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This online appendix consists of three parts. Section 1 of the appendix contains ad-

ditional information on the forecast data used in the empirical application (Section 6 of

the paper). Section 2 of the appendix gives detailed proofs of Theorems 2 and 3 stated

in the main text (Section 4 of the paper). Finally, the last part of the appendix contains

additional panels of Table 1 discussed in the Monte Carlo experiment (Section 5.1 of the

paper).

1. Information on the BCEI Forecast Data

In the empirical section of the paper, we use individual forecaster’s forecasts from the

Blue Chip Economic Indicators (BCEI). The data is proprietary. The survey reports

monthly updates of forecasts from individual forecasters starting in 1976:08. Prior to

1984, firms reported current-year forecasts for the first five or six months of the year.

In later months, they reported next-year forecasts. Starting in 1984, both current- and

next-year forecasts were reported each month.

We use forecasts for three variables: output, inflation, and a short-term interest rate.

The sample of output forecasts is split between GNP (1976:08 through 1991:12) and

GDP (1992:01 through 2004:12). The BCEI began collecting CPI inflation forecasts in

1979:01 through the end of our sample in 2004:12. The short-term interest rate forecasts

are split between the 3-month commercial paper (1976:08 through 1980:06), the 6-month

commercial paper (1980:07 through 1981:12), and the 3-month T-bill (1982:01 through

2004:12) rates. For output and inflation, the target variable is the rate of change between

the average of the levels for that year. This method is described by the BCEI in their

monthly newsletter.
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2. Supplemental Proofs

2.1. Notation. We first recall the notation.

For any real function f : Rn → R that is continuously differentiable to or-

der R > 2 on Rn, we let ∇uf(u) denote the gradient of f(·) with respect to u,

∇uf(u) ≡ (∂f(u)/∂ui, . . . , ∂f(u)/∂un)′, and use ∆uuf(u) to denote its Hessian matrix,

∆uuf(u) ≡ (∂2f(u)/∂ui∂uj)16i,j6n.

For any scalar u, u ∈ R, we let 1I : R→ [0, 1] be the indicator (or Heaviside) function,

i.e., 1I(u) = 0 if u < 0, 1I(u) = 1 if u > 0, and 1I(0) = 1
2
(?). Similarly, we use

sgn : R → {−1, 0, 1} to denote the sign function: sgn(u) = 1I(u) − 1I(−u) = 21I(u) − 1,

and let δ : R → R be the Dirac delta function. Note that the Heaviside function is

the indefinite integral of the Dirac function, i.e., 1I(u) =
∫ u
a
dδ, where a is an arbitrary

(possibly infinite) negative constant, a 6 0.

For any n-vector u, u = (u1, . . . , un)′ ∈ Rn, we denote by ‖u‖p its lp-norm, i.e., ‖u‖p =

(|u1|p + . . . + |un|p)1/p for 1 6 p < ∞, and ‖u‖∞ = max16i6n(|ui|). Similarly, for any
m× n-matrix A = (aij)16i6m,16j6n, we let ‖A‖∞ = max16i,j6n(|aij|).
Hereafter, νp(u), Vp(u) and Wp(u) are an n-vector and two n × n-diagonal matrices

defined as:

νp(u) ≡ (sgn(u1)|u1|p−1, . . . , sgn(un)|un|p−1)′

Vp(u) ≡ diag(δ(u1)|u1|p−1, . . . , δ(un)|un|p−1)

Wp(u) ≡ diag(|u1|p−2, . . . , |un|p−2),

respectively. Then, we have that:

∇u ‖u‖p = ‖u‖1−pp νp(u)

and

∆uu ‖u‖p = ‖u‖1−pp

{
2Vp(u) + (p− 1)

[
Wp(u)− ‖u‖−pp νp(u)ν ′p(u)

]}
,

which we shall often be using in what follows.
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2.2. Proofs of Theorems 2 and 3.

Theorem 2. Let Assumptions A1 through A8 hold. Then, given p, 1 6 p <∞, we have
τ̂ P

p→ τ 0 as (R,P )→∞.

Proof of Theorem 2. The minimizer τ 0 of Q(τ ) can be written as:

τ 0 = −{E[B(p, e∗t+1,xt)]
′S−1E[B(p, e∗t+1,xt)]}−1E[B(p, e∗t+1,xt)]

′S−1E[a(p, e∗t+1,xt)].

On the other hand, from Equation (4) we have τ̂ P ≡ −[B̂′P Ŝ−1B̂P ]−1B̂′P Ŝ−1âP with the

nd× 1 vector

âP ≡ P−1
T∑
t=R

p(νp(êt+1)⊗ xt) (S-1)

and the nd× n matrix

B̂P ≡ P−1
T∑
t=R

‖êt+1‖p−1p (In ⊗ xt) + (p− 1) ‖êt+1‖−1p (νp(êt+1)⊗ xt)ê
′
t+1. (S-2)

To show τ̂ P
p→ τ 0, it is suffi cient to show that (i) âP − E[a(p, e∗t+1,xt)]

p→ 0 and (ii)

B̂P − E[B(p, e∗t+1,xt)]
p→ 0. Then, by using Lemma 5, the consistency of Ŝ, Ŝ

p→ S,

the positive definiteness of S (and thus of S−1) established in Lemma 6, and the

continuity of the inverse function (away from zero), we have that τ̂ P
p→ τ 0. By the

triangle inequality we have
∥∥âP − E[a(p, e∗t+1,xt)]

∥∥
1
6 ‖âP − E[a(p, êt+1,xt)]‖1 +∥∥E[a(p, êt+1,xt)]− E[a(p, e∗t+1,xt)]

∥∥
1

and
∥∥∥B̂P − E[B(p, e∗t+1,xt)]

∥∥∥
∞

6∥∥∥B̂P − E[B(p, êt+1,xt)]
∥∥∥
∞

+
∥∥E[B(p, êt+1,xt)]− E[B(p, e∗t+1,xt)]

∥∥
∞. We first show

that as P → ∞, ‖âP − E[a(p, êt+1,xt)]‖1
p→ 0 and

∥∥∥B̂P − E[B(p, êt+1,xt)]
∥∥∥
∞

p→ 0 by

using a law of large numbers (LLN) for α-mixing sequences [e.g., Corollary 3.48 in ?].

From Theorems 3.35 and 3.49 ? measurable functions of strictly stationary and mixing

processes are strictly stationary and mixing of the same size. Hence, by A8 we have

{p(νp(êt+1)⊗xt)} and {‖êt+1‖p−1p (In⊗xt) + (p− 1) ‖êt+1‖−1p (νp(êt+1)⊗xt)ê
′
t+1} strictly
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stationary and α-mixing of size −r/(r − 2) with r > 2. Now let δ = ε/2 > 0; we have

E[‖(νp(êt+1)⊗ xt)‖r+δ1 ] 6 nE[‖êt+1‖(p−1)(r+δ)1 ‖xt‖r+δ1 ]

6 n
{
E[‖êt+1‖(p−1)(2r+2δ)1 ]E[‖xt‖2r+2δ1 ]

}1/2
6 n {∆1∆2}1/2 <∞, (S-3)

where the second inequality follows by Cauchy-Schwartz inequality and the third

uses assumption A8. Hence, âP in Equation (S-1) satisfies the LLN and

‖âP − E[a(p, êt+1,xt)]‖1
p→ 0 as P →∞. Similarly, we have

E[‖êt+1‖(p−1)(r+δ)p ‖(In ⊗ xt)‖r+δ∞ ] 6 E[‖êt+1‖(p−1)(r+δ)p ‖xt‖r+δ1 ]

6 c(p−1)(r+δ)
{
E[‖êt+1‖(p−1)(2r+2δ)1 ]E[‖xt‖2r+2δ1 ]

}1/2
6 c {∆1∆2}1/2 <∞, (S-4)

where the second inequality uses the norm equivalence and Cauchy-Schwartz inequality,

and the third inequality uses Assumption A8. In addition,

E[‖êt+1‖−(r+δ)p

∥∥(νp(êt+1)⊗ xt)ê
′
t+1

∥∥r+δ
∞ ] 6 E[‖êt+1‖−(r+δ)p ‖(νp(êt+1)⊗ xt)‖r+δ1 ‖êt+1‖(r+δ)1 ]

6 (1/d)r+δE[‖(νp(êt+1)⊗ xt)‖r+δ1 ] <∞, (S-5)

where the second inequality uses again the norm equivalence and the third fol-

lows from Equation (S-3). Combining Equations (S-4) − (S-5) with triangular

inequality and the fact that, for any (a, b) ∈ R, there exists some nr+δ >

0 such that |a + b|r+δ 6 nr+δ[|a|r+δ + |b|r+δ], shows that B̂P in Equa-

tion (S-2) satisfies the LLN and so
∥∥∥B̂P − E[B(p, êt+1,xt)]

∥∥∥
∞

p→ 0 as P →
∞. Next we need to show that

∥∥E[a(p, êt+1,xt)]− E[a(p, e∗t+1,xt)]
∥∥
1
→ 0 and∥∥E[B(p, êt+1,xt)]− E[B(p, e∗t+1,xt)]

∥∥
∞ → 0 as P →∞. We have∥∥E[a(p, êt+1,xt)− a(p, e∗t+1,xt)]

∥∥
1
6 E[

∥∥a(p, êt+1,xt)− a(p, e∗t+1,xt)
∥∥
1
]

= pE{
∥∥[νp(êt+1)− νp(e∗t+1)]⊗ xt

∥∥
1
}

6 pnE[
∥∥êt+1 − e∗t+1

∥∥(p−1)
1

‖xt‖1]

6 pn{E[
∥∥êt+1 − e∗t+1

∥∥2(p−1)
1

]E[‖xt‖21]}1/2 → 0 as t→∞,
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where the last statement follows by Assumptions A7 and A8. Similarly,∥∥E[B(p, êt+1,xt)−B(p, e∗t+1,xt)]
∥∥
∞

6 E[
∥∥B(p, êt+1,xt)−B(p, e∗t+1,xt)

∥∥
∞]

= E
[∥∥∥[‖êt+1‖p−1p −

∥∥e∗t+1∥∥p−1p
](In ⊗ xt)

+(p− 1)[‖êt+1‖−1p (νp(êt+1)⊗ xt)ê
′
t+1 −

∥∥e∗t+1∥∥−1p (νp(e
∗
t+1)⊗ xt)e

∗′
t+1]
∥∥∥
∞

]
6 E

[∣∣∣‖êt+1‖p−1p −
∥∥e∗t+1∥∥p−1p

∣∣∣ ‖xt‖1]
+ (p− 1)E

[
‖êt+1‖−1p

∥∥(νp(êt+1)⊗ xt)(ê
′
t+1 − e∗′t+1)

∥∥
∞

]
+ (p− 1)E

[
‖êt+1‖−1p

∥∥{[(νp(êt+1)− νp(e∗t+1)]⊗ xt}e∗′t+1
∥∥
∞

]
+ (p− 1)E

[(
‖êt+1‖−1p −

∥∥e∗t+1∥∥−1p )∥∥(νp(e
∗
t+1)⊗ xt)e

∗′
t+1

∥∥
∞

]
→ 0 as t→∞.

Hence, as R → ∞ we have
∥∥E[a(p, êt+1,xt)− a(p, e∗t+1,xt)]

∥∥
1
→ 0 and∥∥E[B(p, êt+1,xt)−B(p, e∗t+1,xt)]

∥∥
∞ → 0, so τ̂ P

p→ τ 0 as (R,P )→∞. �

Theorem 3. Let Assumptions A1-A3, A4’, A5-A6, A7’, A8-A10 hold. Then, given

p, 1 6 p < ∞, we have:
√
P (τ̂ P − τ 0)

d→ N (0, (B∗′S−1B∗)−1), as R,P → ∞,
where S = E[gp(τ 0; e

∗
t+1,xt)gp(τ 0; e

∗
t+1,xt)

′] and B∗ ≡ E[
∥∥e∗t+1∥∥p−1p

(In ⊗ xt) + (p −
1)
∥∥e∗t+1∥∥−1p (νp(e

∗
t+1)⊗ xt)e

∗′
t+1].

Proof of Theorem 3. To simplify the notation in this proof, let it be understood that
∑

t

denotes
∑T

t=R while supt stands for supR6t6T . In order to show that P
1/2(τ̂ P − τ 0) is

asymptotically normal, note that

√
P (τ̂ P − τ 0) = −[B̂′P Ŝ−1B̂P ]−1B̂′P Ŝ−1[

√
P (âP + B̂Pτ 0)] (S-6)

= −[B̂′P Ŝ−1B̂P ]−1B̂′P Ŝ−1[
√
Pm̂∗P +

√
Pm̂ +

√
P (m̂P − m̂− m̂∗P )],

where we have let m̂ ≡ E[a(p, êt+1,xt)] + E[B(p, êt+1,xt)]τ 0, and

m̂P ≡ P−1
∑
t

gp(τ 0; êt+1,xt) = âP + B̂Pτ 0, and m̂∗P ≡ P−1
∑
t

gp(τ 0; e
∗
t+1,xt). (S-7)
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The idea then is to show that the terms
√
Pm̂ and

√
P (m̂P − m̂ − m̂∗P ) on the

right-hand side of Equation (S-6) are op(1). We start by showing that the first

term is o(1). Let m∗ ≡ E[a(p, e∗t+1,xt)] + E[B(p, e∗t+1,xt)]τ 0. First, we show that

∇eE[gp(τ 0; ēt+1,xt)] = E[∇egp(τ 0; ēt+1,xt)] for every ēt+1 ≡ cêt+1 + (1 − c)e∗t+1 with

c ∈ (0, 1). Differentiating ∇eLp (τ 0, ·) in Equation (9) we get that for any e ∈ Rn\E
(E = {e ∈ Rn : ei = 0 for some i}),

∆eeLp (τ 0, e) = 2pVp(e) + p(p− 1)Wp(e) (S-8)

+(p− 1)

[
2
τ 0ν

′
p(e)

‖e‖p
+
τ ′0e

‖e‖p

(
(p− 1)Wp(e)−

νp(e)ν ′p(e)

‖e‖pp

)]
,

where we have used the fact that for any 1 6 p < ∞, τ
′
0e

‖e‖p
Vp(e) = 0 for all e ∈

Rn\E . Note that in the univariate case n = 1, the Hessian in Equation (S-8) reduces to

∆eeLp (τ 0, e) = 2{pδ(e)|e|p−1 + p(p − 1)[1 + τ 0 sgn(e)]|e|p−2} [see Equation (9) in EKT,
p.1121]. Hence

‖∆eeLp (τ 0, ēt+1)‖∞ 6 2p ‖Vp(ēt+1)‖+ p(p− 1)c3 ‖ēt+1‖p−21

+ (p− 1)
[
2d3 ‖ēt+1‖p−21 + (p− 1)c3 ‖ēt+1‖p−21 + c3 ‖ēt+1‖p−21

]
= 2p ‖Vp(ēt+1)‖+ 2(p− 1) (pc3 + d3) ‖ēt+1‖p−21 , (S-9)

where we have used the norm equivalences: c1 ‖ēt+1‖1 6 ‖ēt+1‖p−2 6 c2 ‖ēt+1‖1 for
some (c1, c2) > 0 and c3 = cp−12 if p ≥ 2 and c3 = c2−p1 otherwise and, similarly,

d1 ‖ēt+1‖1 6 ‖ēt+1‖p 6 d2 ‖ēt+1‖1 for some (d1, d2) > 0 and d3 = dp−12 if p ≥ 2 and

d3 = d2−p1 otherwise. Under A9, we have that E[supc∈(0,1)
∥∥cêt+1 + (1− c)e∗t+1

∥∥p−2
1

] <∞.
Moreover, under A10, when p = 1 we have E[‖V1(ēt+1)‖∞] 6 M and when p > 1 we

have E[‖V1(ēt+1)‖∞] = 0, so the right-hand side of Equation (S-9) is bounded above

by a quantity that is integrable; hence, we can apply Lebesgue’s dominated conver-

gence theorem to interchange the derivation and integration in ∇eE[gp(τ 0; ēt+1,xt)] =

∇eE[∇eLp (τ 0, ēt+1)⊗ xt] = E[∆eeLp (τ 0, ēt+1)⊗ xt] = E[∇egp(τ 0; ēt+1,xt)].
Second, we can use a mean value expansion around e∗t+1 that yields 0 =

√
Pm∗ =

√
Pm̂ − E[P−1

∑
t∇egp(τ 0; ēt+1,xt)′

√
P (êt+1 − e∗t+1)], where for every t, R 6 t 6

T , we have ēt+1 ≡ cêt+1 + (1 − c)e∗t+1 with c ∈ (0, 1). We now show that
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P−1/2
∑

t∇egp(τ 0; ēt+1,xt)′(êt+1 − e∗t+1)
p→ 0 as R → ∞ and P → ∞. Consider ε

from A7′(i) and note that we have∥∥P−1/2∑t∇egp(τ 0; ēt+1,xt)′(êt+1 − e∗t+1)
∥∥
1

=
∥∥P−1/2∑tR

−1/2+ε∇egp(τ 0; ēt+1,xt)′R1/2−ε(êt+1 − e∗t+1)
∥∥
1

6 supt
∥∥R1/2−ε(êt+1 − e∗t+1)

∥∥
1
P−1/2

∑
t ‖∇egp(τ 0; ēt+1,xt)‖∞R

−1/2+ε,

so for any η > 0 and δ > 0

lim
R,P→∞

Pr
(∥∥P−1/2∑t∇egp(τ 0; ēt+1,xt)′(êt+1 − e∗t+1)

∥∥
1
> η
)

6 lim
R,P→∞

Pr
(∥∥P−1/2∑t∇egp(τ 0; ēt+1,xt)′(êt+1 − e∗t+1)

∥∥
1
> η, supt

∥∥R1/2−ε(êt+1 − e∗t+1)
∥∥
1
6 δ
)

+ lim
R,P→∞

Pr
(
supt

∥∥R1/2−ε(êt+1 − e∗t+1)
∥∥
1
> δ
)

6 lim
R,P→∞

Pr
(∥∥P−1/2∑t∇egp(τ 0; ēt+1,xt)′(êt+1 − e∗t+1)

∥∥
1
> η, supt

∥∥R1/2−ε(êt+1 − e∗t+1)
∥∥
1
6 δ
)

6 lim
R,P→∞

Pr
(
P−1/2

∑
t ‖∇egp(τ 0; ēt+1,xt)‖∞R

−1/2+ε >
η

δ
, supt

∥∥R1/2−ε(êt+1 − e∗t+1)
∥∥
1
6 δ
)
.

where the first inequality uses A7′(ii). Now, using Markov’s inequality we have

Pr
(
P−1/2

∑
t ‖∇egp(τ 0; ēt+1,xt)‖∞R

−1/2+ε >
η

δ
, supt

∥∥R1/2−ε(êt+1 − e∗t+1)
∥∥
1
6 δ
)

6 δ

η
E
(
P−1/2

∑
t ‖∇egp(τ 0; ēt+1,xt)‖∞R

−1/2+ε) .
Moreover, ‖∇egp(τ 0; ēt+1,xt)‖∞ 6 ‖∆eeLp (τ 0, ēt+1)‖∞ · ‖xt‖1 so that under A9

E
(
‖∇egp(τ 0; ēt+1,xt)‖∞

)
6 E

(
sup
c∈(0,1)

∥∥∇egp(τ 0; cêt+1 + (1− c)e∗t+1,xt)
∥∥
∞

)

6 2(p− 1) (pc3 + d3)E

(
‖xt‖1 sup

c∈(0,1)

∥∥cêt+1 + (1− c)e∗t+1
∥∥p−2
1

)
<∞.

Now

E
(
P−1/2

∑
t ‖∇egp(τ 0; ēt+1,xt)‖∞R

−1/2+ε) 6 E
(
‖∇egp(τ 0; ēt+1,xt)‖∞

)
P−1/2

∑
tR
−1/2+ε

6 E
(
‖∇egp(τ 0; ēt+1,xt)‖∞

)( P

R1−2ε

)1/2
→ 0
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as R → ∞ and P → ∞, where the last limit results uses A7′(i). Hence
√
Pm̂ → 0 as

R→∞ and P →∞. The term
√
P (m̂P − m̂− m̂∗P ) on the right-hand side of Equation

(S-6) is op(1) provided that g satisfies a certain Lipshitz condition (given below) and that

A7′ holds. Using a reasoning similar to that above, we have any η > 0 and δ > 0

lim
R,P→∞

Pr
(
P 1/2 ‖m̂P − m̂− m̂∗P‖1 > η

)
6 lim

R,P→∞
Pr
(
P 1/2 ‖m̂P − m̂− m̂∗P‖1 > η, suptR

1/2−ε ∥∥êt+1 − e∗t+1
∥∥
1
6 δ
)
.

Now, let rP (δ) ≡ sup{rt+1(êt+1) :
∥∥êt+1 − e∗t+1

∥∥
1
6 δ, R 6 t 6 T}, where we let

rt+1(êt+1) (S-10)

≡
∥∥gp(τ 0; êt+1,xt)− gp(τ 0; e

∗
t+1,xt)− [∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt](êt+1 − e∗t+1)

∥∥
1∥∥êt+1 − e∗t+1

∥∥
1

,

where ∆eeLp
(
τ 0, e

∗
t+1

)
is as defined in Equation (S-8). Then, by the definition of

rt+1(êt+1),

P 1/2 ‖m̂P − m̂− m̂∗P‖1

6 P 1/2
{∥∥∥P−1∑t[∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt](êt+1 − e∗t+1)− E{[∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt](êt+1 − e∗t+1)}

∥∥∥
1

+ P−1
∑

t rt+1(êt+1)
∥∥êt+1 − e∗t+1

∥∥
1

+ E
(
rt+1(êt+1)

∥∥êt+1 − e∗t+1
∥∥
1

)}
6 P 1/2

{
P−1

∑
t

∥∥[∆eeLp
(
τ 0, e

∗
t+1

)
⊗ xt]− E{[∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt]}

∥∥
∞ supt

∥∥êt+1 − e∗t+1
∥∥
1

+ [rP (δR) + E(rP (δR))] supt
∥∥êt+1 − e∗t+1

∥∥
1

}
and so by the Markov inequality

Pr
(
P 1/2 ‖m̂P − m̂− m̂∗P‖1 > η, suptR

1/2−ε ∥∥êt+1 − e∗t+1
∥∥
1
6 δ
)

6
(

P

R1−2ε

)1/2
δ

η

[
E
(
P−1

∑
t

∥∥[∆eeLp
(
τ 0, e

∗
t+1

)
⊗ xt]− E{[∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt]}

∥∥
∞

)
+ E

(
rP (δR) + E(rP (δR))

)]
.

Using standard arguments for stochastic equicontinuity such as those given in ?, we can

show that rt+1(êt+1)→ 0 as Pr(
∥∥êt+1 − e∗t+1

∥∥
1
> ε)→ 0 for any ε > 0, so that rP (δ)→ 0

with probability 1, which by the dominated convergence theorem ensures E(rP (δ))→ 0.
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Next, we show that the sample mean of {∆eeLp
(
τ 0, e

∗
t+1

)
⊗ xt} converges in probability

to its expected value. By assumption A4′ we know that {∆eeLp
(
τ 0, e

∗
t+1

)
⊗xt} is strictly

stationary and α-mixing with α of size −r/(r − 2) with r > 2 [see Theorems 3.35 and

3.49 in ?]. Moreover, for δ = min{ε/2, ε/2} > 0 in assumptions A4′ and A8, we have

E[
∥∥∆eeLp

(
τ 0, e

∗
t+1

)
⊗ xt

∥∥r+δ
∞ ]

6 {E[
∥∥∆eeLp

(
τ 0, e

∗
t+1

)∥∥2r+2δ
∞ ]E[‖xt‖2r+2δ1 ]}1/2

6
(

max{E[
∥∥∆eeLp

(
τ 0, e

∗
t+1

)∥∥2r+ε
∞ ], 1}

)1/2 (
max{E[‖xt‖2r+ε1 ], 1}

)1/2
<∞,

since from Equation (S-9) we know

∥∥∆eeLp
(
τ 0, e

∗
t+1

)∥∥2r+ε
∞

6 nr{[2p]2r+ε
∥∥Vp(e

∗
t+1)
∥∥2r+ε
∞ + [2(p− 1) (pc3 + d3)]

2r+ε
∥∥e∗t+1∥∥(p−2)(2r+ε)1

},

where again nr is such that for any (a, b) > 0 we have (a + b)2r+ε 6 nr(a
2r+ε + b2r+ε);

and A10 and A4′ imply that E[
∥∥V1(e

∗
t+1)
∥∥2r+ε
∞ ] 6 M , E[

∥∥Vp(e
∗
t+1)
∥∥2r+ε
∞ ] = 0 and

E[
∥∥e∗t+1∥∥(p−2)(2r+ε)1

] < ∞. Using the weak LLN for α-mixing sequences [e.g., Corollary

3.48 in ?] then gives

P−1
T∑
t=R

∆eeLp
(
τ 0, e

∗
t+1

)
⊗ xt

p→ E[∆eeLp
(
τ 0, e

∗
t+1

)
⊗ xt]

as P →∞. Then, combining all of the above with A7′(ii) gives

lim
R,P→∞

Pr

(√
P ‖m̂P − m̂− m̂∗P‖1 > η, sup

R6t6T
R1/2−ε

∥∥êt+1 − e∗t+1
∥∥
1
6 δ

)
= 0

and the term
√
P (m̂P − m̂ − m̂∗P ) on the right-hand side of Equation (S-6) is op(1)

as R → ∞ and P → ∞. Finally, we use the central limit theorem (CLT) for strictly

stationary and α-mixing sequences [e.g., Theorem 5.20 in ?] to show that
√
Pm̂∗P

d→
N (0,S). Using Theorems 3.35 and 3.49 in ?, which together show that time-invariant

measurable functions of strictly stationary and mixing sequences are strictly stationary

and mixing of the same size, we know by A4′ that {gp(τ 0; e∗t+1,xt)} is strictly stationary
and α-mixing with mixing coeffi cient of size −r/(r − 2), r > 2. In the proof of Theorem
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2 we have moreover shown that E[
∥∥gp(τ 0; e∗t+1,xt)∥∥r+ε1

] < ∞. The CLT [e.g., Theorem
5.20 in ?] then ensures

√
Pm̂∗P

d→ N (0,S). (S-11)

The remainder of the asymptotic normality proof is similar to the standard case: the

positive definiteness of S−1, Ŝ
p→ S and B̂P

p→ B∗ ≡ E[B(p, e∗t+1,xt)] as R → ∞ and

P →∞ (B was defined in Equation (12)) together with A5(ii) ensure that (B∗′S−1B∗)−1

exists, so by using
√
P (τ̂ P−τ 0) = −[B̂′P Ŝ−1B̂P ]−1B̂′P Ŝ−1[

√
Pm̂∗P +op(1)], the limit result

in (S-11) and the Slutsky theorem we have
√
P (τ̂ P − τ 0)

d→ N (0, (B∗′S−1B∗)−1), which

completes the proof of asymptotic normality. �


