LINUX
Q ttor

Exploiting race conditions on [ancient] Linux

Jann Horn, Google Project Zero

(if this text is too small for you to read, maybe open the slides on your laptop)

slides at: https://sched.co/TynD

Introduction

e bugs described here have been fixed for a long time

e all exploits against kernel 4.4
e focus on exploitation techniques, not impact of individual

bugs

e physical-page use-after-free via stale TLB [bug 1]
o [kernel bug, PoC for Google Pixel 2]
o buddy allocator
o preemption and scheduler control

e refcount decrement on struct file [bug 2]
o [kernel bug, PoC for Ubuntu 16.04]
o userfaultfd() and FUSE
o kemp()

e a poor substitute for FUSE/userfaultfd [bug 3]

[userspace bug, PoC for Google Pixel 2]
I_mutex on kernel 4.4
priority inversion

O
O
O
o repeated file mapping faults

Bug 1: mremap()+fallocate() race

Translation Lookaside Buffer (TLB)

IN-CPU cache for page table entries (PTES)
PTEs are essentially refcounted page pointers
TLB borrows references from PTEs

kernel can invalidate TLB for virtual address

ranges

o x86: IPI for remote CPUs
o arm64: magic system-wide TLBI instruction

plIEInkElRlf moving a memory mapping

e moves associated page 1. move PTEs (also
_ moves references)
table entries (PTES)

e
e has to flush the TLB for I-.
| |

the old address range
2. flush TLB

(old mapping
becomes
inaccessible)

izlllele=11§): (de)allocate space for a file

e interesting case: punch a
hole in a file

e file pages in the hole are:
o yanked out of all mappings
(in all processes)

o released once all references
are gone

-.
L

1. delete PTEs
2. flush TLB
3. drop references

2B mremap()gfallocate) IElEE

e mremap() holds no relevant lock
between moving PTEs and TLB
flush, fallocate() possible in
between

e fallocate() drops page references
after its TLB flush

e stale TLB entry for old mapping
permits physical-page
use-after-free between dropping
page reference and flushing TLB
for old mapping

crbug.com/project-zero/1695

1. move PTEs (also
moves references)

old new:
mapping mapping
| | |

5. flush TLB
(old mapping
becomes
inaccessible)

2. delete PTEs
3. flush TLB
4. drop
references
(can free pages)

https://crbug.com/project-zero/1695

Exploit plan: Basics

e Dbiggest impact on Linux <4.9; exploiting
for write access is much harder on
newer kernels

e goal: Pixel 2 (Linux 4.4) exploit

old new
mapping mapping
e exploit idea: reallocate freed page with |

kernel data TLB flush pending
pages freed

=> physical UAF!

Page freelist
order O

MIGRATE_MOVABLE

Page freelist
order O

MIGRATE_UNMOVABLE

Page freelist
MIGRATE_MOVABLE

Page freelist

MIGRATE_UNMOVABLE

Page freelist
MIGRATE_MOVABLE

Page freelist
MIGRATE_UNMOVABLE

(highly
simplified, not
entirely correct)

THE

LINUX

FOUNDATION

L

Exploit plan

e Dbiggest impact on Linux <4.9; exploiting
for write access is much harder on

newer kernels
) . . old new

L 5
kerretdata - X, looked too messy TLB flush pending
o pages freed
e exploit idea: reallocate freed page as => physical UAF!

page cache for privileged code V/
o requires disk I/0O within the race window
o need to make the mremap() race window
wide enough for disk I/O

e race window detectable through procfs

CPUO
wakeup

IPI task C
running
e waking up a task can cause a scheduler Inter-Processor Interrupt (IPI)

o depending on policy, priority and past CPU usage [see check preempt wakeup ()]
e Linux supports three kernel preemption models:

o "voluntary" preemption can yield the CPU at cond resched () [called
in ~1000 places]
m used by many Linux distributions by default

o full preemption
enabled on Android

syscall context interruptible directly via inter-processor interrupt (IPl) on task wakeup

no preemption in some code regions (holding a spinlock [/ preemption explicitly disabled
/ interrupts disabled])

[preemption requests in critical region are delivered on critical section exit] LINUX

mutexes don't block preemption! SRR

—Preemption

task A | task B
running | blocked

CPUO

Scheduler control BWies: ez walcoup

running blocked 1 task C
SCHED_IDLE || SCHED_NORMAL running

e sched_setscheduler(): set SCHED NORMAL /SCHED IDLE
o [realtime policies require CAP_SYS NICE or RealtimeKit]

on busy CPU, SCHED IDLE has infrequent wakeups
SCHED _IDLE never preempts

sched_setaffinity(): pin task to CPU bitmask

also affects execution in kernel mode!

pin two own tasks to a single CPU
set different scheduling classes
interrupt kernel code execution

VYV

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CPU 0] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal priority] [idle priority] [normal priority] [normal priority] [normal priority]

busyloop , | | |
i read(<pipe>) busyloop busyloop
yield by waiting . reading procfs attempting to
E stats write through
mremap(...) ! detect old mapping
PTE is moved ' wakeup write (<pr;r;)ree:;1ap() [keep
yield by preemption 'el'lr_]tBry
3 sched_setaffinity so that we can block alive]
c i (task B, CPU 0) without yielding to B
X eke g [preempted] |
o?fsthe i fallocate(...) free the pages
] |
CPU | pread(<zygote "€use one of
| code>) the pages as -
: page cache ’(c)k:/: g;glee

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CPU 0] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal priority] = [idle priority] [normal priority] [normal priority] [normal priority]

busyloop . | | |
i read(<pipe>) busyloop busyloop
yield by waiting . reading procfs attempting to
E stats write through
mremap(...) ! detect old mapping
PTE is moved . wakeup write (<pr;r;)ree:;1ap() [keep
yield by preemption 'el'lr_]tBry
3 sched_setaffinity so that we can block alive]
c i (task B, CPU 0) without yielding to B
X eke g [preempted] |
o?fsthe i fallocate(...) free the pages
] |
CPU | pread(<zygote "€use one of
| code>) the pages as -
: page cache 3\]’: g;glee

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CPU 0] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal priority] [idle priority] [normal priority] [normal priority] [normal priority]

busyloop , | | |
i read(<pipe>) busyloop busyloop
yield by waiting . reading procfs attempting to
E stats write through
mremap(...) ! detect old mapping
PTE is moved ' wakeup write (<pr;r;)ree:;1ap() [keep
yield by preemption 'el'lr_]tBry
3 sched_setaffinity so that we can block alive]
c i (task B, CPU 0) without yielding to B
X eke g [preempted] |
o?fsthe i fallocate(...) free the pages
] |
CPU | pread(<zygote "€use one of
| code>) the pages as -
: page cache ’(c)k:/: g;glee

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CFU O] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal prio-ity] [idle priority] [normal priority] [normal priority] [normal priority]

busyloop , | | |
i read(<pipe>) busyloop busyloop
yield by waiting . reading procfs attempting to
E stats write through
mremap(...) ! detect old mapping
PTE is moved ' wakeup write (<pr;r;)ree:;1ap() [keep
Yield by preemption | -enr_mtBry
3 sched_setaffinity so that we can block alive]
c i (task B, CPU 0) without yielding to B
X eke g [preempted] |
o?fsthe i fallocate(...) free the pages
| |
CPU | pread(<zygote "€use one of
| code>) the pages as -
: page cache ’(c)k:/: g;glee

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CPU 0] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal priority] [idle priority] [normal priority] [normal priority] [normal priority]

busyloop | | |
read(<pipe>) busyloop busyloop
yield by waiting . reading procfs attempting to
— E stats write through
mremap(...) ; ?ﬁ:ﬁ’;po old mapping
PTE is moved . wakeup itelstoes) [keep
yield by preemption -enr_mtBr
5 sched_setaffinity so that we can block aIive%
i (task B, CPU 0) without yielding to B
S [preempted] |
task B : fallocate(...) free the pages
off the i | P
CPU oread(<zygote €use one of
: code>) the pages as .
E page cache overwrite
the page

Android kernel exploit (app -> zygote)

task A task B task C task D E
[pinned to CPU O] [pinned to CPU 1] [pinned to CPU 1] [pinned to CPU 2] [pinned to CPU 3]
[normal priority] [idle priority] [normal priority] [normal priority] [normal priority]

busyloop , | | |
i read(<pipe>) busyloop busyloop
w reading procfs attempting to
E stats write through
mremap(...) | detect ; old mapping
: mrema
PTE is moved | ' wakeup . (<pipes) P _[I_IT_eBep
yield by preemption —
5 sched_setaffinity so that we can block aIive%
Koo (task B, CPU 0) without yielding to B
task g [preempted] |
e i faIIoc?te(...) free the pages
CPU oread(<zygote €use one of
| code>) the pages as _
: page cache overwrite
the page

Bug 2: refcount decrement on
struct file

(yes, the bug doesn't involve a race condition, but the exploit kinda does)

userfaultfd and FUSE

e userfaultfd() and FUSE allow userspace to synchronously handle page faults
e => userspace can block arbitrarily at copy from_user()/copy to user()
e userfaultfd() and FUSE are not exposed to unprivileged Android code

=> not applicable on Android, but relevant on desktop Linux

FUSE for exploiting struct file refcount

overdecrement in Linux

4.4

bug from 2016 to illustrate FUSE-based
use-after-free exploitation

o file reference acquired with Edget ()

e error path accidentally called fdput ()
twice

e struct file freed prematurely

use-after-free
exploited on Ubuntu 16.04

crbug.com/project-zero/808

T = -(insn—>imm);
—map = bpf map get(f);
if (IS _ERR(map)) {

verbose ("fd %$d 1s not pointing to valid
bpf map\n", insn->imm) ;

fdput (£f) ;

return PTR ERR (map) ;
}

|—>struct bpf map * bpf map get(struct fd f)
{
if ('f.file)
return ERR PTR (-EBADF) ;
(f.file->f op != &bpf map fops)
fdput (f) ;
return ERR PTR (-EINVAL) ;
}

if {

return f.file->private data;

https://crbug.com/project-zero/808

kemp() for reliable UAF

e CONFIG CHECKPOINT RESTORE

- static long kptr_obfuscate(long v, int type
» smaller/equal/greater comparison ¢
. - return (v " cookies[type] [0]) *

between _ kernel pointers cookies [type] [1];
e intended for grouping same-object B

references in O(n Iog(n)) static int kcmp ptr(void *vl, void *v2, enum
e works on:]chp—type type)

o struct file long t1, t2;

o struct mm_struct

o struct files_struct tl = = (long)vl, type);

o struct fs_struct £z = ((long)v2, type);

o struct sighand_struct return (EL < £2) | ((£1 > £2) << 1)

o struct io_context }

o struct sem_undo_list

e tag reuse oracle for Memory Tagging
unless tag bits are ignored

FUSE for exploiting struct file refcount

overdecrement in Linux 4.4

e create FUSE mapp|ng ssize t vfs_writev (struct file *file, const
open writable file (/dev/null) Ry e
start weitewv () with iovin FUSE - .‘]-’etur“ ~EBADE';
mapping return do_readv_writev (WRITE, file, vec,

vlen, pos):;

* write mode check passes }

¢ _ Sta”S on page faU|t static ssize t do_readv_writev(int type,

PY trigger bug tO free the f||e struct file *flle, const struct iovec _ user

* uvector, unsigned long nr segs, loff t

e open /etc/crontab as read-only *pos) {

. . [...]

e verify that struct file was allocated at ret - IMPOEEIIOVEE (type, uvector, nr segs,
the same address with kcmp () (else =~ AR SiERGovstaci, @lov, &iten);
re-open /etc/crontab) if (iter fn)

ret = do_iter readv_writev(file, é&iter,
e resolve FUSE page fault pos, iter fn);

o writev () writes into /etc/crontab S

Bug 3: use of getpidcon()

int:getpidcon(pid _t pid, char **context)

e userspace daemons need to check peer SELinux contexts

e unix domain sockets: SO PEERSEC

e Android binder: until recently no context name, only sender
PID

fd = open ("/proc/$pid/attr/current"”, O RDONLY)
read (fd, buf, len)

Bug 3: race condition in hwservicemanager

crbug.com/project-zero/1741

e receive binder IPC call (with caller PID)
® getpidcon(pid, &context)

e ACL check for context

> exit and make privileged thread reuse the PID
race window can be widened to ~15s

https://crbug.com/project-zero/1741

I-mutex on kernel 4.4

e sys getdents () (for readdir ()) iterates directory entries and
copies to userspace under inode->i mutex
o potentially a large amount of data if the directory has many

entries
e lookup slow () (forlooking up uncached directory entries)
takes parent->d inode->i mutex
e => blocking userspace access in the middle of
sys_getdents () blocks concurrent path traversal (e.g.
open ()) on the same inode

(Linux >=4.7 uses a semaphore 1 rwsem in read mode instead of

i mutex)

Priority Inversion

e high-priority task blocks on mutex - taskA
held by low-priority task (high priority)

e |ow-priority task is preempted by
medium-priority task (same CPU) B

e also applies for violating fairness (normal priority) long-running task

between two normal-priority tasks

preemption
e kernel mutexes are vulnerable to
C : taskC BEVE
priority inversion! (low priority)
o (unless you're on PREEMPT_RT)
e => we can artificially create a
priority inversion problem time

e mitigated by infrequent idle-priority
scheduling

(o]

task A
lidle] copy_to_user() #PF
|

runnable? I
yield resched

task B
Instead of userfaultfd(): [normal]

e create an uncached writable file mapping
o [by filling up RAM with other data to force page cache eviction]

e let Atrigger copy_to user() on the file mapping while holding a lock
e |et B spinloop at the same time

Consequences:

e copy to user() enters disk I/O path
e |/O path sleeps until disk responds, yielding the CPU
e scheduler won't preempt B when A is runnable again LS

THE

F faults

e [map pages such that readahead logic can't fire]

e 83560 bytes output from sys getdents() = 21 pages
[rounded up]

e >1s delay per disk read because of scheduler policy

o =>>21s total delay
tio | tio | to|

t[éilcs’:;? copy_from_user()

runnable? EE—— I ———— ——— |
yield\ resched / yield resched ; resched

task B
[normal]

LINUX

SECURITY
SUMMIT

C

Click to edit title

e Click to edit text

o Second level
m Third level

® Fourth level

O Fifth level

Click to place
text here

LINUX

FOUNDATION

Timing diagram

task A task B task C task D (simplified)

[pinned to CPU 0l [pinned to CPU 0] [normal priority] [normal priority]
[normal priority] [IDLE priority]
busyloop open binder

keep
task B
off the
CPU

