (in which the function
has N − 1 continuous derivatives at all interior nodes).

Let us first consider the 1d case with K ≥ 2 grid points (K − 1 segments).
Interpolation by piecewise-cubic polynomials requires 4 coefficients for each segment,

which are conveniently taken to be the values and first derivatives of the function at two
adjacent nodes: f(xi), f(xi+1), f

′(xi), f ′(xi+1) – this is called the Hermite interpolation. Thus
the total number of coefficients is 2K; the function and its derivative is continuous across
segments, but the second derivative may change discontinuously.

What if we are only given the function values f(xi), but not the derivatives? One may
come up with a plausible approximation for derivatives at each node, and then use the
Hermite interpolation on each segment – this will yield a continuously differentiable curve
no matter what the values of f ′(xi) are. Of course, we want it not only to be smooth,
but also to approximate the true function accurately, and this requires a judicious as-
signment of derivatives. One possibility is to use finite-differences to estimate f ′(xi) as
[f(xi+1) − f(xi−1)]/[xi+1 − xi−1], with a suitable modification for boundary points, or a
generalization for unequally-spaced grids. This is called the Catmull–Rom spline, and is fre-
quently used in resampling (especially in more than one dimension), due to its locality: the
value of interpolated function on each interval xi ≤ x ≤ xi+1 depends on four nearby values
– f(xi−1), f(xi), f(xi+1), f(xi+2). Another possibility is the familiar cubic spline, in which
the first derivatives are computed from the requirement that the second derivatives are con-
tinuous at each interior node (i.e. K−1 points). This results in a tridiagonal linear equation
system, relating f ′(xi) to f ′(xi−1) and f ′(xi+1)

15 Two additional boundary conditions are
required to close the equation system; most commonly, these are f ′′(x1) = f ′′(xK) = 0 (so-
called natural cubic splines), but alternatively, one may specify the first derivatives at the
endpoints (clamped cubic spline). Thus the derivatives, and consequently the interpolated
curve, depend on the values of f at all grid nodes, not just the adjacent ones; since f ′(xi) are
expressed as a linear function of f(x1) . . . f(xK), we may consider the result of interpolation

15Usually this is expressed as a relation between second derivatives at grid nodes, and the spline function is
defined in terms of f(xi) and f ′′(xi), i = 1..K. Since all cubic splines are a subset of Hermite piecewise-cubic
polynomial interpolators, we may equivalently parametrize them by the values and first derivatives at grid
nodes, and this automatically ensures that the second derivative is continuous because the first derivative
was computed from this condition. Furthermore, the computed derivatives may subsequently be modified
by the regularization filter to improve the behaviour around sharp discontinuities (see below).

90

x

0

1

 B

-s
p
lin

e
 k

e
rn

e
ls

x

0

1

 c

u
b
ic

 i
n
te

rp
o
la

ti
o
n
 k

e
rn

e
ls

Figure 2: Various interpolation kernels. To obtain the value of interpolated function, one
sums up the values of all interpolating kernels with appropriate weight coefficients.
Left panel: B-splines of degree N = 1 (dashed) and N = 3 (solid lines), defined by the nodes
of a non-uniform grid (marked by x-axis ticks). The former are piecewise-linear and non-zero
on at most two segments, and the latter are piecewise-cubic, with two continuous derivatives,
and nonzero on at most four consecutive segments. The sum of all B-spline functions at any
point x is unity, and they are always non-negative; thus the cubic kernels never reach unity
(except the endpoint ones), because at any point more than one of them is positive. The
total number of functions is K +N − 1, where K is the number of grid nodes. Dash-dotted
lines show modified cubic B-spline basis functions that have natural boundary conditions
(zero second derivative at endpoints); they are obtained by replacing three leftmost N = 3
B-splines with two new functions (essentially distributing the middle one between the other
two), and similarly for the three rightmost B-splines.
Right panel: interpolation kernels of a natural cubic spline defined by the same grid (solid
lines). This type of spline is constructed from the array of function values at grid nodes, thus
each kernel reaches unity at the corresponding grid point, and the number of kernels is K
(not all of them are shown). Consequently, they must attain negative values for their sum to
be unity at any x. Moreover, since the weights of kernels are computed by solving a global
linear system of equations, each kernel spans the entire grid, although its amplitude rapidly
decreases away from its central node. For comparison, a cubic interpolating Catmull–Rom
kernel (dashed curve) is nonzero only on four adjacent grid segments, although it also attains
negative values on the two outermost segments.

91

as a smoothing kernel defined by the grid nodes and linearly depending on all input values
f(xi) (see Figure 2, right panel, for a comparison of Catmull–Rom and natural cubic spline
interpolation kernels).

Thus natural cubic splines are defined by K function values at grid points and are a
subset of all cubic splines with K grid points (parametrized by K + 2 numbers); the latter,
in turn, are a subset of a wider class of piecewise-cubic Hermite interpolators (which are fully
specified by 2K coefficients). The set of all cubic splines is also equivalent to B-splines of
degree 3 over the same grid. The evaluation of cubic splines and optionally their derivatives
is more efficient than the B-splines, and the array of B-spline amplitudes may be directly
used to initialize an equivalent clamped cubic spline.

If, on the other hand, one can independently compute both f(xi) and f ′(xi) at all
grid nodes, and use these 2K numbers to construct a piecewise-cubic Hermite interpola-
tor, this should generally improve the accuracy of approximation (even though will decrease
its smoothness compared to the case of cubic splines). In practice, within the class of
piecewise-cubic polynomials the improvement is not dramatic. However, one may instead
go to higher order and use piecewise-quintic polynomials, specified by 6 coefficients on each
segment, which are again conveniently taken to be the values and first two derivatives of the
function at two adjacent nodes – a natural extension of cubic Hermite interpolation. The
resulting curve will be twice continuously differentiable for any choice of f ′′(xi), but the ac-
curacy of approximation will be good only if these second derivatives are assigned carefully.
In close analogy to cubic splines, one may compute them from the requirement that the 3rd
derivative is continuous at all interior grid nodes, augmented with two boundary conditions;
the natural choice for them is f ′′′′(x1) = f ′′′′(xK) = 0, because in a degenerate case K = 2
they simply lead to a cubic Hermite interpolator.

1

3
f ′′′
i = 20

fi+1 − fi
(xi+1 − xi)3

− 12f ′
i + 8f ′

i+1

(xi+1 − xi)2
− 3f ′′

i − f ′′
i+1

xi+1 − xi
= (8a)

= 20
fi − fi−1

(xi − xi−1)3
− 12f ′

i + 8f ′
i−1

(xi − xi−1)2
+

3f ′′
i − f ′′

i−1

xi − xi−1

for 2 ≤ i ≤ K − 1,

0 = 30
f2 − f1

(x2 − x1)3
− 16f ′

1 + 14f ′
2

(x2 − x1)2
− 3f ′′

1 − 2f ′′
2

x2 − x1
for i = 1, and similarly for i = K. (8b)

This tridiagonal system results in a quintic spline, which provides 5th degree piecewise-
polynomial interpolation with three continuous derivatives. It is not equivalent to a 5th
degree B-spline – the latter would have 4 continuous derivatives and is fully specified by
K + 4 coefficients, whereas a quintic spline is specified by 2K + 2 numbers (the values and
first derivatives at all nodes, plus two endpoint conditions). The accuracy of approximation
with a quintic spline is far better than anything achievable with a cubic interpolation –
but only in the case when one may compute the function derivatives independently and
accurately enough (i.e., using a cubic spline to find the derivatives results in a quintic spline
which is almost equivalent to a cubic one in terms of accuracy).

92

A common problem with high-order interpolation arises when there are sharp discon-
tinuities in the input data, which lead to overshooting and nasty oscillations in the inter-
polated curve. To cope with these cases, there is a possibility of applying a regularizing
(monotonicity-preserving) filter for a natural cubic spline [34]. As usual, the first derivatives
at each node are computed from the standard tridiagonal system under the requirement
that the second derivative is continuous. Then the filter examines the behaviour of the cubic
interpolation polynomial at each segment and determines whether it is monotonic or not. In
the latter case, and if the input data values were monotonic, it adjusts the first derivative, so
that the interpolated curve also becomes monotonic. This does not preclude it from having
a local maximum or minimum on a segment adjacent to a local extremum of input data
points, but sometimes may also soften the amplitude of this maximum. Figure 3 illustrates
various aspects of the regularization filter. The downside of this filter is that it converts a
twice continuously differentiable curve into a generic piecewise-cubic Hermite interpolator
with only one continuous derivative, but it typically does so only in the cases when the more
smooth curve is actually a worse approximation of the function. One should also keep in
mind that this procedure breaks the linearity of spline construction (i.e. a sum of two filtered
splines may not be equal to a filtered spline of a summed input points). Thus the regular-
ization filter does not apply by default, but is useful in particular for log-scaled interpolators
(ln f(lnx) is represented as a cubic spline), where an occasional very small positive value of
an input point results in a large jump in the log-scaled curve, which then overshoots and
oscillates on nearby segments, aggravated by the inverse exponential scaling.

Let’s move to the multidimensional case, where the interpolation is provided on a sep-
arable grid with piecewise-polynomial functions of degree N (per dimension) on each cell:∑N

p=0

∑N
q=0 . . . Cpq...x

p
1 x

q
2 . . . A straightforward way of performing a multidimensional inter-

polation is to employ a sequence of 1d interpolation operations for each dimension separately.
The 1d interpolation function is defined by N+1 coefficients – the values and certain deriva-
tives of the polynomial at two adjacent nodes in the d-th coordinate. These coefficients are
obtained from (N − 1)-dimensional interpolation along other coordinates in each of these
two nodes.

To illustrate this, consider the case of piecewise-cubic Hermite interpolation, specified
by the value and the first derivative in each dimension. For a 2d point {x, y}, we first lo-
cate the indices of grid nodes {i, j} in each dimension that enclose the point: xi ≤ x ≤
xi+1, yj ≤ y ≤ yj+1. Then we perform four 1d interpolation operations in x to find
f(x, yj), f(x, yj+1), f

′
y(x, yj), f

′
y(x, yj+1), using 16 coefficients at 4 corners of the cell (i.e.,

f(xi, yj), f(xi+1, yj), f
′
x(xi, yj), f

′
x(xi+1, yj) for the first value, etc.). Finally the last in-

terpolation in y produces the required value. The same result would be obtained, had we
reversed the order of coordinates. If we also want partial derivatives in both dimensions,
then we need to compute higher derivatives on the first stage (i.e., from the first four co-
efficients we get not only f(x, yj), but also f

′
x(x, yj) and f

′′
xx(x, yj)), and then use extra 1d

interpolation in y per each output derivative on the second stage (e.g., f ′′
xx(x, y) is obtained

from f ′′
xx(x, yj), f

′′
xx(x, yj+1), f

′′′
xxy(x, yj), f

′′′
xxy(x, yj+1), and the latter one is computed on the

93

A

A

A
A

B

C

C

A: preserve monotonic trend of input points
B: preserve local extrema
C: soften local extrema

natural cubic spline

monotonicity-preserving spline

Figure 3: Monotonicity-preserving spline (dotted line) compared to the natural cubic spline
(solid line). This demonstrates several aspects of regularization filter: it preserves a mono-
tonic trend of input points, avoiding spurious bumps (left part of the plot), does nothing if the
spline is smooth enough (center), and preserves the information about local minima/maxima
but may soften them somewhat (right).

first stage from f ′
y(xi, yj+1), f

′
y(xi+1, yj+1), f

′′
xy(xi, yj+1), f

′′
xy(xi+1, yj+1)).

Thus we see that for a cubic Hermite interpolation we need the values and derivatives
in each direction at all grid nodes: f(xi, yj), f

′
x(xi, yj), f

′
y(xi, yj), f

′′
xy(xi, yj). How do we

find them, given only the function values at grid nodes? It turns out that the concept of
cubic splines can naturally be extended to the multidimensional case, using the following
multi-stage procedure. At the beginning, the first derivatives f ′

x, f
′
y in each dimension are

found from the condition that the corresponding second derivatives f ′′
xx, f

′′
yy are continuous

at grid nodes. Then the mixed second derivative f ′′
xy(xi, yj) is computed by establishing

a cubic spline for f ′
y(x, yj) at each j and taking its derivative in x. The elegance of this

approach is in its symmetry: the same value for f ′′
xy is also produced by constructing a cubic

spline for f ′
x(xi, y) at each xi and taking the derivative in y. To understand why, recall

that the natural cubic spline for g(x) is a linear function of the input values gi ≡ g(xi)
defined by the array of grid nodes {xi}. Equivalently, it is described by the matrix X
that transforms the array of input values to the array of spline derivatives at grid nodes:
g′i ≡ g′(xi) =

∑Kx

k=1Xik gk. The complete 2d matrix f ′x of x-derivatives f ′
x; ij ≡ f ′

x(xi, yj) is
then given by f ′x = X f, where the elements of matrix f are fij ≡ f(xi, yj). On the other hand,
the interpolation in the y direction is provided by the matrix Y such that for any array of
values hj ≡ h(yj), the y-derivatives are given by h′j ≡ h′(yj) =

∑Ky

k=1 Yjk gk. The complete

94

2d matrix f ′y of y-derivatives f ′
y; ij ≡ f ′

y(xi, yj) is given by f ′y = (Y fT)T = f YT . Now if we
compute the mixed second derivatives f ′′xy by constructing the y-spline from f ′x, this results

in f ′′xy = f ′x Y
T = (X f)YT , whereas computing them from the f ′y results in X f ′y = X (f YT) –

which are identical matrices.
The same scheme works in three dimensions: now we need eight coefficients at each grid

node {xi, yj, zk} – f, f ′
x, f

′
y, f

′
z, f

′′
xy, f

′′
xz, f

′′
yz, f

′′′
xyz, which are all found in three steps, using just

the values of f and continuity conditions on higher derivatives. The evaluation of f(x, y, z)
also proceeds in three stages: first a total of 64 coefficients (8 numbers at 8 cell corners)
are fed into 16 Hermite cubic interpolation operations in x, then the resulting 16 numbers
are used in 4 interpolations in y, and finally one interpolation in z. As before, the outcome
does not depend on the order. This should also work in higher dimensions, although would
clearly become more clumsy.

We now consider a more complicated case of 2d quintic interpolation. Similarly to the
cubic Hermite case, we may interpolate with a piecewise-quintic polynomial in each direction
using the following 9 quantities stored at each node: f, f ′

x, f
′′
xx, f

′
y, f

′′
xy, f

′′′
xxy, f

′′
yy, f

′′′
xyy, f

′′′′
xxyy,

first performing 6 interpolations in y to compute f , f ′
x, f

′′
xx at two nodes of the x-grid, and

then the final interpolation in x, or vice versa. By a similar argument, if we are provided
with four matrices f, f ′x, f

′
y, f

′′
xy, we can construct 1d quintic splines in each direction and

use them to initialize the remaining five derivatives at each node from the conditions of
continuity of still higher derivatives; again this will not result in a conflicting assignment
of the mixed fourth derivative f ′′′′

xxyy. Unfortunately, in practice we often have only three
matrices to work with – the function and its two partial derivatives at each node, but no
mixed second derivative. We were not able to come up with an equally elegant method in this
case, although the following kludge seems to deliver satisfactory results. We first construct
the 1d quintic splines for f(x, yj) and f(xi, y) at each node, and use them to compute the
second derivatives (f ′′

xx and f ′′
yy, correspondingly). To compute the mixed derivatives, we

construct natural cubic splines in y from the values of f ′
x and f ′′

xx, and similarly in x from
the values of f ′

y and f
′′
yy, and then differentiate them. The resulting values do not agree with

each other, so we take either the average of the two estimates, or the one that is expected to
be more accurate: for instance, if i = 1, we would compute f ′′

xy,ij by differentiating the spline
for f ′

x(xi, y) by y, because the alternative variant (differentiating the spline for f ′
y(x, yj) by

x) does not provide a good estimate at the endpoint of its x-grid. In this way, all remaining
derivatives are assigned.

A.2.4 Penalized spline regression

Suppose we have Ndata points {x,y} with weights w, and we need to find a smooth function
y = f(x) that approximates the data in the weighted least-square sense, but does not

95

fluctuate too much – in other words, minimize the functional

Q ≡
Ndata∑
i=1

wi [yi − f(xi)]
2 + λ

∫
[f ′′(x)]

2
dx. (9)

Here λ ≥ 0 is the smoothing parameter that controls the tradeoff between approximation
error and wiggliness of the function [29]; its choice is discussed below.

We represent f(x) as a sum of B-spline basis functions of degree N , B
[N]
k (x), defined by

the grid of Ngrid knots, with adjustable amplitudes Ak:

f(x) ≡
Nbasis∑
k=1

Ak Bk(x). (10)

We use the basis set of modified cubic (N = 3) B-splines with natural boundary conditions,
so that the number of basis functions Nbasis is equal to the number of grid knots. Note that
the value of interpolated function f(x) at a grid point xk is not equal to the amplitude of
the corresponding basis function Ak, but rather to a linear combination of three adjacent
amplitudes Ak−1, Ak, Ak+1, see Figure 2, left panel; however, for convenience we represent
the result in terms of the array of function values f(xk), which may be used to initialize a
natural cubic spline in the usual way.

Let the matrix B with Ndata rows and Nbasis columns contain the values of basis functions
at data points: Bik = Bk(xi). Due to the locality of B-splines, this matrix is sparse –
each row contains at most N + 1 nonzero consecutive elements. The grid in x does not
need to encompass all data points – the function f(x) is linearly extrapolated outside the
grid boundaries. Define the “roughness matrix” R containing the integrals of products of
second derivatives of basis functions: Rkl ≡

∫
B′′
k(x)B

′′
l (x) dx. This matrix is also sparse

(band-diagonal) and symmetric. The functional Q to be minimized (9) may be rewritten as

Q ≡ (y − BA)T W (y − BA) + λAT RA, W ≡ diag(w), (11)

and its minimum is obtained by solving the normal equations dQ/dA = 0 for the amplitudes
A: (

BTWB+ λR
)
A = BTW y. (12)

Note that the size of this linear system is only Nbasis × Nbasis, possibly much smaller than
the number of data points Ndata. If one needs to solve the system for several values of λ
and/or different vectors y (with the same coordinates x and weights w), there is an efficient
algorithm for this [56]:

1. Compute the Cholesky decomposition of the matrix BTWB, representing it as LLT ,
where L is a lower triangular matrix with size Nbasis. To avoid problems when BTWB

96

is singular (which occurs when some grid segments contain no points), we add a small
multiple of R before computing the decomposition.
Then compute the singular-value decomposition of the symmetric positive definite
matrix L−1RL−T , representing it as U diag(S)UT , where U is a square orthogonal matrix
(i.e., UUT = I) with size Nbasis, and S is the vector of singular values.
Now the matrix in the l.h.s. of (12) can be written as
BTWB+ λR = LLT + LL−1RL−TLT = LUUTLT + LU diag(S)UTLT .
Finally, compute a matrix M ≡ L−TU.

2. For any vector of y values, pre-compute p ≡ BTW y and q ≡ MTp (vectors of length
Nbasis), and the weighted sum of squared y-values V ≡ yTW y =

∑Ndata

i=1 wiy
2
i .

3. Now for any choice of λ, the solution is given by

A = M [I+ λ diag(S)]−1 q, (13)

i.e., involves only a multiplication of a vector by inverse elements of a diagonal matrix
and a single general matrix-vector multiplication. The residual sum of squares – the
first term in (11) – is given by

RSS ≡ (y − BA)T W (y − BA)T = V − 2ATp+ |LTA|2. (14)

In case of non-zero smoothing, the effective number of free parameters is lower than the
number of basis functions, and is given by the number of equivalent degrees of freedom:

EDF ≡ tr[I+ λ diag(S)]−1 =

Nbasis∑
k=1

1

1 + λSk
. (15)

It varies from Nbasis for λ = 0 to 2 for λ→ ∞ (which corresponds to a two-parameter linear
least-square fit). The amount of smoothing thus may be specified by EDF, which has a more
direct interpretation than λ. The optimal choice of smoothing parameter is determined by
minimization of the generalized cross-validation score:

GCV ≡ Ndata RSS

(Ndata − EDF)2
. (16)

Often one may wish to apply a somewhat stronger smoothing than the one given by
minimizing GCV, for instance, by allowing ln(GCV) to be larger than the minimum value
by a specified amount ∆ln(GCV) ∼ O(1). In both cases, the corresponding value of λ
is obtained by standard one-dimensional minimization or root-finding routines. Figure 4
illustrates the method.

97

0 2 4 6 8 10 12
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

no smoothing
optimal smoothing
extra smoothing

Figure 4: Penalized spline fit to noisy data. Ndata = 1000 points follow a sine curve with a
random noise in y-coordinate. A non-penalized spline fit with 100 nodes (red dashed line) is
overfitting the noise, whereas an optimally-smoothed spline with the same number of points
(solid green line) recovers the original trend very well; of course, we could use a far smaller
number of nodes (≲ 10) and still get a decent fit, but the optimal amount of smoothing
prevents overfitting even if the node spacing is too dense. Finally, dotted magenta line
illustrates the effect of oversmoothing.

A.2.5 Penalized spline density estimate

Let P (x) > 0 be a density function defined on the entire real axis, a semi-infinite inter-
val [xmin,+∞) or (−∞, xmax], or a finite interval [xmin, xmax]. Let {xi, wi} be an array of
Ndata samples drawn from this distribution, where xi are their coordinates, and wi ≥ 0 are
weights. We follow the convention that

∫
P (x) dx over its domain is equal to M ≡ ∑

iwi
(not necessarily unity).

We estimate P (x) using a B-spline approximation to lnP constructed for a grid of Ngrid

nodes {Xk} [45]. We implemented two variants of basis set: linear B-splines and modified
cubic B-splines with natural boundary conditions; in both cases the number of basis function
Nbasis is equal to the number of grid nodes. The estimated log-density is thus

lnP (x; A) =

Nbasis∑
k=1

Ak Bk(x)− lnG0 + lnM ≡ Q(x;A)− lnG0(A) + lnM, (17)

where Ak are the amplitudes – free parameters that are adjusted during the fit,
Bk(x) are basis functions,

98

Q(x;A) ≡∑k Ak Bk(x) is the weighted sum of basis function,
and G0(A) ≡

∫
exp[Q(x;A)] dx is the normalization constant determined from the condition

that
∫
P (x) dx = M . There is a gauge freedom in the choice of amplitudes Ak: if we

add a constant to Q(x;A), it would not have any effect on lnL because this shift will be
counterbalanced by G0. We eliminate this freedom by fixing the amplitude of the last basis
function to zero (ANbasis

= 0), thus retaining Nampl ≡ Nbasis − 1 free parameters.
As in the case of penalized spline regression, we first compute the matrix B of weighted

basis-function values at each input point: Bik ≡ wiBk(xi). This matrix is large (Ndata rows,
Nampl columns) but sparse, and is further transformed into two vectors of length Nampl and
a square matrix of the same size: V ≡ BT1Ndata

(i.e., Vk =
∑

iwiBk(xi)), W ≡ BTw,
C ≡ BT B. In the remaining steps of the procedure, only vectors and matrices of size Nampl

rather than Ndata are involved, which allows to deal efficiently even with very large arrays of
samples described by a moderate number of parameters (such as fitting the density profile
of an N -body model with a few dozen grid points in radius).

The total penalized likelihood of the model given the vector of amplitudes A is

lnL ≡ lnLdata − λR(A) ≡
Ndata∑
i=1

wi lnP (xi; A)− λ

∫
[lnP ′′(xi)]

2
dx

=

Ndata∑
i=1

wi

Nampl∑
k=1

AkBk(xi)− lnG0(A) + lnM

− λ

Nampl∑
k=1

Nampl∑
l=1

Ak AlRkl

=
[
V TA−M lnG0(A) +M lnM

]
− λAT RA, (18)

where λR is the roughness penalty term, and the matrix Rkl ≡
∫
B′′
k(x)B

′′
l (x) dx is also

pre-computed at the beginning of the procedure16. The smoothing parameter λ controls the
tradeoff between the likelihood of the data and the wiggliness of the estimated density; its
choice is discussed below.

Unlike the penalized spline regression problem, in which the amplitudes are obtained from
a linear equation, the problem of penalized spline density estimation is nonlinear because of
the normalization factor G0(A). The amplitudes A that minimize −lnL (18) are found by
solving the system of equations ∂ lnL/∂Ak = 0 iteratively, using a multidimensional Newton

16It may be advantageous to use third derivatives here [62], in which case the solution in the limit of
infinite smoothing (R → 0) corresponds to a Gaussian density profile; however, for our choice of natural
cubic splines it is unattainable, since a quadratic function (logarithm of a Gaussian) has non-zero second
derivatives at endpoints, and hence cannot be represented by a spline with natural boundary conditions.

99

method with explicit expressions for the gradient and hessian:

−∂ lnL
∂Ak

= −Vk +M
∂ lnG0

∂Ak
+ 2λ

∑
l

RklAl , (19a)

− d2 lnL
∂Ak ∂Al

=M
∂2 lnG0

∂Ak ∂Al
+ 2λRkl ≡ Hkl , (19b)

where G0 ≡
∫

exp[Q(x;A)] dx , Q(x;A) ≡
∑
k

Ak Bk(x) ,

∂ lnG0

∂Ak
=

∫
Bk(x) exp[Q(x;A)] dx

G0

,

∂2 lnG0

∂Ak ∂Al
=

∫
Bk(x)Bl(x) exp[Q(x;A)] dx

G0

− ∂ lnG0

∂Ak

∂ lnG0

∂Al
.

The choice of smoothing parameter λ may be done by cross-validation: for each sample
i, we compute its likelihood using best-fit parameters A(i) calculated for all samples except
this one, and then sum these values over all samples.

lnLCV(λ) ≡
Ndata∑
i=1

wi lnP (xi; A
(i)) =

Ndata∑
i=1

wi

(
Nbasis∑
k=1

A
(i)
k Bk(xi)− lnG0(A

(i))

)
+M lnM.

(20)

Of course, it would be prohibitively expensive to compute the best-fit amplitudes A(i)

separately for each omitted point; instead, we express them as small perturbations of A, by
demanding that the l.h.s. of (19a) is zero for each i at the corresponding A(i):

0 = −Vk + wiBk(xi) +M
∂ lnG0

∂Ak
+M

∂2 lnG0

∂Ak ∂Al
(A

(i)
l − Al) + 2λ

∑
l

RklA
(i)
l ,

δA
(i)
l ≡ A

(i)
l − Al = −

[
M
∂2 lnG0

∂Ak ∂Al
+ 2λRkl

]−1

wiBk(xi) , or δA = −H−1BT .

Here the gradient and hessian of G0 are taken at the overall best-fit amplitudes A for the
entire sample, computed for the given value of λ. The matrix δA with Nampl rows and Ndata

columns needs not be computed explicitly each time. Finally, the cross-validation score (20)
is expressed as

lnLCV(λ) = lnLdata − tr(H−1C) +
d lnG0(A)

dA
H−1W . (21)

Here lnLdata is the expression in brackets in (18). The optimal value of λ > 0 that
maximizes the cross-validation score is found by a simple one-dimensional search. We first
assign a reasonable initial guess for amplitudes (approximating the density as a Gaussian with

100

0 1 2 3 4 5 6
x

10-3

10-2

10-1

100

ρ

True density
Piecewise-linear estimate
Penalized cubic spline

Figure 5: Penalized spline estimate of density from sample points. Here Ndata = 1000 were
drawn from the original density profile (shown in dashed blue) described by a sum of two
gaussians, with dispersions equal to 0.1 and 1. We reconstruct the logarithm of density
using a linear (N = 1) and cubic (N = 3) B-splines with 50 nodes uniformly placed on the
interval [0..6], so that it is linearly extrapolated beyond the extent of this grid. The linear
B-spline estimate (shown in red) is rather wiggly, because the grid spacing is intentionally
made too fine for the given number of samples – some elements do not contain any samples.
The non-penalized cubic B-spline (not shown) is very close to the linear one, and also close
to a standard Gaussian kernel density estimate with the same bandwidth as the grid spacing
(also not shown). By contrast, the penalized cubic B-spline with the smoothing parameter
determined automatically in order to maximize the cross-validation likelihood (shown in
blue) is much closer to the true density.

the mean and dispersion computed from input samples). At each step, the multidimensional
nonlinear root-finder routine is invoked to find best-fit amplitudes A for the given λ, starting
from the current initial guess. If it was successful and lnLCV(λ) is higher than the current
best estimate, the initial guess is replaced with the best-fit amplitudes: this not only speeds
up the root-finder, but also improves the convergence. The range of λ is progressively
narrowed until the maximum has been located with sufficient accuracy, at which point we
return the last successful array of A.

Figure 5 illustrates the application of linear (non-smoothed) and cubic spline with optimal
smoothing to a test problem. In this case the grid spacing was deliberately too dense for
the given number of samples, so that some grid segments do not contain any samples, but
nevertheless the penalized density estimate comes out rather close to the true one. This
regime is not very stable, though, and for normal operation the grid should be assigned in

101

such a way that each segment contains at least a few samples – this ensures that even the
un-smoothed estimate is mathematically well defined.

Maximization of cross-validation score is considered to be the “optimal” smoothing; how-
ever, in some cases the inferred lnP (x) may still be too wiggly. An alternative approach
is to estimate the expected scatter in lnLdata for a sample of finite size Ndata, and allow
the likelihood score to be worse than the best-fit score by an amount comparable to this
expected scatter. In the case of uniform-weight samples and zero smoothing, the mean and
dispersion in lnL are〈

lnL
〉
=

∫
P (x) lnP (x) dx =M

[
G1

G0

+ lnM − lnG0

]
, (22)

〈(
lnL − ⟨lnL⟩

)2〉
= N−1

data

(
M

∫
P (x) [lnP (x)]2 dx−

〈
lnL

〉2)
=M2N−1

data

[
G2

G0

−
(
G1

G0

)2
]
,

where Gn ≡
∫ [

Q(x)
]n

exp
[
Q(x)

]
dx .

We first determine the best-fit A for the optimal value of λopt and compute the expected

r.m.s. scatter δ lnL ≡
√

⟨(lnL − ⟨lnL⟩)2⟩ from the above equation; then we search for
λ such that lnLdata(λ) = lnLdata(λopt) − κ δ lnL, where κ ∼ 1 is a tunable parameter.
The resulting density is less fluctuating, but the asymptotic behaviour near or beyond grid
boundaries, where the number of samples is low, may be somewhat biased as a result of
more aggressive smoothing.

A.2.6 Gauss–Hermite series

Gauss–Hermite (GH) expansion is another type of basis set, useful for representing velocity
distribution functions, which are typically not too dissimilar to a Gaussian profile. Unlike
the B-spline basis set, which is specified by the number and location of grid nodes and the
degree of polynomials, the GH basis is specified by the parameters of the zero-order function
(a Gaussian with the given amplitude Ξ, mean value µ, and width σ) and the order of
expansion M . The total number of basis functions is M + 1, and they are defined as

Bm(x) ≡
Ξ√
2π σ

exp

[
−1

2

(
x− µ

σ

)2
]

Hm

(
x− µ

σ

)
, (23a)

where Hm(y) are the (astrophysical) Hermite polynomials [27, 70], defined by a recurrence
relation

H0 = 1, H1(y) =
√
2 y, Hm+1(y) =

[√
2 yHm(y)−

√
mHm−1(y)

]/√
m+ 1 . (23b)

They differ in normalization from the physicist’s definition of Hermite polynomials H(y):
Hm(y) = Hm(y)/

√
2mm!. The GH basis functions are orthogonal on the real axis, with the

102

Gram matrix being

Gmn ≡
∫ ∞

−∞
Bm(x)Bn(x) dx =

Ξ2

2
√
π σ

δmn . (24)

According to the general definition given in Section A.2.1, any function f(x) can be
approximated as a sum of GH basis functions multiplied by amplitudes h (also called GH
coefficients):

f̃(x) =
M∑
m=0

hm Bm(x), hm =
2
√
π σ

Ξ2

∫ ∞

−∞
f(x)Bm(x) dx . (25)

For the fixed parameters Ξ, µ, σ,M , this expansion is defined in a unambiguous way.
However, there is some redundancy (most obviously in the overall amplitude factor Ξ, which
merely rescales the amplitudes h). If one has freedom to adjust Ξ, µ and σ, it makes sense
to define them in such a way that the first three coefficients are h0 = 1, h1 = h2 = 0, which
is always possible (more on this later). In this case, if one limits the order of expansion M
to 2 (or, in fact, to 0), the approximated function f̃(x) is actually the best-fit Gaussian for
the original function f(x). Addition of higher-order coefficients hm(m ≥ 3) allows one to
represent the deviations from this Gaussian, but does not change the first three coefficients,
thanks to the orthogonality of the basis set.

On the other hand, if one needs to compare two functions represented by the GH series,
this can only be done if the parameters of the basis set Ξ, µ, σ are the same. For instance,
when the observational constraints on the velocity distribution come in the form of GH
coefficients hm (with the given Ξ, µ, σ and with the default values of h0 = 1, h1 = h2 = 0),
the same function in the model must be represented in the same basis, even though the
coefficients h0,1,2 do not have the default values.

In practice, it may be convenient to represent the velocity distribution of the model in
terms of a B-spline expansion with amplitudes Aj, and then convert it into the GH coefficients
hm. This is, of course, a linear operation h = G−1 CA (for the given parameters of the two
basis sets), with the matrix Cmj = ⟨Bm, Bj⟩.

It is important to keep in mind that Ξ, µ, σ are not identical to the overall normalization,
mean and dispersion of the function f̃ . These are given by an amplitude-weighted sum over
the corresponding values for all basis functions; for instance, the overall normalization is∫ ∞

−∞
f̃(x) dx =

M∑
m=0

hm

∫ ∞

−∞
Bm(x) dx = Ξ

∑
m even

hm

√
m!

m!!
, (26a)

and the second moment times the above quantity is∫ ∞

−∞
f̃(x)x2 dx = Ξ

∑
m even

hm
(2m+ 1)

√
m!

m!!
. (26b)

103

As mentioned above, the GH expansion is defined by the amplitude Ξ, center µ and
width σ of the zero-order function (a pure Gaussian). Given a sufficiently large number of
terms M , it can approximate any reasonably smooth function f(x) to a desired accuracy;
however, the speed of convergence naturally depends on the choice of µ and σ. There are
several possible approaches for setting these parameters.

1. van der Marel & Franx [70] choose the parameters µ, σ so that the lowest-order term
approximates the function as closely as possible (this implies that only h0 is nonzero,
and hence the GH expansion is a pure Gaussian – note that the best-fit Gaussian is not
a Gaussian with the width equal to the dispersion of the function!), then construct a
full GH expansion with these parameters, computing the coefficients hm according to
(25). Thanks to the orthogonality of basis functions, the addition of subsequent terms
does not change the previous expansion coefficients, hence in this (and only in this)
case h1 = h2 = 0.

2. The same authors find it “more convenient in practice” to fit a truncated GH series
L (x) ≡ B0(x) +

∑M
m=3 hm Bm(x) to the function f(x) with Ξ, µ, σ, h3 . . . hM as free

parameters adjusted during the fit to minimize the rms deviation between the function
and its approximation, while still fixing h0 = 1, h1 = h2 = 0. In this case, all param-
eters in the fit depend on the order of expansion M ; in other words, this is the best
approximation at the given order, not the approximation in which the lowest-order
function is chosen to be the best-fit one. Naturally, this results in a better overall fit,
but note that this is not a true GH expansion: if we compute the coefficients h0,1,2
for the original function f(x) with the parameters µ, σ having the best-fit values as
described above, they will not have the values 1, 0, 0 as implied during the fit, while
the values of the remaining coefficients will be the same. Consequently, the actual
GH expansion f̃(x) constructed with these parameters will be somewhat less accurate
than the fitted function L (x), but typically still more accurate than the GH expansion
constructed around the best-fit Gaussian (as in the first approach). Since the fitted
function L (x) has zero h1, h2, the best-fit values of µ, σ (and consequently all GH co-
efficients) will converge to the ones produced by the first method as M → ∞, because
only for this choice of σ the first two GH moments vanish.

3. Gerhard [27] independently introduced the GH parametrization of velocity profiles. In
his approach, the scale parameter σ is not necessarily fixed to any particular value,
hence h2 (called s2 in that paper) is not zero (his eq. 3.10). To avoid ambiguity,
he suggests to use the true dispersion of the original function17 f(x) as the scale

17When fitting the noisy data, true dispersion is unknown a priori, so Gerhard suggests a two-step proce-
dure: first perform a GH fit with the scale parameter σ set to some reasonable value (e.g. the width of the
main peak of the function), then compute the true dispersion from this GH series, and re-fit another GH
expansion with the scale set to the true dispersion. The total dispersion determined from the GH fit is less
sensitive to the poorly measured wings of the profile. van der Marel & Franx caution that this procedure

104

parameter σ, but notices that sometimes a smaller value of σ could be preferred, e.g.,
when the function has a sharp and narrow peak. In common with the previous choice,
all coefficients hm are, in general, nonzero if σ is not equal to the width of the best-fit
Gaussian.

4. However, if one dispenses with the constraint that h1 = h2 = 0, then a still better
approximation (for a given order M) could be achieved by fitting an unrestricted GH
series (25), simultaneously optimizing µ, σ and all hm≥0.

Among these approaches, the first one (taking µ and σ to be the parameters of the best-
fit Gaussian) is the only one that gives the same values for all hm coefficients regardless
of the order of expansion M (because its parameters are fixed and do not depend on M),
and has h1 = h2 = 0 by construction. This makes it attractive from the conceptual point
of view, because it can be “gracefully degraded” (truncated at a lower order while still
producing a reasonable fit). In other approaches, µ, σ and all other coefficients depend on
the choice of M , and because of two additional free parameters (h1, h2), the approximation
is generally more accurate for a fixed M than in the first approach. Figure 6 illustrates
the effect of different choices of σ on the approximation accuracy of the resulting GH series
truncated at M = 4. The two examples shown in that figure are rather extreme, and in
practice the difference is much smaller (and as mentioned before, vanishes for sufficiently
high M , regardless of the choice of σ). We stress again that if the original function f(x)
is significantly non-Gaussian, one cannot interpret σ from the best-fit approximation as the
“width” of the function, because the higher-order terms cannot be neglected. Moreover,
there is no uniquely defined set of “true” GH parameters – different choices of σ will lead
to different GH expansions, and it is not clear a priori which one will converge faster as
the number of terms M increases (for the function shown on the right panel of the above
figure, the optimal σ appears to be substantially smaller than either the width of the best-fit
Gaussian or the true dispersion).

The above discussion assumed that we know perfectly the “true” original function. In
practice, the GH expansion is often used to parametrize the velocity distribution functions
extracted from or fitted to the spectra, which are often both noisy and undersampled. [15]
find that the first approach in the above list (fitting the data by a Gaussian with free
parameters µ and σ first and then using it to construct a GH expansion) becomes biased
towards a pure Gaussian when the data is undersampled, even in the limit of zero noise, while
the second approach (fitting a function L (x) with µ, σ, hm≥3) produces large and correlated
uncertainties when the signal-to-noise ratio (SNR) is low. They design a hybrid method (the
pPXF code) which uses L (x) at high SNR, but degenerates into fitting a pure Gaussian at
low SNR. As explained above, the values of σ (and hence all GH coefficients) produced by
the second approach will tend to those of the first approach as M increases (in the limit of

could underestimate of the dispersion if the truncated GH expansion has significant negative wings, and
suggest to take max

(
f̃(x), 0

)
when computing the dispersion according to Equation 26b.

105

−6 −4 −2 0 2 4 6
x

σ h2 h4 εrms

1.00 0.0 0.15 0.106

1.24 0.0 0.24 0.056

1.24 −0.08 0.24 0.069

1.65 −0.16 0.24 0.111

original f(x)
v1: best-fit Gaussian
v2: best-fit L (x)

GH with the same σ
v3: true dispersion

−3 −2 −1 0 1 2 3
x

σ h2 h4 εrms

0.68 0.0 −0.15 0.163

0.64 0.0 −0.16 0.140

0.64 0.05 −0.16 0.155

0.56 0.18 −0.16 0.090

0.35 0.58 0.24 0.056

original f(x)
v1: best-fit Gaussian
v2: best-fit L (x)

GH with σ from v2
v3: true dispersion
v4: best-fit GH

Figure 6: Gauss–Hermite expansions with M = 4 and different choices of σ.
Left panel: f(x) = 1√

2π
exp

(
− 1

2
x2
) [

1+ 0.15H4(x)+ 0.2H6(x)
]
(same as in Appendix A of

[36]) is actually a pure GH expansion with 6 terms, but we fit it with only 4 terms.
Right panel: f(x) = exp(−x6) is a slightly smoothed top-hat function.
Solid gray line shows the original function, and other lines show various approximations
(each one is plotted for either positive or negative x only, to reduce congestion):
Purple dotted line: GH expansion with the scale σ equal to that of the best-fit Gaussian
(variant 1 in the list) has h2 = 0 by construction, and recovers the true value of h4 on the
left panel, but is not the best fit by itself.
Dashed green line: best-fit function L (x) which looks like a GH expansion with h2 = 0 and
adjustable σ, h4 (variant 2 in the list). It is not the true GH expansion of the function f(x)
with this scale σ, however: the latter is shown by dot-dashed cyan line, and has non-zero h2.
Long-dashed blue line: GH expansion with the scale σ equal to the true dispersion of the
original function (variant 3 in the list) also has non-zero h2.
Dash-double-dotted red line: the absolute best-fit GH expansion with σ, h2 and h4 all being
free parameters, which has the smallest deviation from the original function (not shown on
the left panel because it is very similar to the variant 1).

106

well-sampled and noiseless data). Alternatively, one may use an entirely different method for
extracting the velocity distribution from the spectrum, and only then fit a GH expansion to
the resulting function. [36] use a nonparametric maximum penalized likelihood method to
determine f(x) and then follow the first approach (determine σ from the best-fit Gaussian)
to construct a GH expansion f̃(x).

A.2.7 Sampling

The sampling routine performs the following task: given anD-dimensional function f(x) ≥ 0
defined in a rectangular domain (without loss of generality may take it to be a unit hypercube
[0..1]D), generate an array of N points xi such that their density in the vicinity of any point
x is proportional to f(x). In other words, f is interpreted as a probability distribution
function and is sampled with equal-weight samples; in fact the integral

∫
f(x) dDx = A

needs not be unity, and is itself estimated by the routine.
We employ an adaptive rejection sampling method. The entire domain V is partitioned

hierarchically into smaller hyperrectangles (cells) Vc, an envelope function f̄c (constant in
each cell) is constructed, and a rejection sampling is used to draw output points from each
cell. This requires several (up to 10–20) iterations, during each one this partitioning is
further refined in regions with where the function values are largest, and more trial points
are drawn. The cells are organized into a tree structure, where each non-leaf cell is split
into two equal-volume child cells along some dimension. Each leaf cell keeps the list of trial
points xc,k ∈ Vc that belong to this cell; when a cell is split in two halves, these points are
distributed among the child cells. The procedure, illustrated in Figure 7, can be summarized
as follows:

0. We start with only one cell V1 covering the entire domain, and sprinkle M1 sampling
points xk uniformly in this cell. At this stage, the estimate of the integral is just

A =
vol(V1)

M1

M1∑
k=1

f(xk). (27)

1. At each iteration, we first loop over all leaf cells Vc in the tree (those that are not split
into child cells), and consider all Mc trial points xc,k belonging to Vc. The integral A
is estimated as

A =

Ncell∑
c=1

vol(Vc)
Mc

Mc∑
k=1

f(xc,k). (28)

2. We then perform another scan over all leaf cells and check whether they contain enough
trial points for the rejection sampling procedure. A trial point xc,k can be selected
as one of N output samples with probability f(xc,k)/f̄c, where f̄c ≡ A

N
Mc

vol(Vc)
is the

107

Figure 7: Illustration of the adaptive rejection sampling algorithm in the domain [−1..2]2,
recursively partitioned into ∼ 100 rectangular cells. Left panel shows 104 points sampled
from f(x, y) = exp[−R(x, y)], where R(x, y) ≡ (1 − x)2 − 100(y − x2)2 is the Rosenbrock
function. In the right panel cells are colored according to the density of trial points (successive
shades are 2× denser).

”envelope” function, constant across the cell; clearly we need f̄c to be larger than the
maximum value of f(x ∈ Vc). If this condition is not satisfied, the cell is scheduled for
refinement.

3. For each such cell that needs to be refined, we have two choices: either to add more
trial points into the entire cell (thus increasing Mc and hence pushing up the envelope
function), or first split the cell in two halves and consider both of them in turn. There
is a lower limit Mmin on the number of trial points in a cell, and splitting is possible
only if child cells would contain at least that many points. We examine all possible
dimensions along which the cell could be split, and choose the one with the lowest
entropy (i.e. the function varies more significantly along this dimension). The two
new child cells inherit the parent cell’s trial points, are added to the end of the list
and will be scanned in turn during the same pass (at least one of them will need to
be further refined). If the cell contains less than 2Mmin trial points and hence cannot
be split, we double the number of trial points Mc in it (add the same number of new
points uniformly distributed in the cell), so that it could be split (if necessary) on the
next iteration.

4. If we have added new trial points into any cell, we repeat the procedure from step 1.

5. Otherwise the iterative refinement is complete, and we draw N output points from the
trial points, with the probability described in step 2, and finish.

108

https://www.google.com/search?q=mondrian&tbm=isch

A.3 Coordinates

The coordinate transformation subsystem in Agama consists of several concepts. First, we
define several commonly used coordinate systems (or representations in the terminology of
Astropy): Cartesian, Cylindrical, Spherical, and Prolate Spheroidal. The same point in
3d space can be represented in any of these coordinate systems (having a common center
and orientation). There are routines for transforming coordinates, velocities, gradients and
hessians of scalar functions between these representations.

Second, we define rotations of coordinate basis. Consider a right-handed Cartesian refer-
ence frame defined by basis vectors (axes) x,y, z, and a rotated frame with the same origin
defined by basis vectors X,Y ,Z. The relative orientation of two frames can be specified
by Euler angles (see Figure 8). The same point has coordinates x, y, z in the original frame
and X, Y, Z in the rotated frame. The transformation between these coordinates (passive
rotation) is given by the following orthogonal rotation matrix R, encapsulated in a C++ class
coord::Orientation or produced by the Python routine makeRotationMatrix: X

Y
Z

 = R

 x
y
z

 , R ≡

 cαcγ − sαcβsγ sαcγ + cαcβsγ sβsγ
−cαsγ − sαcβcγ −sαsγ + cαcβcγ sβcγ

sαsβ −cαsβ cβ

 , (29)

where we used c◦, s◦ as shortcuts for cos ◦, sin ◦. The inverse transformation is described by
the same angles, but with negative signs and in reverse order: −γ,−β,−α, and its rotation
matrix is R−1 = RT . The rotation matrix is invariant under the simultaneous substitution
β → −β, α → α+π, γ → γ+π; hence it is convenient to restrict the range of β to [0, π] and
the other two angles – to (−π, π].
In the case of a triplanar symmetry (invariance under
reflection about any of the three principal planes, or
equivalently under change of sign of any coordinate),
one may simultaneously change the sign of any two
coordinates while preserving the right-handedness of
the coordinate system, and this will not change any
physical property of the system. These simultaneous
sign changes and associated transformations of Euler
angles are listed in the table on the right.

x y z angles

+ + +
α β γ

π + α −β π + γ

+ − − π − α π − β π + γ
−α π + β γ

− + − −α π − β π + γ
π − α π + β γ

− − +
π + α β γ

α −β π + γ
This kind of transformation is used to convert between the intrinsic coordinates of the

stellar system (original frame xyz) and the observed coordinates (rotated frame XY Z),
where the Z axis points along the line of sight away from the observer, the Y axis points
upward / north in the image plane, and the X axis – leftward (!) / east in the image plane.
Note that this creates a rather awkward situation that the X axis is directed opposite to
the usual rightward orientation in conventional two-dimensional plots: this results from the
unfortunate fact that the observer sits “inside” the celestial sphere. This transformation
is often referred to as projection onto the sky or image plane XY . As another example

109

α

β

γ

x

y

z

X

Y

Z

N
x

y

z

X

Y (north)

 (
e
a
st

)

γ

γ

Figure 8: Left panel: specification of rotation of the cartesian coordinate system in terms of
Euler angles α, β, γ.
Let the original reference frame be specified by the right-handed triplet of basis vectors
(axes) x,y, z, and the rotated frame – by basis vectors X,Y ,Z. The first rotation of the
xy plane (blue) by angle α about the z axis creates an intermediate basis x′,y′, z′, where
the axis x′ points along the line of nodes of the overall transformation (denoted by the green
arrow N). The second rotation by angle β about the x′ axis (line of nodes) tilts the x′y′

plane by angle β, creating a second intermediate basis x′′,y′′, z′′; the angle between basis
vectors z′′ and z is also β. The third rotation of the x′′y′′ plane (red) by angle γ about the
z′′ axis does not change the direction of that axis, hence the final axis Z is the same as z′′.
The same scheme is used to specify the orientation of the Tilted potential modifier
(Section 2.2.5). In this case, when evaluating the modified potential Φ̃ or its derivatives at
a point in the blue (lowercase) frame, the input point is transformed into the rotated (red,
uppercase) frame, fed into the underlying potential (whose native reference frame is red),
and the result is transformed back into the lowercase frame.
Right panel: the same two reference frames as in the left panel, viewed in the image plane
XY . The Z axis points perpendicular to the plane away from the observer; the Y axis points
up / north, and the X axis – left / east. The equatorial plane xy of the intrinsic coordinate
system is shown by blue ellipse (dashed when it is behind the image plane). Its intersection
with the image plane is the line of nodes, marked by the green arrow. The angle of clockwise
rotation of the X axis w.r.t. the line of nodes is γ (the last of the three rotations). The
position angle (PA) in the XY plane is measured from the Y axis counter-clockwise (towards
the X axis), hence the PA of the projection of z axis onto the image plane is also γ, and
the PA of the line of nodes is γ + π/2.

110

of wrecked but venerable astronomical convention, position angles (PA) in the XY plane
are measured from the Y (north) direction towards X (east), i.e., counter-clockwise in this
configuration; hence the PA of X is π/2. In some studies, the orientation of the rotated
frame is given by the spherical polar angles θ, ϕ of the line of sight Z in the intrinsic frame;
in this convention, α = ϕ+ π/2, β = θ.

If the shape of an object in the intrinsic reference frame is a triaxial ellipsoid with the
major axis ax, intermediate axis by and minor axis cz, then the projection along the major
axis corresponds to {α, β} = {±π/2, π/2}, along the intermediate axis – to {0, π/2} or
π, π/2, and along the minor axis – to β = 0 and any α. In a general case, β is the inclination
angle (0 is “face-on” orientation and π/2 is “edge-on”), and γ is the PA of the projection
of the intrinsic minor axis z onto the sky plane. In the case of an axisymmetric system,
the first rotation (α) does not change anything in its properties, hence we may set α = 0.
Then the intrinsic major axis x coincides with the line of nodes, and its PA is γ + π/2. In a
general case, the projection of a triaxial ellipsoid is also an ellipse in the image plane, but its
major and minor axes A,B and orientation (PA η) are related to the intrinsic shape a, b, c
and viewing angles α, β, γ in a rather complicated way. In particular, the major axis of the
ellipse may not be aligned with any of the three projected principal axes. There are routines
getProjectedEllipse, getIntrinsicShape and getViewingAngles for computing one of
these triplets from the other two, but note that the deprojection (determination of either the
intrinsic shape or the viewing angles) is not always possible. For an axisymmetric system,
there are two possible choices of viewing angles, depending on which side of the system is
nearer, and for a triaxial system, there are four possible combinations of viewing angles.

In case that the distance to the stellar system is not overwhelmingly larger than its char-
acteristic size (or equivalently, when it occupies a non-negligible area on the sky), one needs
to employ more sophisticated transformations between the cartesian intrinsic coordinates
within the stellar system and the spherical coordinates on the sky (no longer “sky plane”).
An extreme case is our Galaxy, where the observer is located well within the stellar system,
and it occupies the entire sky. Also in this case, we may need to consider shifts, not only
rotations of the coordinate systems. The projection transformations will be extended to
these cases in the future.

111

A.4 Potentials

A.4.1 Multipole expansion

The potential in the multipole expansion approach is represented as a sum of individual
spherical-harmonic terms with coefficients being arbitrary functions of radius:

Φ(r, θ, ϕ) =
lmax∑
l=0

m0(l)∑
m=−m0(l)

Φl,m(r)
√
4πP̃m

l (cos θ) trigmϕ, (30)

trigmϕ ≡

1 , m = 0√

2 cosmϕ , m > 0√
2 sin |m|ϕ , m < 0

Here P̃m
l (x) ≡

√
2l+1
4π

(l−|m|)!
(l+|m|)! P

|m|
l (x) are normalized associated Legendre polynomials, lmax is

the order of expansion in meridional angle θ, and m0(l) = min(l,mmax), where mmax ≤ lmax

is the order of expansion in azimuthal angle ϕ (they do not need to coincide, e.g., if the model
is considerably flattened but only weakly triaxial, then mmax = 2 may be sufficient, while
lmax may be set to 8 or 10). The normalization is chosen so that for a spherically-symmetric
potential, Φ0,0(r) = Φ(r), and that for each l, the sum of squared coefficients over all m is
invariant under rotations of coordinate system.

In the Multipole class, individual terms are approximated as suitably scaled functions
in log-scaled radius. The logarithmic transformation of radius is intended to attain high dy-
namic range with a moderate number (a few dozen) of grid points, while the transformation
of amplitude of each term increases the accuracy of interpolation. These amplitude trans-
formations are used only when the l = 0 harmonic of the potential is everywhere negative
(which is usually the case). The main l = 0 term is log-scaled (i.e., the actual function to
be interpolated is ln

[
1/Φ(0) − 1/Φ0,0(ln r)

]
, where Φ(0) is the value of potential at origin,

which may be finite or −∞). The other terms are normalized to the value of the l = 0 term
(i.e., the spline is constructed for [Φl,m/Φ0,0](ln r)). Each term is interpolated as a quintic
spline, defined by the values and first derivatives at nodes of a radial grid; usually this grid
would be linear in log-radius, with a constant ratio between consecutive radii f ≡ rk+1/rk.

If the minimum/maximum grid radii are not provided, they are assigned automatically
using the following approach. First we locate the radius at which the logarithmic curvature
of the spherically-symmetric part of the density profile (d2 ln(ρ0,0)/d(ln r)

2), weighted by the
mass at the given radius (∝ r2ρ), reaches the maximum. For most finite-mass models, this
would be the near the half-mass radius, but even for models with infinite mass (such as
NFW) this criterion still estimates the ”radius of interest” quite well. This fiducial radius
r⋆ is taken as the center of the logarithmic grid, a suitable grid spacing factor f is assigned,
and the grid is extended both ways from this radius: rmax/min = r⋆ f

±NR/2. As NR gets
larger, both the dynamical range D ≡ rmax/rmin is increased, and the resolution gets better
(nodes are spaced more densely); e.g., for NR = 20, these are D ∼ 106 and f ∼ 2. If

112

the input density drops to zero beyond some radius, the upper extent of the grid is moved
inward to this radius, Likewise, if the density is declining towards small r, the potential has
a very flat core, so that the inner grid point is shifted up to a ”safe” radius rmin at which
the potential is sufficiently different from Φ(0) (at least in the last few digits), to prevent
the loss of precision of floating-point numbers. This automatic algorithm gives reasonable
results in vast majority of cases, but if necessary, the min/max radii may be provided by the
user.

To compute the potential and its derivatives at a given point, one needs to sum the con-
tributions of each harmonic term. For systems with certain symmetries, many of these terms
are identically zero, and this is taken into account thereby reducing the amount of compu-
tation. By convention, negative m correspond to sine terms and positive – to cosine; if a
triaxial model is aligned with the principal axes, all sine terms must be zero; symmetry w.r.t.
reflection about one of the principal planes also zeroes down some terms, and axisymmetry
retains only m = 0 terms; Table 5 lists the most common cases. All possible combinations
of symmetries are encoded in the coord::SymmetryType class, and each one corresponds to
a certain combination of non-trivial spherical-harmonic terms (math::SphHarmIndices), as
described in math_sphharm.h. For instance, a model of a disk galaxy with two spiral arms
is symmetric w.r.t. z-reflection (change of sign of z coordinate) and xy-reflection (change of
sign of both x and y simultaneously), and this retains only terms with even l and even m
(both positive and negative).

At each nontrivial m, we may need to compute up to lmax−|m| 1d interpolating splines in
r multiplied by Legendre polynomials in cos θ. This may be replaced with a single evaluation
of a 2d interpolation spline in ln r, θ plane (in fact a suitably scaled analog of θ is used to
avoid singularities along z axis), which was pre-computed during potential initialization –
this is more efficient for lmax > 2. In this variant, the main log-scaled term is the 2d spline
for the m = 0 component, while the other azimuthal harmonics are normalized to the value
of the main term (again, these scaling transformations are turned off if the m = 0 term is
non-negative or changes sign).

Extrapolation to small and large radii (beyond the extent of the grid) is performed using
the assumption of a power-law behaviour of individual multipole components: Φl,m(r) =
Ul,m r

sl,m +Wl,m r
v, where v ≡ l or −1 − l for the inward or outward extrapolation, corre-

spondingly. The term with rv represents the “principal” component with a zero Laplacian,
while rs corresponds to a power-law density profile ρl,m ∝ rs−2, and is typically much smaller
in magnitude. This allows to describe very accurately the asymptotic behaviour of potential
beyond the extent of the grid, if the coefficients U,W and s can be determined reliably. In
order to do so, we use the value and derivative of each harmonic coefficient at the first or the
last grid node, plus its value at the adjacent node, to obtain a system of 3 equations for these
variables. Thus the value and derivative of each term are continuous at the boundaries.

A Multipole potential may be constructed either from an existing potential object (in
which case it simply computes a spherical-harmonic transform of the original potential at

113

radial grid nodes), or from a density profile (thereby solving the Poisson equation):

Φl,m(r) = − 4π G

2l + 1

[
r−l−1

∫ r

0

ρl,m(r
′) r′

l+2
dr′ + rl

∫ ∞

r

ρl,m(r
′) r′

1−l
dr′
]
, (31)

ρl,m(r) ≡
1√
4π

∫ 1

−1

d cos θ P̃m
l (cos θ)

∫ 2π

0

dϕ trigmϕ ρ(r, θ, ϕ). (32)

A separate class DensitySphericalHarmonic serves to approximate any density profile
with its spherical-harmonic expansion, with coefficients being cubic splines in ln r. Similarly
to the Multipole potential class, we extrapolate the profile to small or large radii using power-
law asymptotes, with slopes deduces from the values of the l = 0 coefficient at two inner- or
outermost grid points. This class is mainly used in self-consistent modelling (Section 2.6.3)
to provide a computationally cheap way of evaluating the density at any point in space,
once it is initialized by computing the costly integrals over distribution function at a small
number of points (grid nodes in radius and nodes of Gauss–Legendre quadrature rule in
cos θ). This interpolated density is then used to construct the Multipole potential: the
solution of Poisson equation requires integration of harmonic terms in radius using a more
densely spaced internal grid, and the values of these terms are easily evaluated from the
density interpolator. Note that this process involves two forward and one reverse spherical-
harmonic transformation (first time during the construction of density interpolator, then the
reverse transformation to obtain the interpolated values at the required spatial points, and
then again in the Multipole potential). However, since the spherical-harmonic transformation
is invertible (reproduces the source density at this special set of points to machine precision),
this double work does not add to error, and incurs negligible overhead.

DensitySphericalHarmonic may also be constructed from an array of particles, and
then used to create the Multipole potential in a usual way. To do so, we first compute the
spherical-harmonic expansion coefficients at each particle’s radius:

ρl,m;i ≡ mi

√
4π P̃m

l (cos θi) trigmϕi.

Then the l = 0 coefficients (which contain just particle masses) are used to determine the
spherically-symmetric part of the density profile. We use penalized spline log-density fit
(Section A.2.5) to estimate the logarithm of an auxiliary quantity P (ln r) ≡ dM(< r)/d ln r
from the array of point masses and log-radii; the actual density is ρ0,0(r) = P (ln r)/(4π r3).
Finally, we create smoothing splines (Section A.2.4) for all non-trivial ρl,m(ln r) terms. This
temporary density model is used to construct the Multipole potential from an N -body
model – even though the Poisson equation (31,32) can be solved directly by summing over
particles (the approach used in [71]), this results in a noisier and less accurate potential than
the intermediate smoothed density can provide.

A.4.2 CylSpline expansion

The CylSpline potential is represented as a sum of azimuthal Fourier harmonics in ϕ, with
coefficients of each term intepolated on a 2d grid in R, z plane with suitable scaling. Namely,

114

both R and z coordinates are transformed to R̃ ≡ ln(1+R/R0), z̃ ≡ ln(1+ z/R0), where R0

is a characteristic radius. The amplitudes of each interpolated term are also transformed in
the same way as for the Multipole potential (for the same purpose – improving the accuracy
of interpolation, and only when the m = 0 term is everywhere negative), namely, the main
m = 0 term uses log-scaling of its amplitude, and the remaining ones are normalized to the
value of the main term. We use either 2d quintic splines or 2d cubic splines to construct
the interpolator, depending on whether the partial derivatives of potential by R and z are
available. Normally, if the potential is constructed from a smooth density profile or from
a known potential, it is advantageous to use 5th order interpolation to improve accuracy,
even though this increases the computational cost of construction (but not of evaluation of
the potential). On the other hand, in the case of a potential constructed from an array
of particles, estimates of derivatives are too noisy and in fact deteriorate the quality of
approximation.

Unlike the Multipole potential, which can handle a power-law asymptotic behaviour of
density both at small and large radii, CylSpline is more restricted – since the grid covers
the origin, it can only represent a model with finite density at r = 0. Extrapolation to
large radii (beyond the extent of the rectangular grid in R, z) is performed using a similar
approach to Multipole, but keeping only the principal spherical-harmonic terms Wr−l−1

with zero Laplacian, i.e., corresponds to a zero density outside the grid. The coefficients for
a few low-order multipoles (currently lmax = 8) are determined from a least-square fit to the
values of potential at the outer boundary of the grid; thus the potential values inside and
outside the boundary are not exactly the same, but still are quite close – the relative error
in potential and force in the extrapolated regime is typically ≲ 10−3 (see Figures 9, 10).

Since the grid spacing is near-uniform at small and near-exponential at large R, z, the
dynamical range of CylSpline is also very broad. If the values of first/last grid nodes are
not specified, they are determined automatically using the same approach as for Multipole.
Typically, 20 − 25 grid nodes are enough to span a range from 0 to ≳ 103 rhalf−mass. The
automatic procedure is somewhat less optimal than in case of Multipole, so it may be ad-
visable to set up the grid manually, with two considerations in mind. First, the inner grid
point should be comparable with the smallest scale of variation of the density profile (e.g.,
in the case of a thin disk, zmin ≃ scaleHeight), but not much smaller, because the rela-
tive difference between the potential at adjacent grid points should exceed the accuracy of
its computation (∼ 10−6), or else the high-order interpolation scheme greatly amplifies the
errors in its derivatives. Second, the outer edge of the grid should be far enough from the
region where the density is concentrated, so that the extrapolation outside the grid using
only a few spherical-harmonic terms is accurate enough. The potential and its derivatives
are discontinuous at the grid boundary, and it’s important to keep this discontinuity at a
negligible level.

The main advantage of CylSpline is in its ability to efficiently represent even very flat-
tened density profiles, which are not suitable for Multipole expansion. When CylSpline

approximation is constructed from another potential, this boils down to taking the Fourier

115

transform in ϕ of potential and forces of the original potential at the nodes of 2d grid
in R, z plane. When it is constructed from a density profile, this involves the solution
of Poisson equation in cylindrical coordinates, which is performed in two steps. First,
a Fourier transform of the source model is created (if it was neither axisymmetric nor a
DensityAzimuthalHarmonic class, see below). Next, for each m-th harmonic ρm, the po-
tential is computed at each node R, z of the 2d grid using the following approach [18]:

Φm(R, z) = −G
∫ +∞

−∞
dz′
∫ ∞

0

dR′ 2πR′ ρm(R
′, z′) Ξm(R, z,R

′, z′) , (33)

Ξm ≡
∫ ∞

0

dk Jm(kR) Jm(kR
′) exp(−k|z − z′|) , which evaluates to (34)

Ξm =
1

π
√
RR′

Qm−1/2

(
R2 +R′2 + (z − z′)2

2RR′

)
if R > 0, R′ > 0,

Ξm =
1√

R2 +R′2 + (z − z′)2
if R = 0 or R′ = 0, and m = 0, otherwise 0.

Here Q is the Legendre function of the second kind, which is computed using a hand-
crafted Padé approximation for m ≤ 12 or Gauss’ hypergeometric function otherwise (more
expensive). For an array of particles,

Φm(R, z) = −G
∑
k

mk Ξm(R, z,Rk, zk) trigmϕk. (35)

The computation of CylSpline coefficients is much more expensive than that of Multipole,
because at each of O(NR × Nz ×mmax) nodes we need to evaluate a 2d integral in (33) or
a sum over all particles in (35). On a typical workstation, this may take from from a few
seconds to a few minutes, depending on the resolution and the number of CPU cores. Nev-
ertheless, this is a one-time cost; once the coefficients are calculated, the evaluation of both
Multipole and CylSpline potentials is very fast – the cost depends very weakly on the num-
ber of grid nodes, and is proportional to the number of azimuthal-harmonic terms (mmax,
but not lmax in the case of Multipole). Symmetries of the model are taken into account in
the choice of non-trivial azimuthal Fourier terms (in the case of axisymmetry, only m = 0
term is retained; for triaxial models only even m ≥ 0 are used, etc.); and for models with
z-reflection symmetry, coefficients are computed and stored only for the z ≥ 0 half-space.

Figure 9 demonstrates that the accuracy of both approximations is fairly good (relative
error in force ≲ 10−3) with default settings (NR = 25, lmax = mmax = 6) and improves with
resolution. For the case of initialization from an array of particles, discreteness noise is the
main limiting factor. Figure 10 illustrates that each of the two potential expansions has
its weak points: Multipole is not suitable for strongly flattened systems and CylSpline

performs poorly in systems with density cusps; but for most density profiles at least one of
them should deliver a good accuracy.

116

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=0 with Multipole

Nr=20, lmax=6

Nr=30, lmax=12

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=0 with CylSpline

NR,z=20

NR,z=30

10-2 10-1 100 101 102 103

radius

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=0 with Multipole

N=105 particles

N=106 particles

10-2 10-1 100 101 102 103

radius

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=0 with N-body

N=105 particles

N=106 particles

10-2 10-1 100 101 102 103

radius

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=0 with CylSpline

N=105 particles

N=106 particles

Figure 9: Accuracy of potential approximations in the case of initialization from a smooth
density profile (top panels) and from an array of N particles (bottom panels). In both
cases we compare the potential (red), force (green) and density (blue) computed using the
potential expansions (left: Multipole, right: CylSpline) with the “exact” values for a triaxial
γ = 0 Dehnen profile (x : y : z = 1 : 0.8 : 0.5), obtained by numerical integration, and plot
the relative errors as functions of radius. In the top panels we vary the order of spherical-
harmonic expansion and the number of grid nodes. Both potential approximations deliver
fairly high accuracy, which increases with resolution. In the bottom panels we additionally
show these quantities computed with a conventional N -body approach (direct-summation
and SPH density estimate). Here the error is dominated by noise in computing the potential
from discrete samples, and not by the approximation accuracy (it is almost independent of
the grid parameters, but decreases with N). Notably, both smooth potential approximations
are closer to the true potential than the N -body estimate.

117

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=1 with Multipole

Nr=20, lmax=6

Nr=30, lmax=12

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Dehnen γ=1 with CylSpline

NR,z=20

NR,z=30

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Miyamoto-Nagai with Multipole

Nr=20, lmax=10

Nr=30, lmax=50

10-4 10-3 10-2 10-1 100 101 102 103 104

radius

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rm
s

e
rr

o
r

Miyamoto-Nagai with CylSpline

NR,z=20

NR,z=30

Figure 10: Accuracy of potential approximations for different types of density profiles. As
in the previous figure, we plot the relative errors in potential (red), force (green) and density
(blue) for Multipole (left) and CylSpline (right) potential expansions. Top panels are for a
triaxial γ = 1 Dehnen model, and bottom – for a Miyamoto–Nagai disk. In the former case,
CylSpline cannot efficiently deal with cuspy density profiles, while Multipole is able to deliver
accurate results even for a γ = 2 cusp without any difficulty. On the other hand, in the latter
case the strongly flattened density model is poorly represented by the spherical-harmonic
expansion even with lmax = 50, whereas CylSpline performs well.

118

A separate class DensityAzimuthalHarmonic serves the same task as DensitySpherical-
Harmonic: provides an interpolated density model that is initialized from the values of source
density at nodes of a 2d grid in R, z plane (for an axisymmetric model) or 3d grid in R, z, ϕ (in
general). The density is represented as a Fourier expansion in ϕ, with each term being a 2d cu-
bic spline in R̃, z̃ coordinates (scaled in the same way as in CylSpline). Interpolated density
is zero outside the grid. This class serves as a counterpart to DensitySphericalHarmonic in
the context of DF-based self-consistent models for disk-like components: the values of den-
sity at grid nodes are computed by (expensive) integration of DF over velocities, and density
in the entire space, necessary for computing the potential, is given by the interpolator.

A.5 Orbit integration and the variational equation

The orbit integration can be performed in all three standard coordinate systems (Cartesian,
Cylindrical and Spherical), although only the Cartesian system is used in practice (in par-
ticular, by the orbit routine from the Python interface). In the reference frame that rotates
with an angular frequency Ω, the Hamiltonian equations of motion for w ≡ {x,v} are

dx

dt
= v −Ω× x, (36a)

dv

dt
= −∂Φ(x)

∂x
−Ω× v. (36b)

This ODE system is integrated using one of the available methods derived from the base
class math::BaseOdeSolver, namely the 8th order Runge–Kutta with adaptive timestep
(Dormand–Prince, dop853) [31] and the 4th order Hermite method [38]. Other possibili-
ties previously implemented in [71] include 15th order Gauss–Radau scheme [55], and sev-
eral methods from Odeint package [1], including Bulirsch–Stoer and various Runge–Kutta
schemes. However, in practice all of them have quite similar performance in the appropriate
range of tolerance parameters, thus we have only kept dop853 and Hermite at the moment.

The dop853 method has been slightly modified as follows. In the original method,
each timestep has 12 Runge–Kutta stages (thus evaluates the forces that many times), plus
another 3 force evaluations are needed to construct a 8th-order interpolator for the solution
within the current timestep (so-called dense output feature). In our modification, these three
evaluations are eliminated, at the expense of degrading the interpolation to 7th order, which
is more than sufficient in practice. This reduces the number of force evaluations by 20%
per accepted step. However, in the adaptive-timestep integrator, a significant fraction of
timesteps (∼ 1/3) are rejected and repeated with a reduced step; rejected steps still cost 11
force evaluations, but would not incur the 3 additional evaluations for the dense output in
the original method, so the total savings are closer to 15%.

The Hermite method needs only two evaluations per timestep, but uses both the gradient
and the hessian of the potential, and the timestep is usually shorter than in the dop853
method. Nevertheless, it may be more efficient if the required accuracy is not very tight
(≳ 10−4, note that the default value is 10−8).

119

The variational equation describes the evolution of infinitesimally small perturbations of
initial conditions δw ≡ {δx, δv} along the orbit:

d δx

dt
= δv −Ω× δx, (37a)

d δv

dt
= −∂

2Φ(x)

∂x2
δx−Ω× δv. (37b)

We note that these equations describe a Hamiltonian system with a simple quadratic but
time-dependent Hamiltonian (indirectly through the original trajectory):

Ĥ(δx, δv, t) =
1

2
δxT

∂2Φ(x)

∂x2

∣∣∣∣
x=x(t)

δx+
1

2
δv2. (37c)

Alternatively, they can be expressed as a second-order linear ODE with variable coefficients
for δx:

d2δx(t)

dt2
= A(t) δx(t) + B(t)

d δx(t)

dt
, (37d)

where the matrices A and B, in the standard case of rotation about z axis Ω ≡ {0, 0,Ω}, are

Aij(t) = −∂2Φ(x)

∂xi ∂xj

∣∣∣∣
x=x(t)

−

 Ω2 0 0
0 Ω2 0
0 0 0

 , Bij =

 0 2Ω 0
−2Ω 0 0
0 0 0

 . (37e)

Although one may follow the evolution of the deviation vector δw simultaneously with
the trajectory w itself, using the same ODE integrator extended to 12 dimensions, this has
two disadvantages: first, it makes no use of the linear character of the variational equa-
tion, and second, it would change the timestepping of the ODE solver compared to the
case of integrating just the trajectory. If the orbit is chaotic, it will eventually look very
different when integrated with or without the deviation vector, which is undesirable. Thus
for the variational equation, we use an independent ODE solver derived from the base class
math::BaseOde2Solver, which is specialized to the linear second-order ODE case. The main
ODE solver integrates only the orbit and provides a high-accuracy interpolated solution x(t)
within the current timestep, and the attached variational equation solver uses it to evolve
δx on the same timestep.

There are two implementations based on the same principle, but with a different order:
6th-order method with 3 Hessian evaluations per timestep, and 8th-order method with 4
evaluations. In the 6th-order method, the second time derivative of δx is approximated by
a quadratic polynomial on the current timestep ts..ts+1, using a normalized time variable
h ≡ (t− ts)/(ts+1 − ts):

δ̈x(h) ≡ d2δx

dt2
= c0 + (h− h0)

(
c1 + (h− h1) c2

)
, (38a)

120

and therefore ˙δx(h) and δx(h) are respectively third- and fourth-order polynomials in h.
Here hk are some fixed time moments within the current timestep, and the coefficients
ck are to be determined. First, we record the D × D matrices A(t) and B(t) at times
ts + (ts+1 − ts)hk, k = 0, 1, 2 – this is the only time the original trajectory is referenced and
the potential derivatives are evaluated. We then recall that for each hk,

δ̈xi(hk) =
∑D

j=1

[
Aij(hk) δxj(hk) +Bij(hk) ˙δxj(hk)

]
, (38b)

where both left- and right-hand sides are linear combinations of the unknown coefficients
ck. This linear algebraic system is most easily solved by iterations. At each iteration, we
compute the values of δx(h0) and ˙δx(h0) on the right-hand side of (38b), using the current
values of c0, c1, c2. From (38a) we see that this provides the updated value for c0 only, since
the other terms in brackets are zero for h = h0. Then we use the newly computed value of
c0 and the values of c1, c2 from the previous iteration to construct δx(h1) and ˙δx(h1) on the
right-hand side of (38b), and then update c1 from (38a) as c1 = (δ̈x(h1) − c0)/(h1 − h0).
Finally, the same procedure is repeated for the point h2 to update c2. The whole sequence is
then iterated several times; we stress again that the matrices A(hk) and B(hk), which contain
the expensive-to-compute Hessian of the potential, are fixed throughout this process. Finally,
after the coefficients ck have been determined with sufficient precision, the values of δx and
˙δx at h = 1 (end of the timestep) are computed and stored.

By choosing the three intermediate points hk to be the nodes of the Gauss–Legendre
quadrature, the whole scheme provides 6th order accuracy for δx at the timestep bound-
aries, while the interpolated solution within each timestep has 5th order accuracy for δx and
4th order for ˙δx. The same approach is used to construct a scheme with four intermediate
points hk per timestep, in which δ̈x, ˙δx and δx are respectively cubic, quartic and quintinc
polynomials, δx at the end of the timestep has 8th order accuracy, and the interpolated
solution within the timestep has 6th order for δx and 5th order for ˙δx. This latter scheme
is used in practice to integrate the variational equation for one or more deviation vectors
w (note that the matrices A, B containing the potential derivatives are only evaluated four
times per timestep, irrespective of the number of independent deviation vectors). Note, how-
ever, that the high order of the scheme is only guaranteed for sufficiently smooth Hessians;
this condition is not satisfied by the two commonly used potential expansions represented
by quintic splines (Multipole and CylSpline), whose Hessians have only one continuous
derivative.

The class orbit::RuntimeVariational uses the above described method to follow one
or six deviation vectors δwd during orbit integration. These vectors are initially chosen to
be orthogonal and unit-normalized, so that the matrix W(t) assembled from these column-
vectors is the Jacobian J of the mapping between the orbital initial conditions w(0) and the
current point on the trajectory w(t): Jkd = ∂wk(t)/∂w

(0)
d . For a regular orbit, deviation

vectors grow linearly with time, and the basis remains sufficiently non-degenerate. However,
if an orbit is chaotic, all vectors eventually start to grow exponentially and become more

121

and more aligned with each other (note that the determinant of the Jacobian remains unity,
since the phase volume is conserved for any Hamiltonian system). The eigenvalues of the
Jacobian

One may periodically orthogonalize the set of deviation vectors, using the QR factoriza-
tion of W(t1) at some time t1 as W(t1) = Q(1) R(1), where Q(1) is an orthogonal matrix with
values of order unity, and R(1) is an upper triangular matrix with a large condition number
(the ratio of maximal to minimal value on the main diagonal). The matrix W(1)(t1) ≡ Q(1)

then replaces the original set of deviation vectors, and their evolution is followed until the
matrix W(1)(t) again becomes too large at some time t2, at which point another orthogo-
nalization is performed: W(1)(t2) = Q(2) R(2). The matrix W(2)(t2) ≡ Q(2) again replaces the
previous deviation vectors, and the process continues as long as needed. At any point, the
Jacobian can be reconstructed as J(t) = W(N)(t)R(N) R(N−1) . . . R(1). Note that the product
of upper triangular matrices R ≡ ∏N

n=1 R
(n) is still an upper triangular matrix and can be

updated after each orthogonalization step. Its condition number keeps growing with each
step and may well exceed 1016 (but is still limited by the overall dynamical range of double,
roughly 10300). To prevent overflow, one may further renormalize R as exp(Λ) R̂, where the
largest diagonal element of R̂ is 1, and the smallest may eventually underflow to zero.

The full spectrum of Lyapunov exponents can be determined from the diagonal elements
of the matrix R in the limit t → ∞. However, in practice we are mostly interested in the
largest of them, which indicates whether the orbit is chaotic or not. Since for a chaotic
orbit all deviation vectors eventually become exponentially growing with the same rate,
it is sufficient to follow the evolution of only one vector, renormalizing its magnitude to
avoid overflow, but without the need for orthogonalization. On the other hand, if we are
interested in the full Jacobian matrix J, we need to follow all six vectors. Even in this case
there is still no particular advantage in carrying out the orthogonalization procedure, since
the reconstructed Jacobian matrix will be fully degenerate (all deviation vectors will be equal
to within floating-point precision) when the difference between the largest and the second-
largest diagonal element of R exceeds 1016, thus losing any extra dynamic range contained
in R. Therefore, the orthogonalization procedure is not used by default.

Finally, the (largest) Lyapunov exponent is determined from the time evolution of the
norm of the largest (or the only) deviation vector |w| as follows. Assuming that |w| ≈
A t+B exp

(
λt/Torb

)
, where the first term describes the phase mixing for regular orbits, and

the optional second term becomes dominant for chaotic orbits at large times, we fit a linear
regression ln

(
|w(t)|

)
≈ ln t+C +λt/Torb. If the linear term λt/Torb is significantly different

from zero (that is, exceeds the other terms by at least 2 at the end of the time interval), λ
is reported as the Lyapunov exponent normalized to the orbital period Torb, otherwise the
evidence for chaotic behaviour is considered insufficient and λ = 0 is reported.

122

A.6 Action/angle transformation

A.6.1 Stäckel approximation

A prolate spheroidal coordinate system is characterized by a single parameter ∆ – the dis-
tance between the origin and any of the two focal points (located on the z axis). The
coordinate lines are ellipses and hyperbolae defined by the focal points. How exactly the
coordinate values along these lines are chosen is a matter of preference: various studies use
different definitions, and we suggest yet another one for the reasons to be explained shortly.

� The triplet λ, ν, ϕ and their canonically conjugate momenta pλ, pν , pϕ is used in [26,
57, 58]. The transformation between cylindrical and prolate spheroidal coordinates is
given by

R2 = (λ−∆2)(∆2 − ν)/∆2, z2 = λν/∆2, (39a)

λ, ν = 1
2
(R2 + z2 +∆2)± 1

2

√
(R2 + z2 −∆2)2 + 4R2∆2 (+ for λ, – for ν), (39b)

pλ =
RvR

2(λ−∆2)
+
z vz
2λ

, pν =
RvR

2(ν −∆2)
+
z vz
2ν

, pϕ = Rvϕ. (39c)

The allowed range of variables is 0 ≤ ν ≤ ∆2 ≤ λ 18. An arbitrary separable axisym-
metric Stäckel potential is given by

Φ(λ, ν) = −fλ(λ)− fν(ν)

λ− ν
. (39d)

The advantage of this choice is a near-symmetry between λ and ν and the fact that
they occupy distinct ranges, which makes possible to use a single function f of one
variable in place of both fλ and fν . The disadvantages are that the coordinates only
describe the half-space z ≥ 0 (this may be amended by extending the range of ν to
−∆2 ≤ ν ≤ ∆2 with the convention that ν < 0 corresponds to z < 0), that the
transformation is quadratic (not linear) at small R or z, and that it does not apply in
the spherical limit (∆ = 0).

� The triplet u, v, ϕ with the corresponding momenta is used in [6, 11]. The transforma-
tion is given by

R = ∆ sinhu sin v, z = ∆ coshu cos v, u ≥ 0, 0 ≤ v ≤ π, (40a)

18The above papers introduce different parameters of the coordinate system: α ≡ −a2, γ ≡ −c2, such that
∆2 = a2 − b2, and the range of variables is c2 ≤ ν ≤ a2 ≤ λ, but we may always set c = 0. A slightly
different convention is used in [5]: λ in that paper corresponds to λ −∆2 here, and similarly ν. Moreover,
in some papers ∆ stands for the squared focal distance.

123

thus λ = ∆2 cosh2 u, ν = ∆2 cos2 v, and the expression for a generic axisymmetric
Stäckel potential is

Φ(u, v) =
U(u)− V (v)

sinh2 u+ sin2 v
, U(u) ≡ −fλ[u(λ)]

∆2
, V (v) ≡ −fν [v(ν)]

∆2
. (40b)

This form is advantageous because it covers the entire space, and v tends to the spher-
ical polar angle θ at large radii, however u does not have an equally straightforward
asymptotic meaning, and there is still no valid limit ∆ → 0.

� Instead of u, one may use the quantity ϖ ≡ ∆ sinhu =
√
λ−∆2, which exactly equals

the cylindrical radius R whenever z = 0 (equivalently v = π/2), regardless of ∆. At
large distances (≫ ∆), ϖ and v tend to the spherical radius r and the polar angle θ,
respectively; thus in the limit ∆ → 0 these are just the spherical coordinates. The
transformation is thus

R = ϖ sin v, z =
√
ϖ2 +∆2 cos v, ϖ ≥ 0, 0 ≤ v ≤ π, (41a)

and the expression for the potential is

Φ(ϖ, v) = − fϖ(ϖ)− fv(v)

ϖ2 +∆2 sin2 v
, fϖ(ϖ) ≡ fλ[ϖ(λ)], fv(v) ≡ fν [v(ν)]. (41b)

In the subsequent discussion, we will use the coordinates λ and ν for consistency with
the previous work, even though internally the calculations are performed in terms of ϖ and
v.

Since the two functions fλ, fν may be shifted by an arbitrary constant simultaneously,
we assume that fν(0) = 0. The continuity of potential at focal points requires that fν(∆

2) =
fλ(∆

2). Thus to obtain the values of these functions at an arbitrary point {λ, ν}, we
compute the potential at this point and at {λ, 0} (in the equatorial plane), then take
fλ(λ) = −Φ(λ, 0)λ, fν(ν) = Φ(λ, ν) (λ− ν)− Φ(λ, 0).

The third integral is also introduced in different forms across various studies. Here we
adopt the definition used by [57] (their eq. 3), given by

I3 = fτ (τ) +

(
E − L2

z

2(τ −∆2)
− 2(τ −∆2) p2τ

)
τ (τ is either λ or ν) (42a)

= fτ (τ) + Φ(λ, ν) τ + 1
2

(
L2 − L2

z + v2z∆
2
)

= [Φ(λ, ν)− Φ(λ, 0)]λ+ 1
2

(
z2v2ϕ + (Rvz − zVR)

2 + v2z∆
2
)
. (42b)

A slightly different expression is used in [5]: their eq. 1 introduces Is which equals −I3/∆2

(they denote the focal distance as z0). The quantity introduced in [11] (eq. 3.248), and also
used in [6] (where it was also called I3), is equivalent to (I3 + L2

z/2)/∆
2 − E.

124

The actions Jτ , where τ = {λ, ν}, are computed as

Jτ =
1

π

∫ τmax

τmin

pτ dτ (τ is either λ or ν), (43)

where the canonical momentum pτ (λ, ν;E,Lz, I3) is expressed from (42a), and the limits of
integration τmin,max are defined by the condition p2τ = 0. In the spherical limit, Jλ = Jr,
Jν = Jz = L− Lz.

The essence of the Stäckel approximation is to pretend that the potential is of the Stäckel
form and use the above expressions to compute the actions, substituting the actual potential
where needed. The procedure is the following:

1. Choose the focal distance ∆, presumably in such a way as to maximize the resemblance
of the potential to a separable form (39d). This defines the transformation between
{R, z} and {λ, ν}.

2. Compute the potential at two points, {λ, ν} and {λ, 0}, and assign the three integrals
of motion E,Lz and I3 (the latter from 42b).

3. Find the integration limits {λ, ν}min,max (assuming that the orbits looks like a rectangle
in the {λ, ν} plane, which is of course only an approximation if the potential is not
separable). In doing so, we solve for p2τ = 0 in (42a), where τ is either λ or ν, and the
other coordinate is kept at its initial value. This step costs ∼ 30 potential evaluations
to find the three roots (the fourth one is always νmin = 0).

4. Compute the actions from (43), again integrating along each of the two coordinates
{λ, ν} while keeping the other one fixed at its initial value. We use a fixed-order Gauss–
Legendre integration (with ten points) in a suitably scaled coordinate (to neutralize
the singular behaviour of pτ (τ) near endpoints), hence this step costs 20 potential
evaluations.

5. If the frequencies and angles are needed, follow the procedure described in the Appendix
A of [57]. This involves computation of six additional integrals for frequencies, and
further six – for the angles (note that they are carried along the same paths as the
integrals for the actions, so one could store and re-use the values of potential, but this
is not yet implemented).

The accuracy of this approximation may be judged by computing numerically an orbit
in the given potential, determining the actions at each point along the orbit, and estimating
their variation. If actions returned by the Stäckel approximations were true integrals, their
variation would be zero. In practice, the variation depends crucially on the choice of the
only free parameter – the focal distance ∆. Clearly, the best choice may depend on the two
classical integrals of motion (E and Lz). There are two alternative approaches to assigning
∆:

125

� If Φ(λ, ν) is a Stäckel potential, then from (39d) it follows that

∂2[(λ− ν)Φ(λ, ν)]

∂λ ∂ν
= 0 , or, in the cylindrical coordinates, (44a)

3z
∂Φ

∂R
− 3R

∂Φ

∂z
+Rz

(
∂2Φ

∂R2
− ∂2Φ

∂z2

)
+ (z2 −R2 −∆2)

∂2Φ

∂R ∂z
= 0. (44b)

Thus one may seek the value of ∆ that minimizes the deviation of the above quantity
from zero in the region occupied by the orbit.

� A shell orbit (the one with Jr = 0) in a Stäckel potential has λ = const; thus one may
find such an orbit for each E and Lz, and assign ∆ from the condition that p2λ(R, z = 0)
has a maximum value 0 reached at R = Rshell (in other words, the range of oscillation
in λ shrinks to zero).

In either case, to make the action computation procedure efficient, we need to pre-compute
a suitable table of ∆(E,Lz) and calculate the suitable value of ∆ by 2d interpolation as the
first step of the above procedure. We found that the second approach generally leads to a
somewhat better action conservation accuracy.

A further significant speedup may be achieved by pre-computing a 3d interpolation table
for the actions as functions of three integrals of motion – E,Lz and I3. In this way, we only
follow the first two steps of the procedure, avoiding the costly part of finding the integration
limits and performing the integration itself. The table may be constructed by following the
entire procedure for a family of orbits started at R = Rshell(E,Lz), z = 0 and velocity
directed at various angles in the meridional plane. From (42b) it follows that in this case,
I3 = (R2 +∆2) v2z , and since v2z = 2[E −Φ(R, 0)]−L2

z/R
2 − v2R, the maximum value of I3 at

the given E and Lz is

I
(max)
3 (E,Lz) =

(
R2

shell +∆2
)(
2[E − Φ(Rshell, 0)]− L2

z/R
2
shell

)
, (45)

where both Rshell and ∆ are also functions of E and Lz. The interpolation table is con-
structed in terms of scaled variables: E, Lz/Lcirc(E), I3/I

(max)
3 (E,Lz), and the values to be

interpolated are Jr,z/(Lcirc − Lz). The cost of construction of this 3d table is comparable to
the cost of pre-computing the 2d table for ∆(E,Lz), and both take only a few CPU seconds
(and are trivially parallelized).

However, since I3 is only an approximate integral (which furthermore also depends on ∆),
this introduces an additional error in the approximation, which cannot be reduces by making
the interpolation grid finer. The error comes from the fact that the accuracy of conservation
of I3 along the orbit is typically worse than the accuracy of conservation of Jr, Jz computed
at each point numerically. It turns out that the variation of I3 from one point to another
is largely balanced by performing the integration along the lines of constant λ and ν that
pass through the given point, as depicted in the left panel of the same figure. By contrast,

126

in performing the interpolation from a pre-computed table, we essentially always follow the
integration paths passing through {Rshell(E,Lz), 0}, but for a “wrong” I3.

Nevertheless, the overall accuracy of the Stäckel approximation is reasonably good (for
low-eccentricity orbits it is typically much better than shown in the above example). For disk
orbits, the relative errors are typically better than 1%, while for halo orbits they may reach
10% – this happens mostly at resonances, when the orbit is not at all well described by a box
in any prolate spheroidal coordinate system. The error in the interpolated approximation is
a factor of 1.5–3 worse, but still tolerable in many contexts (e.g., construction of equilibrium
models), and it leads to a ∼ 10× speedup in action computation, for a very moderate over-
head in construction of interpolation tables. In terms of accuracy and speed, the interpolated
Stäckel approximation is thus similar to the use of un-adorned I3 as the approximate third
integral of motion, as advocated in [5]; however, actions have clear conceptual advantages.

A.7 Distribution functions

A.7.1 Spherical anisotropic DFs

This type of DF, represented by the class df::QuasiSpherical and its descendants, is con-
structed from a given combination of density and potential, under certain assumptions about
the functional form of the DF. At the moment, only one specific subtype is implemented in
the df::QuasiSphericalCOM class: the Cuddeford–Osipkov–Merritt model:

f(E,L) = f̂(Q) L−2β0 , Q ≡ E + L2/(2r2a), (46)

f̂(Q) =

2β0

(2π)3/2 Γ(1− β0) Γ(3/2− β)

∫ 0

Q

dρ̂

dΦ

dΦ

(Φ−Q)3/2−β0
, 1/2 < β0 < 1,

1

2π2

dρ̂

dΦ

∣∣∣∣
Φ=Q

, β0 = 1/2,

2β0

(2π)3/2 Γ(1− β0) Γ(1/2− β)

∫ 0

Q

d2ρ̂

dΦ2

dΦ

(Φ−Q)1/2−β0
, −1/2 < β0 < 1/2,

1

2π2

d2ρ̂

dΦ2

∣∣∣∣
Φ=Q

, β0 = −1/2,

ρ̂(Φ) ≡ ρ(r) r2β0
[
1 + (r/ra)

2
]1−β0∣∣∣

r=r(Φ)
.

Here ρ̂ is the augmented density, expressed as a function of potential and then differenti-
ated once or twice. We use a finite-difference estimate for the radial derivatives of the original
density ρ(r), but this becomes inaccurate at small r when both ρ and Φ tend to finite limiting
values. To cope with this issue, we fit a Taylor series expansion for ρ(Φ) as Φ → Φ(r = 0),

127

and use it at small radii where it can be differentiated analytically (only if the series produce
a reasonable approximation of the density). We limit the range of the anisotropy coefficient
to β0 ≥ −1/2, since lower values would need a third or even higher derivative of density,
becoming too challenging to compute accurately. The energy-dependent part of the DF f̂(Q)
is represented by a log-scaled cubic spline in the scaled energy coordinate E defined below.
Negative values of f(Q) are replaced by zeros.

A.7.2 Spherical isotropic DFs and the phase-volume formalism

In the isotropic case (β0 = 0, ra = ∞), the DF is a function of E alone, but it can also be
expressed in terms of an action-like variable h.

The correspondence between energy E and phase volume h in the given potential is
provided by the class PhaseVolume. Phase volume h(E) and its derivative (density of states)
g(E) ≡ dh(E)/dE are defined as

h(E) =
16π2

3

∫ rmax(E)

0

r2 v3(E, r) dr = 8π3

∫ L2
circ(E)

0

Jr(E,L) dL
2 =

∫ E

Φ(0)

g(E ′) dE ′, (47a)

g(E) = 16π2

∫ rmax(E)

0

r2 v(E, r) dr = 4π2

∫ L2
circ(E)

0

Trad(E,L) dL
2, (47b)

where v =
√

2(E − Φ(r)) is the velocity, Lcirc(E) is the angular momentum of a circular

orbit with energy E, and Trad(E,L) ≡ 2
∫ r+
r−

dr/vr ≡ 2
∫ r+
r−

dr/
√
v2 − L2/r2 = 2π ∂Jr/∂E is

the radial period (its dependence on L at a fixed E is usually weak). In other words, phase
volume is literally the volume of phase space enclosed by the energy hypersurface. Equations
2 and 3 in [19], or Equations 5.178 and 5.179 in [41], define two similarly related quantities
p ≡ g/(4π2), q ≡ h/(4π2), with p = dq/dE.

The bi-directional correspondence between E and h is given by two 1d quintic splines
(with derivative at each node given by g) in scaled coordinates. Namely, we use lnh as one
coordinate, and the scaled energy E ≡ ln[1/Φ(0) − 1/E] as the other one (both when the
potential has a finite value Φ(0) at origin, or when it tends to −∞). The purpose of this
scaling is twofold. First, in the case of a finite Φ(0), any quantity that depends on E directly
is poorly resolved as E → Φ(0) because of finite floating-point precision: e.g., if Φ(0) = −1,
and E = −1+10−8 (corresponding to the radius as large as 10−4 in a constant-density core),
we only have half of the mantissa available to represent the variation of E. By performing
this scaling, we “unfold” the range of E down to −∞ with full precision. Second, this scaling
converts a power-law asymptotic behaviour of h(Φ(r)) at small and large radii into a linear
dependence between lnh and E , suitable for extrapolation. Namely, as E → 0 and Φ ∝ −1/r
(which is true for any finite-mass model in which the density drops faster than r−3 at large
radii), h(E) ∝ (−E)−3/2 and g(E) ∝ (−E)−5/2. At small radii, if the density behaves as
ρ ∝ r−γ and the corresponding potential – as Φ ∝ r2−γ, then h(E) ∝ [E−Φ(0)](12−3γ)/(4−2γ) in
the case γ < 2 (when Φ(0) is finite), or h(E) ∝ (−E)(12−3γ)/(4−2γ) if 2 ≤ γ ≤ 3 (including the

128

case of the Kepler potential, γ = 3); in both cases, g(h) ∝ h(8−γ)/(12−3γ). The interpolation
in scaled coordinates typically attains a level of accuracy better than 10−9 over the range of
h covered by the spline, and ∼ 10−5 in the extrapolated regime (if the potential indeed has
a power-law asymptotic behaviour).

Any non-negative function f(h) may serve as a spherical isotropic DF. One possible rep-
resentation is provided by the math::LogLogSpline class – an interpolating spline in doubly-
logarithmically scaled coordinates (i.e., ln f(lnh) is a cubic spline and is extrapolated linearly
to small and large h). Such DFs are constructed, e.g., by routines createSphericalIsotropicDF
and fitSphericalIsotropicDF defined in df_spherical.h.

The main application of these DFs is for simulating the effect of two-body relaxation,
used in the Monte Carlo code Raga [72] and in the Fokker–Planck code PhaseFlow [73].
In general, the entire stellar system may consist of one or more components described by
DFs fc(h), with mc being the mass of individual stars in each component c. One needs to
consider two kinds of the composite DF of the field stars: plain f(h) ≡∑c fc(h) and stellar

mass-weighted f̂(h) ≡ ∑
cmc fc(h). Various derived quantities (integrals of the DF) will

also be denoted by ·̂ if they use f̂ . In [41] (Equation 5.173), f and f̂ are denoted by ν and
µ, respectively.

There are two possible descriptions of relaxation phenomena: either locally, as a pertur-
bation to the velocity v ≡

√
2(E − Φ(r)) of a test star with mass m at the given position r,

or, in the orbit-averaged approach, as a perturbation to the star’s energy E averaged over
its radial motion. In both cases, the rate of change of the given quantity per unit time is
denoted by ⟨. . . ⟩.

The local (position-dependent) drift and diffusion coefficients in velocity are given by

v⟨∆v∥⟩ = −Γ (mJ1/2 + Ĵ1/2) , (48a)

⟨∆v2∥⟩ = 2
3
Γ
(
Î0 + Ĵ3/2

)
, (48b)

⟨∆v2⊥⟩ = 2
3
Γ
(
2Î0 + 3Ĵ1/2 − Ĵ3/2

)
, where (48c)

I0(E) ≡
∫ 0

E

f(E ′) dE ′ =

∫ ∞

h(E)

f(h′)

g(h′)
dh′, (48d)

Jn/2(E,Φ) ≡
∫ E

Φ(r)

f(E ′)

(
E ′ − Φ

E − Φ

)n/2
dE ′ =

∫ ∞

h(E)

f(h′)

g(h′)

(
E ′(h′)− Φ

E − Φ

)n/2
dh′, (48e)

and similar definitions for Î0, Ĵn/2 using f̂ instead of f .

129

Orbit-averaged energy drift and diffusion coefficients are given by

⟨∆E⟩av = Γ
[
Î0 −mKg/g

]
, (49a)

⟨∆E2⟩av = 2Γ
[
Î0 h+ K̂h

]
/ g, (49b)

Kg(E) ≡
∫ E

Φ(0)

f(E ′) g(E ′) dE ′ =

∫ h(E)

0

f(h′) dh′, (49c)

Kh(E) ≡
∫ E

Φ(0)

f(E ′)h(E ′) dE ′ =

∫ h(E)

0

f(h′)h′

g(h′)
dh′. (49d)

In these expressions, Γ ≡ 16π2G2 ln Λ, where lnΛ ∼ lnN = O(10) is the Coulomb
logarithm. We note that Kg(E) is the mass of stars with energies less than E (and thus
Mtotal = Kg(0)), and Kh(E) is

2/3 times their kinetic energy.
Of course, an efficient evaluation of diffusion coefficients again requires interpolation from

pre-computed tables, which are provided by the class SphericalIsotropicModelLocal.
From the above expressions it is clear that I0, Kg and Kh can be very accurately approx-
imated by quintic splines in h, log-scaled in both coordinates and linearly extrapolated
(provided that f(h) also has power-law asymptotic behaviour at large and small h). More-
over, J0(E,Φ) = I0(Φ)−I0(E), and Jn/2(E,Φ) ≲ J0 thanks to the weighting factor (the ratio
of velocities of field and test stars to the power of n). Indeed, for E → Φ, Jn/2 → 1/(n+ 1).
We interpolate the ratio Jn/2/J0 as a function of lnh(Φ) and lnh(E) − lnh(Φ) on a 2d
grid covering a very broad range of h; the accuracy of this cubic spline interpolation is
∼ 10−4..10−6, and it is extrapolated as a constant outside the definition region (while this is
a good asymptotic approximation for large h, there is no easy way of delivering a reasonably
correct extrapolation to small h(Φ) – fortunately, the volume of this region is negligible in
practice).

Another method for studying the evolution of stellar distribution driven by the two-body
relaxation is the Fokker–Planck (FP) equation for f(h, t) coupled with the 1d Poisson equa-
tion for Φ(r, t). The latter provides the potential corresponding to the density profile which
is obtained by integrating the DF over velocity: ρ(r, t) =

∫
f(h, t)d3v. In a multicomponent

system, the DFs of individual components fc evolve independently in a common potential,
which is still determined by the total plain DF f ≡ ∑

c fc. This system of two PDEs –
parabolic for the DF and elliptic for the potential – is solved using interleaved steps: first
the orbit-averaged drift and diffusion coefficients entering the FP equation are obtained from
(49), then the DF is evolved for some interval of time in a fixed potential, then the density
is recomputed and the potential is updated through the Poisson equation.

Traditionally, the DF is expressed as a function of energy, but this has a disadvantage
when it comes to solving the Poisson equation: as the potential changes, the DF should
be kept fixed as a function of phase volume, not energy (e.g., [19]). Thus the formulation
entirely in terms of f(h) is preferrable, and does not introduce any additional complications.

130

It is convenient to write down the FP equation in the flux-conservative form:

∂fc(h, t)

∂t
=

∂

∂h

[
Ac(h) fc(h, t) +D(h)

∂fc(h, t)

∂h

]
, (50)

Ac(h) = ΓmcKg(h), D(h) = Γ g(h)
[
h Î0(h) + K̂h(h)

]
. (51)

Note that the advection coefficient Ac for c-th component is proportional to the mass of
individual starsmc of this component and involves the plain total DF f , whereas the diffusion
coefficient D is the same for all components, and is given by integrals over the stellar mass-
weighted total DF f̂ . To achieve high dynamical range, h is further replaced by lnh, with a
trivial modification of the above expressions.

The Fokker–Planck solver, dubbed PhaseFlow [73], has several ingredients:

� The distribution functions fc(h, t) for all evolving populations of stars, represented by
their values on a grid in lnh. Values of fc(h) for an arbitrary argument are obtained
from a cubic spline interpolator for ln fc as a function of lnh.

� The potential Φ(r) corresponding to the density profile ρ(r) of the evolving population,
plus optionally an external component (e.g., a central point mass). The 1d Poisson
equation is solved by the Multipole class (of course, a monopole is a particular case
of a multipole).

� The density ρ(Φ(r)) =
∫ 0

Φ
f
(
h(E)

)
4π
√

2(E − Φ) dE is obtained from the plain total
DF in the given potential. We recompute the density after the DF has been evolved in
the Fokker–Planck step, using the potential extrapolated from its previous evolution to
the current time. This extrapolation makes in unnecessary to iteratively improve the
solution by substituting the self-consistent potential back to the r.h.s. of this equation.

� The advection and diffusion coefficients A,D are computed using a dedicated class
SphericalIsotropicModel which combines the two kinds of the total DF – f(h) and

f̂(h) – with a potential Φ(r) and a mapping h ↔ E (PhaseVolume) constructed for
the given Φ.

� The FP equation (50) in the discretized form is solved with the Chang–Cooper scheme
(e.g., [46]) or with a finite-element method, described in the appendix of [73].

A.8 Schwarzschild modelling

The framework for constructing Schwarzschild orbit-superposition models is centered around
the concept of Target – an abstract interface for representing some features of the model
in a discretized form. We denote the required values Un of these features as Ncons model
constraints, and the contributions of i-th orbit as ui,n. The goal of the modelling procedure
is to reproduce the constraints by a weighted superposition of orbit contributions. There are
two categories of targets: density and kinematic.

131

X Y

Z

0 12

24

4

16

28

8

20

32

36

1

13

25

5 17

29

9

21

33

36

2

14

26

6

18

30

10 22

34

36

3

1527

7

1931

11

2335

36

0 9

18

3

12

21

6

15

24

1

10

19

4 13

22

7

16

25

2

11

20

5

14

23

8 17

26

R

Z

0

8

16

24

32

1

9

17

25

33

2

10

18

26

34

3

11

19

27

35

4

12

20

28

36

5

13

21

29

37

6

14

22

30

38

7

15

23

31

39

0
7

14

21

1
8

15

22

2
9

16

23

3
10

17

24

4
11

18

25

5
12

19

26

6
13

20

27

m
=

0

R

Z

40

47

54

61

68

41

48

55

62

69

42

49

56

63

70

43

50

57

64

71

44

51

58

65

72

45

52

59

66

73

46

53

60

67

74

28
35

42

49

29
36

43

50

30
37

44

51

31
38

45

52

32
39

46

53

33
40

47

54

34
41

48

55

m
=

2

Figure 11: Discretization schemes for the 3d density profile in Schwarzschild models.
Left panel shows one radial shell in the “classic” grid scheme: one octant of a sphere is
divided into three equal panes, and each pane – into K ×K cells, where K is given by the
parameter stripsPerPane. The volume discretization elements are 0th degree B-splines (⊓-
shaped blocks) in the case of type="DensityClassicTopHat" (green indices at cell centers),
or 1st degree B-splines (∧-shaped elements) in the case of type="DensityClassicLinear"
(red indices at grid vertices). Indices further increase along the third dimension (ra-
dius), with radial shells that could be placed at arbitrary intervals (parameter gridR); for
DensityClassicLinear, a single vertex at origin is added as the 0th element. In both
cases, the grid may be further stretched along Y and Z axes by an amount controlled by
axisRatioY, axisRatioZ; the radial grid then refers to the elliptical radius.
Right panels show the meridional section (R,Z) of the grid in the “cylindrical” scheme;
the grid is rectangular but arbitrarily spaced in both directions (parameters gridR,

gridz), and each even azimuthal harmonic term m ≤ mmax has a separate set of in-
dices. Again, the volume discretization elements are 0th degree B-splines in the case of
type="DensityCylindricalTopHat" (green indices at cell centers) and 1st degree B-splines
in the case of type="DensityCylindricalLinear" (red indices at grid vertices, excluding
the Z axis for m > 0, where the coefficients of the Fourier expansion of density are always
zero).

132

Density targets are used to produce a gravitationally self-consistent solution, in which
the total density of the weighted superposition of orbits agrees with the Laplacian of the grav-
itational potential in which the orbits are integrated. There are three discretization schemes,
which differ in the geometry of the spatial grid: classic, cylindrical, and spherical-harmonic.
The first two have two variants each, differing in the degree of B-spline basis set (0 – top-hat,
1 – linear), and the latter is always 1st degree. In the classic scheme, the volume is divided
into spherical or concentric ellipsoidal shells, the surface of each shell – into three panes, and
each pane – into K ×K cells, as shown in Figure 11, left panel. In DensityClassicTopHat,
the volume of the model is divided into these 3d cells, and the mass of each cell (density
integrated over the volume of the cell) serves as a single constraint. Equivalently, the volume
discretization elements are non-overlapping quasi-rectangular blocks, and the basis functions
have amplitude 1 in each cell and 0 elsewhere. In DensityClassicLinear, the basis func-
tions are ∧-shaped in all three directions (radial and two angular), with amplitude 1 reached
at a single vertex of the grid and linearly tapering to zero at adjacent vertices. At any point,
there are several (up to 8) overlapping basis functions, with their amplitudes summing up
to unity. The density integrated with these weight functions still has the meaning of mass,
but is associated with a grid vertex rather than grid segment, as shown in the above figure.

In the cylindrical scheme, the density is first expanded into Fourier series in the azimuthal
angle ϕ, and then each m-th term (m = 0, 2, . . . ,mmax) is represented with a 2d B-spline
basis set on the orthogonal grid in R, z, as shown in Figure 11, right panel. Similarly to the
previous scheme, DensityCylindricalTopHat has basis functions that are non-overlapping
and have amplitude 1 inside each cell of the 2d grid, while DensityCylindricalLinear

has ∧-shaped basis functions associated with grid vertices rather than segments. There is
an additional factor 2πR in the integration of density times the basis function, so that the
constraint values for the m = 0 term have the meaning of the mass in each grid cell or vertex
(hence

∑Ncons

n=1 Un is the total mass within the entire grid, similarly to the classic scheme).
The constraint values for higher Fourier terms (m > 0) can have positive or negative sign,
and should not be summed up to get the total mass. Since these higher-m terms must be
zero on the z axis from regularity conditions, 1st-degree basis functions at the leftmost vertex
in R are excluded from the basis set.

Finally, the DensitySphHarm scheme represents one radial coordinate with a B-spline
basis set, and two angular coordinates with the spherical-harmonic basis set with order
lmax,mmax. Both this and the previous schemes are conceptually similar to the Density-

SphericalHarmonic (Section A.4.1) and DensityAzimuthalHarmonic (Section A.4.2) classes,
which represent a 3d density profile as a corresponding interpolated function. The difference
is that in those classes, the free parameters are the values of Fourier or multipole coefficients
of density expansion at grid points, while in the target classes discussed in this section, the
free parameters have the dimension of mass (density integrated over some volume).

The choice of a particular discretization scheme should be tailored to the density profile
that is being represented: in the case of a spheroidal profile, classic or spherical-harmonic
schemes work best, while for a disky profile (possibly with a non-axisymmetric bar), cylindri-

133

cal grid is preferred. In all cases, the radial (and vertical, in the cylindrical scheme) grids are
defined by the user, typically with uniform or exponential spacing, and enclosing ≳ 90−99%
of the total mass.

Kinematic targets come in two flavors. One is KinemShell, which represents the density-
weighted radial and tangential velocity dispersions ρσ2

r,t as functions of radius, projected
onto the basis set of B-splines of degree=0..3 defined by gridr in spherical radius. It is
useful to constrain the velocity anisotropy profile β ≡ 1 − 1

2
σ2
t /σ

2
r : if U r

n and U t
n are two

equal-length arrays of these projections, then the constraints to be satisfied are written as
0 = 2(1− βn)U

r
n − U t

n, where βn is the value of β associated with n-th radial basis element.
This can be used in the context of “theoretical” Schwarzschild models, when the goal is to
construct a dynamically self-consistent model with the given density profile and have some
control on its kinematic structure by assuming some functional form of β(r).

More important in practice is the LOSVD target, which is used to constrain the kinematic
structure of the model by observed line-of-sight velocity distributions in the image plane.
There are several related ways of representing a LOSVD, and the relation between them is
explained below.

The orientation of the image plane in the intrinsic coordinate system associated with the
galaxy model is specified by three Euler angles α, β, γ, see Section A.3 for the definition,
and Figure 8 for an illustration. The intrinsic (model) coordinate system is denoted as
xyz, and the observational coordinate system – as XY Z, with Y axis pointing up in the
image plane, X axis pointing left (note the opposite of the usual convention!), and Z axis
pointing perpendicular to the image plane (along the line of sight) away from the observer.
This unusual sign convention for the X axis is a consequence of the right-handedness of
the coordinate frame. β is the usual inclination angle; γ is the angle between the line of
nodes (intersection of xy and XY planes) and the X axis, and α is the angle between the
line of nodes and the x (major) axis of the galaxy (it is relevant only for non-axisymmetric
systems). If there are several observational datasets, each one needs a separate instance of a
LOSVD target, with the parameters gamma possibly different between instances, and the other
two angles alpha, beta being identical.

The LOSVDs are recorded in several spatial regions (apertures), which are arbitrary
polygonal regions Ωa in the image plane. The apertures parameter should contain a list of
Na×2 two-dimensional arrays specifying the Na coordinates X, Y of a-th boundary polygon.
Often these apertures come from binning up pixels in a regular two-dimensional grid in the
image plane, e.g., using the Voronoi binning approach [14] or some other scheme. There is
a Python routine getBinnedApertures that reconstructs the boundary polygons from an
array describing the correspondence between bin indices and pixel coordinates. But any
alternative way of defining apertures (e.g. circular fibers, sectors in polar coordinates, or
spaxels of a long slit) is equally well possible to describe with arbitrary boundary polygons.

The effect of finite spatial resolution in the image plane is encoded in the point-spread
function (PSF) of the instrument. The parameter psf can be specified either as a single

134

number (the width of a circular Gaussian – not the full width at half maximum (FWHM),
which is 2.35× larger), or as a 2d array of several Gaussian components (the first column is
the width and the second is the relative fraction of this component, which should sum up to
unity).

The kinematic datacube is three-dimensional: two image-plane coordinates X, Y and the
line-of-sight velocity VZ . Accordingly, it is first recorded on a rectangular 3d grid in these
variables, and represented internally as a 3d tensor-product B-spline:

f(int)(X, Y, VZ) =
∑
i,j,k

Aijk B
(X)
i (X) B

(Y)
j (Y) B

(V)
k (VZ), (52)

where Aijk are the amplitudes and B(X), B(Y), B(V) are basis functions in each of the three
directions. Then the two spatial directions are convolved with the PSF and rebinned onto the
array of apertures. The output functions to be represented are the integrals of the LOSVD,
convolved with the spatial PSF, over the area of each aperture Ωa:

fa(VZ) =
∑
k

Aa,k B
(V)
k (VZ), (53a)

Aa,k =
∑
i,j

∫∫
X,Y ∈Ωa

dX dY

∫∫
dX ′ dY ′ (53b)

× Aijk B
(X)
i (X ′) B(Y)

j (Y ′) PSF
(√

(X −X ′)2 + (Y − Y ′)2
)
.

The amplitudes Aa,k of B-spline expansion in the velocity dimension (indexed by k = 1..NV)
for each aperture (indexed by a) are stored in the flattened one-dimensional output array:
each consecutive NV numbers refer to one aperture. The conversion between the internal
and the output representations is performed transparently to the user, using a single matrix
multiplication, for which the matrix is pre-computed in advance and combines the spatial
convolution and rebinning steps. The parameters provided by the user are: the grids in the
image plane gridx, gridy and velocity gridv, and the degree of B-spline basis set ranging
from 0 to 3 (although degree=2 or 3 is strongly recommended for a much greater accuracy at
the same grid size, as illustrated in the appendix of [76]). The image-plane grid should cover
all apertures, and preferrably have an extra margin of 2− 3 times the PSF width for a more
accurate convolution, but needs not be aligned with any of the apertures: the integration
over Ωa is performed exactly no matter what is the overlap between grid segments and
aperture polygons. The spatial size of the grid should be comparable with the PSF width
or the aperture size, whichever is larger. For instance, in the typical case that an adaptive
binning scheme is employed, the apertures may consist of a single spaxel of the detector in
the central area, typically smaller than the PSF width, and contain many such spaxels in the
outer parts of the image. Then one may define a non-uniform gridx with smaller segments
≃PSF width in the central part, which gradually become comparable to sizes of outermost
apertures towards the endpoints in X. The parameter gridy may be omitted if it is identical
to gridx.

135

One may also perform smoothing along the velocity axis by providing a nonzero velpsf

parameter. Since the integrated-light LOSVDs are usually produced by a spectral fitting
code in a velocity-deconvolved form, this is not needed (although won’t hurt if the smoothing
width is set to a significantly smaller value than the velocity dispersion). However, if the
LOSVD is computed from individual stellar velocities, this parameter may represent the
typical observational error (unfortunately, it is not easy to account for variable error bars
between individual measurements).

Finally, another important parameter is symmetry, which determines how the model
LOSVDs are symmetrized before producing the output array. Possible values are: symmetry=
’t’ for the triaxial geometry, in which a fourfold discrete symmetry {x, y} ↔ {−x,−y}, z ↔
−z holds even in the case of figure rotation; symmetry=’a’ for axisymmetric systems, which
is approximately enforced by randomizing the azimuthal angle ϕ for each recorded point;
or symmetry=’s’ for spherical systems, when both angles are randomized. This is per-
formed in the intrinsic coordinate system xyz before projection: for instance, two out
of four possible identical points in the triaxial case correspond to a reflection symmetry
f(X, Y, VZ) = f(−X,−Y,−VZ), but two other points project to coordinates unrelated to
X, Y . This parameter should be in agreement with the symmetry of the potential, but needs
to be provided separately, as the Target object has no knowledge of the potential.

Surface density is the integral of f(X, Y, VZ) along the velocity axis. When the Target

is applied to a Density object, it produces an array of aperture masses – integrals of PSF-
convolved LOSVDs over the area of each aperture and over velocity:

Ma ≡
∫

f(VZ) dVZ . (54)

In terms of the B-spline representation of the LOSVD, it can be expressed as the dot product
of the vector of amplitudes Aa,k (53b) by the vector of integrals of basis functions

Ik ≡
∫
B

(V)
k (VZ) dVZ . (55)

Observational constraints on the LOSVD do not come in the form of B-splines, therefore
one needs to convert the coefficients Aa,k (output by the Target object as a 1d flattened
array Un for the entire model, or a 2d array ui,n of coefficients for each i-th orbit) into a
form suitable for comparison with observations.

The observed LOSVDs are usually not normalized, i.e., they provide the distribution of
stars in velocities, but not the total luminosity in the given aperture. This quantity needs
to be computed from the model, by applying the LOSVD Target to the Density object.

Typically, the mass-to-light ratio of stars Υ is a free parameter in the models. When
changing the mass normalization of all galactic components (including dark matter, central
black hole, etc.) by the same factor Υ, one can reuse the same orbit library, but rescale the

136

model velocities by a factor
√
Υ before comparing the model LOSVDs to the observed ones.

The rescaled LOSVD is represented by a B-spline: f′a(VZ) =
∑

k A
′
a,k Bk

(√
ΥVZ

)
, where the

new set of basis functions is defined by the velocity grid multiplied by
√
Υ, and the new

amplitudes are A′
a,k = Aa,k/

√
Υ.

The observed LOSVD in a-th aperture is usually represented by some sort of basis-set
expansion f

(obs)
a (VZ) =

∑
l Ca,l Fa,l(VZ), with a vector of coefficients Ca ≡ Ca,l and the

set of basis functions Fa,l(VZ). This could be a B-spline basis, e.g., a velocity histogram
(0th-degree B-spline), in which case the basis functions are the same for all apertures, or a
Gauss–Hermite (GH) expansion (Section A.2.6), in which case the basis functions depend
on three additional parameters in each aperture – amplitude Ξa, center µa and width σa
of the Gaussian function, which is the zeroth term in the expansion. In either case, the
model LOSVDs can be reinterpolated onto the observational basis set(s), as explained in
the last paragraph of Section A.2.1. The transformation between the vector of (rescaled)
B-spline amplitudes of the model LOSVD A′

a and the vector of expansion coefficients in the
observational basis set Ca is described by a matrix multiplication: Ca = G−1 HA′

a, where
Hlk ≡ ⟨Fa,l, Bk⟩ and Glm ≡ ⟨Fa,l, Fa,m⟩ are the matrices of inner products of corresponding
basis functions.

Example of all these steps is provided below (a more elaborate Python script is given in
example_forstand.py). The apertures are Voronoi-binned as described in the file voronoi_-
bins.txt containing Naper rows and 3 columns: X and Y coordinates of bin centers, and
bin index. The kinematic measurements are provided in two alternative forms: (1) LOSVD
histograms in the file losvd_histograms.txt, containing Naper rows and 2Nbins columns,
each pair of consecutive columns giving the amplitude of LOSVD in a given bin of velocity
grid and its error estimate; (2) Gauss–Hermite moments in the file losvd_ghmoments.txt,
containing Naper rows and 12 columns – values and error estimates of µ, σ, h3..6.

vorbins = numpy.loadtxt("voronoi_bins.txt")

apertures = agama.schwarzlib.getBinnedApertures(

xcoords=vorbins[:,0], ycoords=vorbins[:,1], bintags=vorbins[:,2])

histfile = numpy.loadtxt("losvd_histograms.txt")

obs_gridv = numpy.linspace(-v_max, v_max, 16) # observational vel. grid, Nbins = 15
obs_degree= 0 # histograms are 0th-degree B-splines
hist_val = histfile[:,0::2]; hist_err = histfile[:,1::2] # odd/even columns
ghmfile = numpy.loadtxt("losvd_ghmoments.txt")

ghm_val = ghmfile[:,0::2]; ghm_err = ghmfile[:,1::2]

num_aper = len(apertures) # number of apertures = len(histfile) = len(ghmfile)

Define the density and LOSVD Target objects (only the necessary parameters are provided):

mod_gridx = numpy.linspace(-r_max, r_max, 50) # grid should cover all apertures
mod_gridv = numpy.linspace(-v_max, v_max, 25) # and all velocities in the model
mod_degree= 2 # degree of B-splines for representing model LOSVDs (use 2 or 3)

137

tar_los = agama.Target(type="LOSVD", gridx=mod_gridx, gridv=mod_gridv,

degree=mod_degree, apertures=apertures, symmetry="s", psf=psf)

mod_gridr = agama.nonuniformGrid(30, 0.01*r_max, 5.*r_max)

tar_den = agama.Target(type="DensitySphHarm", lmax=0, gridr=mod_gridr)

Assume we have a model potential pot, which also doubles as the density profile of stars,
and have constructed initial conditions for the orbit library in ic (2d array of shape num_-

orbits×6). Integrate the orbits while collecting the matrices u
(t)
i,n containing the contribution

of i-th orbit to n-th discretization element of t-th target:

mat_den, mat_los = agama.orbit(potential=pot, ic=ic, time=100.*pot.Tcirc(ic),

targets=[tar_den, tar_los])

Next we compute the required values of density and kinematic constraints. As explained
above, the observational kinematic profiles are not normalized, so we compute the overall
scaling factors Ma (54) from the model density profile. For GH moments, a couple of extra
steps are needed. First, the normalization is translated into the amplitude of the base Gaus-
sian, summing the contributions from all even GH moments (26a). Second, the uncertainties
on the mean and width of the Gaussian are converted into (approximate) uncertainties on
h1, h2, which can be incorporated into the linear equation system. Finally, we may need to
constrain the PSF-convolved surface density profile (aperture masses) separately from the
3d density profile, at least when working with GH moments (alternatively, one may add a set
of constraints that h0 be close to unity). This is expressed by a separate matrix constructed
by dot-multiplying the LOSVD matrix of B-spline amplitudes of each orbit by the vector of
B-spline integrals I (55). When fitting to LOSVD histograms directly, they will be already
normalized, so separate aperture mass constraints are not necessary.

cons_den = tar_den(pot) # required values of 3d density constraints
cons_sur = tar_los(pot) # aperture masses (surface density integrated over apertures)

row-normalize the provided histograms and multiply by aperture masses
obs_bsint = agama.bsplineIntegrals(degree=obs_degree, grid=obs_gridv)

num_obs_bs= len(obs_bsint) # number of bins in observed velocity histograms
hist_norm = hist_val.dot(obs_bsint) #

∫
f
(obs)
a (VZ) dVZ from the provided histograms

hist_val *= (cons_sur / hist_norm).reshape(num_aper, 1)

hist_err *= (cons_sur / hist_norm).reshape(num_aper, 1)

normalization of the GH series in each aperture with contributions from h4, h6
ghm_norm = 1 + ghm_val[:,3] * (24**0.5 / 8) + ghm_val[:,5] * (720**0.5 / 48)

parameters of GH series (amplitude, center, width)
gh_params = numpy.array([cons_sur/ghm_norm, ghm_val[:,0], ghm_val[:,1]]).T

ghm_err[:,0:2] /= 2**0.5 * ghm_val[:,1:2] # δh1 ≈ δv/
√
2σ, δh2 ≈ δσ/

√
2σ

ghm_val[:,0:2] *= 0 # set h1 = h2 = 0
num_obs_gh= ghm_val.shape[1] # order of GH expansion (6 in our case)

matrix of orbital contributions to aperture masses

138

mod_bsint = agama.bsplineIntegrals(degree=mod_degree, grid=mod_gridv)

num_mod_bs= len(mod_bsint) # number of velocity basis functions in each aperture NV

mat_sur = mat_los.reshape(num_orbits, num_aper, num_mod_bs).dot(mod_bsint)

Now construct a Schwarzschild model for a particular value of mass-to-light ratio Υ, scaling
the velocity grid of orbit LOSVDs by

√
Υ and their amplitudes by 1/

√
Υ before converting

them into the form compatible with the observational constraints.

mod_gridv_scaled = mod_gridv * Upsilon**0.5

If using LOSVD histograms, transform the matrix of B-spline amplitudes of orbit LOSVDs
into the matrix of histogram values (amplitudes of 0th-degree B-spline) defined by the ob-
servational velocity grid. This is achieved by the following conversion matrix:

conv = numpy.linalg.solve(

agama.bsplineMatrix(obs_degree, obs_gridv), # same as obs_bsint

agama.bsplineMatrix(obs_degree, obs_gridv, mod_degree, mod_gridv_scaled))

mat_kin = mat_los.reshape(num_orbits * num_aper, num_mod_bs). \
dot(conv.T). \
reshape(num_orbits, num_aper * num_obs_bs) * Upsilon**-0.5

cons_kin = hist_val.reshape(num_aper * num_obs_bs)

err_kin = hist_err.reshape(num_aper * num_obs_bs)

If using GH moments, the routine ghMoments transforms the matrix of B-spline amplitudes
of orbit LOSVDs into the matrix of GH moments computed in the observed GH basis de-
fined by parameter ghbasis (different in each aperture). This matrix has moments h0..h6 (in
this example num_obs_gh=6), but we don’t use h0 because it is not available observationally
(instead, we constrain the aperture mass), so we reshape the matrix and eliminate the 0th
column:

mat_kin = agama.ghMoments(degree=mod_degree, gridv=mod_gridv_scaled,

matrix=mat_los, ghorder=num_obs_gh, ghbasis=gh_params). \
reshape(num_orbits, num_aper, num_obs_gh+1)[:,:,1:]. \
reshape(num_orbits, num_aper * num_obs_gh) * Upsilon**-0.5

cons_kin = ghm_val.reshape(num_aper * num_obs_gh)

err_kin = ghm_err.reshape(num_aper * num_obs_gh)

Finally, solve the quadratic optimization problem to determine orbit weights. In this exam-
ple, we require that the 3d density and 2d aperture mass constraints be satisfied exactly (set
an infinite penalty for them), while the observational kinematic constraints should be satis-
fied as closely as possible, with the penalty proportional to the inverse squared observational
error:

weights = agama.solveOpt(

matrix=[mat_den.T, mat_sur.T, mat_kin.T], # list of matrices
rhs=[cons_den, cons_sur, cons_kin], # list of RHS vectors (constraints)

139

rpenq=[cons_den*numpy.inf, cons_sur*numpy.inf, 2*err_kin**-2]) # penalties

Many of the above steps are generally applicable to all observationally-constrained Schwarz-
schild models. The relevant routines and classes reside in the submodule agama.schwarzlib,
and the user- and model-specific tasks may be kept in a separate script adapted from the
template example_forstand.py.

140

References

[1] Ahnert K., Mulansky M., 2011, AIP Conf. Proc. 1389, 1586

[2] An J.H., Evans N.W., 2006, ApJ, 642, 752

[3] The Astropy collaboration, 2013, A&A, 558, A33

[4] Aumer M., Binney J., 2009, MNRAS, 397, 1286

[5] Bienaymé O., Robin A., Famaey B., 2015, A&A, 581, 123

[6] Binney J., 2012, MNRAS, 426, 1324

[7] Binney J., 2014, MNRAS, 440, 787

[8] Binney J., McMillan P., 2011, MNRAS, 413, 1889

[9] Binney J., McMillan P., 2016, MNRAS, 456, 1982

[10] Binney J., Spergel D., 1984, MNRAS, 206, 159

[11] Binney J., Tremaine S., 2008, Galactic Dynamics, Princeton Univ. press

[12] Binney J., Vasiliev E., 2023, MNRAS, 520, 1832

[13] Bovy J., 2015, ApJS, 216, 29

[14] Cappellari M., Copin Y., 2003, MNRAS, 342, 345

[15] Cappellari M., Emsellem E., 2004, PASP, 116, 138

[16] Carpintero D., Aguilar L., 1998, MNRAS, 298, 1

[17] Carpintero D., Maffione N., Darriba L., 2014, Astronomy & computing, 5, 19.

[18] Cohl H., Tohline J., 1999, ApJ, 527, 86

[19] Cohn H., 1980, ApJ, 242, 765

[20] Cole D., Binney J., 2017, MNRAS, 465, 798

[21] Cuddeford P., 1991, MNRAS, 253, 414

[22] Dehnen W., 1993, MNRAS, 265, 250

[23] Dehnen W., 1999, AJ, 118, 1201

[24] Dehnen W., 2000, ApJL, 536, L39

[25] Dehnen W., Binney J., 1998, MNRAS, 294, 429

[26] de Zeeuw T., 1985, MNRAS, 216, 273

[27] Gerhard O., 1993, MNRAS, 265, 213

[28] Gieles M., Zocchi A., 2015, MNRAS, 454, 576

[29] Green P., Silverman B., 1994, Nonparametric regression and generalized linear models,
Chapman&Hall, London

[30] Hahn T., 2005, Comput. Phys. Commun., 168, 78

141

[31] Hairer E., Nørsett S., Wanner G., 1993, Solving ordinary differential equations, Springer-
Verlag

[32] Hernquist L., Ostriker J., 1992, ApJ, 386, 375

[33] Hunter G., Sormani M., Beckmann J., et al., 2024, submitted

[34] Hyman J., 1983, J. Sci. Stat. Comput., 4, 645

[35] Jeffreson S., Sanders J., Evans N., et al., 2017, MNRAS, 469, 4740

[36] Joseph C., Merritt D., Olling R., et al., 2001, ApJ, 550, 668

[37] Kuijken K., Dubinski J., 1995, MNRAS, 277, 1341

[38] Makino J., Aarseth S., 1992, PASJ, 44, 141

[39] Martin R., 2008, Clean code, Prentice Hall

[40] McConnell S., 2004, Code complete, Microsoft press

[41] Merritt D., 2013, Dynamics and evolution of galactic nuclei, Princeton Univ. press

[42] Merritt D., Fridman T., 1996, ApJ, 460, 136

[43] Merritt D., Tremblay B., 1994, AJ, 108, 514

[44] Meyers S., 2005, Effective C++, Addison–Wesley

[45] O’Sullivan F., 1988, J.Sci.Stat.Comput., 9, 363

[46] Park B., Petrosian V., 1996, ApJS, 103, 255

[47] Pfenniger D., 1984, A&A, 134, 373

[48] Piffl T., Penoyre Z., Binney J., 2015, MNRAS, 451, 639

[49] Pontzen A., et al., ascl:1305.002

[50] Portail M., Gerhard O., Wegg C., Ness M., 2017, MNRAS, 465, 1621

[51] Portegies Zwart S., McMillan S., van Elteren E., Pelupessy I., de Vries N., 2013, Com-
put. Phys. Commun., 184, 3, 456

[52] Posti L., Binney J., Nipoti C., Ciotti L., 2015, MNRAS, 447, 3060

[53] Price-Whelan A., 2017, J. Open Source Software, 2, 388; ascl:1707.006

[54] Read J., Mamon G., Vasiliev E., et al., 2021, MNRAS, 501, 978

[55] Rein H., Spiegel D., 2015, MNRAS, 446, 1424

[56] Ruppert D., Wand M.P., Carroll R.J., 2003, Semiparametric regression, Cambridge
Univ. press

[57] Sanders J., 2012, MNRAS, 426, 128

[58] Sanders J., Binney J., 2016, MNRAS, 457, 2107

[59] Sanders J., Lilley E., Vasiliev E., Evans N.W., Erkal D., 2020, MNRAS, 499, 4973

[60] Schwarzschild M., 1979, ApJ, 232, 236

142

[61] Skokos Ch., 2010, LNP, 790, 63

[62] Silverman B., 1982, Annals of statistics, 10, 795.

[63] Sormani M., Sanders J., Fritz T., et al., 2022, MNRAS, 512, 1857

[64] Sormani M., Gerhard O., Portail M., Vasiliev E., Clarke J., 2022, MNRAS, 514, L5

[65] Springel V., 2010, MNRAS, 401, 791

[66] Springel V., Pakmor R., Zier O., Reinecke M., 2021, MNRAS, 506, 2871

[67] Sutter H., Alexandrescu A., 2004, C++ coding standards, Addison–Wesley

[68] Teuben P., 1995, in Shaw R. A., Payne H. E., Hayes J. J. E., eds, ASP Conf. Ser. 77,
Astronomical data analysis software and systems IV, p.398, San Francisco

[69] Valluri M., Merritt D., 1998, ApJ, 506, 686

[70] van der Marel R., Franx M., 1993, ApJ, 407, 525

[71] Vasiliev E., 2013, MNRAS, 434, 3174

[72] Vasiliev E., 2015, MNRAS, 446, 3150

[73] Vasiliev E., 2017, ApJ, 848, 10

[74] Vasiliev E., 2019, MNRAS, 482, 1525

[75] Vasiliev E., Athanassoula E., 2015, MNRAS, 450, 2842

[76] Vasiliev E., Valluri M., 2020, ApJ, 889, 39

[77] Vasiliev E., Belokurov V., Erkal D., 2021, MNRAS, 501, 2279

[78] Zemp M., Gnedin O., Gnedin N., Kravtsov A., 2011, ApJS, 197, 30

[79] Zhao H.-S., 1996, MNRAS, 278, 488

Agama logo is designed by Tatiana Morozova.

143

	Overview
	Structure of the Agama C++ library
	Low-level foundations
	Math routines
	Units
	Coordinates
	Particles
	Utilities

	Potentials
	Analytic potentials
	Multipole expansion
	Azimuthal harmonic expansion
	Potential factory
	Modifiers and time-dependent density/potential types
	Utility functions

	Orbit integration and analysis
	Action/angle variables
	Isochrone mapping
	Spherical potentials
	Stäckel approximation
	Torus mapping

	Distribution functions
	Disky components
	Spheroidal components
	Spherical DFs constructed from a density profile
	Spherical isotropic models

	Galaxy modelling framework
	Moments of distribution functions
	Conversion to/from N-body models
	Iterative self-consistent modelling
	Schwarzschild orbit-superposition modelling

	Interfaces with other languages and frameworks
	Python interface
	Fortran interface
	C interface
	Interoperability with Galpy
	Interoperability with Gala
	Amuse plugin
	Nemo plugin
	Arepo and Gadget4 plugins

	Tests and example programs
	Technical details
	Developer's guide
	Mathematical methods
	Basis-set approximation of functions
	B-splines
	Spline interpolation
	Penalized spline regression
	Penalized spline density estimate
	Gauss–Hermite series
	Sampling

	Coordinates
	Potentials
	Multipole expansion
	CylSpline expansion

	Orbit integration and the variational equation
	Action/angle transformation
	Stäckel approximation

	Distribution functions
	Spherical anisotropic DFs
	Spherical isotropic DFs and the phase-volume formalism

	Schwarzschild modelling

	References

