
1	Ergothioneine promotes longevity and healthy aging in male mice
2	Short title: Ergothioneine for healthy aging in mice
3	
4	Makoto Katsube ¹ , Takahiro Ishimoto ¹ , Yutaro Fukushima ² , Asuka Kagami ² , Tsuyoshi
5	Shuto ² , and Yukio Kato ^{1,*}
6	
7	¹ Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan
8	² Department of Molecular Medicine, Graduate School of Pharmaceutical Science,
9	Kumamoto University, Kumamoto 862-0973, Japan
10	
11	* Corresponding author: Yukio Kato, Ph.D.
12	Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan
13	Tel.: +81-76-234-4465
14	Fax: +81-76-234-4465
15	Email: ykato@p.kanazawa-u.ac.jp
16	

17 Supporting Information

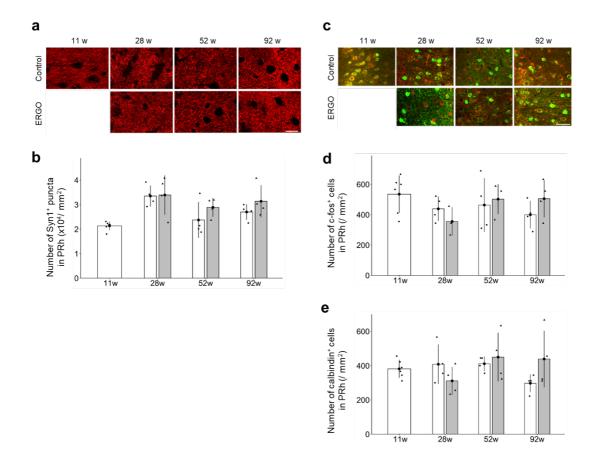
18 Figure Legends

20 Fig. S1 Western blotting (WB) analysis of the liver. Original western blotting images

for (a) Sirt6, (b) p16, and (c) β -actin in the liver.

22

0


1İw

28v

52w

92v

23	Fig. S2 Immunohistochemical (IHC) analysis of the DG. (a) Area of cells positive for
24	the microglial marker Iba1 (red) in the DG. (b) IHC detection of the activated
25	microglial marker CD68 (green) in the DG. (c) Number of CD68 ⁺ cells in the DG. The
26	white and gray columns represent the mice with daily intake of water alone ($n = 3$ and 4
27	for 28 and 92 weeks, respectively) and water containing 0.055 mg/mL ERGO ($n = 4$ for
28	92 weeks), respectively. Mean \pm SEM; * <i>P</i> < 0.05 versus control group at 92 weeks of
29	age (Dunnett's test). Scale bar, 100 μ m. (d) IHC detection of the NSCs marker Nestin
30	(red) in the SGZ. (e) Number of Nestin ⁺ cells in the SGZ. The white and gray columns
31	represent the control ($n = 6, 3, 4, 4$ for 11, 28, 52, 92 weeks, respectively) and ERGO
32	groups (n = 3, 4, 4 for 28, 52, 92 weeks, respectively), respectively. Mean \pm SEM. [†] [†] <i>P</i>
33	< 0.01 versus control at 11 weeks of age (Tukey's test). Scale bar, 100 μ m. (f) IHC
34	detection of the synapse marker Syn1 (red) in the hilus and (h) in the GCL. (g) Number
35	of Syn1 ⁺ cells in the hilus and (i) in the GCL. The white and gray columns represent the
36	control ($n = 6$ and 4 for 11 weeks and others, respectively) and ERGO groups ($n = 4$ for
37	each group), respectively. Mean \pm SEM. Scale bar, 20 μ m. DG, dentate gyrus; ERGO,
38	ergothioneine; GCL, granule cell layer; IHC, immunohistochemistry; SEM, standard
39	error of the mean; SGZ, subgranular zone.

40

41 Fig. S3 IHC analysis for PRh. (a) IHC detection of the synapse marker Syn1 (red) in 42 the PRh. (b) Number of Syn1⁺ cells in the PRh. The white and gray columns represent 43 the control (n = 6 and 4 for 11 weeks and others, respectively) and ERGO groups (n = 4for each group), respectively. (c) IHC detection of the neuronal activation marker c-fos 44 (red) and mature neuron marker calbindin (green) in the PRh. (d) Number of c-fos⁺ cells 45 in the PRh. (e) Number of calbindin⁺ cells in the PRh. The white and gray columns 46 represent the control (n = 6 and 4 for 11 weeks and others, respectively) and ERGO 47 48 groups (n = 4 for each group), respectively. Mean \pm SEM. Scale bar, 50 μ m. PRh, perirhinal cortex. 49

Group	n	7w	11w	24w	28w	48w	52w	78w	88w	92w
	36	survival	test							
	32	MRI OFT	IHC LC-MS ELISA							
Control	16			MRI OFT NORT	WB IHC LC-MS CE-MS ELISA	MRI				
	16					OFT	IHC			
	16							MRI	MRI OFT NORT	WB IHC LC-M CE-M ELISA
	36	survival	test							.
	16			MRI OFT NORT	WB IHC LC-MS CE-MS ELISA					
ERGO	16					MRI OFT	IHC			
	16							MRI	MRI OFT NORT	WB IHC LC-M CE-M ELISA

50 Table S1. Schematic representation of the experimental schedule

51 CE-MS, capillary electrophoresis time-of-flight mass spectrometry; IHC,

52 immunohistochemistry; LC-MS, liquid chromatography-tandem mass spectrometry;

53 MRI, magnetic resonance imaging; NORT, novel object recognition test; OFT, open

- 54 field test; WB, western blotting.
- 55

56	Supplemental	Methods
----	--------------	---------

- 57 Measurement of plasma ERGO level
- 58 EDTA-2K was added to each blood sample, and the samples were centrifuged (1,200 g,
- 59 10 min) to separate the plasma. Commercially available isotope-labeled ERGO-d9

60 (Toronto Research Chemicals, Toronto, Canada) was used as the internal standard.

- 61 Simple protein precipitation with acetonitrile (ACN) was used for sample preparation
- 62 before analysis. Plasma ERGO concentration was analyzed by fast ultra-high-
- 63 performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)
- 64 performed with an Ultimate 3000 Nano LC System (Thermo Fisher Scientific, Waltham,
- 65 USA) coupled to a TSQ Quantiva (Thermo Fisher Scientific) triple-quadrupole
- 66 spectrometer, as well as the internal standard. Chromatographic separation of ERGO
- 67 was performed using a ZIC-cHILIC column (150 mm \times 2.1 mm, 3 μ m; 120 Å, Merck
- 68 Millipore Corporation) with water and 0.01% trifluoroacetic acid as mobile phase A and
- 69 ACN and 0.01% trifluoroacetic acid as mobile phase B under the following gradient
- 70 elution scheme: 0–0.5 min: 5% A/95% B; 0.5–10 min: 5% A/95% B to 80% A/20% B;

71	10–11 min: 80% A/20% B; 11–11.1 min: 80% A/20% B to 5% A/95% B; 11.1–15 min:
72	5% A/95% B. The run time was 15 min at a constant flow rate of 0.4 mL/min. The mass
73	spectrometer was operated under a positive electrospray ionization condition with
74	multiple reaction monitoring (MRM) mode. The mass transitions of ERGO and ERGO-
75	d9 were m/z 230.1 > 185.9 and m/z 239.2 > 195.2, respectively. Capillary voltage was
76	3,500 V, and gas temperature was 358°C. The nitrogen sheath gas pressure for
77	nebulizing the sample was 45 psi, with a gas flow rate of 13 L/min. Ultra-high-purity
78	nitrogen was used as the collision gas.
79	
80	Western blotting analysis
81	Livers were excised and homogenized in RIPA buffer in the presence of the Halt
82	protease inhibitor cocktail (Thermo Fisher Scientific, 78429, Waltham, USA). The
83	samples were allowed to solubilize for 30 min on ice, and particulate matter was

- 84 removed by centrifugation at 14,000 g for 15 min at 4°C. Aliquots of each lysate
- containing 20 µg of protein were separated by electrophoresis in 10-20% sodium 85
- dodecyl sulfate-polyacrylamide gel electrophoresis gels (Nacalai Tesque, 13068-24, 86
- Kyoto, Japan), and transferred to polyvinylidene fluoride membranes (Merck Millipore, 87
- IPVH07850; Burlington, USA). After blocking with non-fat dry milk for 1 h at room 88

89	temperature (RT), the membranes were probed with primary antibodies: anti-p16
90	(Abcam, ab51243, Cambridge, UK, 1:5,000), anti-β-actin (Cell Signaling Technology,
91	4697, Danvers, USA, 1:1,000), and anti-SIRT6 (Abcam, ab191385, Cambridge, UK,
92	1:2,000). The membranes were then incubated with HRP-linked anti-rabbit IgG
93	secondary antibody (Cell Signaling Technology, 7074, Danvers, USA, 1:10,000), and
94	the blots were detected using ECL TM Prime Western Blotting Detection Reagent (GE
95	Healthcare, RPN2236, Chicago, USA). Images were captured using a
96	Chemiluminescence Imaging System FUSION SOLO 5, and analyzed using Fusion-
97	Capt software (Vilber-Lourmat, Marne-la-Vallée, France).
98	
99	Plasma biomarker (BM) analysis
100	Analysis of plasma BMs (creatinine, SDMA, urea, ADMA, quinolinic acid, kynurenine,
101	tryptophan) was conducted using the HMT Dual Scan package with CE-TOF-MS based
102	on methods described previously (Ohashi et al., 2008; Ooga et al., 2011). CE-TOF-MS
103	analysis was conducted without standard compounds using Agilent G1600A capillary
104	electrophoresis system (Agilent Technologies, Waldbronn, Germany) equipped with Q
105	Exactive Plus (Thermo Fisher Scientific, Waltham, USA). The systems were controlled
106	by Agilent G2201AA ChemStation software version B.03.01 (Agilent Technologies).

107	The spectrometer performed scans from m/z 50 to 1,000, and peaks were extracted
108	using automatic integration software (MasterHands; Keio University, Tsuruoka, Japan)
109	to obtain peak information, including m/z, peak area, and migration time (Sugimoto et
110	al., 2010). Signal peaks corresponding to isotopomers, adduct ions, and other product
111	ions of known metabolites were excluded, and the remaining peaks were annotated
112	according to the HMT metabolite database based on their m/z values with the migration
113	times. Areas of the annotated peaks were then normalized on the basis of the internal
114	standard (cation mode, L-methionine sulfone; anion mode, D-camphor-10-sulfonic acid)
115	levels, and sample amounts (mL plasma) to obtain relative levels of each metabolite.
116	
116 117	Immunohistochemistry
	<i>Immunohistochemistry</i> Mice were deeply anesthetized with 5% isoflurane (Pfizer, New York, USA) and
117	
117 118	Mice were deeply anesthetized with 5% isoflurane (Pfizer, New York, USA) and
117 118 119	Mice were deeply anesthetized with 5% isoflurane (Pfizer, New York, USA) and transcardially perfused with chilled 4% paraformaldehyde (PFA) in 0.02 M phosphate-
 117 118 119 120 	Mice were deeply anesthetized with 5% isoflurane (Pfizer, New York, USA) and transcardially perfused with chilled 4% paraformaldehyde (PFA) in 0.02 M phosphate- buffered saline (PBS, pH 7.2), after which the whole brain was quickly dissected. The
 117 118 119 120 121 	Mice were deeply anesthetized with 5% isoflurane (Pfizer, New York, USA) and transcardially perfused with chilled 4% paraformaldehyde (PFA) in 0.02 M phosphate- buffered saline (PBS, pH 7.2), after which the whole brain was quickly dissected. The brain was postfixed in 4% PFA overnight at 4°C, washed with PBS, embedded in 4%

125	PBST) for 30 min, followed by primary incubation with each antibody in 0.1% PBST
126	overnight at RT: anti-doublecortin (Dcx) (Santa Cruz, SC-8066, Dallas, USA, goat,
127	1:250), anti-NeuN (Merck Millipore, MAB377, Burlington, USA, mouse, 1:250), anti-
128	Iba1 (Sigma-Aldrich, SAB2500041, Burlington, USA, goat, 1:250), anti-CD86 (Thermo
129	Fisher Scientific, 14-0862-85, Waltham, USA, mouse, 1:200), anti-CD206 (Abcam,
130	ab64693, Cambridge, USA, rabbit, 1:200), anti-TDP43 (Abcam, ab109535, Cambridge,
131	USA, rabbit, 1:250), anti-HNMT (Proteintech, 11874-1-AP, Rosemont, USA, rabbit,
132	1:10), anti-Nestin (Santa Cruz, sc-21249, Dallas, USA, goat, 1:250), anti-synapsin I
133	(Sigma-Aldrich, S193, Burlington, USA, rabbit, 1:250), anti-CD68 (Thermo Fisher
134	Scientific, MCA1957GA, Waltham, USA, rat, 1:250), anti-c-fos (Abcam, ab209794,
135	Cambridge, USA, rabbit, 1:100), and anti-calbindin (Merck Millipore, c9848, Billerica,
136	USA, mouse, 1:250). The sections were washed three times with 0.1% PBST, followed
137	by incubation with secondary antibodies in 0.1% PBST overnight at RT: anti-mouse
138	Alexa 488 (Abcam, ab150105, Cambridge, USA, donkey, 1:500), anti-goat Alexa 555
139	(Thermo Fisher Scientific, A21432, Waltham, USA, donkey, 1:500), anti-rabbit Alexa
140	594 (Thermo Fisher Scientific, A11037, Waltham, USA, goat, 1:500), anti-rabbit Alexa
141	647 (Thermo Fisher Scientific, A31573, Waltham, USA, donkey, 1:500), and anti-rat
142	Alexa 488 (Thermo Fisher Scientific, A21208, Waltham, USA, donkey, 1:500). The

sections were washed three times with 0.1% PBST, followed by observation under a
LSM710 confocal laser scanning microscope (Carl Zeiss, Jena, Germany).

145

146 Radioenzymatic assay for HNMT

147 The HNMT enzymatic assay was performed as described previously (Imamura et al.,
148 1985; Hashimoto et al., 2019), with minor modifications. In brief, the obtained brain

149 cytosol (20 μ g/mL) was incubated with 2 μ M histamine and 0.2 μ M [methyl-³H]S-

150 adenosyl-L-methionine (PerkinElmer, Waltham, USA). The reaction volume of each

151 sample was 50 μ L. The resulting enzymatically produced [³H]methylhistamine was

152 extracted and measured as described below. After 30 min of incubation at 37°C, 50 μL

153 of 1N NaOH and 600 µL of chloroform were added to the mixture. The tubes were

154 shaken vigorously for 10 min. After centrifugation at 2,000 g, the aqueous phase was

discarded, and the organic phase was washed once with 100 μ L of 0.5N NaOH; 400 μ L

- 156 of the organic phase was then transferred to a tube. After drying in the fume hood
- 157 overnight, dried samples were reconstituted with 50 µL of methanol, followed by
- 158 addition of 1 mL of Clearsol I (Nakalai Tesque, Kyoto, Japan) for liquid scintillation

159 spectrometry.

161 Measurement of histamine and methylhistamine by LC-MS/MS

162 Concentrations of histamine and methylhistamine were analyzed by LCMS-8040 163 (Shimadzu, Kyoto, Japan) as described previously (Hashimoto et al., 2019). 164 Chromatographic separation was performed with a ZIC-cHILIC column (150 mm × 2.1 mm, 3 µm; 120 Å, Merck Millipore, Billerica, USA) using water with 0.1% formic acid 165 166 as mobile phase A, and ACN with 0.1% formic acid as mobile phase B, under gradient elution: 0-2.5 min: 10% A/90% B to 20% A/80% B; 2.5-5.8 min: 20% A/80% B to 167 50% A/50% B; 5.8-6.2 min: 50% A/50% B to 80% A/20% B; 6.2-7.5 min: 80% A/20% 168 169 B; 7.5-7.7 min: 80% A/20% B to 10% A/90% B; 7.7-11.5 min: 10% A/90% B. The run 170 time was 11.5 min at a constant flow rate of 0.4 mL/min. The injection volume was 1 µL. Analyses were performed on a LabSolutions instrument. MS-MS detection was 171 172 performed in positive electrospray ionization mode using the MRM acquisition mode. 173 The MRM conditions of histamine, methylhistamine, and histamine-d4 were set at 174 112.00 > 95.10, 126.20 > 109.00, and 116.20 > 99.20, respectively. Nitrogen was used as the nebulizer, and argon was used as the collision gas. 175 176

177 Primary culture of microglia

178 Cortical microglial cell culture was performed as described previously (Ishimoto et al.,

179	2018) with minor modifications. In brief, cerebral cortex isolated from 1-day-old mice
180	were dissected and shaken at 250 rpm with 0.25% trypsin in PBS containing 5.5 mM
181	glucose at 37°C for 15 min. Trypsinization was stopped by the addition of PBS
182	containing 10% of horse serum and 1 mg/mL of DNase I. After centrifugation for 5 min
183	at 350 g, cells were mechanically dissociated using a 1,000- μ L pipette tip in culture
184	medium and plated at a density of 2.5 \times 10 5 cells/dish on $\phi 10$ cm dishes pre-coated with
185	poly-L-lysine. Cultures were maintained at 37°C in a humidified 5% CO ₂ incubator
186	(Hirasawa, Tokyo, Japan) for 2 weeks, with medium change every week. After 2 weeks,
187	cultures, including microglia and astrocytes, were washed with PBS and incubated with
188	DMEM containing 0.05% trypsin and 0.2 mM EDTA for 1 h, followed by removal of
189	astrocytes by washing with PBS twice. Cells attached to the bottom of plastic dishes
190	were collected as microglia, and were used in the experiments. The collected cells were
191	plated on 24-well dishes at a density of 1.3×10^5 cells/cm ² . The medium was replaced
192	with DMEM containing 100 μM histamine in the presence or absence of 500 μM
193	ERGO and/or 1 μ M metoprine at 24 h from the seeding, followed by collection of
194	samples for RT-PCR at 48 h. Regarding immunostaining for HNMT and Iba1, the
195	collected cells were plated on 24-well dishes at a density of 5×10^4 cells/cm ² . The cells
196	were washed with PBS, fixed with 4% PFA for 20 min at RT, incubated for 30 min in

197	blocking solution (0.1% PBST containing 3% BSA) at RT, incubated overnight in 10-
198	fold-diluted blocking solution containing anti-HNMT (Proteintech, 11874-1-AP,
199	Rosemont, USA, rabbit, 1:25) and anti-Iba1 (Sigma-Aldrich, SAB2500041, Burlington,
200	USA, goat, 1:500) at 4°C, washed with PBS, and then treated with anti-goat Alexa555
201	(Thermo Fisher Scientific, A21432, Waltham, USA, donkey, 1:500) and anti-rabbit
202	Alexa647 (Thermo Fisher Scientific, A31573, Waltham, USA, donkey, 1:500) at RT for
203	2 h. The cells were washed again with PBS, treated with mounting medium including
204	DAPI, and observed under a LSM710 confocal laser scanning microscope.
205	
206	
207	References
208	Hashimoto, N., Nakamichi, N., Nanmo, H., Kimura, KI., Masuo, Y., Sakai,
209	Y.,Kato, Y. (2019). Metabolome analysis reveals dermal histamine

- accumulation in murine dermatitis provoked by genetic deletion of P-210
- glycoprotein and breast cancer resistance protein. Pharmaceutical Research, 211
- 36(11), 158. https://doi.org/10.1007/s11095-019-2695-3 212
- Imamura, S., Tachibana, T., & Taniguchi, S. (1985). Impaired histamine metabolism 213 in the Arthus reaction induced in guinea-pig skin. Archives of 214

215	Dermatological Research, 277(4), 313–317.
216	https://doi.org/10.1007/BF00509087
217	Ishimoto, T., Nakamichi, N., Nishijima, H., Masuo, Y., & Kato, Y. (2018).
218	Carnitine/organic cation transporter OCTN1 negatively regulates activation
219	in murine cultured microglial cells. Neurochemical Research, 43(1), 116-
220	128. https://doi.org/10.1007/s11064-017-2350-5
221	Ohashi, Y., Hirayama, A., Ishikawa, T., Nakamura, S., Shimizu, K., Ueno, Y., Soga,
222	T. (2008). Depiction of metabolome changes in histidine-starved Escherichia
223	coli by CE-TOFMS. Molecular Biosystems, 4(2), 135–147.
224	https://doi.org/10.1039/B714176A
225	Ooga, T., Sato, H., Nagashima, A., Sasaki, K., Tomita, M., Soga, T., & Ohashi, Y.
226	(2011). Metabolomic anatomy of an animal model revealing homeostatic
227	imbalances in dyslipidaemia. Molecular Biosystems, 7(4), 1217-1223.
228	https://doi.org/10.1039/C0MB00141D
229	Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary
230	electrophoresis mass spectrometry-based saliva metabolomics identified
231	oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6(1), 78-

232 95. <u>https://doi.org/10.1007/s11306-009-0178-y</u>