
 Bootstrapping Applications via AWS CloudFormation 1

Bootstrapping Applications via AWS CloudFormation
With AWS CloudFormation, you write templates to define the set of resources that you need to run
your applications. These resources might include Amazon Elastic Cloud Compute (EC2) instances,
Amazon Relational Database Service (RDS) instances, and Elastic Load Balancing load balancers.
The template describes what resources you need and AWS CloudFormation provisions those
resources in an orderly and predictable fashion, creates them in parallel where possible, and deals
with any failures or transient issues. For more information about using AWS CloudFormation see
the AWS CloudFormation product detail page.

Although AWS CloudFormation takes care of provisioning all the resources, you still must deploy,
configure, and run (bootstrap) your applications on an Amazon EC2 instance. You have many
options for bootstrapping your applications, each of which affects how quickly your application is
ready and how flexible your deployment methods can be. The following sections describe how
AWS CloudFormation can help you to configure and install your application on Amazon EC2
instances.

Overview
Before describing the details, a brief overview of various techniques will show you the options and
help you understand the trade-offs for each solution.

Using CloudInit and Amazon EC2 User Data to Customize an Instance at Launch Time

With CloudInit, you can pass executable actions to instances at launch time through the Amazon
EC2 user-data fields so you can configure and customize the instances at launch time. Both the
Ubuntu Linux AMI and the Amazon Linux AMI contain a version of CloudInit. Dynamically
configuring an AMI at startup means you can use a common base AMI for different use cases.

By using CloudInit to execute scripts at launch time, you can download and install software
without having to have the applications preinstalled in the AMI. For more details about CloudInit,
see the following resources:

• Amazon Linux AMI Basics
• Ubuntu CloudInit documentation

Because applications are installed and configured at launch time, the applications can take longer
to get up and running. In some cases, such as scaling out an application with Auto Scaling, the
additional time to have an instance in service might be problematic because they are launched
when you need to meet additional demand. To speed up the instance launch, you can use a hybrid
solution where some of the core, stable application components are built into the AMI (such as
base infrastructure services) and components that change more frequently are installed at launch
time. This solution gives you the flexibility to easily upgrade the application version on new
instances. By combining AMI deployments with CloudInit, you have control of the trade-offs
between instance launch time and flexibility to change application components.

Note: Before you use CloudInit, consider the following constraints:

http://aws.amazon.com/cloudformation/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/LinuxAMIUserGuide.html
https://help.ubuntu.com/community/CloudInit
http://aws.amazon.com/autoscaling

 Bootstrapping Applications via AWS CloudFormation 2

• The CloudInit script is passed by using the Amazon EC2 user data field. This field has a size
limit of 16K bytes.

• Because CloudInit is script-based, it is nondeclarative, making it challenging to audit
exactly what is installed.

The Windows AMIs that are provided by Amazon Web Services have a similar mechanism to
CloudInit that allows you to run scripts at instance launch. For more details see Configuring a
Windows Instance Using the EC2Config Service.

Using AWS CloudFormation Metadata and Helper Scripts

You can use AWS CloudFormation templates to define the set of packages, files, and operating
system services that are installed on EC2 instances in a declarative way. AWS CloudFormation
helper scripts run on the instance to interpret the definitions in your template, installing packages,
creating files, and starting or restarting services on the instance.

The AWS CloudFormation helper scripts build on the basic CloudInit functionality so that you can
create a common, simple CloudInit startup script that is driven from the template. You describe
what applications need to be installed on the host in the template and AWS CloudFormation takes
care of how they are installed.

In later sections, you’ll see how to define packages, files, and other artifacts in your template.
You’ll also see a simple CloudInit script for installing your applications at instance launch time.

Other Strategies

Baking Your Application into an Amazon Machine Image (AMI)
Amazon Web Services (AWS) publishes many Amazon Machine Images (AMIs) that contain
common software configurations for public use. In addition, the AWS developer community has
published many custom AMIs. You can also create your own custom AMIs so that you can quickly
and easily start new instances that have everything you need for your application. For example, if
your application is a website or a web service, your AMI could include a web server, the associated
static content, and the code for the dynamic pages. After you launch an instance with this AMI,
your application is running and ready to accept requests.

Amazon EC2 provides an instance metadata store that can be accessed locally from the instance.
You can use the data stored in the instance metadata store to further customize AMIs while the
EC2 instance is being launched. For example, the database connection string can be passed to the
EC2 instance through the instance metadata store, enabling the same AMI to be used by multiple
applications that access different Amazon RDS database instances.
The EC2 user guide shows you how to create and manage AMIs.

AMIs provide you with a way to create golden images containing a well-defined set of OS and
application versions as well as files and other configurations that you can use over and over, so
that each instance has the same software installed and is configured in the same way. In addition,
all of the software is preinstalled and ready as soon as the instance launches, making AMI-based
deployments fast.

With AMI-based deployments, each time you want to upgrade your applications, apply patches, or
change configuration settings that are baked into the AMI, you need to create a new AMI. Because

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?AESDG-chapter-instancedata.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/AMIs.html

 Bootstrapping Applications via AWS CloudFormation 3

of this, you must define a strategy for versioning your AMIs and operational processes to ensure
new EC2 instances are launched with your latest AMI version.

Integration with Chef and Puppet
Chef is an open source infrastructure automation solution, written in Ruby. Chef automates the
configuration of your systems and the applications that sit on top of it. It is a client-server
application where clients pull the configuration from the Chef server, and all the work to
transform the configuration into an instance that serves a function takes place on the instance
itself.

Puppet is an Open Source IT services platform developed under the guidance of the team at
Puppet Labs. With Puppet, you can manage the provisioning, patching, and configuration of
operating systems and their application stacks efficiently as your infrastructure grows. Puppet is a
client-server application where clients pull configuration from a puppet master.

By building on the ability to define packages, files, and configurations in an AWS CloudFormation
template, you can use AWS CloudFormation to do the following :

1. Bootstrap your EC2 instances with the Chef or Puppet client software
2. Deploy and configure a Chef server or a puppet master

In addition to the basic bootstrapping, AWS CloudFormation provides plug-ins to the Chef and
Puppet client software so you can define configuration keys in the template metadata for
bootstrapping applications (such as the host name of the database to connect to). This provides an
easy, one-stop-shop to define the role for a server and any runtime properties that the role might
require.

You can find more details of how to integrate with Chef and Puppet in the following whitepapers:

• Integrating AWS CloudFormation with Chef
• Integrating AWS CloudFormation with Puppet

Customizing Instances with CloudInit and EC2 User Data
When you launch an instance using an Amazon Machine Image (AMI), you can pass information to
the AMI to customize it at instance launch time. Amazon EC2 provides a user data field as part of
the Amazon EC2 instance metadata store that can be populated at instance launch. The user data
is passed as a base64 encoded string and is available locally on the instance when the instance is
running.

AWS CloudFormation also provides a number of intrinsic functions such as Fn::Base64 and Fn::Join
along with Ref and Fn::GetAtt that you can use to construct strings that get passed to the Amazon
EC2 user data. The actual format of the string is entirely up to you and your application. The
format can be key-value pairs in a form like this:
Key1=Value1;Key2=Value2;Key3=Value3
Key1=Value1&Key2=Value2&Key3=Value3
{Key1=>Value1, Key2=>Value2, Key3=>Value3}

The following snippet is an example of a configuration string for a database:

http://www.puppetlabs.com/
https://s3.amazonaws.com/cloudformation-examples/IntegratingAWSCloudFormationWithOpscodeChef.pdf
https://s3.amazonaws.com/cloudformation-examples/IntegratingAWSCloudFormationWithPuppet.pdf

 Bootstrapping Applications via AWS CloudFormation 4

Database=Foo:3306&DBUser=admin&DBPassword=admin&WSPort=80

"MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Properties": {
 :
 "UserData": {
 "Fn::Base64": { "Fn::Join": ["", [
 "Database=", {"Fn::GetAtt": ["SampleDB", "Endpoint.Address"]}, ":", {"Ref": "DatabasePort"}, "&",
 "DBUser=", {"Ref": "DatabaseUser"}, "&",
 "DBPassword=", {"Ref": "DatabasePassword"}, "&",
 "WSPort=", {"Ref": "WebServerPort"}
]]}}
 }
 }
}

The instance must have a script that retrieves the string from the Amazon EC2 metadata store and
acts on it. The user data can be retrieved by using wget or an equivalent command from the
Amazon EC2 metadata store on the instance at http://169.254.169.254/latest/user-data.
Note that the metadata store is accessed by using a URL at a constant IP address; the metadata
store is always local and accessible at this specific IP address, no matter what the platform—
Linux, Windows, etc.

You can also use a helper script on Amazon Linux AMIs (/opt/aws/bin/ec2-metadata) to
extract the user data and any other metadata from the metadata store.

$ /opt/aws/bin/ec2-metadata --help
ec2-metadata v0.1.2
Use to retrieve EC2 instance metadata from within a running EC2 instance.
e.g., to retrieve instance ID: ec2-metadata -i
 to retrieve AMI ID: ec2-metadata -a
 to get help: ec2-metadata --help
For more information on Amazon EC2 instance meta-data, refer to the documentation at
http://docs.amazonwebservices.com/AWSEC2/2008-05-05/DeveloperGuide/AESDG-chapter-instancedata.html

Usage: ec2-metadata <option>
Options:
--all Show all metadata information for this host (also default).
-a/--ami-id The AMI ID used to launch this instance.
-l/--ami-launch-index The index of this instance in the reservation (per AMI).
-m/--ami-manifest-path The manifest path of the AMI with which the instance was launched.
-n/--ancestor-ami-ids The AMI IDs of any instances that were rebundled to create this AMI.
-b/--block-device-mapping Defines native device names to use when exposing virtual devices.
-i/--instance-id The ID of this instance
-t/--instance-type The type of instance to launch. For more information, see Instance Types.
-h/--local-hostname The local hostname of the instance.
-o/--local-ipv4 Public IP address if launched with direct addressing; private IP address if
launched with public addressing.
-k/--kernel-id The ID of the kernel launched with this instance, if applicable.
-z/--availability-zone The Availability Zone in which the instance launched. Same as placement
-c/--product-codes Product codes associated with this instance.
-p/--public-hostname The public host name of the instance.
-v/--public-ipv4 NATted public IP Address
-u/--public-keys Public keys. Only available if supplied at instance launch time
-r/--ramdisk-id The ID of the RAM disk launched with this instance, if applicable.
-e/--reservation-id ID of the reservation.
-s/--security-groups Names of the security groups the instance is launched in. Only available if

 Bootstrapping Applications via AWS CloudFormation 5

supplied at instance launch time
-d/--user-data User-supplied data. Only available if supplied at instance launch time.

For details on using the Amazon EC2 metadata store, see the Amazon EC2 user guide.

For many Linux AMIs, you can add your scripts to the /etc/rc.local boot script, which would run
your configuration scripts when the instance is launched as the root user. In general, you should
check out the boot details for your specific operating system build to figure out where to deploy
your boot script and what credentials the script uses.

The user data field is immutable. After an instance is launched, you cannot modify the user data
field, which might affect the configuration information that you want it to convey. To work around
this, try passing the location of an Amazon SimpleDB domain or an Amazon Simple Storage Service
(S3) bucket through the user data rather than the data itself. Doing so lets you make changes to
the actual data in the data store without having to change the location of the configuration
information.

The downside of using other stores is that you will need to make sure a valid set of user
credentials is available on the instance. You can pass credentials to the instance in user data;
however, we recommend that if you do this, you pass the AWS access key ID and secret key of an
AWS Identity and Access Management (IAM) user with limited permissions. You should grant the
IAM user only the read access permissions it needs to retrieve the configuration information.

You can use AWS CloudFormation to create IAM users, groups, and policies. From a within a single
template, you can create a user, set appropriate polices, create an access key ID and secret key
pair, and then add the credentials to the instance through the user data. By adding the IAM user in
the template, you have a user whose existence is tied to the lifetime of the stack, with each new
stack having a separate, unique user.

Using AWS CloudFormation Metadata and Helpers
In the AWS CloudFormation template metadata, you can attach metadata to any resource. Any
intrinsic functions (such as Fn::GetAtt and Ref) in the metadata are resolved by AWS
CloudFormation when you create a stack. Applications can retrieve the metadata by using the aws
cloudformation get-stack-resource command line tool or the GetStackResource API call,
specifying the stack name and the logical resource name.

The following example of the uses the AWS CloudFormation metadata to define an application
configuration:
"Ec2Instance" : {
 "Type" : "AWS::EC2::Instance",
 "Metadata" : {
 "Comment" : "This metadata is available via the DescribeStackResource API call",
 "QueueSize" : "30",
 "CName" : { "Fn::GetAtt": ["MyLoadBalancer", "DNSName"] },
 "RDSConnectionString" : { "Fn::Join" : ["", [
 "jdbc:mysql://",
 { "Fn::GetAtt" : ["MyDB", "Endpoint.Address"] }, ":",
 { "Fn::GetAtt" : ["MyDB", "Endpoint.Port"] }, "/",
 { "Ref" : "DatabaseName" }]]}

http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/index.html?AESDG-chapter-instancedata.html

 Bootstrapping Applications via AWS CloudFormation 6

 },
 :
}

In this example, the metadata defines four key-value pairs:

• Comment is a text value that you can use in the metadata to insert resource-specific
comments into the template.

• QueueSize is a numeric value.
• CName is a string value whose value is the DNSName attribute of the MyLoadBalancer

Elastic Load Balancing load balancer that is defined elsewhere in the template.
• RDSConnectionString is a string value that is constructed by using the Fn::Join, Ref,

and Fn::GetAtt intrinsic functions to construct a JDBC connection string from an RDS
instance and the DatabaseName parameter defined elsewhere in the template.

By using AWS CloudFormation metadata, you can pass configuration values to applications
running in an Amazon EC2 instance in much the same way as using the Amazon EC2 user data
field. Unlike the immutable user data field, the resource metadata can be updated dynamically by
using the aws cloudformation update-stack command line tool or the UpdateStack API.

Note: Before you use the template metadata, consider the following constraints:

• You must have valid AWS credentials on the Amazon EC2 instance to make the
DescribeStackResource API call or use the aws cloudformation describe-stack-
resource CLI command.

• The metadata is stored by the AWS CloudFormation service and is not locally stored on the
instance. In other words, the bootstrapping sequence depends on your instance’s
connection to the AWS CloudFormation service.

In order to read the metadata from an Amazon EC2 instance that is created in the template, we
recommend using an IAM role that is passed to the instance at launch by using an instance profile.
For more information on IAM roles and EC2 instance profiles, see Granting Applications that Run
on Amazon EC2 Instances Access to AWS Resources in the AWS Identity and Access Management
User Guide.

The following example creates an IAM role and passes it to the Amazon EC2 instance through the
EC2 instance profile.

Resources: {

 myEC2Instance: {
 Type: "AWS::EC2::Instance",
 Properties: {
 :
 IamInstanceProfile: { Ref: "RootInstanceProfile" },
 :
 }
 },

http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

 Bootstrapping Applications via AWS CloudFormation 7

 RootRole: {
 Type: "AWS::IAM::Role",
 Properties: {
 AssumeRolePolicyDocument: {
 Statement: [{
 Effect: "Allow",
 Principal: { Service: ["ec2.amazonaws.com"] },
 Action: ["sts:AssumeRole"]
 }]},
 Path: "/"
 }
 },

 RolePolicy: {
 Type: "AWS::IAM::Policy",
 Properties: {
 PolicyName: "root",
 PolicyDocument: {
 Statement: [{
 Effect: "Allow",
 Action: "cloudformation:DescribeStackResource",
 Resource: "*"
 }]},
 Roles: [{ Ref: "RootRole" }]
 }
 },

 RootInstanceProfile: {
 Type: "AWS::IAM::InstanceProfile",
 Properties: {
 Path: "/",
 Roles: [{ Ref: "RootRole" }]
 }
 }
:
}

In the previous example, we created an IAM role that has a policy that grants permission to call the
AWS CloudFormation DescribeStackResource API only. If you use the AWS Command Line
Interface or the AWS SDKs from the EC2 instance to access the metadata in the template,
temporary credentials that are associated with the IAM role are automatically used in the call to
the AWS CloudFormation service.

Your application might also require access to other AWS services when it is running. Because only
one IAM role can be associated with an EC2 instance when you use an instance profile, you need to
grant additional permissions to the role in the template, depending on your application needs.

 Bootstrapping Applications via AWS CloudFormation 8

Installing Packages and Files Using AWS CloudFormation Helpers

If you are installing and configuring your applications on Amazon EC2 dynamically at instance
launch time, you typically need to pull and install packages, deploy files, and ensure that services
are started. AWS CloudFormation provides a set of helper scripts (written in Python) that, in
conjunction with the resource metadata you defined in the template, can be used to install
software and start services. These helper scripts are run on the Amazon EC2 instance.

Currently, AWS CloudFormation provides the following helper scripts:

• cfn-init: Retrieves and interprets the resource metadata to install packages, create files,
and start services.

• cfn-signal: A simple wrapper to signal an AWS CloudFormation WaitCondition for
synchronizing other resources in the stack when the application is ready.

• cfn-get-metadata: A wrapper script that retrieves either all metadata that is defined for a
resource or path to a specific key or a subtree of the resource metadata.

• cfn-hup: A daemon that checks for updates to metadata and executes custom hooks when
changes are detected.

These scripts are installed by default on Amazon Linux AMIs in the /opt/aws/bin directory. The
scripts are also available through RPM and source for other Linux/Unix distributions. These
scripts are installed on Amazon Windows AMIs by default. If you create your own Windows image
for use with CloudFormation, see Configuring a Windows Instance Using EC2ConfigService in
the Amazon EC2 Microsoft Windows Guide for instructions. You must set up a Windows instance
with EC2ConfigService to work with the AWS CloudFormation bootstrapping tools.

The scripts are not executed by default. The following sections show you how to set up the scripts
and execute them when your instances are launched.

Metadata Block Format
The cfn-init script uses the resource metadata that is defined in the
AWS::CloudFormation::Init metadata key. The configuration is separated into a number of
sections for archives, packages, files, and services. The following example shows how you can
attach metadata for cfn-init to an Amazon EC2 instance resource within a template:
"Resources": {
 "MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "config" : {
 "packages" : {
 :
 },
 "users" : {
 :
 },
 "groups" : {
 :
 },
 "sources" : {
 :
 },

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html

 Bootstrapping Applications via AWS CloudFormation 9

 "files" : {
 :
 },
 "commands" : {
 :
 },
 "services" : {
 :
 }
 }
 }
 },
 "Properties": {
 :
 }
 }
}

The configuration sections are executed in the following order:

• The Packages section downloads and installs prepackaged applications and components.
The cfn-init script currently supports the following package formats: apt, yum,
rubygems, python, rpm, and MSI (on Windows).

• The Users section creates user accounts on the local OS. (Not supported on Windows.)
• The Groups section creates user groups on the local OS. (Not supported on Windows.)
• The Sources section downloads an archive file and unpacks it in a target directory on the

EC2 instance. The following formats are supported: tar, tar+gzip, tar+bz2, and zip.
• The Files section creates arbitrary files by using the Files option. The content can be

inline from the template or the content can be pulled from a URL.
• The Commands section executes arbitrary commands on the instance.
• The Services section defines which services should be enabled or disabled when the

instance is launched.

Each of these sections is described in detail with example configurations in the
AWS::CloudFormation::Init section of the AWS CloudFormation User Guide. For more details about
Windows, see Bootstrapping AWS CloudFormation Windows Stacks.

Running cfn-init

The cfn-init helper script interprets the metadata that contains the sources, packages, files, and
services. You run the script on the EC2 instance when it is launched. The script is installed by
default on Amazon Linux and Windows AMIs.

If you are running other Linux AMIs, you must install the AWS CloudFormation helper scripts.
Because these scripts need to run at boot time, you need to install them by using CloudInit (if your
OS has CloudInit support) or bake an AMI with the OS and the CloudFormation helper scripts
installed.

For more information about cfn-init, see cfn-init in the AWS CloudFormation User Guide.

The cfn-init helper script uses the DescribeStackResource API call to get the metadata from
the AWS CloudFormation service. We strongly recommend that you use IAM roles and EC2

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-windows-stacks-bootstrapping.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-init.html

 Bootstrapping Applications via AWS CloudFormation 10

instance profiles to set credentials on the instance. Do not use the --access-key, --secret-key, --
role or the --credential-file options for cfn-init. These are supported for backward
compatibility only.

Because the metadata can be attached to any of the resources in the template, the cfn-init script
takes the stack name (or stack ID) and the logical resource name that contains the metadata you
want to use.

We recommend that you put your entire instance configuration into a single metadata property
and run a single cfn-init command to configure the instance. You can create a single bootstrap
script with which you can install any application. The following example shows a simple bootstrap
script for an Amazon Linux AMI:
#!/bin/bash
/opt/aws/bin/cfn-init –-stack <stackname> --resource <resourcename> --region <region>

Using the intrinsic functions, you can inject this script into the base Amazon Linux AMI via the
user data field, as shown in the following example (the bootstrap script runs as root):
"MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata": {
 :
 },
 "Properties": {
 :
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash\n",
 "/opt/aws/bin/cfn-init ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
]]}}
 }
}

We recommend you use the latest version of the AWS CloudFormation bootstrap scripts when you
launch an Amazon Linux AMI. To ensure that happens, add a yum update command to the user
data script, as shown in the following example:
"MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata": {
 :
 },
 "Properties": {
 :
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash\n",
 "yum update -y aws-cfn-bootstrap\n",
 "/opt/aws/bin/cfn-init ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
]]}}
 }

 Bootstrapping Applications via AWS CloudFormation 11

}

The following sample is a bootstrapping example on Windows:
"MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata": {
 :
 },
 "Properties": {
 :
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "<script>\n",
 "cfn-init.exe ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
 "</script>\n"
]]}}
 }
}

In the previous example, the bootstrap script picks up the metadata from the Amazon EC2
instance. The script uses the pseudo parameters AWS::StackName and AWS::Region to get the
stack name and the region in which the stack is created.

If you are not using the Amazon Linux AMI, Ubuntu, or Windows, you can execute the bootstrap
script through standard techniques for the specific operating system. For example, on operating
systems that support rc.local, you can append the bootstrap script to the rc.local startup
script so that the script is executed on boot.

Waiting for Applications to Be Ready Before Continuing

In some cases, you might need to wait for an application to be deployed and running on one or
more EC2 instances before the stack creation process can continue or be completed. To provide
synchronization between the helper scripts on the instance and other resources in the template,
AWS CloudFormation supports a WaitCondition resource. You can think of a wait condition as a
timed semaphore. When the WaitCondition resource is created, a timer is started. The
WaitCondition becomes CREATE_COMPLETE after it receives a signal. If no signal is received
before the timeout, the WaitCondition enters the CREATE_FAILED state and the stack creation is
rolled back.

To wait for the application to be ready, we can extend the previous template to create a
WaitCondition and a WaitConditionHandle. Then use the cfn-signal helper script to signal
that the application is installed. The cfn-signal script is a wrapper that makes it easy to signal a
wait object from your bootstrap script.

For more information about cfn-signal, see cfn-signal in the AWS CloudFormation User Guide.

Extending the previous example, the following example creates a WaitCondition and a
WaitConditionHandle. The cfn-signal is added to the bootstrap script.
"MyInstance": {

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-signal.html

 Bootstrapping Applications via AWS CloudFormation 12

 "Type": "AWS::EC2::Instance",
 "Metadata": {
 :
 },
 "Properties": {
 :
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash\n",
 "yum update -y aws-cfn-bootstrap\n",
 "/opt/aws/bin/cfn-init ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
 "/opt/aws/bin/cfn-signal -e $? '", { "Ref" : "MyHandle" }, "'\n",
]]}}
 }
},

"MyHandle" : {
 "Type" : "AWS::CloudFormation::WaitConditionHandle"
},

"MyWaitCondition" : {
 "Type" : "AWS::CloudFormation::WaitCondition",
 "DependsOn" : "MyInstance",
 "Properties" : {
 "Handle" : {"Ref" : "MyHandle"},
 "Timeout" : "600"
 }
}

In the previous example, the WaitConditionHandle is signaled with the return status from cfn-
init (using the $? shell construct). By using a wait condition, if the application installation fails,
the WaitCondition creation fails and the stack is rolled back.

Note the DependsOn property in the WaitCondition. The DependsOn property ensures that the
WaitCondition is created after the EC2 instance is launched and guarantees that the timer that is
associated with the WaitCondition does not start until the instance is running and the
configuration scripts can run. Without the DependsOn, the WaitCondition could be created at
any time during the stack creation process, making the timer nondeterministic. (AWS
CloudFormation picks the optimal way to start resources based on a dependency tree.)

The following example shows how to add a signal for Windows:
"MyInstance": {
 "Type": "AWS::EC2::Instance",
 "Metadata": {
 :
 },
 "Properties": {
 :
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "<script>\n",
 "cfn-init.exe ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource MyInstance ",
 " --region ", { "Ref" : "AWS::Region" }, "\n",

 Bootstrapping Applications via AWS CloudFormation 13

 "cfn-signal.exe -e %ERRORLEVEL% ", {"Fn::Base64" : {"Ref" : "MyHandle"}}, "\n"
 "</script>\n"
]]}}
 }
},

"MyHandle" : {
 "Type" : "AWS::CloudFormation::WaitConditionHandle"
},

"MyWaitCondition" : {
 "Type" : "AWS::CloudFormation::WaitCondition",
 "DependsOn" : "MyInstance",
 "Properties" : {
 "Handle" : {"Ref" : "MyHandle"},
 "Timeout" : "600"
 }
}

For more details of using the WaitCondition resource, see the AWS CloudFormation User Guide.

Dealing with Stack Updates Using cfn-hup

With AWS CloudFormation you can update a stack after it has been created by using the aws
cloudformation update-stack command or the UpdateStack API call. The stack update can
be a simple change to a parameter value or a more complex update that updates, adds, or removes
resources. AWS CloudFormation updates resource properties, adds new resources, or removes
unwanted resources, but these changes might affect the applications running on instances in one
of two ways:

1. Changing a resource in the template might require an update to the configuration of an
instance. For example, if you add a database to the template for scaling, the application on
an instance must be provided with the new connection string, and the instance might need
to be restarted.

2. The metadata on the instance might have been updated. For example, you could update the
version of a package that was deployed, add additional files, add additional packages, or
run additional commands.

AWS CloudFormation provides the cfn-hup helper to reconfigure, restart, or update an
application on an instance as part of the stack update process. The cfn-hup helper is a daemon
that takes the actions that are specified in the resource metadata after it detects changes in
resource metadata. You can use the daemon to make configuration updates on your running
Amazon EC2 instances through UpdateStack.

For more information about cfn-hup, see cfn-hup in the AWS CloudFormation User Guide.

The cfn-hup helper must be configured to inspect the correct stack. This configuration is stored
in the cfn-hup configuration file cfn-hup.conf.

http://docs.amazonwebservices.com/AWSCloudFormation/latest/UserGuide/index.html?using-cfn-waitcondition.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-hup.html

 Bootstrapping Applications via AWS CloudFormation 14

Note: The cfn-hup helper uses the AWS credentials from the IAM role to retrieve the metadata.
The IAM role is passed to the instance profile when the Amazon EC2 instance is created.

[main]
stack=<stack-name-or-id>

By default, every 10 minutes cfn-hup checks for changes in each resource path it is given. If a
change to the requested metadata is detected, the user action is triggered. User actions (also
known as hooks) are defined in a hook configuration file. Hooks are uniquely named, and each
hook is configured in one section, as shown in the following example:

[hookname]
triggers=post.add|post.update|post.remove
path=Resources.<logicalResourceId>.Metadata<.optional.path>
action=<arbitrary shell command>
runas=<runas user>

This example includes the following elements:

• hookname (the section header) is a unique name for this hook.
• triggers is a comma-delimited list of conditions to detect. The conditions that are

currently supported are post.add, post.update, and post.remove.
• path is the location of the metadata object. The path element supports an arbitrarily

deep path within the Metadata block.
• Action is an arbitrary shell command (runs as specified).
• runas is an optional user. cfn-hup uses the su command to switch to the user.
• When the action is run, it runs in a copy of the environment that cfn-hup is in, with

CFN_OLD_METADATA set to the previous value of path and CFN_NEW_METADATA set to
the current value.

To support composition of several applications deploying change notification hooks, cfn-hup
supports a directory /hooks.d that is located in the hooks configuration directory. Each file
within this directory is parsed and loaded that uses the same layout as hooks.conf. If any hooks
in hooks.f have the same name as a hook in hooks.conf, they are merged with hooks.d,
overwriting any values in hooks.conf that both specify.

The hooks configurations are loaded when the cfn-hup daemon starts up, so new hooks require
the daemon to be restarted. A cache of previous metadata values is stored at /var/lib/cfn-
hup/data/metadata_db (not human readable). This cache can be blown away to force cfn-hup
to run all post.add actions again.

Dynamic Software Updates Using cfn-hup and cfn-init

As described in the previous section, the cfn-hup helper is a small daemon that you can use to
execute hooks when the metadata on a resource is changed through the AWS Management
Console, the aws cloudformation update-stack command, or the UpdateStack API call. The

 Bootstrapping Applications via AWS CloudFormation 15

cfn-init function takes the packages and files that are defined in the metadata and installs them
on your Amazon EC2 instance. By combining cfn-hup hooks with the cfn-init script, you can
automatically install new versions of software when you change the metadata by updating the
stack template.

The following example is a hook file that you might install by using the files section in the
AWS::CloudFormation::Init metadata in your template:
"/etc/cfn/hooks.d/cfn-auto-reloader.conf" : {
 "content": {
 "[cfn-auto-reloader-hook]\n",
 "triggers=post.update\n",
 "path=Resources.WebServer.Metadata.AWS::CloudFormation::Init\n",
 "action=/opt/aws/bin/cfn-init "
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource WebServer ",
 " --region ", { "Ref" : "AWS::Region" }, "\n",
 "runas=root\n"
 }
}

In this file, we define a cfn-hup hook that looks for changes to the metadata that is defined in the
WebServer resource in the stack and calls cfn-init if there is a change. If the metadata changes,
cfn-init looks at all the versions of the packages that are defined for the WebServer resource
and, if there has been a change, installs the version from the new template.

Because the templates are text files, you can version-control them just like other application
artifacts. By doing so, you can version-control not only your AWS infrastructure configuration but
also the set of packages installed on your instances.

If you specify a version of a package in the template, cfn-init attempts to install that version
even if a newer version of the package is already installed on the instance. Some package
managers support multiple versions while others do not. If you do not specify a version and a
version of the package is already installed, cfn-init does not install a new version, it assumes
that you want to keep and use the existing version.

Debugging Bootstrap and Update Scripts

You can see what events occur during the bootstrap sequence by viewing the following log files:

The /var/log/cfn-init.log log file contains the sequence of steps, along with any errors that
resulted from running cfn-init.

The /var/log/cloud-init.log log file contains the output of all operations that were
performed when running the CloudInit script. We recommend that, at least for debugging, you use
the –v option on the bash command. This option shows what happened when the bootstrap script
passed in information in from the user data field.
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash –v \n",
 "yum update -y aws-cfn-bootstrap\n",
 "/opt/aws/bin/cfn-init "
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource WebServer ",

 Bootstrapping Applications via AWS CloudFormation 16

 " --region ", { "Ref" : "AWS::Region" }, "\n",
 "/opt/aws/bin/cfn-signal -e $? '", { "Ref" : "WaitHandle" }, "'\n"
]]}}

The /var/log/cfn-hup.log log file contains the output from running the cfn-hup helper and
can be used to debug any issues when the cfn-hup daemon runs.

Security Considerations

To use the AWS CloudFormation bootstrap features, you need to provide AWS credentials to the
bootstrap scripts. We strongly recommend that you assign an IAM role to on the EC2 instance
when the instance is launched. By using an IAM role, no long-term secrets are defined in the
template or stored in the metadata on the EC2 instance. When the IAM role is used, temporary
security credentials are created and used to access AWS services such as AWS CloudFormation.
These temporary credentials expire after a short time, making it harder to compromise the
credentials and reducing the risk and exposure if the credentials are compromised.

A Complete Example

The following sample is the complete template that installs WordPress by using the AWS
CloudFormation helper scripts and the metadata that is defined in the template. You can download
the template from the following location: https://s3.amazonaws.com/cloudformation-templates-
us-east-1/WordPress_Bootstrap.template

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Description" : "AWS CloudFormation Sample Template WordPress_CloudFormation: WordPress is web software you can
use to create a beautiful website or blog. This template installs a highly-available, scalable WordPress
deployment using a multi-az Amazon RDS database instance for storage. It demonstrates using the AWS CloudFormation
bootstrap scripts to deploy WordPress. **WARNING** This template creates an Amazon EC2 instance, an Elastic Load
Balancer and an Amazon RDS database instance. You will be billed for the AWS resources used if you create a stack
from this template.",

 "Parameters" : {

 "KeyName": {
 "Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instances",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "255",
 "AllowedPattern" : "[\\x20-\\x7E]*",
 "ConstraintDescription" : "can contain only ASCII characters."
 },

 "InstanceType" : {
 "Description" : "WebServer EC2 instance type",
 "Type" : "String",
 "Default" : "m1.small",
 "AllowedValues" : ["t1.micro", "t2.micro", "t2.small", "t2.medium", "m1.small", "m1.medium", "m1.large",
"m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge",
"c1.medium", "c1.xlarge", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "g2.2xlarge",
"r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "i2.xlarge", "i2.2xlarge", "i2.4xlarge",
"i2.8xlarge", "hi1.4xlarge", "hs1.8xlarge", "cr1.8xlarge", "cc2.8xlarge", "cg1.4xlarge"],
 "ConstraintDescription" : "must be a valid EC2 instance type."
 },

https://s3.amazonaws.com/cloudformation-templates-us-east-1/WordPress_Bootstrap.template
https://s3.amazonaws.com/cloudformation-templates-us-east-1/WordPress_Bootstrap.template

 Bootstrapping Applications via AWS CloudFormation 17

 "SSHLocation": {
 "Description": " The IP address range that can be used to SSH to the EC2 instances",
 "Type": "String",
 "MinLength": "9",
 "MaxLength": "18",
 "Default": "0.0.0.0/0",
 "AllowedPattern": "(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})/(\\d{1,2})",
 "ConstraintDescription": "must be a valid IP CIDR range of the form x.x.x.x/x."
 },

 "DBClass" : {
 "Default" : "db.m1.small",
 "Description" : "Database instance class",
 "Type" : "String",
 "AllowedValues" : ["db.t1.micro", "db.m1.small", "db.m1.medium", "db.m1.large", "db.m1.xlarge",
"db.m2.xlarge", "db.m2.2xlarge", "db.m2.4xlarge", "db.m3.medium", "db.m3.large", "db.m3.xlarge", "db.m3.2xlarge",
"db.r3.large", "db.r3.xlarge", "db.r3.2xlarge", "db.r3.4xlarge", "db.r3.8xlarge", "db.m2.xlarge", "db.m2.2xlarge",
"db.m2.4xlarge", "db.cr1.8xlarge"],
 "ConstraintDescription" : "must select a valid database instance type."
 },

 "DBName" : {
 "Default": "wordpressdb",
 "Description" : "The WordPress database name",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "64",
 "AllowedPattern" : "[a-zA-Z][a-zA-Z0-9]*",
 "ConstraintDescription" : "must begin with a letter and contain only alphanumeric characters."
 },

 "DBUsername" : {
 "Default": "admin",
 "NoEcho": "true",
 "Description" : "The WordPress database admin account username",
 "Type": "String",
 "MinLength": "1",
 "MaxLength": "16",
 "AllowedPattern" : "[a-zA-Z][a-zA-Z0-9]*",
 "ConstraintDescription" : "must begin with a letter and contain only alphanumeric characters."
 },

 "DBPassword" : {
 "Default": "password",
 "NoEcho": "true",
 "Description" : "The WordPress database admin account password",
 "Type": "String",
 "MinLength": "8",
 "MaxLength": "41",
 "AllowedPattern" : "[a-zA-Z0-9]*",
 "ConstraintDescription" : "must contain only alphanumeric characters."
 },

 "MultiAZDatabase": {
 "Default": "false",
 "Description" : "Create a multi-AZ MySQL Amazon RDS database instance",
 "Type": "String",
 "AllowedValues" : ["true", "false"],
 "ConstraintDescription" : "must be either true or false."
 },

 "WebServerCapacity": {
 "Default": "1",
 "Description" : "The initial number of WebServer instances",

 Bootstrapping Applications via AWS CloudFormation 18

 "Type": "Number",
 "MinValue": "1",
 "MaxValue": "5",
 "ConstraintDescription" : "must be between 1 and 5 EC2 instances."
 },

 "DBAllocatedStorage" : {
 "Default": "5",
 "Description" : "The size of the database (Gb)",
 "Type": "Number",
 "MinValue": "5",
 "MaxValue": "1024",
 "ConstraintDescription" : "must be between 5 and 1024Gb."
 }
 },

 "Mappings" : {
 "AWSInstanceType2Arch" : {
 "t1.micro" : { "Arch" : "PV64" },
 "t2.micro" : { "Arch" : "HVM64" },
 "t2.small" : { "Arch" : "HVM64" },
 "t2.medium" : { "Arch" : "HVM64" },
 "m1.small" : { "Arch" : "PV64" },
 "m1.medium" : { "Arch" : "PV64" },
 "m1.large" : { "Arch" : "PV64" },
 "m1.xlarge" : { "Arch" : "PV64" },
 "m2.xlarge" : { "Arch" : "PV64" },
 "m2.2xlarge" : { "Arch" : "PV64" },
 "m2.4xlarge" : { "Arch" : "PV64" },
 "m3.medium" : { "Arch" : "PV64" },
 "m3.large" : { "Arch" : "PV64" },
 "m3.xlarge" : { "Arch" : "PV64" },
 "m3.2xlarge" : { "Arch" : "PV64" },
 "c1.medium" : { "Arch" : "PV64" },
 "c1.xlarge" : { "Arch" : "PV64" },
 "c3.large" : { "Arch" : "PV64" },
 "c3.xlarge" : { "Arch" : "PV64" },
 "c3.2xlarge" : { "Arch" : "PV64" },
 "c3.4xlarge" : { "Arch" : "PV64" },
 "c3.8xlarge" : { "Arch" : "PV64" },
 "g2.2xlarge" : { "Arch" : "HVMG2" },
 "r3.large" : { "Arch" : "HVM64" },
 "r3.xlarge" : { "Arch" : "HVM64" },
 "r3.2xlarge" : { "Arch" : "HVM64" },
 "r3.4xlarge" : { "Arch" : "HVM64" },
 "r3.8xlarge" : { "Arch" : "HVM64" },
 "i2.xlarge" : { "Arch" : "HVM64" },
 "i2.2xlarge" : { "Arch" : "HVM64" },
 "i2.4xlarge" : { "Arch" : "HVM64" },
 "i2.8xlarge" : { "Arch" : "HVM64" },
 "hi1.4xlarge" : { "Arch" : "PV64" },
 "hs1.8xlarge" : { "Arch" : "PV64" },
 "cr1.8xlarge" : { "Arch" : "HVM64" },
 "cc2.8xlarge" : { "Arch" : "HVM64" },
 "cg1.4xlarge" : { "Arch" : "HVMGPU" }
 },

 "AWSRegionArch2AMI" : {
 "us-east-1" : { "PV64" : "ami-7c807d14", "HVM64" : "ami-76817c1e", "HVMG2" : "ami-9c13ecf4", "HVMGPU"
: "ami-c6867bae" },
 "us-west-2" : { "PV64" : "ami-1b3b462b", "HVM64" : "ami-d13845e1", "HVMG2" : "ami-6d8cf15d", "HVMGPU"
: "NOT_SUPPORTED" },
 "us-west-1" : { "PV64" : "ami-a8d3d4ed", "HVM64" : "ami-f0d3d4b5", "HVMG2" : "ami-84494fc1", "HVMGPU"
: "NOT_SUPPORTED" },
 "eu-west-1" : { "PV64" : "ami-672ce210", "HVM64" : "ami-892fe1fe", "HVMG2" : "ami-1138f166", "HVMGPU"

 Bootstrapping Applications via AWS CloudFormation 19

: "ami-972fe1e0" },
 "ap-southeast-1" : { "PV64" : "ami-56b7eb04", "HVM64" : "ami-a6b6eaf4", "HVMG2" : "ami-7a1a4528", "HVMGPU"
: "NOT_SUPPORTED" },
 "ap-northeast-1" : { "PV64" : "ami-25dd9324", "HVM64" : "ami-29dc9228", "HVMG2" : "ami-4d3b734c", "HVMGPU"
: "NOT_SUPPORTED" },
 "ap-southeast-2" : { "PV64" : "ami-6bf99c51", "HVM64" : "ami-d9fe9be3", "HVMG2" : "ami-010c683b", "HVMGPU"
: "NOT_SUPPORTED" },
 "sa-east-1" : { "PV64" : "ami-c7e649da", "HVM64" : "ami-c9e649d4", "HVMG2" : "NOT_SUPPORTED", "HVMGPU"
: "NOT_SUPPORTED" },
 "us-gov-west-1" : { "PV64" : "ami-ab4a2d88", "HVM64" : "ami-a54a2d86", "HVMG2" : "NOT_SUPPORTED", "HVMGPU"
: "NOT_SUPPORTED" },
 "cn-north-1" : { "PV64" : "ami-cab82af3", "HVM64" : "ami-ccb82af5", "HVMG2" : "NOT_SUPPORTED", "HVMGPU"
: "NOT_SUPPORTED" }
 }
 },

 "Resources" : {

 "ElasticLoadBalancer" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Metadata" : {
 "Comment1" : "Configure the Load Balancer with a simple health check and cookie-based stickiness",
 "Comment2" : "Use install path for healthcheck to avoid redirects - ELB healthcheck does not handle 302
return codes"
 },
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : "" },
 "LBCookieStickinessPolicy" : [{
 "PolicyName" : "CookieBasedPolicy",
 "CookieExpirationPeriod" : "30"
 }],
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP",
 "PolicyNames" : ["CookieBasedPolicy"]
 }],
 "HealthCheck" : {
 "Target" : "HTTP:80/wordpress/wp-admin/install.php",
 "HealthyThreshold" : "2",
 "UnhealthyThreshold" : "5",
 "Interval" : "10",
 "Timeout" : "5"
 }
 }
 },

 "WebServerSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Enable HTTP access via port 80 locked down to the load balancer + SSH access",
 "SecurityGroupIngress" : [
 {"IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "SourceSecurityGroupOwnerId" : {"Fn::GetAtt"
: ["ElasticLoadBalancer", "SourceSecurityGroup.OwnerAlias"]},"SourceSecurityGroupName" : {"Fn::GetAtt" :
["ElasticLoadBalancer", "SourceSecurityGroup.GroupName"]}},
 {"IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "CidrIp" : { "Ref" : "SSHLocation"}}
]
 }
 },

 "WebServerGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 "AvailabilityZones" : { "Fn::GetAZs" : "" },
 "LaunchConfigurationName" : { "Ref" : "LaunchConfig" },
 "MinSize" : "1",
 "MaxSize" : "5",
 "DesiredCapacity" : { "Ref" : "WebServerCapacity" },

 Bootstrapping Applications via AWS CloudFormation 20

 "LoadBalancerNames" : [{ "Ref" : "ElasticLoadBalancer" }]
 }
 },

 "LaunchConfig": {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Metadata" : {
 "AWS::CloudFormation::Init" : {
 "configSets" : {
 "wordpress_install" : ["install_cfn", "install_wordpress"]
 },
 "install_cfn" : {
 "files": {
 "/etc/cfn/cfn-hup.conf": {
 "content": { "Fn::Join": ["", [
 "[main]\n",
 "stack=", { "Ref": "AWS::StackId" }, "\n",
 "region=", { "Ref": "AWS::Region" }, "\n"
]]},
 "mode" : "000400",
 "owner" : "root",
 "group" : "root"
 },
 "/etc/cfn/hooks.d/cfn-auto-reloader.conf": {
 "content": { "Fn::Join": ["", [
 "[cfn-auto-reloader-hook]\n",
 "triggers=post.update\n",
 "path=Resources.LaunchConfig.Metadata.AWS::CloudFormation::Init\n",
 "action=/opt/aws/bin/cfn-init ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource LaunchConfig ",
 " --configsets wordpress_install ",
 " --region ", { "Ref" : "AWS::Region" }, "\n"
]]},
 "mode" : "000400",
 "owner" : "root",
 "group" : "root"
 }
 },
 "services" : {
 "sysvinit" : {
 "cfn-hup" : {
 "enabled" : "true",
 "ensureRunning" : "true",
 "files" : ["/etc/cfn/cfn-hup.conf", "/etc/cfn/hooks.d/cfn-auto-reloader.conf"]
 }
 }
 }
 },

 "install_wordpress" : {
 "packages" : {
 "yum" : {
 "php" : [],
 "php-mysql" : [],
 "mysql" : [],
 "httpd" : []
 }
 },
 "sources" : {
 "/var/www/html" : "http://wordpress.org/latest.tar.gz"
 },
 "files" : {
 "/tmp/create-wp-config" : {
 "content" : { "Fn::Join" : ["", [

 Bootstrapping Applications via AWS CloudFormation 21

 "#!/bin/bash\n",
 "cp /var/www/html/wordpress/wp-config-sample.php /var/www/html/wordpress/wp-config.php\n",
 "sed -i \"s/'database_name_here'/'",{ "Ref" : "DBName" }, "'/g\" wp-config.php\n",
 "sed -i \"s/'username_here'/'",{ "Ref" : "DBUsername" }, "'/g\" wp-config.php\n",
 "sed -i \"s/'password_here'/'",{ "Ref" : "DBPassword" }, "'/g\" wp-config.php\n",
 "sed -i \"s/'localhost'/'",{ "Fn::GetAtt" : ["DBInstance", "Endpoint.Address"] }, "'/g\" wp-
config.php\n"
]]},
 "mode" : "000500",
 "owner" : "root",
 "group" : "root"
 }
 },
 "commands" : {
 "01_configure_wordpress" : {
 "command" : "/tmp/create-wp-config",
 "cwd" : "/var/www/html/wordpress"
 }
 },
 "services" : {
 "sysvinit" : {
 "httpd" : { "enabled" : "true", "ensureRunning" : "true" }
 }
 }
 }
 }
 },
 "Properties": {
 "ImageId" : { "Fn::FindInMap" : ["AWSRegionArch2AMI", { "Ref" : "AWS::Region" },
 { "Fn::FindInMap" : ["AWSInstanceType2Arch", { "Ref" : "InstanceType" }, "Arch"] }]
},
 "InstanceType" : { "Ref" : "InstanceType" },
 "SecurityGroups" : [{"Ref" : "WebServerSecurityGroup"}],
 "KeyName" : { "Ref" : "KeyName" },
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash -xe\n",
 "yum update aws-cfn-bootstrap\n",

 "/opt/aws/bin/cfn-init ",
 " --stack ", { "Ref" : "AWS::StackName" },
 " --resource LaunchConfig ",
 " --configsets wordpress_install ",
 " --region ", { "Ref" : "AWS::Region" }, "\n",

 "/opt/aws/bin/cfn-signal -e $? '", { "Ref" : "WebServerWaitHandle" }, "'\n"
]]}}
 }
 },

 "WebServerWaitHandle" : {
 "Type" : "AWS::CloudFormation::WaitConditionHandle"
 },

 "WebServerWaitCondition" : {
 "Type" : "AWS::CloudFormation::WaitCondition",
 "DependsOn" : "WebServerGroup",
 "Properties" : {
 "Handle" : {"Ref" : "WebServerWaitHandle"},
 "Timeout" : "900"
 }
 },

 "DBInstance" : {
 "Type": "AWS::RDS::DBInstance",
 "Properties": {

 Bootstrapping Applications via AWS CloudFormation 22

 "DBName" : { "Ref" : "DBName" },
 "Engine" : "MySQL",
 "MultiAZ" : { "Ref": "MultiAZDatabase" },
 "MasterUsername" : { "Ref" : "DBUsername" },
 "DBInstanceClass" : { "Ref" : "DBClass" },
 "DBSecurityGroups" : [{ "Ref" : "DBSecurityGroup" }],
 "AllocatedStorage" : { "Ref" : "DBAllocatedStorage" },
 "MasterUserPassword": { "Ref" : "DBPassword" }
 }
 },

 "DBSecurityGroup": {
 "Type": "AWS::RDS::DBSecurityGroup",
 "Properties": {
 "DBSecurityGroupIngress": { "EC2SecurityGroupName": { "Ref": "WebServerSecurityGroup"} },
 "GroupDescription" : "Frontend Access"
 }
 }
 },

 "Outputs" : {
 "WebsiteURL" : {
 "Value" : { "Fn::Join" : ["", ["http://", { "Fn::GetAtt" : ["ElasticLoadBalancer", "DNSName"]},
"/wordpress"]]},
 "Description" : "WordPress Website"
 }
 }
}

Getting the AWS CloudFormation Helper Scripts and Templates

The AWS CloudFormation helper scripts are available from the following locations:

• The Amazon Linux AMI has the AWS CloudFormation helper scripts installed by default in
/opt/aws/bin.

• The Windows AMIs provided by Amazon Web Services have the AWS CloudFormation
helper scripts and the ability to execute scripts in user data installed by default.

• The AWS helper scripts are available in the Amazon Linux AMI yum repository (the
package name is aws-cfn-bootstrap).

• In addition, the helpers are available in other formats. For more details go to:
http://aws.amazon.com/developertools/AWS-CloudFormation/4026240853893296

• The templates that are used in the previous examples are available, along with many other
sample templates, on the AWS CloudFormation sample template site at
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

http://aws.amazon.com/developertools/AWS-CloudFormation/4026240853893296
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

	Overview
	Using CloudInit and Amazon EC2 User Data to Customize an Instance at Launch Time
	Using AWS CloudFormation Metadata and Helper Scripts
	Other Strategies
	Baking Your Application into an Amazon Machine Image (AMI)
	Integration with Chef and Puppet

	Customizing Instances with CloudInit and EC2 User Data
	Using AWS CloudFormation Metadata and Helpers
	Installing Packages and Files Using AWS CloudFormation Helpers
	Metadata Block Format

	Running cfn-init
	Waiting for Applications to Be Ready Before Continuing
	Dealing with Stack Updates Using cfn-hup
	Dynamic Software Updates Using cfn-hup and cfn-init
	Debugging Bootstrap and Update Scripts
	Security Considerations
	A Complete Example
	Getting the AWS CloudFormation Helper Scripts and Templates

