
Confidential + Proprietary

Exploiting race conditions on [ancient] Linux
Jann Horn, Google Project Zero

(if this text is too small for you to read, maybe open the slides on your laptop)

slides at: https://sched.co/TynD

v1

Confidential + Proprietary

● bugs described here have been fixed for a long time
● all exploits against kernel 4.4
● focus on exploitation techniques, not impact of individual

bugs

Introduction

Confidential + Proprietary

Agenda
● physical-page use-after-free via stale TLB [bug 1]

○ [kernel bug, PoC for Google Pixel 2]
○ buddy allocator
○ preemption and scheduler control

● refcount decrement on struct file [bug 2]
○ [kernel bug, PoC for Ubuntu 16.04]
○ userfaultfd() and FUSE
○ kcmp()

● a poor substitute for FUSE/userfaultfd [bug 3]
○ [userspace bug, PoC for Google Pixel 2]
○ i_mutex on kernel 4.4
○ priority inversion
○ repeated file mapping faults

Confidential + Proprietary

Bug 1: mremap()+fallocate() race

Confidential + Proprietary

Translation Lookaside Buffer (TLB)

● in-CPU cache for page table entries (PTEs)
● PTEs are essentially refcounted page pointers
● TLB borrows references from PTEs
● kernel can invalidate TLB for virtual address

ranges
○ x86: IPI for remote CPUs
○ arm64: magic system-wide TLBI instruction

Confidential + Proprietary

mremap(): moving a memory mapping

● moves associated page
table entries (PTEs)

● has to flush the TLB for
the old address range

old
mapping

new
mapping

1. move PTEs (also
moves references)

2. flush TLB
(old mapping

becomes
inaccessible)

Confidential + Proprietary

fallocate(): (de)allocate space for a file

● interesting case: punch a
hole in a file

● file pages in the hole are:
○ yanked out of all mappings

(in all processes)
○ released once all references

are gone

1. delete PTEs
2. flush TLB

3. drop references

mapping

Confidential + Proprietary

Bug 1: mremap()+fallocate() race

● mremap() holds no relevant lock
between moving PTEs and TLB
flush, fallocate() possible in
between

● fallocate() drops page references
after its TLB flush

● stale TLB entry for old mapping
permits physical-page
use-after-free between dropping
page reference and flushing TLB
for old mapping

old
mapping

new
mapping

1. move PTEs (also
moves references)

5. flush TLB
(old mapping

becomes
inaccessible)

2. delete PTEs
3. flush TLB

4. drop
references

(can free pages)

crbug.com/project-zero/1695

https://crbug.com/project-zero/1695

Confidential + Proprietary

Exploit plan: Basics

● biggest impact on Linux <4.9; exploiting
for write access is much harder on
newer kernels

● goal: Pixel 2 (Linux 4.4) exploit
● exploit idea: reallocate freed page with

kernel data

new
mapping

TLB flush pending
pages freed

=> physical UAF!

old
mapping

Confidential + Proprietary

Buddy allocator
percpu freelist [with UAF page]
cpu X
MIGRATE_MOVABLE

Page freelist
order 0
MIGRATE_MOVABLE

Page freelist
order 0
MIGRATE_UNMOVABLE

(highly
simplified, not
entirely correct)

Page freelist
order 1
MIGRATE_MOVABLE

Page freelist
order 2
MIGRATE_MOVABLE

Page freelist
order 1
MIGRATE_UNMOVABLE

Page freelist
order 2
MIGRATE_UNMOVABLE

percpu freelist
cpu X
MIGRATE_UNMOVABLE

SLAB
e.g. kmalloc-256

Confidential + Proprietary

Exploit plan

● biggest impact on Linux <4.9; exploiting
for write access is much harder on
newer kernels

● goal: Pixel 2 (Linux 4.4) exploit
● exploit idea: reallocate freed page with

kernel data - ✘, looked too messy
● exploit idea: reallocate freed page as

page cache for privileged code ✔
○ requires disk I/O within the race window
○ need to make the mremap() race window

wide enough for disk I/O
● race window detectable through procfs

new
mapping

TLB flush pending
pages freed

=> physical UAF!

old
mapping

Confidential + Proprietary

Preemption

● waking up a task can cause a scheduler Inter-Processor Interrupt (IPI)
○ depending on policy, priority and past CPU usage [see check_preempt_wakeup()]

● Linux supports three kernel preemption models:
○ "voluntary" preemption can yield the CPU at cond_resched() [called

in ~1000 places]
■ used by many Linux distributions by default

○ full preemption
■ enabled on Android
■ syscall context interruptible directly via inter-processor interrupt (IPI) on task wakeup
■ no preemption in some code regions (holding a spinlock [/ preemption explicitly disabled

/ interrupts disabled])
■ [preemption requests in critical region are delivered on critical section exit]
■ mutexes don't block preemption!

CPU 0 CPU 1

task A
running

task B
blocked

task C
running

wakeup
IPI

Confidential + Proprietary

Scheduler control

● sched_setscheduler(): set SCHED_NORMAL / SCHED_IDLE
○ [realtime policies require CAP_SYS_NICE or RealtimeKit]

● on busy CPU, SCHED_IDLE has infrequent wakeups
● SCHED_IDLE never preempts
● sched_setaffinity(): pin task to CPU bitmask
● also affects execution in kernel mode!

➢ pin two own tasks to a single CPU
➢ set different scheduling classes
➢ interrupt kernel code execution

CPU 0 CPU 1
task A
running
SCHED_IDLE

task B
blocked
SCHED_NORMAL

task C
running

wakeup
IPI

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Android kernel exploit (app -> zygote)
task B

[pinned to CPU 1]
[idle priority]

task C
[pinned to CPU 1]
[normal priority]

task D
[pinned to CPU 2]
[normal priority]

read(<pipe>)

mremap(...)

yield by waiting
busyloop

reading procfs
stats

write(<pipe>)

fallocate(...)

wakeup

yield by preemption

[preempted]

busyloop

task E
[pinned to CPU 3]
[normal priority]

busyloop
attempting to
write through
old mapping

PTE is moved

keep
task B

off the
CPU

detect
mremap()

task A
[pinned to CPU 0]
[normal priority]

sched_setaffinity
(task B, CPU 0)

so that we can block
without yielding to B

pread(<zygote
code>)

free the pages

reuse one of
the pages as
page cache overwrite

the page

[keep
TLB
entry
alive]

Confidential + Proprietary

Bug 2: refcount decrement on
struct file

(yes, the bug doesn't involve a race condition, but the exploit kinda does)

Confidential + Proprietary

userfaultfd and FUSE

● userfaultfd() and FUSE allow userspace to synchronously handle page faults
● => userspace can block arbitrarily at copy_from_user()/copy_to_user()
● userfaultfd() and FUSE are not exposed to unprivileged Android code

=> not applicable on Android, but relevant on desktop Linux

Confidential + Proprietary

FUSE for exploiting struct file refcount
overdecrement in Linux 4.4

bug from 2016 to illustrate FUSE-based
use-after-free exploitation

● file reference acquired with fdget()
● error path accidentally called fdput()

twice
● struct file freed prematurely
● use-after-free
● exploited on Ubuntu 16.04

f = fdget(insn->imm);
map = __bpf_map_get(f);
if (IS_ERR(map)) {
 verbose("fd %d is not pointing to valid
bpf_map\n", insn->imm);
 fdput(f);
 return PTR_ERR(map);
}

struct bpf_map *__bpf_map_get(struct fd f)
{
 if (!f.file)
 return ERR_PTR(-EBADF);
 if (f.file->f_op != &bpf_map_fops) {
 fdput(f);
 return ERR_PTR(-EINVAL);
 }

 return f.file->private_data;
}

crbug.com/project-zero/808

https://crbug.com/project-zero/808

Confidential + Proprietary

kcmp() for reliable UAF
● CONFIG_CHECKPOINT_RESTORE
● smaller/equal/greater comparison

between permuted kernel pointers
● intended for grouping same-object

references in O(n log(n))
● works on:

○ struct file
○ struct mm_struct
○ struct files_struct
○ struct fs_struct
○ struct sighand_struct
○ struct io_context
○ struct sem_undo_list

● tag reuse oracle for Memory Tagging
unless tag bits are ignored

static long kptr_obfuscate(long v, int type)
{
 return (v ^ cookies[type][0]) *
cookies[type][1];
}

static int kcmp_ptr(void *v1, void *v2, enum
kcmp_type type)
{
 long t1, t2;

 t1 = kptr_obfuscate((long)v1, type);
 t2 = kptr_obfuscate((long)v2, type);

 return (t1 < t2) | ((t1 > t2) << 1);
}

Confidential + Proprietary

FUSE for exploiting struct file refcount
overdecrement in Linux 4.4

● create FUSE mapping
● open writable file (/dev/null)
● start writev() with iov in FUSE

mapping
● write mode check passes
● import_iovec() stalls on page fault
● trigger bug to free the file
● open /etc/crontab as read-only
● verify that struct file was allocated at

the same address with kcmp() (else
re-open /etc/crontab)

● resolve FUSE page fault
● writev() writes into /etc/crontab

ssize_t vfs_writev(struct file *file, const
struct iovec __user *vec, [...]) {
 if (!(file->f_mode & FMODE_WRITE))
 return -EBADF;
[...]
 return do_readv_writev(WRITE, file, vec,
vlen, pos);
}

static ssize_t do_readv_writev(int type,
struct file *file, const struct iovec __user
* uvector, unsigned long nr_segs, loff_t
*pos) {
[...]
 ret = import_iovec(type, uvector, nr_segs,
 ARRAY_SIZE(iovstack), &iov, &iter);
[...]
 if (iter_fn)
 ret = do_iter_readv_writev(file, &iter,
pos, iter_fn);
[...]
}

Confidential + Proprietary

Bug 3: use of getpidcon()

Confidential + Proprietary

int getpidcon(pid_t pid, char **context)

● userspace daemons need to check peer SELinux contexts
● unix domain sockets: SO_PEERSEC
● Android binder: until recently no context name, only sender

PID

fd = open("/proc/$pid/attr/current", O_RDONLY)
read(fd, buf, len)

Confidential + Proprietary

Bug 3: race condition in hwservicemanager
crbug.com/project-zero/1741

● receive binder IPC call (with caller PID)
● getpidcon(pid, &context)

● ACL check for context

➢ exit and make privileged thread reuse the PID
● race window can be widened to ~15s

https://crbug.com/project-zero/1741

Confidential + Proprietary

i_mutex on kernel 4.4

● sys_getdents() (for readdir()) iterates directory entries and
copies to userspace under inode->i_mutex
○ potentially a large amount of data if the directory has many

entries
● lookup_slow() (for looking up uncached directory entries)

takes parent->d_inode->i_mutex
● => blocking userspace access in the middle of

sys_getdents() blocks concurrent path traversal (e.g.
open()) on the same inode

(Linux >=4.7 uses a semaphore i_rwsem in read mode instead of
i_mutex)

Confidential + Proprietary

Priority Inversion
● high-priority task blocks on mutex

held by low-priority task
● low-priority task is preempted by

medium-priority task (same CPU)
● also applies for violating fairness

between two normal-priority tasks
● kernel mutexes are vulnerable to

priority inversion!
○ (unless you're on PREEMPT_RT)

● => we can artificially create a
priority inversion problem

● mitigated by infrequent idle-priority
scheduling

task A
(high priority)

task B
(normal priority)

task C
(low priority)

time

take
lock

long-running task

preemption

block on lock

Confidential + Proprietary

Major faults

Instead of userfaultfd():

● create an uncached writable file mapping
○ [by filling up RAM with other data to force page cache eviction]

● let A trigger copy_to_user() on the file mapping while holding a lock
● let B spinloop at the same time

Consequences:

● copy_to_user() enters disk I/O path
● I/O path sleeps until disk responds, yielding the CPU
● scheduler won't preempt B when A is runnable again

task B
[normal]

task A
[idle] lock copy_to_user() #PF

spinning

unlock

I/O

yield no preempt resched
runnable?

Confidential + Proprietary

Repeated file mapping faults

● [map pages such that readahead logic can't fire]
● 83560 bytes output from sys_getdents() = 21 pages

[rounded up]
● >1s delay per disk read because of scheduler policy
● => >21s total delay

task B
[normal]

task A
[idle] lock copy_from_user()

spinning

unlock

I/O

yield resched
runnable?

I/O

yield resched

I/O

yield resched

Confidential + Proprietary

Confidential + Proprietary

Click to edit title

● Click to edit text
○ Second level

■ Third level
● Fourth level

○ Fifth level

Confidential + Proprietary

Click to place
text here

Confidential + Proprietary

Timing diagram
task A

[pinned to CPU 0]
[normal priority]

task B
[pinned to CPU 0]

[IDLE priority]
busyloop

keep
task B

off the
CPU

(simplified)task C
[normal priority]

task D
[normal priority]

open binder

