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PART 1

TRUTH-FUNCTIONAL
LOGIC



A. ANATLYSIS

§1. Statements

Truth-functional logic concerns several ways in which state-
ments may be compounded to form more complex state-
ments. These compounding methods typically use the
connectives “and”, “not”, “or”, and “if ... then”, as in the fol-
lowing examples:

Gladstone approved or Disraeli abstained.
If Gladstone approved then Disraeli abstained.
Gladstone approved and Disraeli did not abstain.

Our aim is to analyze such compounds in a systematic
manner. We seek to formulate laws that tell us how the truth
of a compound statement depends upon the truth of its sim-
pler constituent statements. These laws will yield, for ex-
ample, that the third statement above is true just in case the
constituent statement “Gladstone approved” is true and the
constituent statement “Disraeli abstained” is false. More-
over, these laws will give us the means to delineate the
interdependencies among compound statements. For exam-
ple, the second and third statements above cannot both be
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4 ParT I TRUTH-FUNCTIONAL LOGIC

true. In such interdependencies logical argumentation is
grounded.

The statements of which we speak, in this part of logic, are
a particular kind of sentence. Let us clarify this notion. A
statement is a sentence that is true or is false. Thus all state-
ments are declarative sentences, since nondeclarative sen-
tences—like “Where is Moose Jaw?”, “O, to be in England!”,
and “Please pass the salt.”—are neither true nor false. How-
ever, strictly construed, even many declarative sentences fail
to be statements, for we require that statements be true or
false, once and for all. The sentence “I am myopic” is, in-
trinsically, neither true nor false: it may be true when uttered
by one speaker and false when uttered by another. Similarly,
“She is British” uttered in some contexts may be true while
uttered in other contexts may be false; the person “she”
refers to varies with the context. The sentence “Seattle is far
from here” is true in Philadelphia and false in Vancouver.
Sentences containing “I”, “she”, or “here” are context-
dependent: their truth or falsity is not fixed independently of
the context of utterance. To obtain a statement from such a
sentence, these and similar words must be replaced by
words or phrases not subject to the influence of context. For
example, the sentence just mentioned would be replaced by
“Seattle is far from Philadelphia” or by “Seattle is far from
Vancouver”, depending upon where it is uttered.

Even sentences like “Roosevelt is impatient” are in some
measure context-dependent; a conversational setting is
needed to determine whether “Roosevelt” refers to, say,
Theodore rather than to Franklin Delano. This dependence
may be eliminated by expanding the sentence to “President
Franklin Delano Rooseveltis impatient”. But this sentence is
still context-dependent, insofar as it may be true at one time
and false at another, varying with FDR’s temperamental
state. Similarly,
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Maria Callas sang at the Metropolitan Opera
was false before 1947 and is now true; and
Maria Callas will sing at the Metropolitan Opera

was true in 1950 and is now, alas, false. To eliminate this de-
pendence on time of utterance, explicit mention of the time
must be added. Uttered on May 6, 1963, these sentences cor-
respond to the statements “Maria Callas sings at the Metro-
politan Opera before May 6, 1963” and “Maria Callas sings
at the Metropolitan Opera after May 6, 1963”. Note that once
the time is made explicit, the tense of the verb no longer mat-
ters; the verb may be said to be used tenselessly.

In sum, a statement is a sentence that is determinately true
or determinately false independently of the circumstances
in which it is used, independently of speaker, audience,
time, place, and conversational context. Thus most sen-
tences encountered in ordinary discourse are not, as they
stand, statements in the strict sense.

This strict notion of a statement is important as a theoret-
ical basis of our analysis. By paraphrasing the sentences of
everyday discourse by statements, we give explicit recogni-
tion, for example, to the fact that you do not contradict me if
you respond to my assertion “I'm hungry” by saying “I'm
not”, whereas you do contradict me if you respond to my
claiming “Montpelier is the capital of Vermont” by saying
“Montpelier is not the capital of Vermont”. In theory, then,
the first step toward the logical analysis of a stretch of dis-
course is to paraphrase each sentence under consideration
by a statement. In practice we avoid this tedium by imagin-
ing the sentences of our examples to be paraphrasable into
statements uniformly. That is to say, we imagine them to have
been uttered by a single speaker, at a single time, in a con-
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versational setting that uniformly resolves any ambiguities.
This tacit assumption enables us to treat sentences like
“Gladstone approved”, “Roosevelt is impatient”, and “I am
myopic”, when they appear in our examples, as though they
were statements.

§2. Conjunction

If T assert the statement

(1) Zola was a novelist and Rimbaud was a poet,
then I commit myself to both of the statements

(2) Zola was a novelist
(3) Rimbaud was a poet.

Moreover, if I assert each of (2) and (3), I must acquiesce in
(1). For statement (1) is true if both (2) and (3) are true, and
is false otherwise. Statement (1) is a compound statement
called the conjunction of statement (2) and statement (3).

The conjunction of two statements is true if both of the two state-
ments are true, and is false if at least one of the two statements is
false.

In fact, statement (1) is true; but the following three con-
junctions are false:

Zola was a novelist and Manet was a poet
2+3=6and3+7=10

Calgary is in Manitoba and Moose Jaw is in
Ontario.
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For in each case at least one of the conjoined statements—or
conjuncts, as they are called——is false.

As these examples suggest, conjunctions can be con-
structed by connecting the two conjuncts with the word
“and”. In our logical symbolism we use a dot “.” for con-
junction. Thus, statement (1) may be written:

Zola was a novelist . Rimbaud was a poet
and if we use “p” and “4” to represent statements, their con-
junction is written “p.g”.

Any two statements may be conjoined. In particular,
conjunction may be iterated. A conjunction “p.q” may be
conjoined with “r”, and the result written “(p.q).r”. The
parentheses here serve to group the first conjunct of this con-
junction, namely “p.q”, as a single whole. Now “(p.q).r" is
true if and only if both “p.q” is true and “r” is true; and “p.g”
is true if and only if both “p” and “q” are true. So “(p.g).r” is
true if and only if all of “p”, “q”, and “r” are true. Similarly,
we may conjoin “p” with the conjunction “g.r”, obtaining
“p-(g.r)". The latter is true if and only if “p” and “g.r” are both
true; and “g.r” is true if and only if “4” and “7” are both true.
So“p.(g.r)”istrueif and onlyif all of “p”, “4”,and “r” are true.

Thus there is no difference between “(p.g).7” and “p.(g.7)".
In a word, conjunction is associative: the internal grouping in
an iterated conjunction doesn’t matter. Consequently, we
may write “p.g.r”, without parentheses. This compound,
which we may call the conjunction of “p”, “4”, and “*”, may
be construed as “(p.q).r” or as “p.(q.r)”; either way, it is true
just in case all of “p”, “q”, and “r” are true.

In being associative, conjunction is like addition and mul-
tiplication in arithmetic. That is, (x + y) + z=x + (y + z) and
(x X y) Xz =x X (y x 2) for all numbers x, y, and z. Hence we
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can, and do, write iterated sums like x + y + z and iterated
products like x X y x z without parentheses. (Division, on the
other hand, is not associative. (24 + 4) + 2 is 3, whereas 24 +
(4 + 2) is 12. The expression “24 + 4 + 2” is ambiguous and
cannot be used; parentheses are essential.)

Clearly, we may conjoin any number of statements:
“p.q.r.s.t” represents a conjunction of five statements; it is
true if its conjuncts are all true, and is false otherwise. Iter-
ated conjunctions can be expressed in English by joining the
conjuncts with commas and inserting “and” just before the
last conjunct. “Zola was a novelist, Rimbaud was a poet,
Manet was a painter, and Rodin was a sculptor” is a con-
junction with four conjuncts.

Aside from being associative, conjunction is also commu-
tative: the order of the conjuncts makes no difference. That
is, “p.q” and “g.p” amount to the same, for they are true if
“p” and “g” are both true and they are false otherwise. Here
again, conjunction is like addition and multiplication.

We have seen that the conjunction of two statements
may be expressed by connecting the two conjuncts with
“and”. Now, “and” is used in English not just between
statements but also to connect nouns, verbs, adverbs, and
other parts of speech. Statements containing “and” in these
ways may ordinarily be analyzed as conjunctions. Thus the
statements

Fred sang and danced
Putin quoted Kant and Hegel
Agassi volleyed confidently and effortlessly

may be identified with the conjunctions

Fred sang . Fred danced
Putin quoted Kant . Putin quoted Hegel
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Agassi volleyed confidently . Agassi volleyed
effortlessly.

In the analysis of a statement as a conjunction, care must be
taken with pronouns. For example,

Scrooge gave Cratchit food and paid his bills
cannot be analyzed as

Scrooge gave Cratchit food . Scrooge paid his bills.
For in the statement “Scrooge paid his bills” the pronoun
“his” refers to Scrooge, whereas in the original statement

“his” refers to Cratchit. Thus the correct analysis is

Scrooge gave Cratchit food . Scrooge paid
Cratchit’s bills.

On the other hand, the statement

Scrooge gave Cratchit food and regretted his
previous parsimony

can correctly be rendered

Scrooge gave Cratchit food . Scrooge regretted his
previous parsimony.

Pronouns, in sum, require attention: in many cases their an-
tecedents have to be supplied in the process of analysis, al-
though in some cases they do not.

The general rule that “and” expresses conjunction has ex-
ceptions. The statement
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4) Callas walked out and the audience booed

on its most natural interpretation conveys more than a con-
junction. It conveys a succession in time, so that its truth
does not depend on merely the truth, separately, of the two
statements “Callas walked out” and “the audience booed”.
Thus the statement is not a conjunction. Another way to see
this is to contrast (4) with

(5) The audience booed and Callas walked out.

Were (4) and (5) conjunctions, they would amount to the
same, since conjunction is commutative. But in fact (5) con-
veys a picture of events rather different from (4).

Exceptions occur also when “and” is used between parts
of speech. To take the statement “Eggers wrote a bestseller
and became wealthy” as a conjunction fails to do it justice;
as in the previous example, this statement would ordinarily
be understood as conveying a succession in time. Excep-
tional for a different reason is

Fred and Ginger danced the night away.
This ought not be identified with

Fred danced the night away . Ginger danced the
night away,

since it conveys more than that each of Fred and Ginger
danced nightlong, but that they did it together. We might say
that “and” here expresses not conjunction but rather a “col-
lective subject”. So too in “June, July, and August make up
the summer recess” and “Brutus and Cassius conspired”. An
ambiguous case is
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New York is bigger than Boston and Philadelphia.

This statement is a conjunction if meant to say that New York
is bigger than each, but is not a conjunction if meant to say
that New York is bigger than the two put together.

Nonconjunctive uses of “and” are exceptions. In the great
majority of cases “and” does express conjunction. Whether
any given occurrence of “and” does or does not depends
upon what the statement is supposed to convey. There are
no general rules for deciding this; you must rely on your
ability to understand English, and your knowledge of the
circumstances in which the statement is uttered. Of course,
sometimes the answer will not be evident, even if circum-
stances of utterance are taken into account. But that is just to
say that sometimes people speak ambiguously.

§3. Negation

To assert the statement

(1) Zola was not a novelist
is just to deny the statement
2) Zola was a novelist.

Statement (1) is called the negation of statement (2).

The negation of a statement is true if the negated statement is
false, and is false if the negated statement is true.

We ordinarily express the negation of simple sentence by
using the word “not” (or “does not” and its conjugations),
as in (1), or in “85 is not a prime number”, or in “Zola did
not write poetry”. This rule often does not hold for more
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complex statements. The negation of “Both President Lyn-
don Johnson and Mrs. Johnson were from Texas” is not
“Both President Lyndon Johnson and Mrs. Johnson were not
from Texas”, but rather “Either President Lyndon Johnson or
Mrs. Johnson, or both, were not from Texas”. The negation
of “It sometimes rains in Seattle” is not “It sometimes does
not rain in Seattle” but rather “It never rains in Seattle”. In-
deed, “It sometimes does not rain in Seattle” is the negation
of “It always rains in Seattle”. (Negations of complex state-
ments will be examined in more detail in §5 and §20 below.)
Luckily, in almost every case the negation of a statement can
be expressed by prefixing the statement with “it is not the
case that”. Thus we have the long-winded but serviceable “It
is not the case that it sometimes rains in Seattle”. To avoid
the vagaries of ordinary language, in our logical notation we
symbolize negation by a bar “~”. The statements

—~(Zola was a novelist)
—(Zola wrote poetry)
~(It sometimes rains in Seattle)

are the negations of the statements within the parentheses.

When a statement is represented as a single letter, like “p”,
or is itself a negation, like “—(p.q)”, parentheses may be
dropped. Thus “—p” is the negation of “p” and “——(p.q)” is
the negation of “~(p.q)”.

It should be clear that “— —p” amounts to the same thing as
“p”. For “~—p” is true just in case “—p” is false, and “~p” is

false just in case “p” is true. Double negations, therefore, are
redundant.
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§4. Disjunction
If I assert the statement

(1) Callas gave an uninspired performance or the
audience was predisposed against her

then I must agree that at least one of the statements

(2) Callas gave an uninspired performance
3) The audience was predisposed against Callas

is true, even though I might not know which. Moreover, 1
do not preclude the possibility that both (2) and (3) are true;
Iam denying only that (2) and (3) are both false. Statement
(1) is the disjunction of (2) and (3); it is true if at least one of
(2) and (3) is true, and is false otherwise. Statements (2) and
(3) are the disjuncts of (1).

This account of the logical behavior of (1) might perhaps
be met with some hesitancy. The hesitancy arises because
“or” has two precise but conflicting senses in English. The
sense just ascribed to the “or” in (1) is called the inclusive
sense. The contrasting exclusive sense is that under which “p
or 4” counts as true if and only if exactly one of “p” and “g”
is true. Inclusive “or” and exclusive “or” differ only in the
case that both constituent statements are true; in this case “p
or 4”7 is true when “or” is inclusive, and is false when “or” is
exclusive.

To find an instance in which “or” must be interpreted ex-
clusively, we must provide circumstances in which a person
is using the statement containing “or” explicitly to deny that
both constituent statements are true. Here is a well-worn ex-
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ample. Suppose a child is pleading to be taken both to the
beach and to the movies, and the parent replies:

We will go to the beach or we will go to the movies.

The exclusive nature of “or” here is clear: the parent is prom-
ising one outing but precluding both.

More common are instances in which “or” should be in-
terpreted inclusively. It seems to me that (1) is such an in-
stance. (Think, for example, of (1) as uttered to explain a
hostile reception to a Callas performance. Surely one would
not want to call this explanation false if both (2) and (3) were
true.) Similarly, suppose the rule-book says that a student
satisfies the logic requirement on the condition that

The student takes the Deductive Logic course or
the student passes the departmental examination.

If the student overzealously does both, then clearly the
condition would still be considered true, and the student
taken to have satisfied the requirement. Thus “or” is inclu-

sive here. - .
Sometimes it does not matter which sense is assigned to
an occurrence of “or”, in that either would do equally well.

For example, in

The Prime Minister is in London or Ottawa,

which is a condensed form of

The Prime Minister is in London or the Prime
Minister is in Ottawa,

Wt
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it makes no difference which way “or” is construed. A dif-
ference could arise only when both constituent statements
are true, but—since the Prime Minister cannot be in two
places at once—this situation never arises. Thus the speaker
of this sentence need have no concern with such a situation.

The decision as to which sense, exclusive or inclusive,
ought be assigned an occurrence of “or” depends upon what
is supposed to be conveyed. If there is a significant danger
of confusion, we might use a more elaborate form of words
to pin down the appropriate sense: for the exclusive sense “p
or g but not both”; for the inclusive sense “p or g or both” (or
even the horribly inelegant “p and/or g”).

On the whole, though, inclusive “or” seems to be more
common than exclusive “or”, while many instances are of
the don’t-care variety mentioned two paragraphs above.
Hence we do little injustice to everyday language if we in-
terpret “or” inclusively in all cases but those few that are
glaringly exclusive. All uses of “or” below should be con-
strued inclusively. We reserve the term “disjunction” for in-
clusive “or”, and in our logical symbolism represent it by the
wedge “v”. Thus “p v q” represents the disjunction of “p”
and “g”. (The symbol “v” comes from the “v” in “vel”, the
Latin for inclusive “or”. Latin had another word, “aut”, for
exclusive “or”. I know no modern language in which the
distinction is preserved.) To repeat, then:

The disjunction of two statements is true if at least one of those
statements is true, and is false if neither of those statements is true.

By the way, our decision to give disjunction a place in our
symbolism and to make no special provision for exclusive
“or” does not preclude us from expressing the latter sym-
bolically. Indeed, “p or g but not both” may be represented
as“(pvgq) . ~(p.q)”, or, alternatively, as “(p.—q) v (-p.q)”. The
reader should check that these are in fact correct notations.
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It should be clear, upon reflection, that disjunction is as-
sociative: “(p v g) v r” and “p v (g v r)” amount to the same,
since each is true if at least one of “p”, “4”, and “r” is true,
and each s falseif “p”, “g”, and “r” are all false. Thus we may
write such disjunctions without parentheses, for example “p
vgvr”and “pvgvrvs”. Disjunction is also commutative:
there is no difference between “p v 47 and “g v p”.

We have been talking of “or” as used to connect state-
ments, but “or” may also occur between parts of speech. As
with “and”, statements that contain “or” in such ways can
usually be taken to be condensed forms of statements in
which “or” connects statements, and hence be analyzed as

disjunctions of those statements.

“”_rr
14

§5. Grouping

The associativity of conjunction and disjunction allows us to
ignore internal grouping in iterated conjunctions and iter-
ated disjunctions. But grouping is essential in compound
statements that involve conjunction, negation, and disjunc-
tion in combination. Consider

Figaro exulted, and Basilio fretted, or the Count
had a plan.

This is ambiguous as it stands; it could be expressing either
of the following:

) (Figaro exulted . Basilio fretted) v the Count had a
plan

2 Figaro exulted . (Basilio fretted v the Count had a
plan).
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The distinction we are drawing is that between “(p.g) v r”
and “p.(g v r)”. These two compounds behave very differ-
ently. If, for example, “p” is false, “q” is false, and “r” is true,
then the former is true, since it is a disjunction whose second
disjunct is true, while the latter is false, since it is a conjunc-
tion whose first conjunct is false. Thus we must insist on
grouping. In English various expedients are available for
this: the use of “either ... or” rather than simply “or”, where
the placement of “either” serves to identify the extent of the
first disjunct; the use of emphatic particles like “else”, which
makes an “or” mark a stronger break, and like “moreover”,
which makes an “and” mark a stronger break; and various
types of punctuation. Thus (1) might be expressed in these
two ways:

Either Figaro exulted and Basilio fretted or the
Count had a plan

Figaro exulted and Basilio fretted, or else the Count
had a plan,

and (2) might be expressed in these three:

Figaro exulted and either Basilio fretted or the
Count had a plan

Figaro exulted and, moreover, Basilio fretted or the
Count had a plan

Figaro exulted; and Basilio fretted or the Count had
a plan.

Grouping can sometimes be enforced by condensation,
that is, by using “and” or “or” between parts of speech
rather than between statements. Thus the statements
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Fred danced and sang or Ginger sang
Fred danced and Fred or Ginger sang

are unambiguously of the forms “(p.q) v r” and “p.(q v r’,
respectively. _

Grouping is also essential in combinations of conjunction
or disjunction with negation. We must distinguish “-p.g”
from “—(p.q)”,and “—p v ¢” from “~(p v ¢)": in the first of each
pair only “p” is negated, while in the second the whole com-
pound is negated. We must also distinguish between —(p.4)”
and “—p.—q”, and between “~(p v 4)” and “-p v —q”. Consider
the four possible cases:

“p” and “q” both true

9 .17 " _r

p” true, “q” false
llp// false, 11q// true
“p” and “q” both false.

Now “~(p.g)” is the negation of “p.q”, and so is false in the first
case and true in the others; whereas “—p.—q” is true in the
fourth case only. And “~p v —4” is true when one or both of
“—p” and “—q” is true, that is, in all but the first case; while “—(p
v g)” is true when “p v g fails, that is, in the fourth case only.

We see then that “—~(p.q)” agrees with “—p v —7”, and that
“_(pv q)” agrees with “—p.—q”. The negation of a conjunction
amounts to a disjunction of negations, and the negation ofa
disjunction to a conjunction of negations. (These equiva-
lences are called De Morgan’s Laws.) Note that “—p.—q"” may
be rendered in ordinary language as “Neither p nor 47, and
so it should occasion no surprise that it amounts to “Not: ei-
ther p or g7, that is, to “~(p v 9)”.
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§6. Truth-functions

4

To determine whether “—p”, “p.q”, and “p v g” are true, one
needs to know only whether “p” is true and whether “g4” is
true. We call truth and falsity fruth-values, and we say that
the truth-value of a statement is truth or falsity according to
whether the statement is true or false. Thus we may say that
the truth-value of a negation, conjunction, or disjunction de-
pends only on the truth-values of its constituent statements.
For this reason we call negation, conjunction, and disjunc-
tion truth-functions.

Some ways of compounding statements to form more
complex statements are not truth-functional. For example,
statements may be compounded with “because”

1 The Confederacy was defeated because Britain did
not recognize it.

Now, we all agree that the Confederacy was defeated and that
Britain did not recognize the Confederacy, yet we still might
disagree about the truth of (1). Thus the truth-value of (1)
does not depend solely on the truth-values of its constituent
statements. Indeed, a constituent of (1) may be replaced with
another statement that has the same truth-value, and the
truth-value of the whole will be altered. For example, by one
such replacement we can obtain on the one hand the obvi-
ously false “The Confederacy was defeated because General
Lee had a beard”, and by another such replacement we can
obtain the obviously true “There was no British Embassy in
Richmond because Britain did not recognize the Confeder-
acy”. The truth-values of truth-functional compounds, in
contrast, are never affected when a constituent statement is
replaced by another statement of like truth-value.
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Truth-functions are completely characterized by the rules
that tell how the truth-value of the whole is determined by
the truth-values of the constituents. We may give a conven-
jent graphic representation of these rules by means of What
are called truth-tables. This is the truth-table for conjunction:

p q p-q
T T T
T L L
L T L
L L L

Here “T” represents truth and “ L” falsity. The four lines
"o and

of the truth-table represent the four possible cases: “p

“g” both true, “p” true and “q” false, “p” false and “q” true,
“p” and “q” both false. The entries in the last column thgn
tell us that “p.q” is true in the first of these cases and false in

the other three. . o
These are the truth-tables for disjunction and negation:

p q pvg p P
T T T T 1
T L T L T
1 T T
1 1 1

Since negation, conjunction, and disjunction are truth-
functions, anything obtained by repeatedly combining the§e
connectives will also be a truth-functional compound of its
constituents. Hence the behavior of any such compound can
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be completely exhibited by truth-tables. Here, for example,
is the truth-table for “—(p.g)":

p q =(p-9)
T T 1
T 1 T
1 T T
1 1 T

That is, as we have seen, “—(p.q)” is true if at least one of “p”
and “g” is false, and is false if both “p” and “g” are true.

Of course, truth-functional compounds far more complex
than “~(p.q)” can be formed by using negation, conjunction,
and disjunction in combination. In §9 we give a procedure

for constructing the truth-table for any such compound.

§7. Conditional

A statement of the form “if p then g” is called a conditional; the
statement in the “p”-position is called the antecedent of the
conditional, and that in the “4”-position the consequent. We
seek a truth-functional connective that doesjustice, or at least
reasonably good justice, to the use of conditional statements.

Now, if “p” is true then surely “if p then g” stands or falls
on the truth of “g”. If I say

(1) If today is Tuesday then we are in Paris,

and the day is Tuesday, then I have said something true if we
are in Paris and something false if we are not. Thus the first
two lines of the truth-table for “if p then 4” should look like
this:
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p q if p theng
T T T
T 1 L

yZig

What, then, of the remaining two lines, those on which “p
is false? This question is somewhat artificial. In common
practice, if someone asserts a statement of the form ”ifp thep
q” and the antecedent turns out to be false, the assertion is
simply ignored, and the question of its truth or falsity is just
not considered. In a sense, we ordinarily do not treat utter-
ances of the form “if p then 4” as statements, that is, as ut-
terances which may always be assessed for truth-values as
wholes. Our decision as logicians to treat conditionals as
statements is thus something of a departure from everyday
attitudes, although hardly a serious one, and one that is es-
sential to the logical analysis of complex compounds.
Moreover, one aspect of our common practice does sug-
gest a suitable completion of the truth-table. If  assert a con-
ditional whose antecedent turns out false, I certainly would
not be charged with having uttered a falsehood. So let us
take the conditional to be true in such cases. That is, let us
adopt the following as the truth-table for conditional:

p q if ptheng
T T T
T 1 1
L T T
L L T

A conditional is true if either its consequent is true or its an-
tecedent is false, and is false otherwise.

!
7
i
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The truth-functional analysis of the conditional that we
have just adopted is often called the material conditional; in
our logical symbolism it is represented by the horseshoe “>".
Note that we have so defined “2” that “p © g” agrees in its
truth-functional behavior with “—(p.—4)”. That is, to assert a
conditional is precisely to deny that the antecedent is true
while the consequent is not. In asserting statement (1) above
I do no more and no less than commit myself to the falsity of

Today is Tuesday and we are not in Paris.

This consequence of our adoption of the material condi-
tional as an analysis of “if-then” is natural and intuitive, and
speaks in favor of that analysis. (The equivalence of “p > g”
and “—(p.—q)” also shows that the symbol “>” is technically
superfluous; we could make do with negation and conjunc-
tion. We use “2” solely for convenience.)

Further support for the analysis of conditionals as mate-
rial conditionals comes from generalized conditionals. The
statement “Every number divisible by four is even” can be
rephrased

@) No matter what number x may be, if x is divisible
by four then x is even.

That is, the statement can be viewed as affirming a bundle
of conditionals:

If 0 is divisible by four then 0 is even
If 1 is divisible by four then 1 is even
If 2 is divisible by four then 2 is even

and so on. The interpretation of each of these individual con-
ditionals as material conditionals is just what we need if (2)
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is to come out true. For among the conditionals in the bun-
dle we find some with true antecedent and true consequent,
some with false antecedent and true consequent, and some
with false antecedent and false consequent. But we fail to
find any with true antecedent and false consequent. Thus
each individual conditional, construed as a material condi-
tional, is true. Hence (2) is true, which is exactly what we
want. Moreover, each conditional in the bundle amounts to
a statement of the form “~(n is divisible by four . 7 is not
even)”. This bundle of negated conjunctions can then be
summed up by

No matter what number x is, it is not the case both
that x is divisible by four and x is not even

o

or, more briefly,
No number is divisible by four yet is not even.

This is a perfectly accurate reformulation of (2).

Generalized conditionals will be treated more fully in Part
T below. They are mentioned here only as an illustration of
the central role that the material conditional will play in the
analysis of more intricate logical forms.

To be sure, we do not claim that the material conditional is
accurate to all uses of “if-then”. In particular, a conditional
whose antecedent is in the subjunctive mood cannot be ana-
lyzed as a material conditional. Prominent among subjunc-
tive conditionals are the counterfactual ones, for example,

If Robert Kennedy had not been assassinated, he
would have become President.
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This is called a counterfactual conditional because its an-
tecedent is already assumed to be false. Clearly, then, such
conditionals do not behave like material conditionals (nor
do we take toward them the everyday attitude of ignoring
them once the antecedent is seen to be false). Indeed, they
are not truth-functional at all—for, obviously, ordinary us-
age demands that some counterfactual conditionals with
false consequents be true and some with false consequents
be false.

Thus we intend the material conditional as an analysis
only of indicative conditionals. Even here objections are
sometimes raised, on the grounds that a material conditional
can be true even though the antecedent is completely irrele-
vant to the consequent. For example, conditionals like “If
Manet was a poet then 2 + 2 = 4” and “If Manet was a poet
then 2 + 2 = 5” are true. This might well seem bizarre. Yet it
would also be bizarre to call these conditionals false. It is,
rather, the conditionals themselves that are strange. Condi-
tionals like these simply play no role in practice. No one
would think it worthwhile to assert a conditional when the
truth-values of its constituents are already known. In prac-
tice, we assert “if p then ¢” if we do not know the individual
truth-values of “p” and of “g”, but we have some reason for
believing that “p.—q” is not the case. Usually this occurs only
when we believe “p” and “q” are somehow connected. With-
out such a connection, we would never have a reason to
frame the conditional at all. That is why the above condi-
tionals seem so odd. Such a connection is needed for the use-
fulness of a conditional; but that is not to say that such a
connection has anything to do with the sense of the condi-
tional. “If p then ¢” can be taken in the sense of the material
conditional, regardless of whether “if p then 4” is useful, or
used at all. It is not for logic to tell us which conditionals are
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likely to be uttered. And it is essential to logic that any two
statements be allowed to join into a conditional.

A last source of hesitancy in adopting the material condi-
tional comes from a mistaken reading of “p > g” as “p im-
plies g”, rather than as “if p then 4”. Indeed, it is just wrong
to claim that “Manet was a poet” implies “2 + 2 = 5”. More-
over, the word “implies” is simply incorrect as a reading of
“=" and should therefore be avoided. In §11 we shall exam-
ine the correct use of “implies” and see that, although im-
plication is linked to the conditional, “if-then” and “implies”
are notions of quite distinct content.

We adopt the material conditional as a rendering of
“if ... then” because it is useful. It will become clear, as we
proceed, how appropriate this concept is for many purposes
which in ordinary English would be served by “if ... then”.
We have already seen a particularly good example of this:
the material conditional is precisely what is wanted as an
analysis of the individual instances covered by a generalized
conditional.

To repeat, then: the conditional “p > ¢” is true in all
cases but that in which “p” is true and “4” is false. Thus “p
> g” agrees with “—(p.—g)”, and also with “—p v 4”. Less ob-
vious, perhaps, is that “p © 4” and “—q D ~p” amount to the
same, for the latter is false if and only if “—4” is true and
“—p” is false; that is to say, if and only if “g” is false and ”p”
is true; and this is exactly the one case in which “p > g” is
false. The conditional “—g > —p” is called the contrapositive
of “p > ¢”. A moment’s reflection should convince one
that the equivalence of a conditional and its contrapositive
is intuitively grounded as well. For example, in affirming
statement (1) above, I clearly stake myself also to its con-
trapositive,

If we are not in Paris then today is not Tuesday.
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However, the conditional “p o g” is not at all the same as
its converse, the conditional “g > p”. Statement (1) may per-
fectly well be true, while its converse,

If we are in Paris then today is Tuesday,

is not. (Suppose, for example, that we are in Paris, and the
day is Wednesday.) Finally, the conditional “-p > —4” is
called the inverse of “p o g”. The inverse is the contrapositive
of the converse “g © p”, and so is equivalent to the converse,
and not to “p o g”.

Other locutions can do the same work as “if-then”. Some-
times we might put the antecedent second, as in “g if p”, “g
provided that p”, and “g in case p”. “If p then g” is also syn-
onymous with “p only if 4”. To see why, note that “p only if
g” says, essentially, that if ”q” fails then so will “p”, that is,
that “~g > —p” holds. Since “—§ > —p” is the contrapositive of,
and hence agrees with, the conditional “p > 4", the locution
“p only if g” can be equated with “if p then g”.

What, then, of the expression “p if and only if 47, which
has already sometimes been used in this text? This amounts
to “(p only if ¢).(p if q)”, that is, to “(p 2 9).(g > p)”. We
use “=" for “if and only if”; that is, “p =4" is just the same as
“(p o g).(g > p)”. We call statements of the form “p = 4" bi-
conditionals. Aside from “p if and only if 4”, often abbreviated
“p iff q”, another locution for “p = g” is “p when and only
when g”, and “p just in case q”. The truth-table for bicondi-
tional looks like this:

s
I
=

e
e
A4
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The biconditional of two statements is true if both the statements
are true or if both are false, and is false otherwise.

With the biconditional we have come to the last of our ba-
sic truth-functional connectives. Indeed, biconditional, like
the conditional, can be dispensed with in favor of negation,
conjunction, and disjunction: “p = g” amounts to “(p.q) v
(-p.—q)”. But, as with the conditional, it is far more conven-
ient to have a symbol for this truth-function.

§8. Logical Paraphrase

Pure logic concerns the abstract properties of and relations
among compounds formed by means of the logical connec-
tives. But ordinarily the statements to which we wish to ap-
ply logical laws are not themselves written in logical
notation. To apply logic we must remedy this: we must par-
aphrase the given statements using our logical symbolism.
Paraphrasing reduces varied idioms of everyday language
to a regularized notation, and thus enables us to exhibitin a
uniform way the relevant structural features of the state-
ments under consideration.
Logical paraphrase requires three basic tasks:

(1)  thelocutions that serve as connectives have to be
identified and suitably translated into symbols;

2 the constituents of the statement have to be demar-
cated, and possibly rephrased to make their content
explicit;

3) the organization of the constituents, that is, the
grouping, has to be determined.

- - - - = . s
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Throughout this process, we must rely principally on our
sense for everyday language. We must arrive at an under-
standing of what the statement is meant to convey, and then
judge whether any suggested paraphrase does justice to the
original. There are few hard-and-fast rules, for we rely on a
large variety of idiomatic features.

As for the first task, we have already discussed many of
the words that can usually be translated as truth-functional

connectives. “And” goes into “.”, “or” and “either ... or”
4" r

into “v”7, “not” and “it is not the case that” into “-”,
“if ... then” and “only if” into “>”, and “if and only if” into
“=". We have also discussed some exceptions to these rules.

There are a few locutions not already mentioned that may
also serve to express truth-functional connectives. Conjunc-
tions can be expressed not just by “and” but also by “but”,
by “although”, and by punctuation. The differences among
“and”, “but”, and “although” are rhetorical rather than log-

ical. Each of the statements

Churchill voted “Aye” and Asquith voted “Nay”
Churchill voted “Aye” but Asquith voted “Nay”

Churchill voted “Aye” although Asquith voted
IINay//

is true just in case both constituents are true. We would use
the statement with “but” if we wish to emphasize the con-
trast between the divergent votes, and we would use “al-
though” if the contrast is dramatic and surprising—for
example, if Churchill had previously always agreed with
Asquith. Use of one rather than another expresses an atti-
tude toward the relevant facts, but involves no difference in
truth-value.
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Turning now to the conditional, we mentioned in the pre-
ceding section a number of variant locutions for “if p then
g”. To these let us add one more, namely, “not p unless g”.
For example, the statement

The senator will not testify unless he is granted
immunity

can be identified with

The senator will testify only if he is granted
immunity,

that is, with

The senator will testify  the senator is granted
immunity.

This seems fair enough, but it has a curious consequence. To
identify “not p unless g” with “p D g4” is at the same time
to identify it with “—p v ¢”. Thus we are taking “unless” to
amount to “v”, and hence to “or”. This may seem odd, but
in the end the oddity arises for the same reasons as with the

s ’7

analysis of “if-then” as “>”. That is, “p unless 4” may seem

iy 1 o> rr

to suggest some connection between “p” and “g”. As before,
though, connections between “p” and “g” might underlie
the usefulness of the statement “p unless 47, but need not be
taken to enter into the sense of the statement.

Incidentally, it can be argued that “unless”—like “or” it-
self—is occasionally used in an exclusive sense. “I'll go to
the party unless Mother objects” might (depending on con-
text) be justifiably interpreted as affirming both conditionals
“If Mother doesn’t object then I'll go to the party” and “If

= s
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Mother objects then Iwon’t go to the party”, rather than sim-
ply the former conditional. The conjunction of these two
conditionals amounts to “Either I'll go to the party or Mother
objects, but not both”. Matters here are not as clear as with
“or”, but in any case we shall interpret all uses of “unless”
below inclusively.

So far we have been discussing task (1), the correlation of
words of ordinary language with the truth-functional con-
nectives. Task (2) is less straightforward, since we may need
not only to translate connectives but also to rephrase the
constituent statements. Of course, this necessity arises if the
original statement is condensed, for then omitted words
have to be reinstated in the paraphrase. Thus, to paraphrase
“Fred sang and danced” we must not only replace “and”
with “.”, but also insert the missing “Fred” before “danced”.
Subtler, however, are those cases where rephrasing is
needed to prevent changes of meaning within the statement
or group of statements being considered. We have seen a
case of this in §2, concerning pronouns. Since the con-
stituents are to be thought of as independent statements, and
hence insulated from each other, we cannot let stand in one
constituent any pronoun whose interpretation is fixed by a
noun in another constituent. Such pronouns must be re-
placed by their antecedents. For similar reasons, the two
conjunctions

Acheson counseled restraint and Truman agreed

MacArthur argued for invasion and Truman did
not agree

cannot in one and the same breath be taken to have the log-
ical forms “p.q” and “r.-q”; for then it would follow that
they cannot both be true. Of course they can both be true.
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The point is that the second conjuncts of the two conjunc-
tions cannot be taken as “Truman agreed” and “~(Truman
agreed)”; rather, they must be fleshed out to “Truman agreed
with Acheson” and “—(Truman agreed with MacArthur)”.

Logical analysis requires that the same expression always
be given the same interpretation in the course of a single
stretch of discourse. Violation of this principle was tradi-
tionally known as the fallacy of equivocation. As mentioned
in §1, we allow ourselves to use sentences that are not,
strictly speaking, statements, on the assumption that the
context acts uniformly on the statements under considera-
tion at one time. The fallacy of equivocation can occur when
the interpretation of a context-dependent expression is not
settled by the overarching context, but is influenced in vary-
ing ways by immediate contexts. In such cases we have to
rephrase, in order to eliminate this influence of immediate
context.

The third task we have singled out as crucial to para-
phrasing is that of determining the intended grouping. In §6
we discussed some of the ways that grouping can be indi-
cated in ordinary language. The following example illus-
trates other clues that can help:

oy If Figaro does not expose the Count and force him
to reform, then the Countess will discharge
Susanna and resign herself to loneliness.

The words “if” and “then” obviously mark out the an-
tecedent of the conditional. Moreover, the condensation of
the clause after “then” shows that this whole clause, not
merely the clause “the Countess will discharge Susanna”,
must be the consequent of the conditional. Thus (1) is to be
paraphrased as a conditional with antecedent,
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Figaro does not expose the Count and force him to
reform,

and consequent,

the Countess discharges Susanna . the Countess
resigns herself to loneliness.

Now we attack the antecedent. It has, as constituents, the
statements “Figaro exposes the Count” and “Figaro forces the
Count to reform” (note the necessity of replacing the pronoun
“him”). But does it have form “~p.gq” or the form “—(p.q)"”?
Again, the condensation of the two conjuncts shows that the
form is the latter. Thus (1), fully paraphrased, is

—(Figaro exposes the Count . Figaro forces the
Count to reform) o (the Countess discharges
Susanna . the Countess resigns herself to
loneliness).

That is, (1) has the logical form “—(p.q) > (r.s)”.

When a statement is complex, the best strategy in para-
phrasing is to look for the outermost structure first and then
paraphrase inward step by step. Each step then yields smaller
structures that can be analyzed further. Let us treat the fol-
lowing example:

2 The trade deficit will diminish and agriculture or
telecommunications will lead a recovery provided
that both the dollar drops and neither Japan nor the
EU raise their tariffs.

First we seek the main connective of (2). Here there is a
choice: either (2) is a conjunction, whose main connective is
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the first “and”, or it is a conditional, whose main connective
is “provided that”. The latter seems more plausible, so we
choose it, obtaining a conditional:

3) (both the dollar drops and neither Japan nor the EU
raise their tariffs) o (the trade deficit diminishes
and agriculture or telecommunications leads a
recovery).

We now treat the antecedent and the consequent as two sep-
arate problems. The main connective of the antecedent is,
clearly, “and”. Thus the antecedent becomes

(the dollar drops) . (neither Japan nor the EU raise
their tariffs).

-

Recall that “neither p nor 4” can be rendered “—p . —q”; the
second conjunct can be paraphrased as

~(Japan raises its tariffs) . —(the EU raises its tariffs).

Now we turn to the consequent of (3). Its main connective
is “and”; it is a conjunction:

(the trade deficit diminishes) . (agriculture or
telecommunications leads a recovery).

The second conjunctis, obviously, a disjunction. Thus, we fi-
nally obtain

((the dollar drops) . —(Japan raises its tariffs) .
—(the EU raises its tariffs)) o ((the trade deficit
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diminishes) . (agriculture leads a recovery
v telecommunications leads a recovery)).

Thus, the truth-functional form of statement (4) is “(p.—g.—)
D (s.(t vu))”.
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§9. Schemata and Interpretation

We have been using the letters “p”, “q”, “r”, and so on to rep-
resent statements, and have been looking at expressions like
“p v q” and “(p.q) © r”, which represent compound state-
ments. We call “p”, “gq”, ... sentence letters, and the com-
pounds constructed from them and the truth-functional
connectives truth-functional schemata. (In Part I we shall usu-
ally omit the modifier “truth-functional”, since schemata of
other kinds won't be encountered until Part II.) Schemata
are not themselves statements. Their constituents, the sen-
tence letters, state nothing, but are mere stand-ins for state-
ments. Schemata are logical diagrams of statements,
diagrams obtained by abstracting from all the internal fea-
tures of the statements save those relevant to the logical
structures with which we are concerned.

An interpretation of sentence letters is a correlation of a
statement with each of the sentence letters. Given such a cor-
relation, a schema constructed from the sentence letters is
interpreted by replacing each letter with its correlated state-
ment. Thus, under the interpretation that correlates “Figaro
exulted” with “p”, “Basilio fretted” with “4”, and “the Count

37
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had a plan” with “¢”, the schema “p.(q v 7)” becomes the
statement

(1) Figaro exulted . (Basilio fretted v the Count had a
plan)

or, in ordinary language,

2) Figaro exulted and either Basilio fretted or the
Count had a plan.

To say that a statement has the logical form given by a cer-
tain schema, or that the statement is schematized by the
schema, is just to say that there is an interpretation under
which the schema becomes the statement (or, more pedanti-
cally: there is an interpretation under which the schema be-
comes a paraphrased form of the statement).

Clearly many statements can be schematized by the same
schema, since sentence letters may be interpreted in infi-
nitely many ways. Moreover, a single statement may often
be schematized by different schemata. Trivially, every state-
ment can be schematized by a sentence letter standing alone,
although such a schematization is not very informative. A
statement like (2) above can also be schematized by “p.q”,
since “p.q” becomes (2) when “p” is interpreted as “Figaro
exulted” and “g” is interpreted as “Basilio fretted or the
Count had a plan”. And, as we have seen, (2) can also be
schematized by “p.(q v r)”. The difference here is one of depth
of analysis; the last schematization is the most informative,
since it displays more of the truth-functional structure. It
shows not just that (2) is a conjunction, but also that the sec-
ond conjunct is a disjunction. When in the future we speak
of the schematization of a statement, we mean the schema

G
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that displays all of the evident truth-functional structure of
the statement.

There is another sense in which sentence letters may be
interpreted: namely, by assigning a truth-value to each. Un-
der any such assignment to its sentence letters, a schema
comes out either true or false; which truth-value the schema
has may easily be calculated. Interpretations in this sense
are called truth-assignments. Truth-assignments are more di-
rect than interpretations in the first sense when our concern
is to calculate the truth-value behavior of compounds, for
since the connectives are truth-functional, the truth-values
of the constituents are all that matter to the truth-value of
the whole. To say that a schema comes out true, for exam-
ple, under the truth-assignment that assigns truth to “p”
and to “g” and falsity to “r” is just to say that the schema
comes out true under any interpretation in the first sense
that correlates true statements with “p” and with “4” and a
false statement with “7”.

Truth-tables may be used to display what the truth-value
of a schema is under each truth-assignment to its sentence
letters. The truth-table for “(p v 9) o 7" is

p q r (pvgor
T T T T
T T L L
T L T T
T L L L
L T T T
L T L L
L L T T
L L L T
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In it, each of the eight lines represents one of the eight truth-
assignments to “p”, “q”, and “r”. On each line the entry in
the final column shows what the truth-value of “(p v q) o 7”
is under that truth-assignment.

In general, there are 2" truth-assignments to # sentence let-
ters; hence the truth-table for a schema constructed from n
sentence letters will contain 2" lines. The order of lines is im-
material, so long as each truth-assignment is represented. But
for practical reasons—familiarity and ease of comparison—
we always arrange the lines in a canonical order. The order,
for sentence letters “p”, “q”, and “r”, may be described thus:
the first four lines have “p” true, and the second four have
“p” false; in each of these halves, four lines apiece, the first
two lines have “g” true and the second two have “g” false; in
each of these quarters, two lines apiece, the first line has “r”
true and the second “+” false. In other words: in the column
headed by “r”, “T” and “ L” alternate on every line; in the

Y7/

column headed by “4”, they switch every second line; in

Y/omis

the column headed by “p”, they switch every fourth line.

Similarly, if there are four sentence letters “p”, “q”, “1”,
and “s”, there will be sixteen lines, since 16 = 2. In the canon-
ical order, the first eight lines have “p” true and the second
eight have “p” false; the truth-value of “4” switches every
four lines, with “g” true on the first four; the truth-value of
“r” switches every two lines, with “r” true on the first two;
the truth-value of “s” switches at each line, with “s” true on
the first line.

To obtain the entries in the final column of the truth-table
requires calculation. For example, on the fourth line of the
truth-table for “(p v g) > r”, a line that represents the assign-
ment of truth to “p” and falsity to “4” and to “r”, we note first
that “p v g” is true under this assignment, since at least one
of its disjuncts is true. Then we note that since “r” is false and

a conditional with true antecedent and false consequent is
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false, the schema “(p v q) o r” is false. Hence we enter “ L”
on this line in the final column.

This sort of calculation must be done for each line: first we
calculate the truth-value of “p v 4", and then we use that
value in a calculation of the truth-value of “(p v q) o 7”. To
keep track, it is convenient to expand the truth-table by in-
terposing a column headed by “p v g”. Our first step would
then be to fill in this column completely. This is easily done
by inspection: “ T” is entered on all lines but those that con-
tain “ L” both under “p” and under “q”. The partially com-
pleted truth—table looks like this:

pvgor

-
=

e I I
=)

FEEEAAAA]S
FEAA4EE-A-|s
e T S W S

We may now easily fill in the final column: we enter “ L”
on all lines that contain “T” under “p v 4” and “_L” under
“r”,and enter “T"” on the rest. So we would enter “ T” onjust
the first, third, fifth, seventh, and eighth lines.

Suppose now we wish to construct the truth-table for
“~p.q) v (p =(q.r))". Again there are three sentence letters,
so the truth-table will have eight lines. The first three
columns of the truth-table are headed by the sentence letters,
and the final column by the whole schema. Intermediate
columns are headed by those schemata whose truth-value
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we must calculate in the course of calculating the truth-value
of the whole. Thus the column headings look like this:

p g9 v pq —p.g) g1 p=@g.r) ~p.q9 v p=(g.1)

We then fill in the columns. The first three are filled in so as
to represent the eight truth-assignments in canonical order.
The subsequent columns are filled in, one by one, in accor-
dance with the rules governing the truth-functional connec-
tives, namely:

(1) a negation is true if what is negated is false, and is
false otherwise;

(2)  aconjunction is true if its conjuncts are all true, and
is false otherwise; 3

(3) a disjunction is true if at least one of its disjuncts is
true, and is false otherwise;

(4)  aconditional is true except if its consequent is false
and its antecedent is true; in that case it is false;

5) a biconditional is true if its two constituents have
the same truth-value, and is false otherwise.

Our completed truth-table looks like this:

p g v pg —p.g gr p=Q@.r) —p.9vp=g.r)
T T T T 1 T T T
T T L1 T 1 1 1 1
T L 7T 1 T 1 1 T
T 1 1 1 T 1 1 T
1l T T 1 T T 1 T
1l T 1L 1 T 1 T T
1l 1 7T 1 T 1 T T
1l 1 1 1 T 1 T T
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It should be clear that our procedure can be applied, in a
purely mechanical fashion, to any truth-functional schema
whatever.

To be sure, this procedure is somewhat long-winded. On
occasion, it may be shortened. For example, it should be
clear by inspection that “~(p.4)” is true under just those in-
terpretations that assign falsity to one or both of “p” and “g”.
Hence the column headed by “p.q” might be omitted from
the truth-table, since the calculation of the entries in the col-
umn headed by “~(p.4)” may be done directly. In general, the
column headed by a schema may be omitted if one does not
need to calculate the truth-values of that schema explicitly.
This, of course, is a matter of taste: calculations that some
prefer to do directly, in their heads, others prefer to carry out
in a more explicit, step-by-step manner.

Another shortcut may be also be used. The final column
is to give truth-values for a disjunction whose first disjunct
is “~(p.g)”. That disjunction will be true whenever “~(p.g)”
is true. Thus, after calculating the column headed by
“—(p.9)” and discovering “T” on the last six lines, we may
immediately enter “T” on the last six lines of the final col-
umn. We are thus spared the work of calculating the truth-
value of “p = (g.7)” on those lines; we need calculate this
value only on the first two. In the construction of truth-
tables there are often opportunities like these for skipping
calculations. Again, how much to avail oneself of these op-
portunities is a matter of personal taste.

Another device, although it saves no steps, can save space.
Instead of heading one column with “g.r” and another with
“p=(q.r)”, we can use the label “p = (4.7)” once, writing the
entries for “4.7” under the “.” and the entries for “p = (g.7)”
under the “=”. Indeed, we could use the label “—(p.q) v (p =
(q.7))” just once, writing the entries for “~(p.q)” under the
first disjunct, the entries for “g.r” under the last “.”, the en-
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tries for “p = (g.r)” under the “=", and the entries for the
whole schema under the “v”. Of course this means we do
not fill in the columns from left to right. Here is the truth-
table written in this compressed manner:

14 q r —(p-9) v r = @.r)
T T T 1 T T T
T T 1 1 1 1 1
T 1 T T T 1 1
T 1 1 T T 1 1
1 T T T T 1 T
1 T 1 T T T 1
1 1 T T T T 1
1 1 1 T T - T 1
1 4 3 2

(The numerals at the bottom indicate the order in which the
columns are computed.) It is of course the column under “v”
that we are interested in, for it gives the truth-values for the
whole schema. We shall persist in calling the column that
gives the truth-values for the whole schema “the final col-
umn”, even though it may no longer be the rightmost col-
umn. Note that if the shortcut suggested two paragraphs
ago is used, then there need be no entries in columns 2 and
3 except on the first two rows.

In constructing truth-tables for complex schemata, it is
best not to overuse this space-saving device. Too great an at-
tempt at compression harms visual perspicuity, and can lead
to confusion of columns.

While on the topic of brevity and perspicuity, let us raise
an issue with regard to schemata themselves. In our sym-
bolism, parentheses are used to indicate grouping. Indeed,
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as a grouping device they are simple, straightforward, and
rigorous. Nevertheless, long schemata containing many
parentheses are hard to take in at a glance; to ascertain the
structure, we may well have to start counting the parenthe-
ses. Hence it is advantageous to adopt conventions that per-
mit some parentheses to be omitted.

One such convention has already been tacitly in use. The
negation sign is understood to govern as little as possible of
what follows it. Thus “—p.r” is “(-p).r”, not “—(p.r)”; simi-
larly, “~(p v g).v"" is “(—(p v g)).r", not “—((p v g).7)".

We now adopt another convention: unless other paren-
theses rule to the contrary, the connective “v” is to be un-
derstood as marking a greater break than “.”, and the
connectives “>” and “=" as marking greater breaks than “v”
and “.”. Thus we may write

p.gvr instead of: (p.g) vr

p-qv (r>9).~(q.r) instead of: (p.q) v ((r>s).—(g.7))

p-gvros.(pvr) insteadof: ((p.gq)vr)>(s.(pVvr))

p.gvr=s.pvr instead of:  ((p.g) vr)=((s.p) vr).
This convention should be used with care. Sometimes ap-

plying it too thoroughly results in a decrease rather than an

increase of readability. In such cases it is wiser to retain some

of the parentheses, even though the convention would allow
them to be dropped.

§10. Validity and Satisfiability

A truth-functional schema that comes out true under all in-
terpretations of its sentence letters is said to be valid. A truth-
functional schema that comes out true under at least one
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interpretation is said to be satisfiable, and one that comes out
true under no interpretation is said to be unsatisfiable. Thus
“pop”isvalid, “p.—q” is satisfiable but not valid, and “p.—p”
is unsatisfiable. Note that every valid schema is satisfiable:
for if a schema comes out true under all interpretations then
surely it comes out true under at least one.

To determine whether a schema is satisfiable and whether
itis valid, we need only inspect the final column of the truth-
table for the schema. The schema is valid just in case each en-
try in this column is “T”; the schema is satisfiable if at least
one entry is “T”; and the schema is unsatisfiable if no entry
is“T”.

In testing schemata for validity and satisfiability, we n?efi
not always construct the whole truth-table. A test for satisfi-
ability can be terminated with an affirmative answer as soon
as we find a line of the truth-table that has “T” entered in
the final column, and a test for validity can be terminated
with a negative answer as soon as we find a line thathas “ 1L
entered in the final column. Thus the schema “p.q v —p.—r >
(g=r)" is shown satisfiable but not valid by just the first two
lines of its truth-table.

p q ropg v p-r D  (g=r1)

T T T L T T
L

—
~
l_
_|
_|
l_
l_

However, a positive answer to a test for validity and aneg-
ative answer to a test for satisfiability can be obtained only
once the entire truth-table is constructed, for validity re-
quires that all entries in the final column be “T” and unsat-
isfiability that all be “ L”.

.
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We may also speak of valid statements, as well as sche-
mata. A statement is valid if it can be schematized by a valid
schema. Actually, to be more explicit we call such statements
truth-functionally valid, to mark the fact that the schematiza-
tion at issue is truth-functional (rather than the more intri-
cate kinds we shall investigate later on). Truth-functionally
valid statements are in a sense trivially true, for they give
us no information about the subject matter of which their

constituent statements speak. The truth-functionally valid
statement

If 18M shares are going to rise and Microsoft shares
are going to fall, then 1M shares are going to rise

tells us nothing about the stock market; any other state-
ments could replace “18M shares are going to rise” and “Mi-
crosoft shares are going to fall”, and the result would still
be true. A truth-functionally valid statement is a logical
truth: it is true purely by dint of its truth-functional struc-
ture, insofar as every statement that shares that structure is
likewise true.

§11. Implication

An important task for logic is that of showing whether a
statement logically follows from another statement. The
statement “All whales are warm-blooded” follows logically
from the statement “All whales are mammals and all mam-
mals are warm-blooded”; the statement “Cassius is not both
lean and hungry” follows logically from the statement “Cas-
sius is not lean”; and the statement “If Susanna relents then
the Count will be happy” follows logically from the state-
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ment “If either Susanna relents or Marcellina wins her case
then the Count will be happy”. The first of these three ex-
amples lies beyond the scope of truth-functional logic, but
the second and third can be treated with the tools we have
developed so far.

That “Cassius is not both lean and hungry” follows log-
ically from “Cassius is not lean” is a matter of the truth-
functional form of the two statements. The two statements
may be schematized as “~(p.q)” and “—p”, respectively; that
is, there is an interpretation in the first sense under which
“—(p.q)” becomes “Cassius is not both lean and hungry” and
“—p” becomes “Cassius is not lean”. These two schemata
have the following relation: there is 0 interpretation under
which “—p” comes out true and “—(p.q)” comes out false.

Similarly, “If Susanna relents or Marcellina wins her case
then the Count will be happy” and “If Susanna relents then
the Count will be happy” can be schematized as “p v g > r”
and “p o r”, respectively; and no interpretation makes the
schema “p v g © r” true yet makes the schema “p o r” false.
We phrase the crucial relation between these schemata thus:
“—p” implies “—(p.q)”, and “p v g > r” implies “p D r”.

One truth-functional schema implies another if and only if there
is no interpretation of the sentence letters under which the first
schema is true and the second false. In other words, one schema
implies another if and only if every interpretation of the sen-
tence letters they contain that makes the first schema true
also makes the second schema true.

Whether a schema X implies a schema Y can be deter-
mined by a simple procedure: first construct a truth-table
for the two schemata; then see whether there is a line that
contains “T” in the column headed by X and contains
“1” in the column headed by Y. If there is no such line,
then X implies Y; if there is such a line, then X does not
imply Y.
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That “—p” implies “~(p.g)” can thus be seen from the fol-
lowing truth-table, since no line contains both “T” under
Il_pll and IIL” mder II_(p.q)//:

p q —p ~(p.q)
T T 1 1
T 1 1 T
1 T T T
1 1 T T

That the schema “p v 47 does not imply the schema “p.q” can
be seen from the following partial truth-table:

p 9 pvyg p-9
T T T T
T 1 T 1

Here we may cease computing, having obtained a line with
“T”under “p v 4”7 and “ L” under “p.q”. We see that impli-
cation does not hold.

To test whether a schema X implies a schema Y is just to
test whether the conditional whose antecedent is X and
whose consequent is Y is valid. After all, a conditional is
valid if and only if no interpretation makes its antecedent
true yet makes its consequent false. Thus, implication is va-
lidity of the conditional.

So we may show that “~p” implies “—(p.4)” by showing
that every entry in the final column of the truth-table for “—p
D —(p.q)” is “T”. Of course, if we are checking for implica-
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tion, it is just extra work to compute the entries in this final
column: inspection of the two columns headed by “—p” and
“—(p.q)” already suffices to settle the mattter. However, it is,
on occasion, of practical value to think of implication as va-
lidity of the conditional. For example, to see that “—p” im-
plies “—(p.q)”"—that is, that “—p > —(p.g)” is valid—we might
observe that this conditional is the contrapositive of the con-
ditional “p.q o p”. The validity of the latter conditional is ob-
vious. We may conclude that the former conditional is valid.
Thus by recognizing certain obviously valid conditionals,
we may quickly recognize various cases of implication,
without having to construct a truth-table.

In using truth-tables to check for implication, the shortcut
mentioned in §9 can be of great use. Suppose we are testing
whether a schema X implies a schema Y. Once we enter an
“1” on a line in the column headed by X, we may subse-
quently ignore that line—we need not compute the truth-
value of Y on that line. Similarly, if we choose to compute the
truth-values of Y first, once we enter a “T” on a line in the
column headed by Y, we may subsequently ignore that line.
We are interested solely in seeing whether or not some line
contains “T” under X and “_L” under Y.

To check whether “p v g o 7” implies “p > r” we might
compute the truth-values of “p o r” first, obtaining

-

pvgor

-

=
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Then we need compute the truth-value of “p v 4 > 7” onjust
those two lines, the second and the fourth, where “p > 7" is
false. Since we come out with “_L” both times, we are as-
sured that the implication holds.

A little thought can serve to shorten matters further. It is
apparent by inspection that “p > r” is true whenever “p” is
false. After noting this, we need not bother even to write
down the last four lines, those on which “p” is false.

Another example: to check whether “p.—4” implies “(p o
gq) O r”, it pays to note first that “p.—4” is true just when “p”
is true and “g” false. We need therefore consider only two

lines:

p q ¥ p-—q poq (pog)or
T 1 T T 1 T
T 1 1 T 1 T

Since “T” is entered under “(p > g) © r” on both these lines,
the implication holds.

In short, in testing whether X implies Y, we need not write
down the lines of the truth-table on which it is evident by in-
spection that Y is true; nor need we write down those lines
on which it is evident that X is false. As always, how far this
labor-saving device is to be carried—that is, what should
count as being “evident by inspection”—is a matter of indi-
vidual preference. A test for implication may always be ex-
ecuted purely mechanically, with the full truth-table. But it
is usually quicker and more interesting, and indeed it is
helpful for a better understanding of truth-functional logic,
to attempt to apply some shortcuts.

It is also helpful to develop an ability at recognizing
quickly the implications that hold between various simple
schemata. For example, with a little practice it should be-
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come obvious that “p” implies “p v 47, “g > p”,and “p > q”;
that “p.q” implies “p” and “q”; that “p > q” implies “~q > -p”,
“p>gvr’,and “p.r o q”; and that “p D q” is implied by
“pog.r”and by “pvrog”.

As with validity, we may also apply the notion of impli-
cation to statements. If one schema implies another, and
a pair of statements can be schematized by those sche-
mata, then we may say that the one statement truth-
functionally implies the second. Thus “Cassius is not lean”
truth-functionally implies “Cassius is not both lean and
hungry”, and “If either Susanna relents or Marcellina wins
her case then the Count will be happy” truth-functionally
implies “If Susanna relents then the Count will be happy”.
Truth-functional implication is the relation that one state-
ment bears to another when the second follows from the
first by logical considerations within the scope of truth-
functional logic, that is, when the second may be inferred
from the first by dint of the truth-functional structure of the
two statements.

Implication is thus of concern in inference, that is, in log-
ical argumentation. The conclusion of an argument with one
premise logically follows from the premise if the premise im-
plies the conclusion, for if it does then we are assured, on
logical grounds alone, that if the premise is true the conclu-
sion will also be true. Similarly, the conclusion of an argu-
ment from several premises logically follows from the
premises if the premises jointly imply the conclusion, that is,
if the conjunction of the premises implies the conclusion.
Hence, to assess an argument one first schematizes the
premises and the conclusion, and then checks whether every
interpretation that makes all the premise-schemata true also
makes the conclusion-schema true. If so, the premises
(jointly) imply the conclusion, so that the conclusion does
follow from the premises.
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Some logic textbooks call an argument “valid” iff its prem-
ises imply its conclusion. We do not use this terminology
here, in order to avoid confusion with the notion of validity
as applied to schemata or to statements. (Such textbooks also
call an argument “sound” iff its premises imply its conclu-
sion and its premises are true. Soundness of arguments, in
this sense, is no concern of logic, since the actual truth-value
of premises is not a logical matter. We use the word “sound”
for a different, and logically very important, notion, dis-
cussed in §§17 and 35.)

§12. Use and Mention

Implication, as we have seen, is closely related to the condi-
tional: implication holds when and only when the relevant
conditional is valid. Unfortunately, this relation between the
two notions has too often been taken to license the reading
of the sign “>” as “implies”, rather than as “if ... then”. That
1s an error, for it confuses the assertion of a conditional—the
assertion, for example, that if Cassius is not lean then Cas-
sius is not both lean and hungry—with the assertion that the
conditional has a certain logical property, that is, that the
conditional “if Cassius is not lean then Cassius is not both
lean and hungry” is true by dint of its truth-functional form.
To assert that a statement implies another statement is to do
more than affirm a conditional; it is to state that the condi-
tional is logically true—true by dint of the logical structure
of the two statements.

To assert that a statement implies another is thus to state
something about those statements. Implication is a relation
between statements (or between schemata). On the other
hand, to assert a conditional is not to state anything about
the constituent statements of the conditional. If I assert
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If the senator is granted immunity then he will

testify,

then I am talking not about statements, but about the sena-
tor. “If-then” is not a relation between statements, any more
than is “and”. _

To make this clearer, we must reflect on the distinction be-
tween use and mention. We use words to talk about things. In
the statement

(1) Frege devised modern symbolic logic,

the first word is used to refer to a German logician. The state-

ment mentions this logician and uses a name to do so. Simi-

larly, in the statement

2) The author of Foundations of Arithmetic devised
modern symbolic logic,

the sentence mentions the same logician, and uses the ex-
pression consisting of the first six words to do so. The first
six words of sentence (2) constitute a complex name, a name
of Gottlob Frege. In general, to speak of an object we use an
expression that is a name of that object, or, in other words,
an expression that refers to that object. Clearly the object
mentioned is not part of the statement: its name is.

Confusion can arise when we speak about linguistic enti-
ties. If I wish to mention—that is, to talk about or refer to—an
expression, I cannot use that expression; for if I did I would
be mentioning the object that the expression refers to. Instead,
I must use a name of that expression. Thus I might say:

3) The first word of statement (1) is a name of a
German logician.
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The first six words of statement (3) constitute a name of an
expression. If we wish to obtain a truth from “_____isa
name of a German logician”, we must fill in the blank not
with a name of a German logician but with the name of a
name of a German logician.

Logicians adopt a simple convention for constructing
names of expressions: aname for an expression is formed by
surrounding the expression with quotation marks. (We use
double quotation marks; other authors use single ones. Also,
if the expression to be named is displayed on an isolated line
or lines, we let the isolation do the work of the quotation
marks.) Thus,

“Frege” is a name of a German logician
“Frege” refers to Frege.

That is, in statement (1) we use the first word to mention
Frege; the first word is “Frege”; in statement (2) we use the
first six words to mention Fre ge; these words are “the author
of Foundations of Arithmetic”.

Similarly, when we wish to mention (talk about) a state-
ment, we use a name of the statement. We might say

Statement (1) is true
or

“Frege devised modern symbolic logic” is true.

A schema is an expression; hence to talk about (mention) a
schema we must use a name of the schema:

“v v q” is a schema
“p v —p” is valid



56 ParT I TRUTH-FUNCTIONAL LOGIC

llp// ]'Irlp]ies 1Ip V q//

", rr i1 "

p” implies the disjunction of “p” and “g

Note that the last six words of the last example constitute a
complex name of the schema “p v g”.

In sum, to obtain a sentence that says that one statement
implies another, or that one schema implies another, we
must use the word “implies” between names of the two
statements or schemata. The resulting sentence uses those
names to mention the statements or schemata.

On the other hand, when we compound a statement or
schema from two others by means of “if-then”, or “>”, we
use the statements or schemata themselves and not their
names. We do not mention the statements or schemata; there
isno reference to them; they merely occur as parts of alonger
statement or schema.

Thus in talking about a schema we use a name of that
schema, most usually the name obtained by surrounding the
schema with quotation marks. What then do we use to talk
about schemata generally? Naturally, we use expressions
such as “every schema” and the like; but for some purposes
we must also use variables that range over schemata, which
are called syntactic variables. Just as we might use “x” as anu-
merical variable and say

4) A number x is odd if and only if % is odd,
we can use “X” and “Y” as syntactic variables and say

(5) A schema X implies a schema Y if and only if the
conditional with antecedent X and consequent Y is
valid.
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Particular instances of (4) are obtained by replacing the
variable “x” with a name of a number, for example, “3 is odd
if an only if 3% is odd”. So too particular instances of (5) are
obtained by replacing the variables “X” and “Y” with names
of schemata, for example,

(6) “—p” implies “~(p.q)” if and only if the conditional
with antecedent “—p” and consequent “—(p.q)” is
valid.

Note that the last ten words of (6) constitute a complex name
of the schema “~p o —(p.g)”.

§13. Equivalence

Two truth-functional schemata are equivalent if they have
the same truth-value under every interpretation of their sen-
tence letters. We have already pointed out many simple
cases of equivalence:

/i

p to II_ __p//

llp.q// to Ilq.pll and /Ipvq// to Ilqvpll

/I_(p.q)// to Il_p V _qll and Il__(p V q)// tO /l_p._qll

Ilp :) q// to Il_(p._q)//’ to Il_p V qI’, and to ll_q :) _pll

To test two schemata for equivalence, we need only con-
struct a truth-table for the schemata and see whether on each
line the same value is entered in the two columns headed by
the schemata. Thus, by comparing the appropriate columns
of the following truth-table, we see that “p > (g > r)” is equiv-
alent to “p.g o 1"
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p q r p o (@>r) p-g D 7
T T T T T T
T T s s 1 T 1
T 1 T T T T
T 1 1 T T 1 T
1 T T T T
1 T 1 T 1 T
s s T T T
s 1 1 T 1 T

(We have used some shortcuts here. We have not bothered
to compute the truth-value of “g > r” on those four lines
where “p” is false; for when “p” is false the conditional “p >
(g ©7)” is true. Similarly, on those lines where “r” is true, we
have immediately entered “T” under “p.q o> r”, without
bothering to compute the truth-value of “p.q".)

Similarly, to see that “p © g” is not equivalent to “q > p”

we need only inspect the partial truth-table:

p 9 poq 9=-p
T T T T
T 1 L T

Here we stop, having obtained a disagreement between the
truth-value of “p © ¢” and that of “g > p”.

It should be clear that two schemata are equivalent if and
only if the biconditional of the two schemata is valid, for the
biconditional between X and Y is valid just in case every
truth-assignment gives the same truth-value to X as it does
to Y. Equivalenceis the validity of the biconditional. It should
be equally clear that two schemata are equivalent just in case
they imply each other. Equivalence is mutual implication.
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Equivalence can be used to license the transformation of
one statement into another statement that “says the same
thing”. Since the schema “p o (g © r)” is equivalent to the
schema “p.q © r”, we are fully justified in transforming

(1) If Marcellina loses the case, then Figaro will exult
provided that Susanna remains faithful

into

2 If Marcellina loses the case and Susanna remains
faithful, then Figaro will exult

or vice versa. Statements that, like (1) and (2), can be schema-
tized by equivalent truth-functional schemata can them-
selves be said to be truth-functionally equivalent.
Truth-functionally equivalent statements “say the same
thing”, purely by dint of their truth-functional form.
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A. ANALYSIS

§18. Monadic Predicates and Open Sentences

Truth-functional logic analyzes statements insofar as they
are compounded from simpler statements, and charts out
the behavior of such compounds in terms of the behavior of
their constituents. Truth-functional logic, however, can yield
no account of arguments like these:

All philosophers are wise.
Frege is a philosopher.
Therefore, Frege is wise.

All philosophers are wise.
Some philosophers are logicians.
Therefore, some logicians are wise.

For the premises and conclusions of these arguments are all
truth-functionally simple: none of them is a compound of
simpler statements. Yet, intuitively, in each case the conclu-
sion does follow logically from the premises. To handle these
arguments, analysis must be pressed further. We must ex-

91
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amine the construction of statements from components that
are not themselves statements. Indeed, the cogency of these
arguments rests on such subsentential components, in par-
ticular, on the use of the words “some” and “all”, and on the
multiple occurrence of words like “wise” and “philoso-
pher”. Let us consider the latter first.

The statements “Frege is wise”, “Socrates is wise”, and
“The Queen of England is wise” clearly have something in
common. They share the words “is wise” as well as the fol-
lowing structural feature: each statement is obtained by put-
ting a name of a particular object in front of “is wise”. Thus,
we may write what is in common as “ is wise”,
where the blank shows where the name of a particular ob-
ject is to go. Each of these statements serves to ascribe wis-
dom to a particular object. We can view the task of specifying
the object as done by the name, and the fask of ascribing wis-
dom as done by the common part“________ is wise”.

This notation, however, is somewhat impractical. Blanks
are easily overlooked; moreover, later on we shall need dif-
ferent sorts of blanks. Instead, we use a placeholder: a sign
that marks an empty place into which names can be put. For
now we use as a placeholder the sign “®”. Thus we write
what is common to our three statements as “@ is wise”. This
expression is called a monadic predicate. In general, a monadic
predicate is an expression that contains the placeholder “®”
and that becomes a statement when the placeholder is sup-
planted by a name of an object. Monadic predicates are arti-
ficial expressions; they do not occur in sentences as is, but
only when empty places indicated by the placeholder have
been filled in. As Frege put it, monadic predicates are “in-
complete”.

Not being statements, monadic predicates are neither true
nor false. Rather, a monadic predicate is true and false of par-

.
.
.
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ticular objects. “® is wise” is true of all wise individuals and
is false of everything else. In particular, then, it is true of King
Solomon and false (most would agree) of King George I1I. It
should be clear that a monadic predicate is true of an object
if and only if a true statement is obtained by putting a name
of the object for the placeholder in the monadic predicate.
It is easy to think of other monadic predicates. Of these

® is a logician
@ revolves around the earth
@ is an even positive integer,

the first is, for instance, true of Frege and the author of this
text, but is false of Maria Callas; the second is true of the
moon but false of the sun; and the third is true of 10 and of
1270, but false of 17 and of the Fiffel Tower. In all our exam-
ples so far, the placeholder has occupied the grammatical
subject place, but this is not necessary. “@’s birthday is in
January” is a perfectly good monadic predicate, true of Mar-
tin Luther King, Jr. and false of George Washington. “The
Eiffel Tower is taller than @” is true of all people and of the
White House, but is false of the Empire State Building. Nor
need a placeholder occur only once in the predicate:

@ respects ©
Everyone who knows @ likes ®
® is a logician . @ is German

are all monadic predicates. The first of these is true of all self-
respecting individuals, and of no others. The last of these is,
for instance, true of Frege and false of the author of this text,
of Ludwig van Beethoven, and of Maria Callas. Of course,
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when the placeholder in a monadic predicate is replaced by
aname, it must be so replaced in all its occurrences.

Monadic predicates, to repeat, are true and false of ob-
jects. Some are true of all objects, like “@ is self-identical”
(thatis, “® = @®”) and like “—(@ is red . (@ is red))”; some
are true of none, like “® is a natural satellite of Venus” and
“@ is an even prime number greater than 2”; and the rest
are somewhere in between. The extension of a monadic
predicate is the class of objects of which it is true. Thus, the
extension of “@ is a North American city more populous
than Chicago” is the class whose members are Los Angeles,
Mexico City, and New York; that of “® is an even positive
integer” is the class whose members are 2, 4, 6, 8, and so on.
The extension of “@ is a natural satellite of the earth” is the
class whose one and only member is the moon; and the ex-
tension of “@ is a natural satellite of Venus” is the class with
no members, that is, the empty class. Different predicates
can have the same extension: witness “@ is a natural satel-
lite of Venus” and “@ is an even prime number greater than
27; or “@® is an animal with a heart” and “® is an animal
with kidneys”. Predicates that possess the same extension
are said to be coextensive. Otherwise put, two monadic
predicates are coextensive if and only if they are true of just
the same objects. The sentences we shall construct from
monadic predicates are all extensional: their truth-values de-
pend only on the extensions of the monadic predicates. That
is, in such a sentence a monadic predicate may be replaced
by any coextensive one without affecting the truth-value of
the whole.

As we have seen, statements can be constructed by put-
ting names for the placeholder in monadic predicates. How-
ever, in the arguments we are now studying, particular
names are of no importance. Consider, for example,

.. @
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All philosophers are wise.
Frege is a philosopher.
Therefore, Frege is wise.

That the name “Frege”, rather than any other, 6ccurs here
plays no role in the cogency of the argument. From a logical
point of view, we might as well write the argument thus:

All philosophers are wise.
x is a philosopher.
Therefore, x is wise.

Here “x” is a variable. Variables are used, in a sense, as arbi-
frary names.

Now the sentence “x is wise” is the result of putting the
variable “x” for the placeholder in “@® is wise”. This sentence
is not a statement; it is called an open sentence. We may think
of an open sentence as leaving open what “x” is to stand for.
Until a value is assigned to the variable, “x is wise” is nei-
ther true nor false; but once such an assignment is made, the
truth-value is determined. The closest analogue in ordinary
English to an open sentence is a sentence containing a pro-
noun without an antecedent, like “She is wise”. “She is wise”
has no truth-value until the person to whom “she” refers is
in some way given. Ordinarily, of course, this is given by the
context in which “She is wise” occurs. As we shall see, the
way we treat variables in open sentences also depends on
context. Like pronouns too, variables in open sentences are
used for cross-referencing. In the argument above, the use of
the same variable “x” in the second premise and the conclu-
sion indicates that the same value must be assigned to the
variable in these two sentences.



96 ParT I MoNADIC QUANTIFICATION THEORY

To sum up, then, open sentences are expressions like state-
ments but for containing variables instead of names. Open
sentences, however, are not themselves statements. Rather,
they are true or false for particular values of their variables.
For example, “x is wise” is true when “x” has value King
Solomon, and is false when “x” has Value King George IIL
We sometimes put this as follows the a551gnment of King
George III to “x” (as its value) makes “x is wise” false.
Clearly, if an open sentence is obtained from a monadic
predicate by putting “x” for the placeholder, then an assign-
ment to “x” makes the open sentence true just in case the
monadic predicate is true of the individual assigned as value
to “x”.

The utility of open sentences rests on the fact that they be-
have like statements once an assignment of values to the
variable is fixed. In particular, complex open sentences can
be constructed by means of the truth-functional connectives.
“x is a philosopher . —(x is wise)” is made true by an assign-
ment to “x” just in case that assignment makes “x is a
philosopher” true and makes “x is wise” false. Similarly, “x
is a philosopher o x is wise” is made true by an assignment
just in case “x is a philosopher” is made false or “x is wise”
is made true by that assignment, that is, just in case either
the individual assigned as value to “x” is not a philosopher
or else that individual is wise.

Note that variables other than “x” may occur in open sen-
tences. (We shall also use “y”, “z”, “w”, “x’”, and so on.) The
open sentence “x is a phjlosopher . —(y is wise)” has a truth-
value only once values are assigned to both “x” and “y”.
These values may be the same or different, but, in any case,
the open sentence is true if and only if the value assigned to
“x” makes “x is a phllosopher true and the value assigned

y” makes “y is wise” false. Thus, which variable occurs
in an open sentence can make a difference. Although “x is

.
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wise” and “y is wise” behave similarly when each is taken
by itself, “x is a philosopher . —(x is wise)” and “x is a
philosopher . —(y is wise)” are quite different. If in fact all
philosophers are wise, then no assignment makes the former
open sentence true. But since different values may be as-
signed to “x” and “y”, some assignment does make the lat-
ter open sentence true. This is another aspect of the use of
variables for cross-referencing. Further examples of this
phenomenon will occupy us in later sections. For now, how-
ever, we shall be concerned principally with one-variable
sentences.

§19. The Existential Quantifier

A close relation can easily be discerned between the state-
ment

o)) There is a building that is over 1200 feet tall

and the open sentence

2) x is a building . x is over 1200 feet tall.

Namely, (1) is true if and only if some value for “x” makes
(2) true. We highlight this relation by using the exzstentz'al
quantifier “(3x)”, which is read “there is an x such that” or

“there exists an x such that”. Thus statement (1) can be par-
aphrased

3) (Ix)(x is a building . x is over 1200 feet tall).

Note that in saying “there is an object x such that ... ” we do
not exclude there being more than one such object. All the
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existential quantifier requires is the existence of at least one.
This is in keeping with the common usage of statements like
(1). In general, then, if “Fx” stands for an open sentence con-
taining “x”, then “(3x)(Fx)” is true if and only if there exists
at least one value for “x” that makes “Fx” true.

Now what (3) asserts can be stated in ordinary English in
several ways aside from (1), for example,

There is an object that is a building and is over 1200
feet tall

Something is a building over 1200 feet tall
Some building is over 1200 feet tall
A building over 1200 feet tall exists.

The logical notation (3) regularizes this variety of idioms,
and puts into prominence both the existential nature of what
they assert and the two monadic predicates that play a role,
namely, “® is a building” and “® is over 1200 feet tall”.
Statement (3) may also be taken as a paraphrase of

Some buildings are over 1200 feet tall
There are buildings over 1200 feet tall
Buildings over 1200 feet tall exist.

To be sure, in some settings the use of plurals may be meant
to convey the existence of at least two such buildings, and
hence to convey a claim stronger than (3). However, often no
such stronger claim is intended; moreover, usually it is the
bare existence claim (3) that is essential to the structure of
logical arguments in which these statements figure. Hence
we shall treat statements like these in the plural just as we

A. ANATYSIS 99

treat their counterparts in the singular. (In §41 we shall in-
troduce notation for paraphrasing claims that there exists
more than one object of a certain sort; but we reserve this no-
tation for statements in which the requirement of several ob-
jects is made explicit.)

Alarge number of English statements in which occurs “ex-

ists”, “there is”, “there are”, or “some” can be paraphrased
using the existential quantifier. The statement

(Ix)(x is a philosopher . x is wise)

is true if and only if at least one object is both a philosopher
and wise; hence it is a paraphrase of “Some philosophers
are wise”, “Some philosopher is wise”, “There is a wise
philosopher”, “There are wise philosophers”, and “Wise
philosophers exist”. Similarly, “(3x)(x is a satellite of
Jupiter)” amounts to “There exists a satellite of Jupiter”,
and hence also to “Jupiter possesses a satellite”. Note that
in the latter, the indefinite article does the work of “some”.

The statement
(3x)(x is a philosopher . x loves dogs)

amounts to the same as “Some philosopher loves dogs”, as
“There is a dog-loving philosopher”, and as “Some philoso-
phers are dog lovers”. Note here the variety of ways in Eng-
lish in which the monadic predicate “® loves dogs” may be
expressed.

Here are some more complex examples. The statements
“Some philosophers are not wise” and “There is an unwise
philosopher” can both be paraphrased

(3x)(x is a philosopher . —(x is wise)).
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For the latter is true if and only if some value of “x” makes
“x is a philosopher” true but makes “x is wise” false. The
statements

Some philosophers are both wise and clever
Some wise philosophers are clever
Wise, clever philosophers exist

can all be paraphrased
(3x)(x is a philosopher . x is wise . x is clever),
whereas

Some philosophers are wise but not clever

There is a philosopher who, although wise, is not
clever

Some wise philosophers fail to be clever
can be paraphrased

(3x)(x is a philosopher . x is wise . —(x is clever)).
“There are philosophers who are either wise or clever”, or,
what amounts to the same, “Some philosophers are wise or
clever”, can be paraphrased

(dx)(x is a philosopher . (x is wise Vv x is clever)).
Note here the internal pair of parentheses, which are needed

for grouping.
The words “something” and “someone” often go over into
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existential quantifiers, although there is a difference be-
tween them. “Vanessa sees something in the garden” can be
written

(Ix)(x is in the garden . Vanessa sees x),
but “Vanessa sees someone in the garden” should be written

(Ix)(x is a person . x is in the garden . Vanessa
sees x).

“Someone”, of course, amounts to “some person”. By the
way, the same paraphrase may be used for “Vanessa sees a
person in the garden”; as in a previous example, the indefi-
nite article has the force of an existential quantifier.

However, sometimes in the paraphrase of a statement
containing “someone”, the clause “x is a person” may be
omitted. “(3x)(x is in the garden . x is reading Flaubert)”
does perfectly well for “Someone in the garden is reading
Flaubert”, for only persons read Flaubert, so that any value
for “x” that makes “x is reading Flaubert” true will also make
“x is a person” true. To include “x is a person” explicitly
would add nothing. The same applies, for example, to
“Someone in the garden is a philosopher” and to “Someone
in Her Majesty’s employ is a double agent”.

Existential quantifications may themselves be com-
pounded truth-functionally. “Some philosophers are wise
and some philosophers are clever” is a conjunction of state-
ments, and may be paraphrased

(Ix)(x is a philosopher . x is wise) . (Ix)(x is a
philosopher . x is clever).
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Similarly, “Some philosophers are wise or some philoso-
phers are clever” and “If some philosophers are wise then
some philosophers are clever” are paraphrased

(3x)(x is a philosopher . x is wise) v (Ix)(x is a
philosopher . x is clever)
(3x)(x is a philosopher . x is wise) D (Ix)(x is a
philosopher . x is clever),

respectively.

The open sentence enclosed in parentheses that follows an
existential quantifier is called the scope of that quantifier. In
each of the three statements just displayed, the scope of the
first existential quantifier is “x is a philosopher . x is wise”,
and that of the second is “x is a philosopher . x is clever”.
Just as the scope of a negation sign “~” gives us the limits of
the sentence that is being negated, the scope of an existential
quantifier tells us what open sentence is being quantified.
The demarcation of scope is essential for both negation signs
and existential quantifiers. Just as we must distinguish be-
tween “—(p.q)” and “—p.—q”, we must distinguish between

4) (Ix)(x is a horse . x has wings)

and

) (Ix)(x is a horse) . (Ix)(x has wings).

The difference between (4) and (5) is the difference between
“Something is a horse and has wings” and “Something is a
horse, and something has wings”. (4) is true if and only if

there is an object of which “@ is a horse” and “® has wings”
are both true; hence (4) is true if and only if there is a winged
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horse. (5) is true if and only if there is an object of which “®
is a horse” is true and there is an object of which “® has
wings” is true; (5) does not require that these be the same ob-
ject. Thus, as it happens, (4) is false but (5) is true.

This example shows, roughly put, that occurrences of “x”
that lie in the scopes of different quantifiers act like different
variables. Occurrences of “x” inside the scope of a quantifier
areinsulated by that quantifier from the parts of the sentence
outside that scope. This phenomenon is worth elaborating.

If “Fx” stands for an open sentence containing “x” and no
other variables, then “(3x)(Fx)” represents a statement: it is
either true or false. Thus the variable “x” no longer has the
role it had in “Fx”; it no longer awaits determination by an
assignment of a value. This should be clear from our expla-
nation: “(Ix)(Fx)” is true just in case there is some value for
“x” that makes “Fx” true. Equally clear from this should be
the fact that which variable is quantified makes no differ-
ence, as long as it is the variable in the open sentence. Thus
“(dx)(x is a philosopher . x is wise)” amounts to the same as
“(Ay)(y is a philosopher . y is wise)”, and, in general,
“(Ix)(Fx)” amounts to the same as “(Jy)(Fy)”.

We say that “(3x)” binds the variable “x”; in a quantified
sentence, every occurrence of “x” in the scope of a quantifier
“(3x)” is bound by that quantifier (and, for convenience, we
also say that the occurrence of “x” in the quantifier “(3x)” it-
self is bound by the quantifier). Thus, in (5) the first two oc-
currences of “x” are bound by the first existential quantifier,
and the second two are bound by the second quantifier. A
sentence is open if it contains a free occurrence of a variable,
that is, an occurrence not bound by any quantifier. It is only
the free occurrences of a variable that can be assigned val-
ues. The role of a bound occurrence of a variable, on the
other hand, is confined to the scope of the quantifier that
binds it.
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§20. The Universal Quantifier

Analogous to the existential quantifier is the universal quan-
tifier “(Vx)”, which can be read “for all x”, “for every x”, or
“every object x is such that”. If “Fx” stands for an open sen-
tence containing free “x”, then “(Vx)(Fx)” is true if and only
if every assignment of a value to “x” makes “Fx” true. Thus

(1) (Vx)(x is animal v x is vegetable v x is mineral)

is true if and only if “x is animal v x is vegetable v x is min-
eral” is true for each value of “x”. That is, (1) is true if and
only if everything is either animal, vegetable, or mineral.
Like an existential quantifier, a universal quantifier has a
scope that is demarcated by parentheses, and the quantifier
“(Vx)” binds the occurrences of “x” in its scope. Thus (1) can
be contrasted with

(2) (Vx)(x is animal) v (Vx)(x is vegetable) v (Vx)(x is
mineral),

which is true just in case either everything is animal, or
everything is vegetable, or everything is mineral. A distinc-
tion in scope can be seen even more vividly in

(Vx)(x is red v —(x is red))
as opposed to

(Vx)(x is red) v (Vx)(—(x is red)).

The former amounts to “Everything is either red or not-red”.
It is true; indeed, it is logically true. The latter amounts to
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“Either everything is red or everything is not-red” and is
false: since there are things that are not red and there are
things that are red, neither disjunct is true.

Common among statements that involve “all” or “every”
are ones like

All philosophers are wise
All fish swim
Every pet obeys its master.

(There is no logical distinction between statements that use
“all” and the plural and those that use “every” and the sin-
gular.) Let us see how to paraphrase such statements using
the universal quantifier. Since “Some philosophers are wise”
amounts to “(3x)(x is a philosopher . x is wise)”, it may be
tempting to think that “All philosophers are wise” could be
written “(Vx)(x is a philosopher . x is wise)”. This is com-
pletely wrong, however—and shows how misleading a
superficial grammatical similarity can be. “(Vx)(x is a
philosopher . x is wise)” is true if and only if every object
both is a philosopher and is wise, which is clearly not what
“All philosophers are wise” means. Rather, “All philoso-
phers are wise” can be rephrased, inelegantly but sugges-
tively, as “Everything that is a philosopher is wise”; the
latter, in turn, can be expressed (yet more inelegantly) as
“Every object is such that if it is a philosopher then it is
wise”. This last is easily transcribed

3) (Vx)(x is a philosopher O x is wise).

To check the accuracy of this paraphrase, note that (3) is true
if and only if every value for “x” makes “x is a philosopher
> x is wise” true. Hence it is true if and only if no value for
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“x” makes “x is a philosopher > x is wise” false. By truth-
functional logic, a value for “x” makes this open sentence
false if and only if it makes “x is a philosopher” true and
makes “x is wise” false; this occurs just in case that value is
a philosopher but is not wise. Thus (3) is true if and only if
no individual is a philosopher but is not wise. This is just the
condition under which “All philosophers are wise” is true,
and our paraphrase is vindicated.

Similarly, the other statements displayed above can be
paraphrased

(Vx)(x is a fish D x swims)
(Vx)(x is a pet D x obeys x’s master),

respectively. Of the same form are “Everything that breathes
has lungs” and “Clive bought everything he saw”, which
are paraphrased “(Vx)(x breathes > x has lungs)” and
“(Vx)(Clive saw x o Clive bought x)”. A variety of linguistic
forms not explictly containing “all” or “every” can be used
to the same effect. The statements

Honorable people pay their debts
The honorable person pays his/her debts
An honorable person pays his/her debts

allmean the same as “All honorable people pay their debts”,
and hence are all paraphrased “(Vx)(x is an honorable per-
son O x pays X’s debts)”. Note that the last of these state-
ments uses the indefinite article as a universal quantifier.
Other examples of this are “A Boy Scout is thrifty” and “A
double agent is a dangerous person”. This is in contrast to
the use of the indefinite article as an existential quantifier, a
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use we saw in the previous section and can see in “A double
agent is in Her Majesty’s employ”.

Alocution like “Only alumni are eligible” also amounts to
a universally quantified conditional, but care must be taken
as to which monadic predicate occurs in the antecedent and
which in the consequent. This statement means the same as
“An individual is eligible only if that individual is an alum-
nus”, and hence is paraphrased

(4) (Vx)(x is eligible D x is an alumnus).

Thus the statement must be distinguished from “All alumni
are eligible”. Note that (4) is also a correct paraphrase of
“None but alumni are eligible”.

Universally quantified conditionals have the following
property: if no value for “x” makes the antecedent of the con-
ditional true, then the universally quantified conditional is
true. For if no value for “x” makes the antecedent true, then
every value for “x” makes it false; whence every value for
“x” makes the conditional true, so that the universal quan-
tification is true. As a result, suppose we take “All my room-
mates are loathsome” to mean

(Vx)(x is a roommate of mine O x is loathsome).

It follows that if, in fact, l have no roommates, then the state-
ment comes out true. This may seem odd. The oddity arises,
I think, because “All my roommates are loathsome” can, in
some conversational settings, be meant to convey “I have
roommates and all of them are loathsome”, that is,

(3x)(x is a roommate of mine) . (Vx)(xis a
roommate of mine O x is loathsome).
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Ordinary usage here is somewhat ambiguous. Whether,
and in what circumstances, such ordinary language “all”-
statements carry existential import—require for their truth
the existence of a value for “x” that makes the antecedent of
the conditional true—is beside the point for us. What is im-
portant is that quantificational notation can exhibit the dif-
ference between the two interpretations of such statements.
Below we shall always use such “all”-statements without
existential import; we shall interpret them as simple univer-
sal quantifications.

Slightly more complex conditionals can be used in para-
phrases of more complex English statements. Consider, for
example,

All philosophers are either wise or clever
All philosophers are wise and clever

All philosophers who read Frege are clever
All wise philosophers are clever.

For brevity, let us use “Px” for “x is a philosopher”, “Wx” for
“x is wise”, “Cx” for “x is clever”, and “Fx” for x reads
Frege”. Then the four statements may be paraphrased

(Vx)(Px > Wx v Cx)
(Vx)(Px o Wx.Cx)
(Vx)(Px.Fx o Cx)
(Vx)(Px.Wx o Cx).

The second and fourth of these provide another dissimilar-
ity to existential statements that is masked by grammatical
similarity. We saw in §19 that “Some philosophers are wise
and clever” and “Some wise philosophers are clever” are
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both paraphrased “(3x)(Px.Wx.Cx)”; they both require the
existence of at least one individual that is a philosopher, is
wise, and is clever. But “All philosophers are wise and
clever” and “All wise philosophers are clever” are different,
as is shown by their paraphrases. The former requires of
each object, that if it is a philosopher then it is wise and
clever; the latter requires, of each object, that if it is both a
philosopher and wise then it is clever.

The word “everyone” means the same as “every per-
son”, and hence indicates a universal quantifier. Thus
“Everyone in the garden is cold” amounts to “(Vx)(x is a
person . x is in the garden o x is cold)”. The clause “x is a
person” is essential here; were it omitted, the result would
amount to “Everything in the garden is cold”. But, as with
“someone”, the clause “x is a person” can be omitted when
it adds nothing, as in “Everyone who enjoys Flaubert de-
tests Zola”, which can be accurately paraphrased “(Vx)(x
enjoys Flaubert o x detests Zola)”.

Universal quantifications may be truth-functionally com-
pounded, and may be truth-functionally compounded with
existential quantifications. “If every philosopher reads
Frege then every philosopher is clever” and “Either every
philosopher reads Frege or there is an unwise philosopher”
are paraphrased

(Vx)(Px o Fx) o (Vx)(Px > Cx)
(Vx)(Px o Fx) v (Fx)(Px.-Wx),

respectively, where we use the abbreviations introduced
above.

Although the paraphrase of statements like those we have
seen should become reasonably automatic with practice,
more complex statements may require some thought. In
such cases, as in truth-functional paraphrase, it helps to par-
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aphrase inward. The principal new step comes in dealing
with quantifications. To treat a universal quantification, it
helps to put it in the form “Every object x is such that ... 7,
where “ ... ” represents an open sentence. The first task, then,
is to formulate this open sentence, using free “x”. After that,
the open sentence may itself be analyzed truth-functionally.

For example, to paraphrase

Every student who takes logic and reads Frege or
Russell will pass the examination and will, if s/he
works hard, gain an excellent background

we might start by rewriting

Every object x is such that: if x is a student who
takes logic and reads Frege or Russell, then x will
pass the examination and, if x works hard, then x
will gain an excellent background.

The open sentence following the colon is, evidently, a con-
ditional. Its antecedent can be rephrased

x is a student . x takes logic . (x reads Frege v x
reads Russell).

For the rest, the truth-functional analysis is straightforward.
The resulting paraphrase of the whole statement is

(Vx)[x is a student . x takes logic . (x reads Frege v
x reads Russell) D x passes the examination . (x
works hard o x gains an excellent background)]

or, using “Sx”, “Lx”, and so on, as abbreviations for the con-
stituent open sentences,
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(Vx)[Sx.Lx.(Fx v Rx) © Ex.(Hx o Gx)].

1 it

Statements that contain “nothing”, “no one”, or “no” can
often be paraphrased quantificationally. Consider

No philosopher is wise
Nothing in the shop is worth buying
No one in the room is awake.

The first of these is true if and only if every individual that
is a philosopher fails to be wise; hence it may be paraphrased

(Vx)(x is a philosopher > —(x is wise)).
Similarly, the other two may be paraphrased

(Vx)(x is in the shop o —(x is worth buying))
(Vx)(xis a person . x is in the room > —(x is awake)).

There are alternatives here. “No philosopher is wise” is true
just in case there is no individual that is a philosopher and
is wise. Thus, “No philosopher is wise” amounts to “It is not
the case that there is a wise philosopher”. Thus, as an alter-
native paraphrase, we can use

—(3x)(x is in the shop . x is worth buying)
—(3x)(x is a person . x is in the room . x is awake).

The equivalence of the negation of an existential quantifi-
cation to a universal quantification is, in fact, a logical law.

More precisely, if “Fx” represents any open sentence,

“—(3x)Fx” is true if and only if “(Vx)—Fx” is true
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“—~(Vx)Fx” is true if and only if “(3x)-Fx” is true.

(Here and henceforth we omit the parentheses surrounding
the scope of a quantifier if the scope is represented by a sim-
ple expression like “Fx” or “—Fx”.) For “—(3x)Fx” is true if
and only if no value for “x” makes “Fx” true. This occurs just
in case every value for “x” makes “Fx” false, that is, just in
case “(Vx)-Fx” is true. Similarly, “~(Vx)Fx” is true if and only
if not every value for “x” makes “Fx” true. This occurs just
in case some value for “x” makes “Fx” false, that is, just in
case “(3x)-Fx” is true. Hence

~(3x)(x is a philosopher . x is wise)

is true if and only if

-

(Vx)(—(x is a philosopher . x is wise))

is true. The scope of “(Vx)” here has the form “—(p.g)”, which
is truth-functionally equivalent to “p > —4”. Hence the latter
statement is true if and only if

(Vx)(x is a philosopher o —(x is wise))

is true, as desired.

Thus the negation of “Some philosophers are wise”
amounts to “No philosopher is wise”, thatis, to “ All philoso-
phers are unwise”. In like manner, the negation of “Some
philosophers are not wise” amounts to “All philosophers are
wise”.

Our logical law tells us, moreover, that “(3x)Fx” is true if
and only if “—~(Vx)-Fx” is true, and that “(Vx)Fx" is true if and
only if “—(3x)-Fx” is true. Thus we can eliminate the exis-
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tential quantifier in favor of the universal quantifier, by re-
placing each “(3x)” with “—(Vx)-". Alternatively, we can
eliminate the universal quantifier in favor of the existential,
by replacing each “(Vx)” with “~(3x)-". However, for con-
venience and readability we shall continue to use both sorts
of quantifier.

§21. Further Notes on Paraphrase

Paraphrase of ordinary language into quantificational nota-
tion is sometimes a subtle matter, particularly in the demar-
cation of the scopes of the quantifiers. There are few general
rules for this. One simply has to rethink, in quantificational
terms, what the statements under consideration are meant
to convey. In this section we briefly and unsystematically
sample some of the problems that can arise.

In statements that contain both a quantifier and a nega-
tion, it is not always clear whether the negation lies within
the scope of the quantifier or rather whether it negates a
whole quantified statement. To be sure, the statement “Shaw
does not like some Wagner operas” amounts to “There is
some Wagner opera that Shaw does not like”, and so can be
rendered

1) (Fx)(Wx.-Lx),
where “Wx” stands for “x is a Wagner opera” and “Lx” for
“Shaw likes x”. Moreover, the statement “There isn't a Wag-

ner opera that Shaw likes” can be symbolized

(2) —(3x)(Wx.Lx).



