
Mitigating (Some)
Use-after-frees in the Linux

Kernel
Jann Horn, Google Project Zero

Agenda
● Preparation: Fancy RCU extension possibilities
● Motivation
● Design of a use-after-free mitigation prototype
● Pitfalls and limitations
● Aspirational ideas for long-term development
● Performance numbers

Fancy RCU extension possibilities
(not actually implemented, just as stepping stone)
(no, I'm not saying that you should actually do this)

Unconditional RCU-ref => counted-ref
● RCU limitation: Can't block inside

read-side critical section

Classic options:

● retry loop around rcu_dereference()
+ refcount_inc_not_zero()

● optimistic GFP_NOWAIT

rcu_read_lock();
foo = rcu_dereference(ptr->foo);
...
if (...) {
 ... = kmalloc(...,GFP_KERNEL);
 ...
}
...
rcu_read_unlock();

Unconditional RCU-ref => counted-ref
● Idea: Permit refcount increment

through RCU reference
● foo must only be freed after

foo->refs has been zero for
an entire RCU grace period

● can be built on top of rcu_head
API

rcu_read_lock();
foo = rcu_dereference(ptr->foo);
...
if (...) {
 ref_inc(&foo->refs);
 rcu_read_unlock();
 ... = kmalloc(...);
 rcu_read_lock();
 ref_dec(&foo->refs);
 ...
}
...
rcu_read_unlock();

Resurrectable refcount wrapper around rcu_head

refcount > 0

refcount == 0

FREE

refcount zeroed
schedule rcu_head

refcount lifted
from zero
cancel rcu_head

RCU callback
invoke callback

START HERE

doesn't work

Resurrectable refcount wrapper around rcu_head

refcount > 0

refcount == 0 refcount == 0
RESURRECTED

refcount > 0
RESURRECTED

FREE

refcount zeroed
schedule rcu_head

RCU callback
schedule rcu_head

RCU callback

refcount zeroed refcount lifted
from zero

refcount lifted
from zero

RCU callback
invoke callback

START HERE

sched-out mode switch

rcu_read_lock();
foo = rcu_dereference(ptr->foo);
...
if (...) {
 ref_inc(&foo->refs);
 rcu_read_unlock();
 ... = kmalloc(...);
 rcu_read_lock();
 ref_dec(&foo->refs);
 ...
}
...
rcu_read_unlock();

cache line contention

rarely actually blocks

● elide the refcounting unless we actually block?
○ without extra path for GFP_NOWAIT fail?

● idea: preempt notifier
● rcu_pin() registers rcu_ref on

task/pcpu
● on first sched-out:

○ set BLOCKED flag on pin
○ ref_inc()
○ rcu_read_unlock()
○ unregister from task

● on rcu_unpin() with BLOCKED:
○ rcu_read_lock()
○ ref_dec()

● Requires RCU core modifications
● Requires extra check in context switch

sched-out mode switch rcu_read_lock();
foo = rcu_dereference(ptr->foo);
...
if (...) {
 struct rcu_pin pin;
 rcu_pin(&pin, &foo->refs);
 rcu_permit_preempt();
 ... = kmalloc(...);
 rcu_deny_preempt();
 rcu_unpin(&pin, &foo->refs);
 ...
}
...
rcu_read_unlock();

Motivation and Mitigation Design

Scope of security bugs
Local impact ("logic bugs"):

● broken bind/rename handling in
VFS path traversal code

● broken PTRACE_TRACEME
security check

=> immediate impact mostly related
to subsystem functionality

Global impact (e.g. memory corruption):

● shared futex slowpath pinned inode
with iget()

● missing locking between
coredumping and userfaultfd

=> impact independent of subsystem
functionality

Performance issues vs. security issues
Performance issues:

● issues are noticeable
● profiling can (mostly) pinpoint issues
● small fixes can have large positive impact

Security issues:

● issues are (mostly) invisible
● issues can be almost anywhere

=> Turning security issues into fixable performance issues might be helpful

Pattern for a simple kernel UAF-write exploit
● trigger allocation of A

● trigger freeing of A
● trigger allocation and initialization of B at A's old address

○ choose B such that A->member overlaps with B->function_pointer

● choose pointer P to a gadget in kernel code

● write P through A->member (corrupting B->function_pointer)
● trigger call to B->function_pointer

Scenario: can write arbitrary value
into A->member after A was freed

Pattern for a simple kernel UAF-write exploit
● trigger allocation of A

○ mitigations: Seccomp, SELinux, ... [attack surface reduction]

● trigger freeing of A
● trigger allocation and initialization of B at A's old address

○ mitigation: memory tagging [on future ARM64]
○ choose B such that A->member overlaps with B->function_pointer

■ mitigation: struct randomization

● choose pointer P to a gadget in kernel code
○ mitigation: KASLR

● write P through A->member
● trigger call to B->function_pointer

○ mitigation: CFI

Pattern for a simple kernel UAF-write exploit
● trigger allocation of A

○ mitigations: Seccomp, SELinux, ... [attack surface reduction]

● trigger freeing of A
● trigger allocation and initialization of B at A's old address

○ mitigation: memory tagging [on future ARM64]
○ choose B such that A->member overlaps with B->function_pointer B->buffer_pointer

■ mitigation: struct randomization

● choose pointer P to a gadget in kernel code important data
○ mitigation: KASLR

● write P through A->member
● trigger call to B->function_pointer

○ mitigation: CFI

● trigger reads/writes through B->buffer_pointer

Pattern for a simple kernel UAF-write exploit
● trigger allocation of A

○ mitigations: Seccomp, SELinux, ... [attack surface reduction]

● trigger freeing of A
● trigger allocation and initialization of B at A's old address

○ mitigation: memory tagging [on future ARM64]
○ choose B such that A->member overlaps with B->buffer_pointer

■ mitigation: struct randomization

● choose pointer P to important data
○ mitigation: KASLR

● write P through A->member
● trigger reads/writes through B->buffer_pointer

everything except attack surface reduction above is probabilistic

Design goal: As close to the actual bug as possible
● Actual bugs: Reference counting, locking, ...

○ Ideally mitigate here
○ Extremely hard or infeasible to reliably detect (in normal C code)

● Immediate symptom: Memory access through dangling pointer to reused
memory

○ ASAN: detects free memory access; software; for debugging
○ HWASAN: probabilistically detects UAF; software
○ Memory Tagging (MT): probabilistically detects UAF; hardware

● Design goal: Deterministic protection in software against
use-after-reallocation

● Target environment: Desktop X86-64 system

(ASAN/HWASAN/MT also address OOB bugs, I don't)

Basic design: Fat pointers (HWASAN / MT)
● embedded cookie disambiguates address reuse
● memory access is associated with cookie check
● difference: HWASAN / MT use cookie for probabilistic protection (except for

non-UAF goals)

cookie linear address

datacookie

pointer

memory

Design Goal: No pointer size change
● For lockless pointer updates
● Avoid metadata inconsistency via data races
● Avoid per-pointer memory usage

(like HWASAN / Memory Tagging)

=> Fat pointer must fit into 64 bits

Design goal: Mergeable object-level checks
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr) {
 int res;

 res = ptr->a;
 for (int i=0; i<ptr->b; i++) {
 other_function(ptr);
 res += ptr->c[i];
 }
 return res;
}

Design goal: Mergeable object-level checks
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr) {
 int res;

 res = CHECKED_LOAD(&ptr->a);
 for (int i=0; i<CHECKED_LOAD(&ptr->b); i++) {
 other_function(ptr);
 res += CHECKED_LOAD(&ptr->c[i]);
 }
 return res;
}

Design goal: Mergeable object-level checks
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr) {
 int res;
 struct bar *ptr_decoded = START_ACCESS(ptr);

 res = ptr_decoded->a;
 for (int i=0; i<ptr_decoded->b; i++) {
 other_function(ptr);
 res += ptr_decoded->c[i];
 }
 return res;
}

Design goal: Mergeable object-level checks
struct pin { struct pin *next; void *ptr; };
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr) {
 int res;
 struct pin pin = { .next = current->pins, .ptr = ptr };
 WRITE_ONCE(current->pins, &pin);
 struct bar *ptr_decoded = START_ACCESS(ptr);

 res = ptr_decoded->a;
 for (int i=0; i<ptr_decoded->b; i++) {
 other_function(ptr);
 res += ptr_decoded->c[i];
 }
 WRITE_ONCE(current->pins, pin.next);
 return res;
}

refcounted on
sched-out

Design goal: Mergeable object-level checks
● Optimization: One list element per function frame, with pin array
● Optimization: percpu variable instead of current->pins

○ switched on task switch (like stack protector)

● Alternative (discarded): ORC unwinding instead of linked list
○ Problems anytime unwinding is unreliable
○ More complex
○ ORC unwinding under the runqueue lock 😱

● Want per-object metadata

Fat pointers for per-object metadata
● fat pointer must store separate base pointer and offset

cookie base pointer

datacookie

pointer

memory

offsetProblems:
● pointer bits are limited; example:

○ marker: 1 bit
○ cookie: 15 bits
○ offset: 16 bits
○ base pointer (relative to base): log2(64GiB / 16 bytes) = 32 bits

● virtual memory repartitioning (without shadow mapping)
○ (okay for probabilistic detection)
○ can't use physical mapping + SLUB page freeing

● data alignment
● cookie depletion

marker

distinguish
fat/native

least
significant

(for arithmetic)

data

Fat pointers for per-object metadata
● advantage: much denser identifier space
● advantage: memory repartitioning is much easier
● advantage: when cookies run out, can use a "fallback" entry
● disadvantage: memory indirection

cookie
16

object ID
31

raw pointer
64

pointer

meta table entry
(128 bits)

offset
16

marker
1

memory

cookie
16

refs
16

Mapping between SLUB objects and meta structs

data

meta table
(16B per entry)

memory

raw pointercookie

raw pointer

raw pointer

start indexstruct page
(SLUB page)

cookieobject IDpointer offsetmarker

virt_to_head_page()

refs

cookierefs

cookierefs

Depleted allocations, fallback identifiers

data

meta table

memory

raw pointercookie

fallbackcookie
DEPLETED

raw pointercookie

cookieobject IDpointer offsetmarker

raw pointercookie

⋮

start indexstruct page
(SLUB page)

virt_to_head_page()

refs

refs

refs

refs

Depleted allocations, fallback identifiers
● Split metadata ID space into 230 normal entries, 230 fallback entries
● Normal entries:

○ Enough for ~8GiB of kmalloc-8 allocations or ~440 GiB of buffer_head allocations

● Fallback entries:
○ 216 alloc+free cycles per fallback entry reservation
○ 216 * 230 = 246 alloc calls before exhaustion

■ Pessimistic example, if allocating once every 100 cycles on one 2GHz CPU: 246 / 20Mhz
≈ 40 days

○ Memory leakage: 16B * 2-16 = 2-12B per alloc call
■ Pessimistic example, if allocating once every 100 cycles on one 2GHz CPU for a day:

20Mhz * 1day * 2-12B ≈ 402 MiB
● [can be optimized, see bonus slides section]

Delayed freeing
● Delay freeing until no more references can exist
● Kinda like NO_HZ_FULL RCU
● Refcounts count references from non-running tasks
● Unreferenced free objects land on percpu queue (state QUEUED)
● When nothing on stack (exit to userspace or switch to idle):

○ process percpu queue (unreferenced elements move onto global queue)
○ kick off sync with running CPUs if global queue is getting too big
○ if sync with all running CPUs is done, process global queue

Optimization: Local freeing
● On alloc: Store CPU number in metadata
● On access: Wipe CPU number on mismatch with current
● On free: Skip global queue on match

On-access pseudocode:

u8 me = get_current_cpu_num();
u8 stored = READ_ONCE(meta->cpu_num);
if (stored != GLOBAL && stored != me)
 WRITE_ONCE(meta->cpu_num, GLOBAL);

can be optimized,
see bonus slides at
the end

Delayed freeing

ALLOCATED

FLOATING
refcount > 0

QUEUED
on pcpu queue
refcount == 0

QUEUED
on global queue

refcount == 0
seq == NEW

QUEUED
on pcpu queue

refcount > 0
QUEUED

on global queue
refcount > 0

QUEUED
on global queue

refcount == 0
seq == OLD

FREE

kfree()
refcount inc/dec
pcpu queue processing
global queue processing
global sync start (implicit
state change)

(All of this is lockless.
Hooray for CMPXCHG and CMPXCHG16!)

Design goal: Speculatable checks
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr, int count) {
 int res = 0;

 for (int i=0; i<count; i++) {
 other_function(ptr);
 res += ptr->c[i];
 }
 return res;
}

foo(bogus_pointer, 0)

check here?

check here?

Design goal: Speculatable checks
struct bar { int a; int b; int c[100]; }
int foo(struct bar *ptr, int count) {
 int res = 0;
 struct bar *ptr_decoded = START_ACCESS(ptr);

 for (int i=0; i<count; i++) {
 other_function(ptr);
 res += ptr_decoded->c[i];
 }
 return res;
}

returns non-canonical pointer

#GP on access

● approach copied from ARMv8.3 Pointer Authentication
● breaks only if pointer can become valid after load - we have no pointer reuse

(pins-related code omitted for simplicity)

Current coverage limitations
● Currently not watching in idle task (including its interrupts)
● Disabled for task_struct
● Disabled for all constructor/RCU slabs

○ Should add a slower implementation of these (also for ASAN / Memory Tagging / ...)

● Nothing except SLUB. None of:
○ on-stack allocations
○ struct page (and associated pages in linear mapping)
○ vmalloc
○ ...

Other limitations
● no infrastructure for references from hardware

○ e.g. references from IOMMU

● use-after-destruction of covered object can still be exploitable as UAF of
indirectly reachable non-covered object

Handwavy future plans: Elision
● Allow programmer to prove locking correctness => elide protection
● Make specific locks statically provable (balancing, member protection)
● Rarely-written pointers:

○ require lock annotation
○ mark via attribute
○ split into decoded and raw pointer
○ refcounted raw pointer usable directly, without decoding

Performance numbers

Memory overhead example
● 8GB RAM machine
● Memory mostly filled with filesystem cache
● Overhead relative to SLUB objects: ~4.4%
● Overhead relative to MemTotal: ~0.23%

○ (this number is kinda cheating)

orig meta memory: 17264 kB (not counting page tables)
fallback meta memory: 4 kB

total objects: 1285543 (0.120% of 2^30)
total SLAB memory use: 398323784 B (~380 MiB)
top slabs by object count:
 anon_vma_chain 24000 objects = 1.46 MiB
 inode_cache 30828 objects = 16.70 MiB
 vm_area_struct 33900 objects = 6.47 MiB
 proc_inode_cache 57425 objects = 35.05 MiB
 kernfs_node_cache 67840 objects = 8.28 MiB
 radix_tree_node 67900 objects = 37.82 MiB
 ext4_extent_status 143310 objects = 5.47 MiB
 ext4_inode_cache 148924 objects = 148.84 MiB
 buffer_head 260247 objects = 25.81 MiB
 dentry 266952 objects = 48.88 MiB

CPU overhead (with a truly awful benchmark)
● benchmark: building the kernel

○ tinyconfig; make -j4 -s ; with hot VFS caches
○ (This is a terrible benchmark! Almost all time is spent in userspace, which is unaffected by the

instrumentation.)

● baseline:
○ 58.50s; 58.40s; 58.09s

● instrumented, but not enabled for any slabs:
○ 61.63s; 61.62s; 61.93s
○ ~6% overhead relative to baseline

● with mitigation:
○ 62.92s; 63.03s; 63.05s
○ ~8% overhead relative to baseline

CPU overhead (low-IPC, parallel, not many
allocations)
● benchmark: git status (with hot VFS caches)
● baseline:

○ 172ms, 173ms, 176ms

● compiler instrumentation only, no infrastructure, helpers stubbed out:
○ 186ms, 183ms, 187ms
○ ~8% overhead relative to baseline

● instrumented+infrastructure, but not enabled for any slabs:
○ 242ms, 237ms, 220ms
○ ~37% overhead relative to baseline

● with mitigation:
○ 276ms, 284ms, 277ms
○ ~60% overhead relative to baseline

CPU overhead (producer-consumer pattern)
● benchmark: unix domain socket, 1M single-byte messages, one task sends,

one task receives, pinned to fixed (different) CPUs
○ exercise global freeing path
○ terrible cache locality

● baseline:
○ 509ms, 495ms, 501ms

● with mitigation:
○ 1293ms, 1297ms, 1314ms
○ ~159% overhead

Conclusions
● Memory overhead is not a huge problem
● CPU overhead for kernel-heavy tasks is pretty bad (roughly 60% - 160% in

my tests)
● Lowering CPU overhead to something reasonable likely requires more lifetime

annotations

Code
● Kernel: https://github.com/thejh/linux branch khp
● Compiler: https://github.com/thejh/llvm-project branch khp
● Slides: https://sched.co/ckpO

https://github.com/thejh/linux
https://github.com/thejh/llvm-project
https://sched.co/ckpO

Bonus slides
(in case we have too much time left at the end)

(which we definitely won't)
(aaah I have to move so many slides into the bonus section)

Handwavy future plans: OOB access
● no classic "OOB access detection":

○ only detects inter-object overflow
○ not a good fit for object-level checks

● instead, focus on type checks:
○ intrinsically object-level
○ detects type confusion, too
○ for arrays, treat length as part of type information
○ most accesses are probably to single objects
○ hopefully easier to elide

■ variable/member annotation for "this is a live type-checkable pointer"?
■ may require generics-style annotations for lists

● 16 bits are still free in live object metadata
○ should be enough for most types - rest has to use out-of-line storage

● Assign 8-bit IDs with hamming weight 4 to CPUs (80 IDs possible)
● Store inverted IDs in object metadata
● For two valid IDs, ID_A & ~ID_B is zero iff the IDs are the same
● ID_A & 0 is always zero

Micro-Optimization: Equal-Hamming-Weight IDs

Pseudocode:

u8 me = get_current_cpu_num();
u8 stored = READ_ONCE(meta->inverted_cpu_num);
if (stored & me)
 WRITE_ONCE(meta->cpu_num, 0);

CPU ID (in binary)

0 00001111

1 00010111

2 00011011

... ...

tag
8

Fallback physical memory reuse [impl incomplete]
● Rough idea: In pointer encoding, steal ID bits to enlarge cookie
● Adjustable ID:cookie split per meta page
● 8-bit tag (top bits of fat pointer) to select which aliased object IDs are valid

raw pointercookie

raw pointercookie

raw pointercookie

⋮

raw pointercookie

raw pointercookie

raw pointercookie

aliased

cookie
16

ID
31fat

pointer

off
16

M
1

tag
✘
tag
✘
tag
✔

tag
✔
tag
✔
tag
✘

meta table

refs

refs

refs

refs

refs

refs

Objects >=0x10000 bytes [not yet implemented
when the slides were due]
● Important for kmalloc_large coverage (not slab-based)
● Legitimate pointer arithmetic can overflow the offset
● Basic idea: Steal cookie bits for the offset
● Solution:

○ Accept ceil((size+1)/216) different cookies in cookie check slowpath
○ Bump cookie accordingly on freeing
○ Theoretically permits <4GiB objects, smaller limit in practice for fat-pointer-ASLR

● Cost:
○ Fat pointers become slightly more guessable
○ Faster cookie depletion

cookieobject ID offsetmarker

overflow

Optimization: Fast single-read access [unimplemented?]

For single 8-byte loads with no merging:

● Perform data read before cookie check
● Omit pinning logic
● Omit CPU number tracking

Incompatible: constructor/RCU slabs
● constructor slab

○ object initialization on slab page alloc
○ self-referential pointers may exist => address can't change
○ will also be an issue for memory tagging / HWASAN
○ potential solution: re-invoke ->ctor() for each allocation?

● RCU slab: use-after-free access permitted after reallocation
○ relies on constructor slabs
○ also an issue for KASAN
○ potential solution: enforce RCU-delayed object freeing?

■ turn kmem_cache_free(x) into call_rcu(x + cache->rcu_head_offset,
__kmem_cache_free_rcu) ?

■ might further worsen cache locality a bit

Intentional OOB pointer calculation breaks stuff
static inline u32 __pure
crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
{
[...]
 const u32 *b;
[...]
 b = (const u32 *)buf;
[...]
 --b;
 for (i = 0; i < len; i++) {
[...]
 q = crc ^ *++b; /* use pre increment for speed */
[...]
 }
[...]
}

already UB according to C89, "3.3.6 Additive Operators"!

http://port70.net/~nsz/c/c89/c89-draft.html#3.3.6

Resurrectable wrapper around rcu_head
static void rcu_cb(struct rcu_head *h) {
 struct rcu_ref *ref = container_of(h, struct rcu_ref, rcu_head);
 if (atomic_read(&ref->refs) & RESURRECTED) {
 if (atomic_sub_and_test(&ref->refs, RESURRECTED))
 call_rcu(&ref->rcu_head, rcu_cb);
 } else {
 h->cb(h);
 }
}
void ref_dec(struct rcu_ref *ref) {
 if (atomic_dec_and_test(&ref->refs))
 call_rcu(&ref->rcu_head, rcu_cb);
}
void ref_inc(struct rcu_ref *ref) {
retry:
 if (atomic_read(&ref->refs) == 0) {
 if (atomic_cmpxchg(&ref->refs, 0, RESURRECTED + 1) != 0) goto retry;
 } else {
 if (!atomic_inc_not_zero(&ref->refs)) goto retry;
 }
}

#define RESURRECTED 1UL<<31
struct rcu_ref {
 struct rcu_head rcu_head;
 atomic_t refs;
 void (*cb)(struct rcu_ref *);
};
void ref_init(struct rcu_ref *ref,
 void (*cb)(struct rcu_ref *)) {
 atomic_set(&ref->refs, 1);
 ref->cb = cb;
}

