

Efficient and stable edge/sidecar proxy providing load-balancing,
retries, authentication, and much more.

eBPF-powered networking, security, encryption, load-balancing
and servicemesh acceleration.

eBPF

Highly efficient sandboxed virtual machine to execute
logic on events inside the Linux kernel.

Go extensions on top of Envoy for rapid development,
customization and additional protocol parsers.

Chaos engineering is the discipline of experimenting on a software
system in production in order to build confidence in the system’s
capability to withstand turbulent and unexpected conditions.[1]

https://en.wikipedia.org/wiki/Chaos_engineering#cite_note-1

In software testing, fault injection is a technique for improving the
coverage of a test by introducing faults to test code paths, in particular
error handling code paths, that might otherwise rarely be followed. It is
often used with stress testing and is widely considered to be an
important part of developing robust software.[1]

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Error_handling
https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Fault_injection#cite_note-1

Service A Service B

→

←

Service A Service B
→

←

Failure Injection:

Normal Operation:

● Proxy
○ Get control of communication between services

● Ability to simulate failure
○ Return “504 Application Error” even if service returned “200 OK”
○ Delay response by N msec

● Probability aspect
○ Inject failure in 50% of all attempts

● Transparency
○ Avoid need to change or restart services

● Visibility
○ Was the failure simulated or real?

● Service and edge proxy
○ HTTP/2, gRPC, MongoDB, DynamicDB with more protocol

support coming
● Advanced load-balancing

○ L7, Canary, Retries, Circuit breaking, Rate limits
● Security

○ Authorization, mTLS
● Observability

○ Tracing & metrics
● Extendable

○ Go extensions, WASM, LUA, ...

● Ability to extend Envoy with Go code
● Example:

○ Use net/http for HTTP parsing
○ Produces http.Request and

http.Response for arbitrary failure injection
○ Envoy becomes capable of running any Go

code HTTP handler

Service A

Service B v1.0

Service B v1.0

Service B v2.0

49.5%

49.5%

1%

● Based on eBPF technology
● Networking

○ Cilium-CNI or chaining on top of most other CNIs
● Kubernetes Services implementation
● Network Policies

○ Identity-based, DNS aware, API aware
● Multicluster, Encryption
● Native Envoy and Istio Integration

○ Transparent Envoy injection (per-node or sidecar)
○ Accelerated proxy redirection, Transparent SSL visibility

Process

NICDisk

Process

BPF

BPF

BPF

IO
 R

e
ad

S
e

n
d

 n
e

tw
o

rk
p

ac
ke

t

co
n

n
e

ct
()

Sockets

TCP/IP

Network DeviceB
P

F
TCP

retrans

BPF

re
ad

()

File Descriptor

VFS

Block Device

 Node Node

Service A Service B

 Node Node

 CNI

Service A Service B

 Node Node

Filter
Chain

ProxyListener

 CNI

Service A Service B

 Node Node

Filter
Chain

ProxyListener

 CNI

Service A

Go Extensions

Chaos Testing
Plugin

Service B

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
[...]
specs:
- endpointSelector:
 matchLabels:
 app: myService
 ingress:
 - toPorts:
 - ports:
 - port: "8000"
 protocol: TCP
 l7proto: chaos
 l7:
 - probability: "0.5"
 rewrite-status: 504 Application Error

● Proxy
→ Envoy

● Ability to simulate failure & probability aspect
→ Envoy Go extension “chaos”

● Transparency
→ Cilium & eBPF

● Visibility
→ HTTP headers, Envoy metrics

Clone examples repo:
$ git clone https://github.com/cilium/chaos-testing-examples.git

Create Kubernetes cluster:
$ minikube start --network-plugin=cni --memory=4096

Install Cilium:
$ kubectl apply -f cilium-minikube.yaml

Deploy your app:
$ kubectl apply -f deathstar.yaml
$ kubectl apply -f falcon.yaml

Apply the fault injection policy:
$ kubectl apply -f examples/delay-response.yaml

https://github.com/cilium/chaos-testing-examples.git

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
[...]
specs:
- endpointSelector:
 matchLabels:
 app: myService
 ingress:
 - toPorts:
 - ports:
 - port: "8000"
 protocol: TCP
 l7proto: chaos
 l7:
 - probability: "0.8"
 delay-response: 50ms
 - probability: "0.2"
 delay-response: 1s

apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
[...]
specs:
- endpointSelector:
 matchLabels:
 app: myService
 ingress:
 - toPorts:
 - ports:
 - port: "8000"
 protocol: TCP
 l7proto: chaos
 l7:
 - status-code: "200"
 method: GET
 rewrite-status-code: 404 NOT FOUND

Join the community:

All Examples:

https://github.com/cilium/chaos-testing-examples

Grab yourEnvoy, Cilium & Go stickers

https://github.com/cilium/cilium
https://cilium.io/slack
https://twitter.com/ciliumproject
https://github.com/cilium/chaos-testing-examples

