
Appendix A. The prediction operator and associated error covariance matrix

The core field and secular variation evolve according to

gm`,k+1 = α`
(
gm`,k + ∆tġm`,k

)
+ ωc (A.1)

ġm`,k+1 = α̇` ġ
m
`,k + ω̇c (A.2)

where ωc and ω̇c are zero mean errors. To the first order their variances, vωc
and v̇ωc

respectively, are

proportional to that of the coefficients of the secular acceleration, g̈m` : vωc = ∆t4

4 v̈gm` and v̇ωc = ∆t2 v̈gm` .

Unfortunately, the variance of the secular acceleration coefficients, v̈gm` , is not part of the priors we set.

To circumvent this difficulty, we define a time scale τ̃sa =

√
v̇0
gm
`

v̈gm
`

, where v̇0
gm`

is the prior variance of

the secular variation coefficients. This definition differs from the usual τsa time scale definition (see e.g.

– Christensen et al. (2012)). Nonetheless we assume that τ̃sa takes similar values, which are around

10-15 years up to spherical harmonics degree 13 and get smaller for higher spherical harmonics degrees

(Christensen et al. 2012). Therefore we set τ̃sa = 11years, independently of the spherical harmonics

degree, even if we know that this value is likely too large for the largest spherical harmonics degrees of

our secular variation model. Similarly we defined τ̃sv =

√
v0
gm
`

v̇0
gm
`

where v0
gm`

is the prior variance of the core

field coefficients. With these definitions, the variances vωc
and v̇ωc

reduces to:

vωc
=

1

4

(
∆t

τ̃sv

)2(
∆t

τ̃sa

)2

v0
gm`

and

v̇ωc
=

(
∆t

τ̃sa

)2

v̇0
gm`

,

respectively.

We turn now to the estimation of the α` and α̇` values in equations (A.1), (A.2). Starting with the core

field evolution, we compute α` from eq. (A.1) and from the stationary hypothesis. The latter implies

that the variance vgm` is independent of time. Therefore equation (A.1) gives:

v0
gm`

= α2
l

(
v0
gm`

+ ∆t2v0
ġm`

)
+ vωc

, (A.3)

and therefore:

α` =

√√√√√√1 − 1
4

(
∆t
τ̃sv

)2 (
∆t
τ̃sa

)2

1 +
(

∆t
τ̃sv

)2 . (A.4)
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Now, for the evolution of the SV, we evaluate the value of α̇` from eq. (A.2), and with the stationary

hypothesis it gives:

v̇0
gm`

= α̇2
l v̇

0
gm`

+ v̇ωc ,

leading to

α̇` =

√
1 −

(
∆t

τ̃sa

)2

. (A.5)

It is now possible to describe precisely the prediction operator P. This operator can be presented as a

block diagonal matrix, where there is a single block for the core and its SV, and a block for each of the

other individual sources. These individual sources evolve as an AR1 process (see section Prediction step).

Therefore the blocks are diagonal and their diagonal coefficients are the α from equation (11).

For the core field and secular variation block, we define 4 diagonal sub-blocks: Pcc, Pss, Pcs and Psc,

such that the block can be presented as: Pcc Pcs

Psc Pss

 .

Pcc (reps. Pss) relates the core field coefficients (resp. secular variation coefficients) at time step k

to those at time step k + 1. Similarly, Psc (reps. Pcs) relates the core field coefficients (resp. secular

variation coefficients) at time step k to those of the secular variation (resp. core field) at time step k+ 1.

The diagonal elements of Pcc are the α` from eq. (A.1) and those of Pss are the α̇` from eq. (A.2). Psc

is an empty sub-block, and Pcs diagonal elements are (∆t α`) as it can be derived from equation (A.1).

We explicit the error covariance matrix Cw, which has also a block diagonal structure. It is composed

of one block matrix for each source. For all sources, we introduce the diagonal matrix Dns where ns

designates the source. The diagonal terms of Dns , dns
i are defined as follows:

dcci =
1

2

∆t2

τ̃sa
for the core

dssi =
∆t

τ̃sa
for the SV

dns
i =

√
1 − α2

ns
for all the other sources

(A.6)

where ∆t is the time step, τ̃sa is the time scale defined above, and αns
is the factor governing the

evolution of AR1 processes, defined in eq. (12). The superscripts cc and ss designates the core field and

SV respectively. The superscript ns stands for any of the other sources, that we recall evolve like AR1

processes (eq. (11)).

We also denote C̃
ns

0 the block of C̃0 corresponding to the source ns. We recall that C̃0 is introduced in
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section Analysis step. It contains the prior information on the spatial behaviour of every source modelled,

through block matrices that can be diagonals (for all sources in the case of the HS model) or full (for the

core field and SV in the case of the CE model).

For source ns, the corresponding block of Cns
w is therefore:

Ccc
w = Dcc C̃

ss

0 (Dcc)t for the core

Css
w = Dss C̃

ss

0 (Dss)t for the SV

Cns
w = Dns C̃

ns

0 (Dns)t for all the other sources

(A.7)

where the super-script t denotes the transpose.
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