

TCG

Trusted Platform Module Library

Part 2: Structures

Family “2.0”

Level 00 Revision 00.96

March 15, 2013

Contact: admin@trustedcomputinggroup.org

Published

Copyright © TCG 2006-2013

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page ii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Licenses and Notices

1. Copyright Licenses:

 Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to
reproduce, create derivative works, distribute, display and perform the Source Code and
derivative works thereof, and to grant others the rights granted herein.

 The TCG grants to the user of the other parts of the specification (other than the Source Code)
the rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

2. Source Code Distribution Conditions:

 Redistributions of Source Code must retain the above copyright licenses, this list of conditions
and the following disclaimers.

 Redistributions in binary form must reproduce the above copyright licenses, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the
distribution.

3. Disclaimers:

 THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)
THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.
Contact TCG Administration (admin@trustedcomputinggroup.org) for information on specification
licensing rights available through TCG membership agreements.

 THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF
ANY PROPOSAL, SPECIFICATION OR SAMPLE.

 Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in
any way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page iii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

CONTENTS

1 Scope .. 1

2 Terms and definitions .. 1

3 Symbols and abbreviated terms .. 1

4 Notation ... 1

4.1 Introduction .. 1
4.2 Named Constants .. 2
4.3 Data Type Aliases (typedefs) .. 3
4.4 Enumerations... 3
4.5 Interface Type .. 4
4.6 Arrays .. 5
4.7 Structure Definitions .. 6
4.8 Conditional Types .. 7
4.9 Unions .. 8

4.9.1 Introduction.. 8
4.9.2 Union Definition ... 8
4.9.3 Union Instance .. 9
4.9.4 Union Selector Definition ... 10

4.10 Bit Field Definitions .. 11
4.11 Parameter Limits ... 11
4.12 Enumeration Macro ... 13
4.13 Size Checking .. 13
4.14 Data Direction .. 14
4.15 Structure Validations ... 14
4.16 Name Prefix Convention .. 14
4.17 Data Alignment .. 15
4.18 Parameter Unmarshaling Errors .. 15

5 Base Types ... 17

5.1 Primitive Types .. 17
5.2 Miscellaneous Types ... 17

6 Constants .. 18

6.1 TPM_SPEC (Specification Version Values) .. 18
6.2 TPM_GENERATED ... 18
6.3 TPM_ALG_ID .. 19
6.4 TPM_ECC_CURVE ... 22
6.5 TPM_CC (Command Codes) .. 22

6.5.1 Format ... 22
6.5.2 Description .. 23
6.5.3 TPM_CC Listing .. 24

6.6 TPM_RC (Response Codes) ... 28

6.6.1 Description .. 28
6.6.2 Response Code Formats .. 28
6.6.3 TPM_RC Values ... 31

6.7 TPM_CLOCK_ADJUST ... 36
6.8 TPM_EO (EA Arithmetic Operands) .. 36
6.9 TPM_ST (Structure Tags) ... 37
6.10 TPM_SU (Startup Type) .. 39
6.11 TPM_SE (Session Type) ... 39
6.12 TPM_CAP (Capabilities) .. 40
6.13 TPM_PT (Property Tag) .. 40
6.14 TPM_PT_PCR (PCR Property Tag) .. 46
6.15 TPM_PS (Platform Specific) .. 48

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page iv Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

7 Handles ... 49

7.1 Introduction .. 49
7.2 TPM_HT (Handle Types) ... 49
7.3 Persistent Handle Sub-ranges ... 50
7.4 TPM_RH (Permanent Handles)... 51
7.5 TPM_HC (Handle Value Constants) ... 52

8 Attribute Structures .. 54

8.1 Description ... 54
8.2 TPMA_ALGORITHM ... 54
8.3 TPMA_OBJECT (Object Attributes) .. 54

8.3.1 Introduction.. 54
8.3.2 Structure Definition .. 55
8.3.3 Attribute Descriptions .. 56

8.3.3.1 Introduction .. 56
8.3.3.2 Bit[1] – fixedTPM ... 56
8.3.3.3 Bit[2] – stClear ... 57
8.3.3.4 Bit[4] – fixedParent .. 57
8.3.3.5 Bit[5] – sensitiveDataOrigin ... 57
8.3.3.6 Bit[6] – userWithAuth ... 58
8.3.3.7 Bit[7] – adminWithPolicy.. 58
8.3.3.8 Bit[10] – noDA ... 58
8.3.3.9 Bit[11] – encryptedDuplication .. 59
8.3.3.10 Bit[16] – restricted ... 59
8.3.3.11 Bit[17] – decrypt .. 60
8.3.3.12 Bit[18] – sign .. 60

8.4 TPMA_SESSION (Session Attributes) .. 61
8.5 TPMA_LOCALITY (Locality Attribute) ... 62
8.6 TPMA_PERMANENT .. 63
8.7 TPMA_STARTUP_CLEAR .. 64
8.8 TPMA_MEMORY .. 65
8.9 TPMA_CC (Command Code Attributes) ... 66

8.9.1 Introduction.. 66
8.9.2 Structure Definition .. 66
8.9.3 Field Descriptions .. 66

8.9.3.1 Bits[15:0] – commandIndex ... 66
8.9.3.2 Bit[22] – nv .. 66
8.9.3.3 Bit[23] – extensive ... 66
8.9.3.4 Bit[24] – flushed ... 67
8.9.3.5 Bits[27:25] – cHandles .. 67
8.9.3.6 Bit[28] – rHandle .. 67
8.9.3.7 Bit[29] – V .. 68
8.9.3.8 Bits[31:30] – Res ... 68

9 Interface Types .. 69

9.1 Introduction .. 69
9.2 TPMI_YES_NO ... 69
9.3 TPMI_DH_OBJECT ... 69
9.4 TPMI_DH_PERSISTENT .. 70
9.5 TPMI_DH_ENTITY .. 70
9.6 TPMI_DH_PCR ... 71
9.7 TPMI_SH_AUTH_SESSION ... 71
9.8 TPMI_SH_HMAC .. 71
9.9 TPMI_SH_POLICY .. 71
9.10 TPMI_DH_CONTEXT .. 72
9.11 TPMI_RH_HIERARCHY .. 72
9.12 TPMI_RH_HIERARCHY_AUTH .. 72

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page v

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.13 TPMI_RH_PLATFORM ... 73
9.14 TPMI_RH_OWNER ... 73
9.15 TPMI_RH_ENDORSEMENT ... 74
9.16 TPMI_RH_PROVISION ... 74
9.17 TPMI_RH_CLEAR ... 74
9.18 TPMI_RH_NV_AUTH .. 75
9.19 TPMI_RH_LOCKOUT ... 75
9.20 TPMI_RH_NV_INDEX ... 75
9.21 TPMI_ALG_HASH ... 76
9.22 TPMI_ALG_ASYM (Asymmetric Algorithms) .. 76
9.23 TPMI_ALG_SYM (Symmetric Algorithms) .. 77
9.24 TPMI_ALG_SYM_OBJECT ... 77
9.25 TPMI_ALG_SYM_MODE .. 78
9.26 TPMI_ALG_KDF (Key and Mask Generation Functions) .. 78
9.27 TPMI_ALG_SIG_SCHEME ... 79
9.28 TPMI_ECC_KEY_EXCHANGE ... 79
9.29 TPMI_ST_COMMAND_TAG ... 79

10 Structure Definitions .. 80

10.1 TPMS_ALGORITHM_DESCRIPTION .. 80
10.2 Hash/Digest Structures .. 80

10.2.1 TPMU_HA (Hash) ... 80
10.2.2 TPMT_HA.. 81

10.3 Sized Buffers ... 81

10.3.1 Introduction.. 81
10.3.2 TPM2B_DIGEST ... 82
10.3.3 TPM2B_DATA ... 82
10.3.4 TPM2B_NONCE ... 82
10.3.5 TPM2B_AUTH .. 82
10.3.6 TPM2B_OPERAND .. 83
10.3.7 TPM2B_EVENT .. 83
10.3.8 TPM2B_MAX_BUFFER .. 83
10.3.9 TPM2B_MAX_NV_BUFFER ... 83
10.3.10 TPM2B_TIMEOUT .. 84
10.3.11 TPM2B_IV ... 84

10.4 Names ... 84

10.4.1 Introduction.. 84
10.4.2 TPMU_NAME .. 84
10.4.3 TPM2B_NAME .. 85

10.5 PCR Structures .. 85

10.5.1 TPMS_PCR_SELECT ... 85
10.5.2 TPMS_PCR_SELECTION .. 86

10.6 Tickets ... 86

10.6.1 Introduction.. 86
10.6.2 A NULL Ticket ... 87
10.6.3 TPMT_TK_CREATION ... 88
10.6.4 TPMT_TK_VERIFIED ... 89
10.6.5 TPMT_TK_AUTH .. 90
10.6.6 TPMT_TK_HASHCHECK ... 91

10.7 Property Structures .. 91

10.7.1 TPMS_ALG_PROPERTY ... 91
10.7.2 TPMS_TAGGED_PROPERTY ... 91
10.7.3 TPMS_TAGGED_PCR_SELECT ... 92

10.8 Lists ... 92

10.8.1 TPML_CC.. 92

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page vi Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.8.2 TPML_CCA ... 93
10.8.3 TPML_ALG.. 93
10.8.4 TPML_HANDLE .. 93
10.8.5 TPML_DIGEST ... 94
10.8.6 TPML_DIGEST_VALUES ... 94
10.8.7 TPM2B_DIGEST_VALUES... 94
10.8.8 TPML_PCR_SELECTION ... 95
10.8.9 TPML_ALG_PROPERTY .. 95
10.8.10 TPML_TAGGED_TPM_PROPERTY .. 95
10.8.11 TPML_TAGGED_PCR_PROPERTY .. 96
10.8.12 TPML_ECC_CURVE .. 96

10.9 Capabilities Structures ... 96

10.9.1 TPMU_CAPABILITIES .. 96
10.9.2 TPMS_CAPABILITY_DATA .. 97

10.10 Clock/Counter Structures .. 97

10.10.1 TPMS_CLOCK_INFO ... 97
10.10.2 Clock ... 97
10.10.3 ResetCount ... 97
10.10.4 RestartCount ... 98
10.10.5 Safe ... 98
10.10.6 TPMS_TIME_INFO ... 98

10.11 TPM Attestation Structures .. 99

10.11.1 Introduction.. 99
10.11.2 TPMS_TIME_ATTEST_INFO ... 99
10.11.3 TPMS_CERTIFY_INFO .. 99
10.11.1 TPMS_QUOTE_INFO ... 99
10.11.2 TPMS_COMMAND_AUDIT_INFO .. 100
10.11.3 TPMS_SESSION_AUDIT_INFO ... 100
10.11.4 TPMS_CREATION_INFO ... 100
10.11.5 TPMS_NV_CERTIFY_INFO ... 100
10.11.6 TPMI_ST_ATTEST ... 101
10.11.7 TPMU_ATTEST .. 101
10.11.8 TPMS_ATTEST .. 102
10.11.9 TPM2B_ATTEST .. 102

10.12 Authorization Structures .. 103

10.12.1 TPMS_AUTH_COMMAND ... 103
10.12.2 TPMS_AUTH_RESPONSE .. 103

11 Algorithm Parameters and Structures ... 104

11.1 Symmetric .. 104

11.1.1 Introduction.. 104
11.1.2 TPMI_AES_KEY_BITS ... 104
11.1.3 TPMI_SM4_KEY_BITS ... 104
11.1.4 TPMU_SYM_KEY_BITS ... 105
11.1.5 TPMU_SYM_MODE ... 105
11.1.6 TPMU_SYM_DETAILS ... 106
11.1.7 TPMT_SYM_DEF ... 106
11.1.8 TPMT_SYM_DEF_OBJECT ... 106
11.1.9 TPM2B_SYM_KEY ... 107
11.1.10 TPMS_SYMCIPHER_PARMS .. 107
11.1.11 TPM2B_SENSITIVE_DATA .. 107
11.1.12 TPMS_SENSITIVE_CREATE ... 108
11.1.13 TPM2B_SENSITIVE_CREATE ... 109
11.1.14 TPMS_SCHEME_SIGHASH... 109
11.1.15 TPMI_ALG_HASH_SCHEME ... 109
11.1.16 HMAC_SIG_SCHEME .. 109

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page vii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.1.17 TPMS_SCHEME_XOR ... 110
11.1.18 TPMU_SCHEME_HMAC .. 110
11.1.19 TPMT_KEYEDHASH_SCHEME ... 110

11.2 Asymmetric .. 111

11.2.1 Signing Schemes .. 111

11.2.1.1 Introduction .. 111
11.2.1.2 RSA_SIG_SCHEMES ... 111
11.2.1.3 ECC_SIG_SCHEMES ... 111
11.2.1.4 TPMS_SCHEME_ECDAA... 111
11.2.1.5 TPMU_SIG_SCHEME ... 112
11.2.1.6 TPMT_SIG_SCHEME ... 112

11.2.2 Encryption Schemes ... 113

11.2.2.1 Introduction .. 113
11.2.2.2 TPMS_SCHEME_OAEP ... 113
11.2.2.3 TPMS_SCHEME_ECDH ... 113

11.2.3 Key Derivation Schemes ... 113

11.2.3.1 Introduction .. 113
11.2.3.2 TPMS_SCHEME_MGF1 ... 113
11.2.3.3 TPMS_SCHEME_KDF1_SP800_56a ... 113
11.2.3.4 TPMS_SCHEME_KDF2 .. 114
11.2.3.5 TPMS_SCHEME_KDF1_SP800_108 ... 114
11.2.3.6 TPMU_KDF_SCHEME .. 114
11.2.3.7 TPMT_KDF_SCHEME .. 114
11.2.3.8 TPMI_ALG_ASYM_SCHEME ... 115
11.2.3.9 TPMU_ASYM_SCHEME... 115
11.2.3.10 TPMT_ASYM_SCHEME ... 116

11.2.4 RSA ... 116

11.2.4.1 TPMI_ALG_RSA_SCHEME .. 116
11.2.4.2 TPMT_RSA_SCHEME .. 116
11.2.4.3 TPMI_ALG_RSA_DECRYPT .. 117
11.2.4.4 TPMT_RSA_DECRYPT .. 117
11.2.4.5 TPM2B_PUBLIC_KEY_RSA ... 117
11.2.4.6 TPMI_RSA_KEY_BITS ... 117
11.2.4.7 TPM2B_PRIVATE_KEY_RSA .. 118

11.2.5 ECC ... 119

11.2.5.1 TPM2B_ECC_PARAMETER .. 119
11.2.5.2 TPMS_ECC_POINT .. 119
11.2.5.3 TPM2B_ECC_POINT .. 119
11.2.5.4 TPMI_ALG_ECC_SCHEME ... 120
11.2.5.5 TPMI_ECC_CURVE .. 120
11.2.5.6 TPMT_ECC_SCHEME .. 120
11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC ... 121

11.3 Signatures .. 121

11.3.1 TPMS_SIGNATURE_RSASSA .. 121
11.3.2 TPMS_SIGNATURE_RSAPSS .. 121
11.3.3 TPMS_SIGNATURE_ECDSA ... 122
11.3.4 TPMU_SIGNATURE ... 122
11.3.5 TPMT_SIGNATURE ... 123

11.4 Key/Secret Exchange .. 123

11.4.1 Introduction.. 123
11.4.2 TPMU_ENCRYPTED_SECRET ... 123
11.4.3 TPM2B_ENCRYPTED_SECRET ... 124

12 Key/Object Complex .. 125

12.1 Introduction .. 125

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page viii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.2 Public Area Structures ... 125

12.2.1 Description .. 125
12.2.2 TPMI_ALG_PUBLIC ... 125
12.2.3 Type-Specific Parameters ... 125

12.2.3.1 Description .. 125
12.2.3.2 TPMU_PUBLIC_ID .. 126
12.2.3.3 TPMS_KEYEDHASH_PARMS ... 126
12.2.3.4 TPMS_ASYM_PARMS ... 126
12.2.3.5 TPMS_RSA_PARMS .. 127
12.2.3.6 TPMS_ECC_PARMS .. 128
12.2.3.7 TPMU_PUBLIC_PARMS .. 128
12.2.3.8 TPMT_PUBLIC_PARMS ... 129

12.2.4 TPMT_PUBLIC ... 129
12.2.5 TPM2B_PUBLIC ... 130

12.3 Private Area Structures ... 130

12.3.1 Introduction.. 130
12.3.2 Sensitive Data Structures .. 130

12.3.2.1 Introduction .. 130
12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC ... 130
12.3.2.3 TPMU_SENSITIVE_COMPOSITE .. 131
12.3.2.4 TPMT_SENSITIVE .. 131

12.3.3 TPM2B_SENSITIVE ... 131
12.3.4 Encryption ... 132
12.3.5 Integrity .. 132
12.3.6 _PRIVATE ... 132
12.3.7 TPM2B_PRIVATE ... 132

12.4 Identity Object .. 133

12.4.1 Description .. 133
12.4.2 _ID_OBJECT .. 133
12.4.3 TPM2B_ID_OBJECT .. 133

13 NV Storage Structures .. 134

13.1 TPM_NV_INDEX ... 134
13.2 TPMA_NV (NV Index Attributes) ... 135
13.3 TPMS_NV_PUBLIC ... 138
13.4 TPM2B_NV_PUBLIC ... 138

14 Context Data ... 139

14.1 Introduction .. 139
14.2 TPM2B_CONTEXT_SENSITIVE... 139
14.3 TPMS_CONTEXT_DATA .. 139
14.4 TPM2B_CONTEXT_DATA .. 139
14.5 TPMS_CONTEXT ... 140
14.6 Parameters of TPMS_CONTEXT .. 141

14.6.1 sequence ... 141
14.6.2 handle .. 141
14.6.3 hierarchy.. 142

14.7 Context Protection ... 142

14.7.1 Context Integrity .. 142
14.7.2 Context Confidentiality .. 142

15 Creation Data .. 143

15.1 TPMS_CREATION_DATA .. 143
15.2 TPM2B_CREATION_DATA .. 143

 (informative) Algorithm Constants ... 144 Annex A

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page ix

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

A.1 Introduction .. 144
A.2 Allowed Hash Algorithms ... 144

A.2.1 SHA1 ... 144
A.2.2 SHA256 ... 144
A.2.3 SHA384 ... 144
A.2.4 SHA512 ... 145
A.2.5 SM3_256 ... 145

A.3 Architectural Limits .. 145

 (informative) Implementation Definitions ... 146 Annex B

B.1 Introduction .. 146
B.2 Logic Values .. 146
B.3 Processor Values .. 146
B.4 Implemented Algorithms .. 147
B.5 Implemented Commands .. 147
B.6 Algorithm Constants .. 151

B.6.1 RSA ... 151
B.6.2 ECC ... 151
B.6.3 AES ... 151
B.6.4 SM4 ... 151
B.6.5 Symmetric ... 152

B.7 Implementation Specific Values .. 153

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page x Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Tables

Table 1 — Name Prefix Convention ... 15

Table 2 — Unmarshaling Errors ... 16

Table 3 — Definition of Base Types ... 17

Table 4 — Definition of Types for Documentation Clarity ... 17

Table 5 — Definition of (UINT32) TPM_SPEC Constants <> ... 18

Table 6 — Definition of (UINT32) TPM_GENERATED Constants <O> ... 18

Table 7 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S> ... 19

Table 8 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S> 22

Table 9 — TPM Command Format Fields Description ... 22

Table 10 — Legend for Command Code Tables .. 23

Table 11 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S> 24

Table 12 — Format-Zero Response Codes .. 29

Table 13 — Format-One Response Codes .. 30

Table 14 — Response Code Groupings ... 30

Table 15 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT> .. 31

Table 16 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN> ... 36

Table 17 — Definition of (UINT16) TPM_EO Constants <IN/OUT> ... 36

Table 18 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S> ... 37

Table 19 — Definition of (UINT16) TPM_SU Constants <IN> .. 39

Table 20 — Definition of (UINT8) TPM_SE Constants <IN> .. 39

Table 21 — Definition of (UINT32) TPM_CAP Constants .. 40

Table 22 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S> ... 40

Table 23 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S> ... 46

Table 24 — Definition of (UINT32) TPM_PS Constants <OUT> .. 48

Table 25 — Definition of Types for Handles ... 49

Table 26 — Definition of (UINT8) TPM_HT Constants <S> ... 49

Table 27 — Definition of (UINT32) TPM_RH Constants <IN, S> ... 51

Table 28 — Definition of (TPM_HANDLE) TPM_HC Constants <IN, S> ... 53

Table 29 — Definition of (UINT32) TPMA_ALGORITHM Bits .. 54

Table 30 — Definition of (UINT32) TPMA_OBJECT Bits ... 55

Table 31 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT> .. 61

Table 32 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT> .. 63

Table 33 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT> .. 63

Table 34 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT> .. 64

Table 35 — Definition of (UINT32) TPMA_MEMORY Bits <Out> .. 65

Table 36 — Definition of (TPM_CC) TPMA_CC Bits <OUT> ... 66

Table 37 — Definition of (BYTE) TPMI_YES_NO Type ... 69

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page xi

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 38 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type.. 69

Table 39 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type ... 70

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN> .. 70

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN> ... 71

Table 42 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT> 71

Table 43 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT> .. 71

Table 44 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT> 71

Table 45 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type .. 72

Table 46 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type .. 72

Table 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN> 72

Table 48 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN> ... 73

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN> ... 73

Table 50 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN> 74

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN> ... 74

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN> ... 74

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN> .. 75

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN> ... 75

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT> 75

Table 56 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type.. 76

Table 57 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type ... 76

Table 58 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type .. 77

Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type ... 77

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type ... 78

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type .. 78

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type .. 79

Table 63 — Definition of (TPM_ALG_ID) TPMI_ECC_KEY_EXCHANGE Type .. 79

Table 64 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type .. 79

Table 65 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT> 80

Table 66 — Definition of TPMU_HA Union <IN/OUT, S> ... 80

Table 67 — Definition of TPMT_HA Structure <IN/OUT> .. 81

Table 68 — Definition of TPM2B_DIGEST Structure ... 82

Table 69 — Definition of TPM2B_DATA Structure ... 82

Table 70 — Definition of Types for TPM2B_NONCE ... 82

Table 71 — Definition of Types for TPM2B_AUTH .. 82

Table 72 — Definition of Types for TPM2B_OPERAND .. 83

Table 73 — Definition of TPM2B_EVENT Structure ... 83

Table 74 — Definition of TPM2B_MAX_BUFFER Structure .. 83

Table 75 — Definition of TPM2B_MAX_NV_BUFFER Structure ... 83

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page xii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 76 — Definition of TPM2B_TIMEOUT Structure <IN/OUT> ... 84

Table 77 — Definition of TPM2B_IV Structure <IN/OUT> .. 84

Table 78 — Definition of TPMU_NAME Union <> .. 84

Table 79 — Definition of TPM2B_NAME Structure .. 85

Table 80 — Definition of TPMS_PCR_SELECT Structure ... 86

Table 81 — Definition of TPMS_PCR_SELECTION Structure ... 86

Table 82 — Values for proof Used in Tickets ... 87

Table 83 — General Format of a Ticket .. 87

Table 84 — Definition of TPMT_TK_CREATION Structure .. 88

Table 85 — Definition of TPMT_TK_VERIFIED Structure .. 89

Table 86 — Definition of TPMT_TK_AUTH Structure .. 90

Table 87 — Definition of TPMT_TK_HASHCHECK Structure .. 91

Table 88 — Definition of TPMS_ALG_PROPERTY Structure <OUT> ... 91

Table 89 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT> ... 91

Table 90 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT> ... 92

Table 91 — Definition of TPML_CC Structure .. 92

Table 92 — Definition of TPML_CCA Structure <OUT> ... 93

Table 93 — Definition of TPML_ALG Structure .. 93

Table 94 — Definition of TPML_HANDLE Structure <OUT> .. 93

Table 95 — Definition of TPML_DIGEST Structure .. 94

Table 96 — Definition of TPML_DIGEST_VALUES Structure ... 94

Table 97 — Definition of TPM2B_DIGEST_VALUES Structure ... 94

Table 98 — Definition of TPML_PCR_SELECTION Structure ... 95

Table 99 — Definition of TPML_ALG_PROPERTY Structure <OUT> ... 95

Table 100 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT> 95

Table 101 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT> 96

Table 102 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT> ... 96

Table 103 — Definition of TPMU_CAPABILITIES Union <OUT>... 96

Table 104 — Definition of TPMS_CAPABILITY_DATA Structure <OUT> ... 97

Table 105 — Definition of TPMS_CLOCK_INFO Structure .. 97

Table 106 — Definition of TPMS_TIME_INFO Structure ... 98

Table 107 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT> ... 99

Table 108 — Definition of TPMS_CERTIFY_INFO Structure <OUT> .. 99

Table 109 — Definition of TPMS_QUOTE_INFO Structure <OUT> .. 99

Table 110 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT> 100

Table 111 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT> .. 100

Table 112 — Definition of TPMS_CREATION_INFO Structure <OUT> .. 100

Table 113 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT> ... 100

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page xiii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 114 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT> .. 101

Table 115 — Definition of TPMU_ATTEST Union <OUT> ... 101

Table 116 — Definition of TPMS_ATTEST Structure <OUT> .. 102

Table 117 — Definition of TPM2B_ATTEST Structure <OUT> .. 102

Table 118 — Definition of TPMS_AUTH_COMMAND Structure <IN> ... 103

Table 119 — Definition of TPMS_AUTH_RESPONSE Structure <OUT> .. 103

Table 120 — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type 104

Table 121 — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type 104

Table 122 — Definition of TPMU_SYM_KEY_BITS Union ... 105

Table 123 — Definition of TPMU_SYM_MODE Union ... 105

Table 124 — xDefinition of TPMU_SYM_DETAILS Union ... 106

Table 125 — Definition of TPMT_SYM_DEF Structure .. 106

Table 126 — Definition of TPMT_SYM_DEF_OBJECT Structure .. 106

Table 127 — Definition of TPM2B_SYM_KEY Structure .. 107

Table 128 — Definition of TPMS_SYMCIPHER_PARMS Structure .. 107

Table 129 — Definition of TPM2B_SENSITIVE_DATA Structure .. 107

Table 130 — Definition of TPMS_SENSITIVE_CREATE Structure <IN> .. 108

Table 131 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S> .. 109

Table 132 — Definition of TPMS_SCHEME_SIGHASH Structure ... 109

Table 133 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type 109

Table 134 — Definition of Types for HMAC_SIG_SCHEME .. 109

Table 135 — Definition of TPMS_SCHEME_XOR Structure ... 110

Table 136 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S> 110

Table 137 — Definition of TPMT_KEYEDHASH_SCHEME Structure ... 110

Table 138 — Definition of {RSA} Types for RSA_SIG_SCHEMES .. 111

Table 139 — Definition of {ECC} Types for ECC_SIG_SCHEMES.. 111

Table 140 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure .. 111

Table 141 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S> .. 112

Table 142 — Definition of TPMT_SIG_SCHEME Structure ... 112

Table 143 — Definition of {RSA} TPMS_SCHEME_OAEP Structure .. 113

Table 144 — Definition of {ECC} TPMS_SCHEME_ECDH Structure .. 113

Table 145 — Definition of TPMS_SCHEME_MGF1 Structure ... 113

Table 146 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800_56a Structure 113

Table 147 — Definition of TPMS_SCHEME_KDF2 Structure .. 114

Table 148 — Definition of TPMS_SCHEME_KDF1_SP800_108 Structure ... 114

Table 149 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S> ... 114

Table 150 — Definition of TPMT_KDF_SCHEME Structure .. 114

Table 151 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <> 115

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page xiv Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 152 — Definition of TPMU_ASYM_SCHEME Union .. 115

Table 153 — Definition of TPMT_ASYM_SCHEME Structure <> .. 116

Table 154 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type 116

Table 155 — Definition of {RSA} TPMT_RSA_SCHEME Structure ... 116

Table 156 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type 117

Table 157 — Definition of {RSA} TPMT_RSA_DECRYPT Structure ... 117

Table 158 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure .. 117

Table 159 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type 118

Table 160 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure .. 118

Table 161 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure ... 119

Table 162 — Definition of {ECC} TPMS_ECC_POINT Structure ... 119

Table 163 — Definition of {ECC} TPM2B_ECC_POINT Structure ... 119

Table 164 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type 120

Table 165 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type 120

Table 166 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure 120

Table 167 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT> 121

Table 168 — Definition of {RSA} TPMS_SIGNATURE_RSASSA Structure .. 121

Table 169 — Definition of {RSA} TPMS_SIGNATURE_RSAPSS Structure .. 122

Table 170 — Definition of {ECC} TPMS_SIGNATURE_ECDSA Structure .. 122

Table 171 — Definition of TPMU_SIGNATURE Union <IN/OUT, S> ... 122

Table 172 — Definition of TPMT_SIGNATURE Structure .. 123

Table 173 — Definition of TPMU_ENCRYPTED_SECRET Union <S> ... 123

Table 174 — Definition of TPM2B_ENCRYPTED_SECRET Structure .. 124

Table 175 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type .. 125

Table 176 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S> ... 126

Table 177 — Definition of TPMS_KEYEDHASH_PARMS Structure.. 126

Table 178 — Definition of TPMS_ASYM_PARMS Structure <> .. 127

Table 179 — Definition of {RSA} TPMS_RSA_PARMS Structure .. 127

Table 180 — Definition of {ECC} TPMS_ECC_PARMS Structure ... 128

Table 181 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S> .. 128

Table 182 — Definition of TPMT_PUBLIC_PARMS Structure ... 129

Table 183 — Definition of TPMT_PUBLIC Structure .. 129

Table 184 — Definition of TPM2B_PUBLIC Structure .. 130

Table 185 — Definition of {RSA} TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<> 130

Table 186 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S> 131

Table 187 — Definition of TPMT_SENSITIVE Structure .. 131

Table 188 — Definition of TPM2B_SENSITIVE Structure <IN/OUT> .. 131

Table 189 — Definition of _PRIVATE Structure <> .. 132

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page xv

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 190 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S> ... 132

Table 191 — Definition of _ID_OBJECT Structure <> .. 133

Table 192 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT> ... 133

Table 193 — Definition of (UINT32) TPM_NV_INDEX Bits <> ... 134

Table 194 — Options for space Field of TPM_NV_INDEX ... 134

Table 195 — Definition of (UINT32) TPMA_NV Bits .. 136

Table 196 — Definition of TPMS_NV_PUBLIC Structure ... 138

Table 197 — Definition of TPM2B_NV_PUBLIC Structure ... 138

Table 198 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT> 139

Table 199 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S> .. 139

Table 200 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT> .. 139

Table 201 — Definition of TPMS_CONTEXT Structure ... 140

Table 202 — Context Handle Values .. 141

Table 203 — Definition of TPMS_CREATION_DATA Structure <OUT> ... 143

Table 204 — Definition of TPM2B_CREATION_DATA Structure <OUT> ... 143

Table 205 — Defines for SHA1 Hash Values ... 144

Table 206 — Defines for SHA256 Hash Values ... 144

Table 207 — Defines for SHA384 Hash Values ... 144

Table 208 — Defines for SHA512 Hash Values ... 145

Table 210 — Defines for SM3_256 Hash Values ... 145

Table 211 — Defines for Architectural Limits Values ... 145

Table 213 — Defines for Logic Values ... 146

Table 214 — Defines for Processor Values .. 146

Table 215 — Defines for Implemented Algorithms ... 147

Table 216 — Defines for Implemented Commands .. 148

Table 217 — Defines for RSA Algorithm Constants ... 151

Table 218 — Defines for ECC Algorithm Constants ... 151

Table 219 — Defines for AES Algorithm Constants ... 151

Table 220 — Defines for SM4 Algorithm Constants ... 151

Table 221 — Defines for Symmetric Algorithm Constants ... 152

Table 222 — Defines for Implementation Values ... 153

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page xvi Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Figures

Figure 1 — Command Format .. 22

Figure 2 — Format-Zero Response Codes ... 28

Figure 3 — Format-One Response Codes ... 29

Figure 4 — TPM 1.2 TPM_NV_INDEX ... 134

Figure 5 — TPM 2.0 TPM_NV_INDEX ... 134

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 1

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Trusted Platform Module Library
Part 2: Structures

1 Scope

This part of the Trusted Platform Module Library specification contains the definitions of the constants,

flags, structure, and union definitions used to communicate with the TPM. Values defined in this

document are used by the TPM commands defined in part 3: Commands and by the functions in part 4:

Supporting Routines.

NOTE The structures in this document are the canonical form of the structures on the interface. All structures
are "packed" with no octets of padding between structure elements. The TPM-internal form of the
structures is dependent on the processor and compiler for the TPM implementation.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in part 1 of this specification apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in part 1 apply.

4 Notation

4.1 Introduction

The information in this document is formatted so that it may be converted to standard computer-language

formats by an automated process. The purpose of this automated process is to minimize the transcription

errors that often occur during the conversion process.

For the purposes of this document, the conventions given in Part 1 apply.

In addition, the conventions and notations in this clause describe the representation of various data so

that it is both human readable and amenable to automated processing.

When a table row contains the keyword “reserved” (all lower case) in columns 1 or 2, the tools will not

produce any values for the row in the table.

NOTE 1 In the examples in this clause 4, the unmarshaling routines are shown as returning bool. In the code of

the reference implementation, the return value is a TPM_RC. A bool is used in the examples, because

the meaning of a TPM_RC is not yet defined.

NOTE 2 The unmarshaling code examples are the actual code that would be produced by the automatic code
generator used in the construction of the reference code. The actual code contains additional parameter
checking that is omitted for clarity of the principle being illustrated. Actual examples of the code are found
in Part 4.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 2 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4.2 Named Constants

A named constant is a numeric value to which a name has been assigned. In the C language, this is done

with a #define statement. In this specification, a named constant is defined in a table that has a title that

starts with “Definition” and ends with “Constants.”

The table title will indicate the name of the class of constants that are being defined in the table. The title

will include the data type of the constants in parentheses.

The table in Example 1 names a collection of 16-bit constants and Example 2 shows the C code that

might be produced from that table by an automated process.

NOTE A named constant (#define) has no data type in C and an enumeration would be a better choice for

many of the defined constants. However, the C language does not allow an enumerated type to have a
storage type other than int so the method of using a combination of typedef and #define is used.

EXAMPLE 1

Table xx — Definition of (UINT16) COUNTING Constants

Parameter Value Description

first 1 decimal value is implicitly the size of the

second 0x0002 hex value will match the number of bits in the constant

third 3

fourth 0x0004

EXAMPLE 2

/* The C language equivalent of the constants from the table above */

typedef UINT16 COUNTING;

#define first 1

#define second 0x0002

#define third 3

#define fourth 0x0004

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 3

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

4.3 Data Type Aliases (typedefs)

When a group of named items is assigned a type, it is placed in a table that has a title starting with

“Definition of Types.” In this specification, defined types have names that use all upper-case characters.

The table in Example 1 shows how typedefs would be defined in this specification and Example 2 shows

the C-compatible code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of Types for Some Purpose

Type Name Description

unsigned short UINT16

UINT16 SOME_TYPE

unsigned long UINT32

UINT32 LAST_TYPE

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */

typedef unsigned short UINT16;

typedef UINT16 SOME_TYPE;

typedef unsigned long UINT32;

typedef UINT32 LAST_TYPE;

4.4 Enumerations

A table that defines an enumerated data type will start with the word “Definition” and end with “Values.”

A value in parenthesis will denote the intrinsic data size of the value and may have the values "INT8",

"UINT8", "INT16", “UINT16”, "INT32", and “UINT32.” If this value is not present, “UINT16” is assumed.

Most C compilers set the type of an enumerated value to be an integer on the machine – often 16 bits –

but this is not always consistent. To ensure interoperability, the enumeration values may not exceed

32,384.

The table in Example 1 shows how an enumeration would be defined in this specification. Example 2

shows the C code that might be produced from that table by an automated process.

EXAMPLE 1

Table xx — Definition of (UINT16) CARD_SUIT Values

Suit Names Value Description

CLUBS 0x0000

DIAMONDS 0x000D

HEARTS 0x001A

SPADES 0x0027

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */

typedef enum {

 CLUBS = 0x0000,

 DIAMONDS = 0x000D,

 HEARTS = 0x001A,

 SPADES = 0x0027

} CARD_SUIT;

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 4 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4.5 Interface Type

An interface type is used for an enumeration that is checked by the unmarshaling code. This type is

defined for purposes of automatic generation of the code that will validate the type. The title will start with

the keyword “Definition” and end with the keyword “Type.” A value in parenthesis indicates the base type

of the interface. The table may contain an entry that is prefixed with the “#” character to indicate the

response code if the validation code determines that the input parameter is the wrong type.

EXAMPLE 1

Table xx — Definition of (CARD_SUIT) RED_SUIT Type

Values Comments

HEARTS

DIAMONDS

#TPM_RC_SUIT response code returned when the unmarshaling of this type fails

NOTE TPM_RC_SUIT is an example and no such response
code is actually defined in this specification.

EXAMPLE 2

/* Validation code that might be automatically generated from table above */

if((*target != HEARTS) && (*target != DIAMONDS))

 return TPM_RC_SUIT;

In some cases, the allowed values are numeric values with no associated mnemonic. In such a case, the

list of numeric values may be given a name. Then, when used in an interface definition, the name would

have a "$" prefix to indicate that a named list of values should be substituted.

To illustrate, assume that the implementation only supports two sizes (1024 and 2048 bits) for keys

associated with some algorithm (MY algorithm). In the implementation section (Annex B a named list

would be created.

EXAMPLE 3

Table xx — Defines for MY Algorithm Constants

Name Value Comments

MY_KEY_SIZES_BITS {1024, 2048} braces because this is a list value

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 5

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Then, whenever an input value would need to be a valid MY key size for the implementation, the value

$MY_KEY_SIZES_BITS could be used. Given the definition for MY_KEY_SIZES_BITS in example 3

above, the tables in example 4 and 5 below, are equivalent.

EXAMPLE 4

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

{1024, 2048} the number of bits in the supported key

EXAMPLE 5

Table xx — Definition of (UINT16) MY_KEY_BITS Type

Parameter Description

$MY_KEY_SIZES_BITS the number of bits in the supported key

4.6 Arrays

Arrays are denoted by a value in square brackets (“[]”) following a parameter name. The value in the

brackets may be either an integer value such as “[20]” or the name of a component of the same structure

that contains the array.

The table in Example 1 shows how a structure containing fixed and variable-length arrays would be

defined in this specification. Example 2 shows the C code that might be produced from that table by an

automated process.

 EXAMPLE 1

Table xx — Definition of A_STRUCT Structure

Parameter Type Description

array1[20] UINT16 an array of 20 UINT16s

a_size UINT16

array2[a_size] UINT32 an array of UINT32 values that has a
number of elements determined by a_size
above

EXAMPLE 2

/* C language equivalent of the typedefs from the table above */

typedef struct {

 UINT16 array1[20];

 UINT16 a_size;

 UINT32 array2[];

} A_STRUCT;

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 6 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4.7 Structure Definitions

The tables used to define structures have a title that starts with the word “Definition” and ends with

“Structure.” The first column of the table will denote the reference names for the structure members; the

second column the data type of the member; and the third column a synopsis of the use of the element.

The table in Example 1 shows an example of how a structure would be defined in this specification and

Example 2 shows the C code that might be produced from the table by an automated process. Example 3

illustrates the type of unmarshaling code that could be generated using the information available in the

table.

EXAMPLE 1

Table xx — Definition of SIMPLE_STRUCTURE Structure

Parameter Type Description

tag TPM_ST

value1 INT32

value2 INT32

EXAMPLE 2

/* C language equivalent of the structure defined in the table above */

typedef struct {

 TPM_ST tag;

 INT32 value1

 INT32 value2;

} SIMPLE_STRUCTURE;

EXAMPLE 3

bool SIMPLE_STRUCTURE_Unmarshal(SIMPLE_STRUCTURE *target, BYTE **buffer, INT32 *size)

{

 // If unmarshal of tag succeeds

 if(TPM_ST_Unmarshal((TPM_ST *)&(target->tag), buffer, size))

 // then umarshal value1, and if that succeeds...

 if(INT32_Unmarshal((INT32 *)&(target->value1, buffer, size))

 // then return the results of unmarshaling values

 return(INT32_Unmarshal((INT32 *)&(target->value2, buffer, size))

 // if unmarshal of tag or value failed, return failure

 return FALSE;

}

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 7

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

4.8 Conditional Types

An enumeration may contain an extended value indicated by “+” preceding the name in the "Value"

column. This “+” indicates that this is a conditional value that may be allowed in certain situations.

NOTE In many cases, the input values are algorithm IDs. When two collections of algorithm IDs differ only
because one collection allows TPM_ALG_NULL and the other does not, it is preferred that there not be
two completely different enumerations because this leads to many casts. To avoid this, the “+” can be
added to a TPM_ALG_NULL value in the table defining the type. When the use o f that type allows
TPM_ALG_NULL to be in the set, the use would append a “+” to the instance.

EXAMPLE

Table xx — Definition of (CARD_SUIT) TPMI_CARD_SUIT Type

Values Comments

SPADES

HEARTS

DIAMONDS

CLUBS

+JOKER an optional value that may be allowed

#TPM_RC_SUIT response code returned when the input value is not one of the
values above

When an interface type is used, a “+” will be appended to the type specification for the parameter when

the conditional value is allowed. If no “+” is present, then the conditional value is not allowed.

EXAMPLE 1

Table xx — Definition of POKER_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT+ allows joker

number UINT8 the card value

EXAMPLE 2

Table xx — Definition of BRIDGE_CARD Structure

Parameter Type Description

suit TPMI_CARD_SUIT does not allow joker

number UINT8 the card value

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 8 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4.9 Unions

4.9.1 Introduction

A union allows a structure to contain a variety of structures or types. The union has members, only one of

which is present at a time. Three different tables are required to fully characterize a union so that it may

be communicated on the TPM interface and used by the TPM:

1) union definition;

2) union instance; and

3) union selector definition.

4.9.2 Union Definition

The table in Example 1 illustrates a union definition. The title of a union definition table starts with

“Definition” and ends with “Union.” The “Parameter” column of a union definition lists the different names

that are used when referring a specific type. The “Type” column identifies the data type of the member.

The “Selector” column identifies the value that is used by the marshaling and unmarshaling code to

determine which case of the union is present.

If a parameter is the keyword “null,” then this denotes a selector with no contents. The table in Example 1

illustrates a union in which a conditional null selector is allowed to indicate an empty union member.

Example 2 shows how the table would be converted into C-compatible code.

The expectation is that the unmarshaling code for the union will validate that the selector for the union is

one of values in the selector list.

EXAMPLE 1

Table xx — Definition of NUMBER_UNION Union

Parameter Type Selector Description

a_byte BYTE BYTE_SELECT

an_int int INT_SELECT

a_float float FLOAT_SELECT

+null NULL_SELECT the empty branch

EXAMPLE 2

// C-compatible version of the union defined in the table above

typedef union {

 BYTE a_byte;

 int an_int;

 float a_float;

} NUMBER_UNION;

EXAMPLE 3

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 9

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

// Possible auto-generated code to unmarshal a union in Example 2 based on the

// input value of selector

bool NUMBER_UNION_Unmarshal(NUMBER_UNION *target, BYTE **buffer,

 INT32 *size, UINT32 selector)

{

 switch (selector) {

 case BYTE_SELECT:

 return BYTE_Unmarshal((BYTE *)&(target->a_byte), buffer, size);

 case INT_SELECT:

 return INT_Unmarshal((int *)&(target->an_int), buffer, size);

 case FLOAT_SELECT:

 return FLOAT_Unmarshal((float *)&(target->a_float), buffer, size);

 case NULL_SELECT:

 return;

}

4.9.3 Union Instance

When a union is used in a structure that is sent on the interface, the structure will minimally contain a

selector and a union. The selector value indicates which of the possible union members is present so that

the unmarshaling code can unmarshal the correct type. The selector may be any of the parameters that

occur in the structure before the union instance. To denote the structure parameter that is used as the

selector, its name is in brackets (“[]”) placed before the parameter name associated with the union.

The table in Example 1 shows the definition of a structure that contains a union and a selector. Example 2

shows how the table would be converted into C-compatible code and Example 3 shows how the

unmarshaling code would handle the selector.

EXAMPLE 1

Table xx — Definition of STRUCTURE_WITH_UNION Structure

Parameter Type Description

select NUMBER_SELECT a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 4.9.2

EXAMPLE 2

// C-compatible version of the union structure in the table above

typedef struct {

 NUMBER_SELECT select;

 NUMBER_UNION number;

} STRUCT_WITH_UNION;

EXAMPLE 3

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 10 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

// Possible unmarshaling code for the structure above

bool STRUCT_WITH_UNION_Unmarshal(STRUCT_WITH_UNION *target, BYTE **buffer, INT32 *size)

{

 // Unmarshal the selector value

 if(!NUMBER_SELECT_Unmarshal((NUMBER_SELECT *)&target->select, buffer, size))

 return FALSE;

 // Use the unmarshaled selector value to indicate to the union unmarshal

 // function which unmarshaling branch to follow.

 return(NUMBER_UNION_Unmarshal((NUMBER_UNION *)&(target->number),

 buffer, size, (UINT32)target->select);

}

4.9.4 Union Selector Definition

The selector definition limits the values that are used in unmarshaling a union. Two different selector sets

applied to the same union define different types.

For the union in 4.9.2, a selector definition should be limited to no more than four values, one for each of

the union members. The selector definition could have fewer than four values.

In Example 1, the table defines a value for each of the union members.

EXAMPLE 1

Table xx — Definition of (INT8) NUMBER_SELECT Values <IN>

Name Value Comments

BYTE_SELECT 3

INT_SELECT 2

FLOAT_SELECT 1

NULL_SELECT 0

The unmarshaling code would limit the input values to the defined values. When the NUMBER_SELECT

is used in the union instance of 4.9.3, any of the allowed union members of NUMBER_UNION could be

present.

A different selection could be used to limit the values in a specific instance. To get the different selection,

a new structure is defined with a different selector. The table in example 2 illustrates a way to subset the

union. The base type of the selection is NUMBER_SELECT so a NUMBER_SELECT will be unmarshaled

before the checks are made to see if the value is in the correct range for JUST_INTEGERS types. If the

base type had been UINT8, then no checking would occur prior to checking that the value is in the

allowed list. In this particular case, the effect is the same in either case since the only values that will be

accepted by the unmarshaling code for JUST_INTEGER are BYTE_SELECT and INT_SELECT.

EXAMPLE 2

Table xx — Definition of (NUMBER_SELECT) AN_INTEGER Type <IN>

Values Comments

{BYTE_SELECT, INT_SELECT} list of allowed values

NOTE Since NULL_SELECT is not in the list of values accepted as a JUST_INTEGER, the “+” modifier will have
no effect if used for a JUST_INTEGERS type shown in Example 3.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 11

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

The selector in Example 2 can then be used in a subset union as shown in Example 3.

EXAMPLE 3

Table xx — Definition of JUST_INTEGERS Structure

Parameter Type Description

select AN_INTEGER a value indicating the type in number

[select] number NUMBER_UNION a union as shown in 4.9.2

4.10 Bit Field Definitions

A table that defines a structure containing bit fields has a title that starts with “Definition” and ends with

“Bits.” A type identifier in parentheses in the title indicates the size of the datum that contains the bit

fields.

When the bit fields do not occupy consecutive locations, a spacer field is defined with a name of

“Reserved.” Bits in these spaces are reserved and shall be zero.

The table in Example 1 shows how a structure containing bit fields would be defined in this specification.

Example 2 shows the C code that might be produced from that table by an automated process.

When a field has more than one bit, the range is indicated by a pair of numbers separated by a colon (“:”).

The numbers will be in high:low order.

EXAMPLE1

 Table xx — Definition of (UINT32) SOME_ATTRIBUTE Bits

Bit Name Action

0 zeroth_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

1 first_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

6:2 Reserved A placeholder that spans 5 bits

7 third_bit SET (1): what to do if bit is 1

CLEAR (0): what to do if bit is 0

31:8 Reserved Placeholder to fill 32 bits

EXAMPLE 2

/* C language equivalent of the attributes structure defined in the table above */

typedef struct {

 int zeroth_bit : 1;

 int first_bit : 1;

 int Reserved3 : 5;

 int third_bit : 1;

 int Reserved7 : 24;

} SOME_ATTRIBUTE;

4.11 Parameter Limits

A parameter used in a structure may be given a set of values that can be checked by the unmarshaling

code. The allowed values for a parameter may be included in the definition of the parameter by

appending the values and delimiting them with braces (“{ }”). The values are comma-separated

expressions. A range of numbers may be indicated by separating two expressions with a colon (“:”). The

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 12 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

first number is an expression that represents the minimum allowed value and the second number

indicates the maximum. If the minimum or maximum value expression is omitted, then the range is open-

ended.

Parameter limits expressed using braces apply only to inputs to the TPM. Any value returned by the

TPM is assumed to be valid.

The maximum size of an array may be indicated by putting a “{}” delimited expression following the

square brackets (“[]”) that indicate that the value is an array.

EXAMPLE

Table xx — Definition of B_STRUCT Structure

Parameter Type Description

value1 {20:25} UINT16 a parameter that must have a value between 20
and 25

value2 {20} UINT16 a parameter that must have a value of 20

value3 {:25} INT16 a parameter that may be no larger than 25

Since the parameter is signed, the minimum value
is the largest negative integer that may be
expressed in 16 bits.

value4 {20:} a parameter that must be at least 20

value5 {1,2,3,5} UINT16 a parameter that may only have one of the four
listed values

value6 {1, 2, 10:(10+10)} UINT32 a parameter that may have a value of 1, 2, or be
between 10 and 20

array1[value1] BYTE Because the index refers to value1, which is a
value limited to be between 20 and 25 inclusive,
array1 is an array that may have between 20 and
25 octets. This is not the preferred way to indicate
the upper limit for an array as it does not indicate
the upper bound of the size.

NOTE This is a limitation of the current
parser. A different parser could
associate the range of value1 with this
value and compute the maximum size
of the array.

array2[value4]{:25} BYTE an array that may have between 20 and 25 octets

This arrangement is used to allow the automatic
code generation to allocate 25 octets to store the
largest array2 that can be unmarshaled. The code
generation can determine from this expression that
value4 shall have a value of 25 or less. From the
definition of value4 above, it can determine that
value4 must have a value of at least 20.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 13

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

4.12 Enumeration Macro

An enumeration can be a list of allowed numeric values. For example, the allowed sizes for an RSA key

might be expressed as:

4.13 Size Checking

In some structures, a size field is present to indicate the number of octets in some subsequent part of the

structure. In the B_STRUCT table in 4.11, value4 indicates how many octets to unmarshal for array2. This

semantic applies when the size field determines the number of octets to unmarshal. However, in some

cases, the subsequent structure is self-defining. If the size precedes a parameter that is not a octet array,

then the unmarshaled size of that parameter is determined by its data type. The table in Example 1

shows a structure where the size parameter would nominally indicate the number of octets in the

remainder of the structure.

EXAMPLE 1

Table xx — Definition of C_STRUCT Structure

Parameter Type Comments

size UINT16 the expected size of the remainder of the structure

anInteger UINT32 a 4-octet value

In this particular case, the value of size would be incorrect if it had any value other than 4. So that the

table parser is able to know that the purpose of the size parameter is to define the number of octets

expected in the remainder of the structure, an equal sign (“=”) is appended to the parameter name.

In the example below, the size= causes the parser to generate validation code that will check that the

unmarshaled size of someStructure and someData adds to the value unmarshaled for size. When the “=”

decoration is present, a value of zero is not allowed for the size.

EXAMPLE 2

 Table xx — Definition of D_STRUCT Structure

Parameter Type Comments

size= UINT16 the size of a structure

The “=” indicates that the TPM is required to
validate that the remainder of the D_STRUCT
structure is exactly the value in size. That is, the
number of bytes in the input buffer used to
successfully unmarshal someStructure must be the
same as size.

someStructure A_STRUCT a structure to be unmarshaled

The size of the structure is computed when it is
unmarshaled. Because an “=” is present on the
definition of size, the TPM is required to validate
that the unmarshaled size exactly matches size.

someData UINT32 a value

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 14 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4.14 Data Direction

A structure or union may be input (IN), output (OUT), or internal. An input structure is sent to the TPM and

is unmarshaled by the TPM. An output structure is sent from the TPM and is marshaled by the TPM. An

internal structure is not used outside of the TPM except that it may be included in a saved context.

By default, structures are assumed to be both IN and OUT and the code generation tool will generate

both marshaling and unmarshaling code for the structure. This default may be changed by using values

enclosed in angle brackets (“<>”) as part of the table title. If the angle brackets are empty, then the

structure is internal and neither marshaling nor unmarshaling code is generated. If the angle brackets

contain the letter “I” (such as in “IN” or “in” or “i”), then the structure is input and unmarshaling code will be

generated. If the angle brackets contain the letter “O” (such as in “OUT” or “out” or “o”), then the structure

is output and marshaling code will be generated.

EXAMPLE 1 Both of the following table titles would indicate a structure that is used in both input and output

Table xx — Definition of TPMS_A Structure

Table xx — Definition of TPMS_A Structure <IN/OUT>

EXAMPLE 2 The following table title would indicate a structure that is used only for input

Table xx — Definition of TPMS_A Structure <IN>

EXAMPLE 3 The following table title would indicate a structure that is used only for output

Table xx — Definition of TPMS_A Structure <OUT>

4.15 Structure Validations

By default, when a structure is used for input to the TPM, the code generation tool will generate the

unmarshaling code for that structure. Auto-generation may be suppressed by adding an “S” within the

angle brackets.

EXAMPLE The following table titles indicate a structure for which the auto-generation of the validation code is to be
suppressed.

Table xx — Definition of TPMT_A Structure <S>

Table xx — Definition of TPMT_A Structure <IN, S>

Table xx — Definition of TPMT_A Structure <IN/OUT, S>

4.16 Name Prefix Convention

Parameters are constants, variables, structures, unions, and structure members. Structure members are

given a name that is indicative of its use, with no special prefix. The other parameter types are named

according to their type with their name starting with “TPMx_”, where “x” is an optional character to indicate

the data type.

In some cases, additional qualifying characters will follow the underscore. These are generally used when

dealing with an enumerated data type.

TPMA_ This is an attribute structure, where bits are associated with particular attributes

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 15

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 1 — Name Prefix Convention

Prefix Description

TPM an indication/signal from the TPM’s system interface

TPM_ a constant or an enumerated type

TPM2_ a command defined by this specification

TPM2B_ a structure that is a sized buffer where the size of the buffer is contained in a 16-bit, unsigned
value

The first parameter is the size in octets of the second parameter. The second parameter may be
any type.

TPMA_ a structure where each of the fields defines an attribute and each field is usually a single bit

All the attributes in an attribute structure are packed with the overall size of the structure
indicated in the heading of the attribute description (UINT8, UINT16, or UINT32).

TPM_ALG_ an enumerated type that indicates an algorithm

A TPM_ALG_ is often used as a selector for a union.

TPMI_ an interface type

The value is specified for purposes of dynamic type checking when unmarshaled.

TPML_ a list length followed by the indicated number of entries of the indicated type

This is an array with a length field.

TPMS_ a structure that is not a size buffer or a tagged buffer or a list

TPMT_ a structure with the first parameter being a structure tag, indicating the type of the structure that
follows

A structure tag may be either a TPMT_ST_ or TPM_ALG_ depending on context.

TPMU_ a union of structures, lists, or unions

If a union exists, there will normally be a companion TPMT_ that is the expression of the union
in a tagged structure, where the tag is the selector indicating which member of the union is
present.

TPM_xx_ an enumeration value of a particular type

The value of “xx” will be indicative of the use of the enumerated type. A table of “TPM_xx”
constant definitions will exist to define each of the TPM_xx_ values.

EXAMPLE 1 TPM_CC_ indicates that the type is used for a commandCode. The allowed enumeration
values will be found in the table defining the TPM_CC constants (Table 11).

EXAMPLE 2 TPM_RC_ indicates that the type is used for a responseCode. The allowed enumeration
values are in Table 15.

4.17 Data Alignment

The data structures in this Part 2 use octet alignment for all structures. When used in a table to indicate a

maximum size, the sizeof() function returns the octet-aligned size of the structure, with no padding.

4.18 Parameter Unmarshaling Errors

The TPM commands are defined in Part 3. The command definition included C code that details the

actions performed by that command. The code is written assuming that the parameters of the command

have been unmarshaled.

NOTE 1 An implementation is not required to process parameters in this manner or to separate the parameter
parsing from the command actions. This method was chosen for the specification so that the normative
behavior described by the detailed actions would be clear and unencumbered.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 16 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in this Part 2.

When an error is encountered while unmarshaling a command parameter, an error response code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

EXAMPLE 1 Table 11 has a listing of TPM command code values. The last row in the table contains
"#TPM_RC_COMMAND_CODE" indicating the response code that is returned if the TPM is unmarshaling
a value that it expects to be a TPM_CC and the input value is not in the table.

NOTE 2 In the reference implementation, a parameter number is added to the response code so that the offending
parameter can be isolated.

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 2.

Table 2 — Unmarshaling Errors

Response code Usage

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_VALUE A parameter does not have one of its allowed values

TPM_RC_TAG A parameter that should be a structure tag has a value that is not supported by
the TPM

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the Part 2 definition of the parameter type even if that parameter is not used in the command actions.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 17

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

5 Base Types

5.1 Primitive Types

The types listed in Table 3 are the primitive types on which all of the other types and structures are

based. The values in the “Type” column should be edited for the compiler and computer on which the

TPM is implemented. The values in the “Name” column should remain the same because these values

are used in the remainder of the specification.

NOTE The types are compatible with the C99 standard and should be defined in stdint.h that is provided with a
C99-compliant compiler;

The parameters in the Name column should remain in the order shown.

Table 3 — Definition of Base Types

Type Name Description

uint8_t UINT8 unsigned, 8-bit integer

uint8_t BYTE unsigned 8-bit integer

int8_t INT8 signed, 8-bit integer

int BOOL a bit in an int

This is not used across the interface but is used in many places in the code. If
the type were sent on the interface, it would have to have a type with a specific
number of bytes.

uint16_t UINT16 unsigned, 16-bit integer

int16_t INT16 signed, 16-bit integer

uint32_t UINT32 unsigned, 32-bit integer

int32_t INT32 signed, 32-bit integer

uint64_t UINT64 unsigned, 64-bit integer

int64_t INT64 signed, 64-bit integer

5.2 Miscellaneous Types

These types are defined either for compatibility with previous versions of this specification or for clarity of

this specification.

Table 4 — Definition of Types for Documentation Clarity

Type Name Description

UINT32 TPM_ALGORITHM_ID this is the 1.2 compatible form of the TPM_ALG_ID

UINT32 TPM_MODIFIER_INDICATOR

UINT32 TPM_AUTHORIZATION_SIZE the authorizationSize parameter in a command

UINT32 TPM_PARAMETER_SIZE the parameterSizeset parameter in a command

UINT16 TPM_KEY_SIZE a key size in octets

UINT16 TPM_KEY_BITS a key size in bits

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 18 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6 Constants

6.1 TPM_SPEC (Specification Version Values)

These values are readable with TPM2_GetCapability().

NOTE This table will require editing when the specification is updated.

Table 5 — Definition of (UINT32) TPM_SPEC Constants <>

Name Value Comments

TPM_SPEC_FAMILY 0x322E3000 ASCII “2.0” with null terminator

TPM_SPEC_LEVEL 00 the level number for the specification

TPM_SPEC_VERSION 96 the version number of the spec (00.96 * 100)

TPM_SPEC_YEAR 2013 the year of the version

TPM_SPEC_DAY_OF_YEAR 74 the day of the year (March 15, 2013)

6.2 TPM_GENERATED

This constant value differentiates TPM-generated structures from non-TPM structures.

Table 6 — Definition of (UINT32) TPM_GENERATED Constants <O>

Name Value Comments

TPM_GENERATED_VALUE 0xff544347 0xFF ‘TCG’ (FF 54 43 4716)

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 19

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

6.3 TPM_ALG_ID

The TCG maintains a registry of all algorithms that have an assigned algorithm ID. That registry is the

definitive list of algorithms that may be supported by a TPM.

NOTE Inclusion of an algorithm does NOT indicate that the necessary claims of the algorithm are available
under RAND terms from a TCG member.

Table 7 is a copy of the TPM_ALG_ID constants table in the TCG registry as of the date of publication of

this specification. Table 7 is provided for illustrative purposes only.

An algorithm ID is often used like a tag to determine the type of a structure in a context-sensitive way.

The values for TPM_ALG_ID shall be in the range of 00 0016 – 7F FF16. Other structure tags will be in the

range 80 0016 – FF FF16.

NOTE In TPM 1.2, these were defined as 32-bit constants. This specification limits the future size of the
algorithm ID to 16 bits. The TPM_ALGORITHM_ID data type will continue to be a 32-bit number.

An algorithm shall not be assigned a value in the range 00 C116 – 00 C616 in order to prevent any overlap

with the command structure tags used in TPM 1.2.

The implementation of some algorithms is dependent on the presence of other algorithms. When there is

a dependency, the algorithm that is required is listed in column labeled "D" (dependent) in Table 7.

EXAMPLE Implementation of TPM_ALG_RSASSA requires that the RSA algorithm be implemented.

TPM_ALG_KEYEDHASH and TPM_ALG_NULL are required of all TPM implementations.

Table 7 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>

Algorithm Name Value Type
a D Comments

TPM_ALG_ERROR 0x0000 should not occur

TPM_ALG_FIRST 0x0001 marker value

TPM_ALG_RSA 0x0001 A O the RSA algorithm

TPM_ALG_SHA 0x0004 H the SHA1 algorithm

TPM_ALG_SHA1 0x0004 H redefinition for documentation consistency

OID 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 1416

TPM_ALG_HMAC 0x0005 H X the RFC 2104 Hash Message Authentication Code
(HMAC) algorithm

TPM_ALG_AES 0x0006 S the AES algorithm with a key size of 128 bits for TPM
1.2

the AES algorithm with multiple sizes of key for TPM
2.0

TPM_ALG_MGF1 0x0007 H M the mask-generation function defined in IEEE Std
1363-2000

TPM_ALG_KEYEDHASH 0x0008 H E X O an encryption or signing algorithm using a keyed hash,
defined by TCG in the TPM 2.0 specification
may also refer to a data object that is neither signing
nor encrypting

TPM_ALG_XOR 0x000A H S the XOR obfuscation algorithm

NOTE The implementation of XOR obfuscation in TPM
2.0 is not the same as the XOR encryption
method in TPM 1.2.

TPM_ALG_SHA256 0x000B H the SHA 256 algorithm

OID 30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05
00 04 2016

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 20 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Algorithm Name Value Type
a D Comments

TPM_ALG_SHA384 0x000C H the SHA 384 algorithm

OID 30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05
00 04 3016

TPM_ALG_SHA512 0x000D H the SHA 512 algorithm

OID 30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05
00 04 4016

TPM_ALG_NULL 0x0010 Null algorithm

TPM_ALG_SM3_256 0x0012 H hash algorithm standardized by OSCCA

Block size is 512 bits.

Output size is 256 bits.

TPM_ALG_SM4 0x0013 S symmetric algorithm standardized by OSCCA

Key and block size are 128 bits.

TPM_ALG_RSASSA 0x0014 A X RSA a signature algorithm according to PKCS#1v2.1, 8.2

TPM_ALG_RSAES 0x0015 A E RSA a padding algorithm according to PKCS#1v2.1, 7.2

TPM_ALG_RSAPSS 0x0016 A X RSA signature algorithm (RSSASSA-PSS) according to
PKCS#1v2.1, 8.1

TPM_ALG_OAEP 0x0017 A E RSA padding algorithm (RSAES_OAEP) according to
PKCS#1v2.1, 7.1

TPM_ALG_ECDSA 0x0018 A X ECC signature algorithm using elliptic curve cryptography
(ECC)

TPM_ALG_ECDH 0x0019 A M ECC secret sharing using ECC from SP800-56A
Based on context, this can be either One-Pass Diffie-
Hellman, C(1, 1, ECC CDH) defined in 6.2.2.2 or Full
Unified Model C(2, 2, ECC CDH) defined in 6.1.1.2

TPM_ALG_ECDAA 0x001A A X ECC elliptic-curve based, anonymous signing scheme

TPM_ALG_SM2 0x001B A X E ECC depending on context, either an elliptic-curve based,
signature algorithm or a key exchange protocol

NOTE This would be one of the algorithms specified in
CM/T 0002 – 2012.

TPM_ALG_ECSCHNORR 0x001C A X ECC elliptic-curve-based Schnorr signature

TPM_ALG_ECMQV 0x001D A E ECC two-phase elliptic-curve key exchange -- C(2, 2, ECC
MQV) from SP800-56A

TPM_ALG_KDF1_SP800_56a 0x0020 H M ECC key derivation alternative #1 from SP800-56A

TPM_ALG_KDF2 0x0021 H M key derivation function from IEEE Std 1363a-2004

TPM_ALG_KDF1_SP800_108 0x0022 H M a key derivation method according to SP 800-108, "5.1
KDF in Counter Mode”

TPM_ALG_ECC 0x0023 A O prime field ECC

TPM_ALG_SYMCIPHER 0x0025 O the object type for a symmetric block cipher

TPM_ALG_CTR 0x0040 S E Counter mode – if implemented, all symmetric block
ciphers (S type) implemented shall be capable of using
this mode.

TPM_ALG_OFB 0x0041 S E Output Feedback mode – if implemented, all
symmetric block ciphers (S type) implemented shall be
capable of using this mode.

TPM_ALG_CBC 0x0042 S E Cipher Block Chaining mode – if implemented, all
symmetric block ciphers (S type) implemented shall be
capable of using this mode.

TPM_ALG_CFB 0x0043 S E Cipher Feedback mode – if implemented, all
symmetric block ciphers (S type) implemented shall be
capable of using this mode.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 21

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Algorithm Name Value Type
a D Comments

TPM_ALG_ECB 0x0044 S E Electronic Codebook mode – if implemented, all
symmetric block ciphers (S type) implemented shall be
capable of using this mode.

NOTE This mode is not recommended for uses unless
the key is frequently rotated such as in video
codecs.

TPM_ALG_LAST 0x0044 marker value

reserved 0x00C1 0x00C1 – 0x00C6 are reserved

reserved 0x00C2

reserved 0x00C3

reserved 0x00C4

reserved 0x00C5

reserved 0x00C6

NOTE a Column Indicates the algorithm type and use of the algorithm inside of the TPM. The values are:
A – asymmetric algorithm with a public and private key
S – symmetric algorithm with only a private key
H – hash algorithm that compresses input data to a digest value
X – signing algorithm
E – an encryption algorithm
M – a method such as a mask generation function
O – an object type

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 22 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.4 TPM_ECC_CURVE

The TCG maintains a registry of all curves that have an assigned curve identifier. That registry is the

definitive list of curves that may be supported by a TPM.

Table 8 is a copy of the TPM_ECC_CURVE constants table in the TCG registry as of the date of

publication of this specification. Table 8 is provided for illustrative purposes only.

Table 8 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S>

Name Value Comments

TPM_ECC_NONE 0x0000

TPM_ECC_NIST_P192 0x0001

TPM_ECC_NIST_P224 0x0002

TPM_ECC_NIST_P256 0x0003

TPM_ECC_NIST_P384 0x0004

TPM_ECC_NIST_P521 0x0005

TPM_ECC_BN_P256 0x0010 curve to support ECDAA

TPM_ECC_BN_P638 0x0011 curve to support ECDAA

TPM_ECC_SM2_P256 0x0020

#TPM_RC_CURVE

6.5 TPM_CC (Command Codes)

6.5.1 Format

A command is a 32-bit structure with fields assigned as shown in Figure 1.

3
1

3
0

2
9

2
8

1
6

1
5

0
0

Res V Reserved Command Index

Figure 1 — Command Format

Table 9 — TPM Command Format Fields Description

Bit Name Definition

15:0 Command Index the index of the command

28:16 Reserved shall be zero

29 V SET(1): the command is vendor specific

CLEAR(0): the command is not vendor specific

31:30 Res shall be zero

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 23

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

6.5.2 Description

Table 10 provides the legend for the interpretation of the column data in Table 11.

Table 10 — Legend for Command Code Tables

Column
Allowed
Values Comments

Name Command
Code Name

Name of the command

Command Code Numeric value the numeric value for the commandCode

NV Write blank, Y, O indicates whether the command may cause an NV write operation

If this column contains a “Y,” then successful completion of the
command is expected to cause modification of the NV memory
because of the command actions.

If the column contains an “O,” then the command may cause a
modification to NV associated with an orderly shutdown. That is, the
command may modify the orderly save state of NV, in which case, an
NV write will be necessary.

NOTE 1 Any command may be delayed in order for the TPM to complete
NV actions due to a previous command or because of an
asynchronous update of Clock.

NOTE 2 Any command with an authorization value may cause an NV write
on an authorization failure but the command does not complete
successfully.

If the entry is blank, then writing to NV is not allowed in the command
actions.

Physical Presence blank, Y indicates whether the platformAuth for this command may require
confirmation through a physical presence indication

Encrypted blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a command

Blank indicates that no size field is present and no parameter
encryption is allowed.

Encrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a response

Blank indicates that no size field is present and no parameter
encryption is allowed.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 24 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.5.3 TPM_CC Listing

Table 11 lists the command codes and their attributes. The only normative column in this table is the

column indicating the command code assigned to a specific command (the "Command Code" column).

For all other columns, the command and response tables in Part 3 are definitive.

Table 11 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>

Name
Command

Code N
V

 W
ri

te

P
h

y
s

ic
a
l

P
re

s
e
n

c
e

E
n

c
ry

p
te

d

E
n

c
ry

p
t

Comments

TPM_CC_FIRST 0x0000011F
Compile variable. May decrease
based on implementation.

TPM_CC_PP_FIRST 0x0000011F
Compile variable. Would decrease
if new PP commands are added

TPM_CC_NV_UndefineSpaceSpecial 0x0000011F Y Y

TPM_CC_EvictControl 0x00000120 Y Y

TPM_CC_HierarchyControl 0x00000121 Y Y

 TPM_CC_NV_UndefineSpace 0x00000122 Y Y

 TPM_CC_ChangeEPS 0x00000124 Y Y

 TPM_CC_ChangePPS 0x00000125 Y Y

 TPM_CC_Clear 0x00000126 Y Y

 TPM_CC_ClearControl 0x00000127 Y Y

 TPM_CC_ClockSet 0x00000128 Y Y

 TPM_CC_HierarchyChangeAuth 0x00000129 Y Y 2

 TPM_CC_NV_DefineSpace 0x0000012A Y Y 2

 TPM_CC_PCR_Allocate 0x0000012B Y Y

 TPM_CC_PCR_SetAuthPolicy 0x0000012C Y Y 2

 TPM_CC_PP_Commands 0x0000012D Y Y

 TPM_CC_SetPrimaryPolicy 0x0000012E Y Y 2

 TPM_CC_FieldUpgradeStart 0x0000012F O Y 2

 TPM_CC_ClockRateAdjust 0x00000130 O Y

 TPM_CC_CreatePrimary 0x00000131

Y 2 2

 TPM_CC_NV_GlobalWriteLock 0x00000132 O Y

 TPM_CC_PP_LAST 0x00000132 Compile variable

TPM_CC_GetCommandAuditDigest 0x00000133 Y

2

 TPM_CC_NV_Increment 0x00000134 Y

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 25

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name
Command

Code N
V

 W
ri

te

P
h

y
s

ic
a
l

P
re

s
e
n

c
e

E
n

c
ry

p
te

d

E
n

c
ry

p
t

Comments

TPM_CC_NV_SetBits 0x00000135 Y

 TPM_CC_NV_Extend 0x00000136 Y

TPM_CC_NV_Write 0x00000137 Y

2

 TPM_CC_NV_WriteLock 0x00000138 Y

 TPM_CC_DictionaryAttackLockReset 0x00000139 O

 TPM_CC_DictionaryAttackParameters 0x0000013A Y

 TPM_CC_NV_ChangeAuth 0x0000013B Y

2

 TPM_CC_PCR_Event 0x0000013C O

2

PCR

TPM_CC_PCR_Reset 0x0000013D O

PCR

TPM_CC_SequenceComplete 0x0000013E O

2 2

 TPM_CC_SetAlgorithmSet 0x0000013F Y

 TPM_CC_SetCommandCodeAuditStatus 0x00000140 Y

 TPM_CC_FieldUpgradeData 0x00000141 O

2

 TPM_CC_IncrementalSelfTest 0x00000142 O

 TPM_CC_SelfTest 0x00000143 O

 TPM_CC_Startup 0x00000144 Y

 TPM_CC_Shutdown 0x00000145 Y

 TPM_CC_StirRandom 0x00000146 Y

2

 TPM_CC_ActivateCredential 0x00000147

2 2

 TPM_CC_Certify 0x00000148 O

2 2

 TPM_CC_PolicyNV 0x00000149

2

Policy

TPM_CC_CertifyCreation 0x0000014A O

2 2

 TPM_CC_Duplicate 0x0000014B

2 2

 TPM_CC_GetTime 0x0000014C O

2

 TPM_CC_GetSessionAuditDigest 0x0000014D O

2

 TPM_CC_NV_Read 0x0000014E

2

 TPM_CC_NV_ReadLock 0x0000014F O

 TPM_CC_ObjectChangeAuth 0x00000150

2 2

 TPM_CC_PolicySecret 0x00000151

2

Policy

TPM_CC_Rewrap 0x00000152

2 2

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 26 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name
Command

Code N
V

 W
ri

te

P
h

y
s

ic
a
l

P
re

s
e
n

c
e

E
n

c
ry

p
te

d

E
n

c
ry

p
t

Comments

TPM_CC_Create 0x00000153

2 2

 TPM_CC_ECDH_ZGen 0x00000154

2 2

 TPM_CC_HMAC 0x00000155

2 2

 TPM_CC_Import 0x00000156

2 2

 TPM_CC_Load 0x00000157

2 2

 TPM_CC_Quote 0x00000158 O

2 2

 TPM_CC_RSA_Decrypt 0x00000159

2

 TPM_CC_HMAC_Start 0x0000015B

2 2

 TPM_CC_SequenceUpdate 0x0000015C

2

 TPM_CC_Sign 0x0000015D

2

 TPM_CC_Unseal 0x0000015E

2

 TPM_CC_PolicySigned 0x00000160

2

Policy

TPM_CC_ContextLoad 0x00000161 O

Context

TPM_CC_ContextSave 0x00000162 O

Context

TPM_CC_ECDH_KeyGen 0x00000163

2

 TPM_CC_EncryptDecrypt 0x00000164

2

 TPM_CC_FlushContext 0x00000165 O

Context

TPM_CC_LoadExternal 0x00000167

2 2

 TPM_CC_MakeCredential 0x00000168

2 2

 TPM_CC_NV_ReadPublic 0x00000169

NV

TPM_CC_PolicyAuthorize 0x0000016A

2

Policy

TPM_CC_PolicyAuthValue 0x0000016B

Policy

TPM_CC_PolicyCommandCode 0x0000016C

Policy

TPM_CC_PolicyCounterTimer 0x0000016D

2

Policy

TPM_CC_PolicyCpHash 0x0000016E

2

Policy

TPM_CC_PolicyLocality 0x0000016F

Policy

TPM_CC_PolicyNameHash 0x00000170

2

Policy

TPM_CC_PolicyOR 0x00000171

Policy

TPM_CC_PolicyTicket 0x00000172

2

Policy

TPM_CC_ReadPublic 0x00000173

2

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 27

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name
Command

Code N
V

 W
ri

te

P
h

y
s

ic
a
l

P
re

s
e
n

c
e

E
n

c
ry

p
te

d

E
n

c
ry

p
t

Comments

TPM_CC_RSA_Encrypt 0x00000174

2 2

 TPM_CC_StartAuthSession 0x00000176 O

2 2

 TPM_CC_VerifySignature 0x00000177

2

 TPM_CC_ECC_Parameters 0x00000178

 TPM_CC_FirmwareRead 0x00000179

 TPM_CC_GetCapability 0x0000017A

 TPM_CC_GetRandom 0x0000017B

2

 TPM_CC_GetTestResult 0x0000017C

 TPM_CC_Hash 0x0000017D

2 2

 TPM_CC_PCR_Read 0x0000017E

PCR

TPM_CC_PolicyPCR 0x0000017F

Policy

TPM_CC_PolicyRestart 0x00000180

 TPM_CC_ReadClock 0x00000181

 TPM_CC_PCR_Extend 0x00000182 O 2

TPM_CC_PCR_SetAuthValue 0x00000183 N 2

TPM_CC_NV_Certify 0x00000184 O

TPM_CC_EventSequenceComplete 0x00000185 O

TPM_CC_HashSequenceStart 0x00000186

TPM_CC_PolicyPhysicalPresence 0x00000187 Policy

TPM_CC_PolicyDuplicationSelect 0x00000188 Policy

TPM_CC_PolicyGetDigest 0x00000189 Policy

TPM_CC_TestParms 0x0000018A

TPM_CC_Commit 0x0000018B O 2 2

TPM_CC_PolicyPassword 0x0000018C Policy

TPM_CC_ZGen_2Phase 0x0000018D 2 2

TPM_CC_EC_Ephemeral 0x0000018E

TPM_CC_LAST 0x0000018E
Compile variable. May increase
based on implementation.

#TPM_RC_COMMAND_CODE

NOTE This is not a FMT1 code
and a parameter indicator
value may not be added to
this value.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 28 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.6 TPM_RC (Response Codes)

6.6.1 Description

Each return from the TPM has a 32-bit response code. The TPM will always set the upper 20 bits (31:12)

of the response code to 0 00 0016 and the low-order 12 bits (11:00) will contain the response code.

When a command succeeds, the TPM shall return TPM_RC_SUCCESS (0 0016) and will update any

authorization-session nonce associated with the command.

When a command fails to complete for any reason, the TPM shall return

 a TPM_ST (UINT16) with a value of TPM_TAG_RSP_COMMAND or TPM_ST_NO_SESSIONS,
followed by

 a UINT32 (responseSize) with a value of 10, followed by

 a UINT32 containing a response code with a value other than TPM_RC_SUCCESS.

Commands defined in this specification will use a tag of either TPM_ST_NO_SESSIONS or

TPM_ST_SESSIONS. Error responses will use a tag value of TPM_ST_NO_SESSIONS and the

response code will be as defined in this specification. Commands that use tags defined in the TPM 1.2

specification will use TPM_TAG_RSP_COMMAND in an error and a response code defined in TPM 1.2.

If the tag of the command is not a recognized command tag, the TPM error response will differ depending

on TPM 1.2 compatibility. If the TPM supports 1.2 compatibility, the TPM shall return a tag of

TPM_TAG_RSP_COMMAND and an appropriate TPM 1.2 response code (TPM_BADTAG =

00 00 00 1E16). If the TPM does not have compatibility with TPM 1.2, the TPM shall return

TPM_ST_NO_SESSION and an response code of TPM_RC_TAG.

When a command fails, the TPM shall not update the authorization-session nonces associated with the

command and will not close the authorization sessions used by the command. Audit digests will not be

updated on an error. Unless noted in the command actions, a command that returns an error shall leave

the state of the TPM as if the command had not been attempted. The exception to this principle is that a

failure due to an authorization failure may update the dictionary-attack protection values.

6.6.2 Response Code Formats

The response codes for this specification are defined such that there is no overlap between the response

codes used for this specification and those assigned in previous TPM specifications.

The formats defined in this clause only apply when the tag for the response is TPM_ST_NO_SESSIONS.

The response codes use two different format groups. One group contains the TPM 1.2 compatible

response codes and the response codes for this specification that are not related to command

parameters. The second group contains the errors that may be associated with a command parameter,

handle, or session.

Figure 2 shows the format for the response codes when bit 7 is zero.

bit
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 S T r V F E

Figure 2 — Format-Zero Response Codes

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 29

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

The field definitions are:

Table 12 — Format-Zero Response Codes

Bit Name Definition

06:00 E the error number

The interpretation of this field is dependent on the setting of the G and S fields.

07 F format selector

CLEAR when the format is as defined in this Table 12 or when the response code is

TPM_RC_BAD_TAG.

08 V version

SET (1): The error number is defined in this specification and is returned when the response tag

is TPM_ST_NO_SESSIONS.

CLEAR (0): The error number is defined by a previous TPM specification. The error number is

returned when the response tag is TPM_TAG_RSP_COMMAND.

NOTE In any error number returned by a TPM, the F (bit 7) and V (bit 8) attributes shall be CLEAR
when the response tag is TPM_TAG_RSP_COMMAND value used in TPM 1.2.

09 Reserved shall be zero.

10 T TCG/Vendor indicator

SET (1): The response code is defined by the TPM vendor.

CLEAR (0): The response code is defined by the TCG (a value in this specification).

NOTE This attribute does not indicate a vendor-specific code unless the F attribute (bit[07]) is CLEAR.

11 S severity

SET (1): The response code is a warning and the command was not necessarily in error. This

command indicates that the TPM is busy or that the resources of the TPM have to be adjusted in
order to allow the command to execute.

CLEAR (0): The response code indicates that the command had an error that would prevent it

from running.

When the format bit (bit 7) is SET, then the error occurred during the unmarshaling or validation of an

input parameter to the TPM. Figure 3 shows the format for the response codes when bit 7 is one.

bit
1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

 N 1 P E

Figure 3 — Format-One Response Codes

There are 64 errors with this format. The errors can be associated with a parameter, handle, or session.

The error number for this format is in bits[05:00]. When an error is associated with a parameter, 0 4016 is

added and N is set to the parameter number.

For an error associated with a handle, a parameter number (1 to 7) is added to the N field. For an error

associated with a session, a value of 8 plus the session number (1 to 7) is added to the N field. In other

words, if P is clear, then a value of 0 to 7 in the N field will indicate a handle error, and a value of 8 – 15

will indicate a session error.

NOTE If an implementation is not able to designate the handle, session, or parameter in error, then P and N will
be zero.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 30 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

The field definitions are:

Table 13 — Format-One Response Codes

Bit Name Definition

05:00 E the error number

The error number is independent of the other settings.

06 P SET (1): The error is associated with a parameter.

CLEAR (0): The error is associated with a handle or a session.

07 F the response code format selector

This field shall be SET for the format in this table.

11:08 N the number of the handle, session, or parameter in error

If P is SET, then this field is the parameter in error. If P is CLEAR, then this field indicates the
handle or session in error. Handles use values of N between 00002 and 01112. Sessions use
values between 10002 and 11112.

The groupings of response codes are determined by bits 08, 07, and 06 of the response code as

summarized in Table 14.

Table 14 — Response Code Groupings

Bit

Definition
0
8

0
7

0
6

0 0 x a response code defined by TPM 1.2

NOTE An “x” in a column indicates that this may be either 0 or 1 and not affect the grouping of the response
code.

1 0 x a response code defined by this specification with no handle, session, or parameter number modifier

x 1 0 a response code defined by this specification with either a handle or session number modifier

x 1 1 a response code defined by this specification with a parameter number modifier

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 31

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

6.6.3 TPM_RC Values

In general, response codes defined in Part 2 will be unmarshaling errors and will have the F (format) bit

SET. Codes that are unique to Part 3 will have the F bit CLEAR but the V (version) attribute will be SET to

indicate that it is a TPM 2.0 response code.

NOTE The constant RC_VER1 is used to indicate that the V attribute is SET and the constant RC_FMT1 is used
to indicate that the F attribute is SET and that the return code is variable based on handle, session, and
parameter modifiers.

Table 15 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>

Name Value Description

TPM_RC_SUCCESS 0x000

TPM_RC_BAD_TAG 0x030 defined for compatibility with TPM 1.2

RC_VER1 0x100 set for all format 0 resoponse codes

TPM_RC_INITIALIZE RC_VER1 + 0x000 TPM not initialized

TPM_RC_FAILURE RC_VER1 + 0x001

commands not being accepted because of a TPM
failure

NOTE This may be returned by
TPM2_GetTestResult() as the testResult
parameter.

TPM_RC_SEQUENCE RC_VER1 + 0x003 improper use of a sequence handle

TPM_RC_PRIVATE RC_VER1 + 0x00B

TPM_RC_HMAC RC_VER1 + 0x019

TPM_RC_DISABLED RC_VER1 + 0x020

TPM_RC_EXCLUSIVE RC_VER1 + 0x021
command failed because audit sequence required
exclusivity

TPM_RC_AUTH_TYPE RC_VER1 + 0x024 authorization handle is not correct for command

TPM_RC_AUTH_MISSING RC_VER1 + 0x025
command requires an authorization session for
handle and it is not present.

TPM_RC_POLICY RC_VER1 + 0x026
policy Failure In Math Operation or an invalid
authPolicy value

TPM_RC_PCR RC_VER1 + 0x027 PCR check fail

TPM_RC_PCR_CHANGED RC_VER1 + 0x028 PCR have changed since checked.

TPM_RC_UPGRADE RC_VER1 + 0x02D

for all commands other than
TPM2_FieldUpgradeData(), this code indicates
that the TPM is in field upgrade mode; for
TPM2_FieldUpgradeData(), this code indicates
that the TPM is not in field upgrade mode

TPM_RC_TOO_MANY_CONTEXTS RC_VER1 + 0x02E context ID counter is at maximum.

TPM_RC_AUTH_UNAVAILABLE RC_VER1 + 0x02F
authValue or authPolicy is not available for
selected entity.

TPM_RC_REBOOT RC_VER1 + 0x030
a _TPM_Init and Startup(CLEAR) is required
before the TPM can resume operation.

TPM_RC_UNBALANCED RC_VER1 + 0x031

the protection algorithms (hash and symmetric) are
not reasonably balanced. The digest size of the
hash must be larger than the key size of the
symmetric algorithm.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 32 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name Value Description

TPM_RC_COMMAND_SIZE RC_VER1 + 0x042

command commandSize value is inconsistent with
contents of the command buffer; either the size is
not the same as the octets loaded by the hardware
interface layer or the value is not large enough to
hold a command header

TPM_RC_COMMAND_CODE RC_VER1 + 0x043 command code not supported

TPM_RC_AUTHSIZE RC_VER1 + 0x044
the value of authorzationSize is out of range or the
number of octets in the Authorization Area is
greater than required

TPM_RC_AUTH_CONTEXT RC_VER1 + 0x045
use of an authorization session with a context
command

TPM_RC_NV_RANGE RC_VER1 + 0x046 NV offset+size is out of range.

TPM_RC_NV_SIZE RC_VER1 + 0x047 Requested allocation size is larger than allowed.

TPM_RC_NV_LOCKED RC_VER1 + 0x048 NV access locked.

TPM_RC_NV_AUTHORIZATION RC_VER1 + 0x049
NV access authorization fails in command actions
(this failure does not affect lockout.action)

TPM_RC_NV_UNINITIALIZED RC_VER1 + 0x04A
an NV Index is used before being initialized or the
state saved by TPM2_Shutdown(STATE) could not
be restored

TPM_RC_NV_SPACE RC_VER1 + 0x04B insufficient space for NV allocation

TPM_RC_NV_DEFINED RC_VER1 + 0x04C NV Index or persistend object already defined

TPM_RC_BAD_CONTEXT RC_VER1 + 0x050 context in TPM2_ContextLoad() is not valid

TPM_RC_CPHASH RC_VER1 + 0x051 cpHash value already set or not correct for use

TPM_RC_PARENT RC_VER1 + 0x052 handle for parent is not a valid parent

TPM_RC_NEEDS_TEST RC_VER1 + 0x053 some function needs testing.

TPM_RC_NO_RESULT RC_VER1 + 0x054

returned when an internal function cannot process
a request due to an unspecified problem. This
code is usually related to invalid parameters that
are not properly filtered by the input unmarshaling
code.

TPM_RC_SENSITIVE RC_VER1 + 0x055

the sensitive area did not unmarshal correctly after
decryption – this code is used in lieu of the other
unmarshaling errors so that an attacker cannot
determine where the unmarshaling error occurred

RC_MAX_FM0 RC_VER1 + 0x07F largest version 1 code that is not a warning

 New Subsection

RC_FMT1 0x080

This bit is SET in all format 1 response codes

The codes in this group may have a value added to
them to indicate the handle, session, or parameter
to which they apply.

TPM_RC_ASYMMETRIC RC_FMT1 + 0x001 asymmetric algorithm not supported or not correct

TPM_RC_ATTRIBUTES RC_FMT1 + 0x002 inconsistent attributes

TPM_RC_HASH RC_FMT1 + 0x003 hash algrithm not supported or not appropriate

TPM_RC_VALUE RC_FMT1 + 0x004
value is out of range or is not correct for the
context

TPM_RC_HIERARCHY RC_FMT1 + 0x005
hierarchy is not enabled or is not correct for the
use

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 33

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name Value Description

TPM_RC_KEY_SIZE RC_FMT1 + 0x007 key size is not supported

TPM_RC_MGF RC_FMT1 + 0x008 mask generation function not supported

TPM_RC_MODE RC_FMT1 + 0x009 mode of operation not supported

TPM_RC_TYPE RC_FMT1 + 0x00A the type of the value is not appropriate for the use

TPM_RC_HANDLE RC_FMT1 + 0x00B the handle is not correct for the use

TPM_RC_KDF RC_FMT1 + 0x00C
unsupported key derivation function or function not
appropriate for use

TPM_RC_RANGE RC_FMT1 + 0x00D value was out of allowed range.

TPM_RC_AUTH_FAIL RC_FMT1 + 0x00E
the authorization HMAC check failed and DA
counter incremented

TPM_RC_NONCE RC_FMT1 + 0x00F invalid nonce size

TPM_RC_PP RC_FMT1 + 0x010 authorization requires assertion of PP

TPM_RC_SCHEME RC_FMT1 + 0x012 unsupported or incompatible scheme

TPM_RC_SIZE RC_FMT1 + 0x015 structure is the wrong size

TPM_RC_SYMMETRIC RC_FMT1 + 0x016
unsupported symmetric algorithm or key size, or
not appropriate for instance

TPM_RC_TAG RC_FMT1 + 0x017 incorrect structure tag

TPM_RC_SELECTOR RC_FMT1 + 0x018 union selector is incorrect

TPM_RC_INSUFFICIENT RC_FMT1 + 0x01A
the TPM was unable to unmarshal a value
because there were not enough octets in the input
buffer

TPM_RC_SIGNATURE RC_FMT1 + 0x01B the signature is not valid

TPM_RC_KEY RC_FMT1 + 0x01C key fields are not compatible with the selected use

TPM_RC_POLICY_FAIL RC_FMT1 + 0x01D a policy check failed

TPM_RC_INTEGRITY RC_FMT1 + 0x01F integrity check failed

TPM_RC_TICKET RC_FMT1 + 0x020 invalid ticket

TPM_RC_RESERVED_BITS RC_FMT1 + 0x021 reserved bits not set to zero as required

TPM_RC_BAD_AUTH RC_FMT1 + 0x022 authroization failure without DA implications

TPM_RC_EXPIRED RC_FMT1 + 0x023 the policy has expired

TPM_RC_POLICY_CC RC_FMT1 + 0x024

the commandCode in the policy is not the
commandCode of the command or the command
code in a policy command references a command
that is not implemented

TPM_RC_BINDING RC_FMT1 + 0x025
public and sensitive portions of an object are not
cryptographically bound

TPM_RC_CURVE RC_FMT1 + 0x026 curve not supported

TPM_RC_ECC_POINT RC_FMT1 + 0x027 point is not on the required curve.

 New Subsection

RC_WARN 0x900 set for warning response codes

TPM_RC_CONTEXT_GAP RC_WARN + 0x001 gap for context ID is too large

TPM_RC_OBJECT_MEMORY RC_WARN + 0x002 out of memory for object contexts

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 34 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name Value Description

TPM_RC_SESSION_MEMORY RC_WARN + 0x003 out of memory for session contexts

TPM_RC_MEMORY RC_WARN + 0x004
out of shared object/session memory or need
space for internal operations

TPM_RC_SESSION_HANDLES RC_WARN + 0x005
out of session handles – a session must be flushed
before a new session may be created

TPM_RC_OBJECT_HANDLES RC_WARN + 0x006

out of object handles – the handle space for
objects is depleted and a reboot is required

NOTE This cannot occur on the reference
implementation.

TPM_RC_LOCALITY RC_WARN + 0x007 bad locality

TPM_RC_YIELDED RC_WARN + 0x008

the TPM has suspended operation on the
command; forward progress was made and the
command may be retried.

See Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference
implementation.

TPM_RC_CANCELED RC_WARN + 0x009 the command was canceled

TPM_RC_TESTING RC_WARN + 0x00A TPM is performing self-tests

TPM_RC_REFERENCE_H0 RC_WARN + 0x010
the 1

st
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H1 RC_WARN + 0x011
the 2

nd
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H2 RC_WARN + 0x012
the 3

rd
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H3 RC_WARN + 0x013
the 4

th
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H4 RC_WARN + 0x014
the 5

th
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H5 RC_WARN + 0x015
the 6

th
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_H6 RC_WARN + 0x016
the 7

th
 handle in the handle area references a

transient object or session that is not loaded

TPM_RC_REFERENCE_S0 RC_WARN + 0x018
the 1

st
 authorization session handle references a

session that is not loaded

TPM_RC_REFERENCE_S1 RC_WARN + 0x019
the 2

nd
 authorization session handle references a

session that is not loaded

TPM_RC_REFERENCE_S2 RC_WARN + 0x01A
the 3

rd
 authorization session handle references a

session that is not loaded

TPM_RC_REFERENCE_S3 RC_WARN + 0x01B
the 4th authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S4 RC_WARN + 0x01C
the 5

th
 session handle references a session that is

not loaded

TPM_RC_REFERENCE_S5 RC_WARN + 0x01D
the 6

th
 session handle references a session that is

not loaded

TPM_RC_REFERENCE_S6 RC_WARN + 0x01E
the 7

th
 authorization session handle references a

session that is not loaded

TPM_RC_NV_RATE RC_WARN + 0x020
the TPM is rate-limiting accesses to prevent
wearout of NV

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 35

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name Value Description

TPM_RC_LOCKOUT RC_WARN + 0x021
authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in
DA lockout mode

TPM_RC_RETRY RC_WARN + 0x022 the TPM was not able to start the command

TPM_RC_NV_UNAVAILABLE RC_WARN + 0x023
the command may require writing of NV and NV is
not current accessible

TPM_RC_NOT_USED RC_WARN + 0x7F
this value is reserved and shall not be returned by
the TPM

 Additional Defines

TPM_RC_H 0x000 add to a handle-related error

TPM_RC_P 0x040 add to a parameter-related error

TPM_RC_S 0x800 add to a session-related error

TPM_RC_1 0x100
add to a parameter-, handle-, or session-related
error

TPM_RC_2 0x200
add to a parameter-, handle-, or session-related
error

TPM_RC_3 0x300
add to a parameter-, handle-, or session-related
error

TPM_RC_4 0x400
add to a parameter-, handle-, or session-related
error

TPM_RC_5 0x500
add to a parameter-, handle-, or session-related
error

TPM_RC_6 0x600
add to a parameter-, handle-, or session-related
error

TPM_RC_7 0x700
add to a parameter-, handle-, or session-related
error

TPM_RC_8 0x800 add to a parameter-related error

TPM_RC_9 0x900 add to a parameter-related error

TPM_RC_A 0xA00 add to a parameter-related error

TPM_RC_B 0xB00 add to a parameter-related error

TPM_RC_C 0xC00 add to a parameter-related error

TPM_RC_D 0xD00 add to a parameter-related error

TPM_RC_E 0xE00 add to a parameter-related error

TPM_RC_F 0xF00 add to a parameter-related error

TPM_RC_N_MASK 0xF00 number mask

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 36 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.7 TPM_CLOCK_ADJUST

A TPM_CLOCK_ADJUST value is used to change the rate at which the TPM internal oscillator is divided.

A change to the divider will change the rate at which Clock and Time change.

NOTE The recommended adjustments are approximately 1% for a course adjustment, 0.1% for a medium
adjustment, and the minimum possible on the implementation for the fine adjustment (e.g., one count of
the pre-scalar if possible).

Table 16 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN>

Name Value Comments

TPM_CLOCK_COARSE_SLOWER -3 Slow the Clock update rate by one coarse adjustment step.

TPM_CLOCK_MEDIUM_SLOWER -2 Slow the Clock update rate by one medium adjustment step.

TPM_CLOCK_FINE_SLOWER -1 Slow the Clock update rate by one fine adjustment step.

TPM_CLOCK_NO_CHANGE 0 No change to the Clock update rate.

TPM_CLOCK_FINE_FASTER 1 Speed the Clock update rate by one fine adjustment step.

TPM_CLOCK_MEDIUM_FASTER 2 Speed the Clock update rate by one medium adjustment step.

TPM_CLOCK_COARSE_FASTER 3 Speed the Clock update rate by one coarse adjustment step.

#TPM_RC_VALUE

6.8 TPM_EO (EA Arithmetic Operands)

Table 17 — Definition of (UINT16) TPM_EO Constants <IN/OUT>

Operation Name Value Comments

TPM_EO_EQ 0x0000 A = B

TPM_EO_NEQ 0x0001 A ≠ B

TPM_EO_SIGNED_GT 0x0002 A > B signed

TPM_EO_UNSIGNED_GT 0x0003 A > B unsigned

TPM_EO_SIGNED_LT 0x0004 A < B signed

TPM_EO_UNSIGNED_LT 0x0005 A < B unsigned

TPM_EO_SIGNED_GE 0x0006 A ≥ B signed

TPM_EO_UNSIGNED_GE 0x0007 A ≥ B unsigned

TPM_EO_SIGNED_LE 0x0008 A ≤ B signed

TPM_EO_UNSIGNED_LE 0x0009 A ≤ B unsigned

TPM_EO_BITSET 0x000A All bits SET in B are SET in A. ((A&B)=B)

TPM_EO_BITCLEAR 0x000B All bits SET in B are CLEAR in A. ((A&B)=0)

#TPM_RC_VALUE Response code returned when unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 37

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

6.9 TPM_ST (Structure Tags)

Structure tags are used to disambiguate structures. They are 16-bit values with the most significant bit

SET so that they do not overlap TPM_ALG_ID values. A single exception is made for the value

associated with TPM_ST_RSP_COMMAND (0x00C4), which has the same value as the

TPM_TAG_RSP_COMMAND tag from earlier versions of this specification. This value is used when the

TPM is compatible with a previous TPM specification and the TPM cannot determine which family of

response code to return because the command tag is not valid.

Many of the structures defined in this document have parameters that are unions of other structures. That

is, a parameter may be one of several structures. The parameter will have a selector value that indicates

which of the options is actually present.

In order to allow the marshaling and unmarshaling code to determine which of the possible structures is

allowed, each selector will have a unique interface type and will constrain the number of possible tag

values.

Table 18 defines the structure tags values. The definition of many structures is context-sensitive using an

algorithm ID. In cases where an algorithm ID is not a meaningful way to designate the structure, the

values in this table are used.

Table 18 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>

Name Value Comments

TPM_ST_RSP_COMMAND 0x00C4 tag value for a response; used when there is an error
in the tag. This is also the value returned from a TPM
1.2 when an error occurs. This value is used in this
specification because an error in the command tag
may prevent determination of the family. When this tag
is used in the response, the response code will be
TPM_RC_BAD_TAG (0 3016), which has the same
numeric value as the TPM 1.2 response code for
TPM_BADTAG.

TPM_ST_NULL 0X8000 no structure type specified

TPM_ST_NO_SESSIONS 0x8001 tag value for a command/response for a command
defined in this specification; indicating that the
command/response has no attached sessions and no
authorizationSize/parameterSize value is present

If the responseCode from the TPM is not
TPM_RC_SUCCESS, then the response tag shall
have this value.

TPM_ST_SESSIONS 0x8002 tag value for a command/response for a command
defined in this specification; indicating that the
command/response has one or more attached
sessions and the authorizationSize/parameterSize
field is present

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 38 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name Value Comments

reserved 0x8003 When used between application software and the TPM
resource manager, this tag indicates that the
command has no sessions and the handles are using
the Name format rather than the 32-bit handle format.

NOTE 1 The response to application software will have a
tag of TPM_ST_NO_SESSIONS.

Between the TRM and TPM, this tag would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has no associated sessions.

NOTE 2 This tag is not used by all TPM or TRM
implementations.

reserved 0x8004 When used between application software and the TPM
resource manager, this tag indicates that the
command has sessions and the handles are using the
Name format rather than the 32-bit handle format.

NOTE 1 If the command completes successfully, the
response to application software will have a tag
of TPM_ST_SESSIONS.

Between the TRM and TPM, would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,

when the response has authorization sessions.

NOTE 2 This tag is not used by all TPM or TRM
implementations.

TPM_ST_ATTEST_NV 0x8014 tag for an attestation structure

TPM_ST_ATTEST_COMMAND_AUDIT 0x8015 tag for an attestation structure

TPM_ST_ATTEST_SESSION_AUDIT 0x8016 tag for an attestation structure

TPM_ST_ATTEST_CERTIFY 0x8017 tag for an attestation structure

TPM_ST_ATTEST_QUOTE 0x8018 tag for an attestation structure

TPM_ST_ATTEST_TIME 0x8019 tag for an attestation structure

TPM_ST_ATTEST_CREATION 0x801A tag for an attestation structure

reserved 0x801B do not use

NOTE This was previously assigned to
TPM_ST_ATTEST_NV. The tag is changed
because the structure has changed

TPM_ST_CREATION 0x8021 tag for a ticket type

TPM_ST_VERIFIED 0x8022 tag for a ticket type

TPM_ST_AUTH_SECRET 0x8023 tag for a ticket type

TPM_ST_HASHCHECK 0x8024 tag for a ticket type

TPM_ST_AUTH_SIGNED 0x8025 tag for a ticket type

TPM_ST_FU_MANIFEST 0x8029 tag for a structure describing a Field Upgrade Policy

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 39

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

6.10 TPM_SU (Startup Type)

These values are used in TPM2_Startup() to indicate the shutdown and startup mode. The defined

startup sequences are:

a) TPM Reset – Two cases:

1) Shutdown(CLEAR) followed by Startup(CLEAR)

2) Startup(CLEAR) with no Shutdown()

b) TPM Restart – Shutdown(STATE) followed by Startup(CLEAR)

c) TPM Resume – Shutdown(STATE) followed by Startup(STATE)

TPM_SU values of 80 0016 and above are reserved for internal use of the TPM and may not be assigned

values.

NOTE In the reference code, a value of FF FF16 indicates that the startup state has not been set. If this was
defined in this table to be, say, TPM_SU_NONE, then TPM_SU_NONE would be a valid input value but
the caller is not allowed to indicate the that the startup type is TPM_SU_NONE so the reserved value is
defined in the implementation as required for internal TPM uses.

Table 19 — Definition of (UINT16) TPM_SU Constants <IN>

Name Value Description

TPM_SU_CLEAR 0x0000 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Reset).

on TPM2_Startup(), indicates that the TPM should start from
perform TPM Reset or TPM Restart

TPM_SU_STATE 0x0001 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Restart or TPM Resume)

on TPM2_Startup(), indicates that the TPM should restore the
state saved by TPM2_Shutdown(TPM_SU_STATE)

#TPM_RC_VALUE response code when incorrect value is used

6.11 TPM_SE (Session Type)

This type is used in TPM2_StartAuthSession() to indicate the type of the session to be created.

Table 20 — Definition of (UINT8) TPM_SE Constants <IN>

Name Value Description

TPM_SE_HMAC 0x00

TPM_SE_POLICY 0x01

TPM_SE_TRIAL 0x03 The policy session is being used to compute the policyHash and
not for command authorization.

This setting modifies some policy commands and prevents
session from being used to authorize a command.

#TPM_RC_VALUE response code when incorrect value is used

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 40 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.12 TPM_CAP (Capabilities)

The TPM_CAP values are used in TPM2_GetCapability() to select the type of the value to be returned.

The format of the response varies according to the type of the value.

Table 21 — Definition of (UINT32) TPM_CAP Constants

Capability Name Value Property Type Return Type

TPM_CAP_FIRST 0x00000000

TPM_CAP_ALGS 0x00000000 TPM_ALG_ID
(1)

 TPML_ALG_PROPERTY

TPM_CAP_HANDLES 0x00000001 TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS 0x00000002 TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS 0x00000003 TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS 0x00000004 TPM_CC TPML_CC

TPM_CAP_PCRS 0x00000005 reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES 0x00000006 TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES 0x00000007 TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVES 0x00000008 TPM_ECC_CURVE
(1)

 TPML_ECC_CURVE

TPM_CAP_LAST 0x00000008

TPM_CAP_VENDOR_PROPERTY 0x00000100 manufacturer specific manufacturer-specific values

#TPM_RC_VALUE

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

6.13 TPM_PT (Property Tag)

The TPM_PT constants are used in TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES) to

indicate the property being selected or returned.

The values in the fixed group (PT_FIXED) are not changeable through programmatic means other than a

firmware update. The values in the variable group (PT_VAR) may be changed with TPM commands but

should be persistent over power cycles and only changed when indicated by the detailed actions code.

Table 22 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_NONE 0x00000000 indicates no property type

PT_GROUP 0x00000100 The number of properties in each group.

NOTE The first group with any properties is group 1
(PT_GROUP * 1). Group 0 is reserved.

PT_FIXED PT_GROUP * 1 the group of fixed properties returned as
TPMS_TAGGED_PROPERTY

The values in this group are only changed due to a
firmware change in the TPM.

TPM_PT_FAMILY_INDICATOR PT_FIXED + 0 a 4-octet character string containing the TPM Family value
(TPM_FAMILY)

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 41

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Capability Name Value Comments

TPM_PT_LEVEL PT_FIXED + 1 the level of the specification

NOTE 1 For this specification, the level is zero.

NOTE 2 The level is on the title page of the specification.

TPM_PT_REVISION PT_FIXED + 2 the specification Revision times 100

EXAMPLE Revision 01.01 would have a value of 101.

NOTE The Revision value is on the title page of the
specification.

TPM_PT_DAY_OF_YEAR PT_FIXED + 3 the specification day of year using TCG calendar

EXAMPLE November 15, 2010, has a day of year value of 319
(00 00 01 3F16).

NOTE The specification date is on the title page of the
specification.

TPM_PT_YEAR PT_FIXED + 4 the specification year using the CE

EXAMPLE The year 2010 has a value of 00 00 07 DA16.

NOTE The specification date is on the title page of the
specification.

TPM_PT_MANUFACTURER PT_FIXED + 5 the vendor ID unique to each TPM manufacturer

TPM_PT_VENDOR_STRING_1 PT_FIXED + 6 the first four characters of the vendor ID string

NOTE When the vendor string is fewer than 16 octets, the
additional property values do not have to be present.
A vendor string of 4 octets can be represented in one
32-bit value and no null terminating character is
required.

TPM_PT_VENDOR_STRING_2 PT_FIXED + 7 the second four characters of the vendor ID string

TPM_PT_VENDOR_STRING_3 PT_FIXED + 8 the third four characters of the vendor ID string

TPM_PT_VENDOR_STRING_4 PT_FIXED + 9 the fourth four characters of the vendor ID sting

TPM_PT_VENDOR_TPM_TYPE PT_FIXED + 10 vendor-defined value indicating the TPM model

TPM_PT_FIRMWARE_VERSION_1 PT_FIXED + 11 the most-significant 32 bits of a vendor-specific value
indicating the version of the firmware

TPM_PT_FIRMWARE_VERSION_2 PT_FIXED + 12 the least-significant 32 bits of a vendor-specific value
indicating the version of the firmware

TPM_PT_INPUT_BUFFER PT_FIXED + 13 the maximum size of a parameter (typically, a
TPM2B_MAX_BUFFER)

TPM_PT_HR_TRANSIENT_MIN PT_FIXED + 14 the minimum number of transient objects that can be held
in TPM RAM

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

TPM_PT_HR_PERSISTENT_MIN PT_FIXED + 15 the minimum number of persistent objects that can be
held in TPM NV memory

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

TPM_PT_HR_LOADED_MIN PT_FIXED + 16 the minimum number of authorization sessions that can
be held in TPM RAM

 NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification
to which the TPM is built.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 42 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Capability Name Value Comments

TPM_PT_ACTIVE_SESSIONS_MAX PT_FIXED + 17 the number of authorization sessions that may be active at
a time

A session is active when it has a context associated with
its handle. The context may either be in TPM RAM or be
context saved.

NOTE This value shall be no less than the minimum value
required by the platform-specific specification to
which the TPM is built.

TPM_PT_PCR_COUNT PT_FIXED + 18 the number of PCR implemented

NOTE This number is determined by the defined
attributes, not the number of PCR that are populated.

TPM_PT_PCR_SELECT_MIN PT_FIXED + 19 the minimum number of octets in a
TPMS_PCR_SELECT.sizeOfSelect

NOTE This value is not determined by the number of PCR
implemented but by the number of PCR required by
the platform-specific specification with which the TPM
is compliant.

TPM_PT_CONTEXT_GAP_MAX PT_FIXED + 20 the maximum allowed difference (unsigned) between the
contextID values of two saved session contexts

This value shall be at least 2
16

-1 (65535).

 PT_FIXED + 21 skipped

TPM_PT_NV_COUNTERS_MAX PT_FIXED + 22 the maximum number of NV Indexes that are allowed to
have the TPMA_NV_COUNTER attribute SET

NOTE It is allowed for this value to be larger than the
number of NV Indexes that can be defined. This
would be indicative of a TPM implementation that did
not use different implementation technology for
different NV Index types.

TPM_PT_NV_INDEX_MAX PT_FIXED + 23 the maximum size of an NV Index data area

TPM_PT_MEMORY PT_FIXED + 24 a TPMA_MEMORY indicating the memory management
method for the TPM

TPM_PT_CLOCK_UPDATE PT_FIXED + 25 interval, in milliseconds, between updates to the copy of
TPMS_CLOCK_INFO.clock in NV

TPM_PT_CONTEXT_HASH PT_FIXED + 26 the algorithm used for the integrity HMAC on saved
contexts and for hashing the fuData of
TPM2_FirmwareRead()

TPM_PT_CONTEXT_SYM PT_FIXED + 27 the algorithm used for encryption of saved contexts

TPM_PT_CONTEXT_SYM_SIZE PT_FIXED + 28 the size of the key used for encryption of saved contexts

TPM_PT_ORDERLY_COUNT PT_FIXED + 29 the modulus - 1 of the count for NV update of an orderly
counter

The returned value is MAX_ORDERLY_COUNT.

This will have a value of 2
N
 – 1 where 1 ≤ N ≤ 32

NOTE An “orderly counter” is an NV Index with
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
both SET.

TPM_PT_MAX_COMMAND_SIZE PT_FIXED + 30 the maximum value for commandSize in a command

TPM_PT_MAX_RESPONSE_SIZE PT_FIXED + 31 the maximum value for responseSize in a response

TPM_PT_MAX_DIGEST PT_FIXED + 32 the maximum size of a digest that can be produced by the
TPM

TPM_PT_MAX_OBJECT_CONTEXT PT_FIXED + 33 the maximum size of an object context that will be
returned by TPM2_ContextSave

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 43

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Capability Name Value Comments

TPM_PT_MAX_SESSION_CONTEXT PT_FIXED + 34 the maximum size of a session context that will be
returned by TPM2_ContextSave

TPM_PT_PS_FAMILY_INDICATOR PT_FIXED + 35 platform-specific family (a TPM_PS value)(see Table 24)

NOTE The platform-specific values for the TPM_PT_PS
parameters are in the relevant platform-specific
specification. In the reference implementation, all of
these values are 0.

TPM_PT_PS_LEVEL PT_FIXED + 36 the level of the platform-specific specification

TPM_PT_PS_REVISION PT_FIXED + 37 the specification Revision times 100 for the platform-
specific specification

TPM_PT_PS_DAY_OF_YEAR PT_FIXED + 38 the platform-specific specification day of year using TCG
calendar

TPM_PT_PS_YEAR PT_FIXED + 39 the platform-specific specification year using the CE

TPM_PT_SPLIT_MAX PT_FIXED + 40 the number of split signing operations supported by the
TPM

TPM_PT_TOTAL_COMMANDS PT_FIXED + 41 total number of commands implemented in the TPM

TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42 number of commands from the TPM library that are
implemented

TPM_PT_VENDOR_COMMANDS PT_FIXED + 43 number of vendor commands that are implemented

PT_VAR PT_GROUP * 2 the group of variable properties returned as
TPMS_TAGGED_PROPERTY

The properties in this group change because of a
Protected Capability other than a firmware update. The
values are not necessarily persistent across all power
transitions.

TPM_PT_PERMANENT PT_VAR + 0 TPMA_PERMANENT

TPM_PT_STARTUP_CLEAR PT_VAR + 1 TPMA_STARTUP_CLEAR

TPM_PT_HR_NV_INDEX PT_VAR + 2 the number of NV Indexes currently defined

TPM_PT_HR_LOADED PT_VAR + 3 the number of authorization sessions currently loaded into
TPM RAM

TPM_PT_HR_LOADED_AVAIL PT_VAR + 4 the number of additional authorization sessions, of any
type, that could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
loaded. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session would fit into RAM.

TPM_PT_HR_ACTIVE PT_VAR + 5 the number of active authorization sessions currently
being tracked by the TPM

This is the sum of the loaded and saved sessions.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 44 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Capability Name Value Comments

TPM_PT_HR_ACTIVE_AVAIL PT_VAR + 6 the number of additional authorization sessions, of any
type, that could be created

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
created. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session could be created.

TPM_PT_HR_TRANSIENT_AVAIL PT_VAR + 7 estimate of the number of additional transient objects that
could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one object of any type may be loaded. Any
command that changes the memory allocation can make
this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one transient object would fit into RAM.

TPM_PT_HR_PERSISTENT PT_VAR + 8 the number of persistent objects currently loaded into
TPM NV memory

TPM_PT_HR_PERSISTENT_AVAIL PT_VAR + 9 the number of additional persistent objects that could be
loaded into NV memory

This value is an estimate. If this value is at least 1, then at
least one object of any type may be made persistent. Any
command that changes the NV memory allocation can
make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one persistent object would fit into NV memory.

TPM_PT_NV_COUNTERS PT_VAR + 10 the number of defined NV Indexes that have NV
TPMA_NV_COUNTER attribute SET

TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11 the number of additional NV Indexes that can be defined
with their TPMA_NV_COUNTER and
TPMA_NV_ORDERLY attribute SET

This value is an estimate. If this value is at least 1, then at
least one NV Index may be created with the
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
attributes SET. Any command that changes the NV
memory allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one NV counter could be defined.

TPM_PT_ALGORITHM_SET PT_VAR + 12 code that limits the algorithms that may be used with the
TPM

TPM_PT_LOADED_CURVES PT_VAR + 13 the number of loaded ECC curves

TPM_PT_LOCKOUT_COUNTER PT_VAR + 14 the current value of the lockout counter (failedTries)

TPM_PT_MAX_AUTH_FAIL PT_VAR + 15 the number of authorization failures before DA lockout is
invoked

TPM_PT_LOCKOUT_INTERVAL PT_VAR + 16 the number of seconds before the value reported by
TPM_PT_LOCKOUT_COUNTER is decremented

TPM_PT_LOCKOUT_RECOVERY PT_VAR + 17 the number of seconds after a lockoutAuth failure before
use of lockoutAuth may be attempted again

TPM_PT_NV_WRITE_RECOVERY PT_VAR + 18 number of milliseconds before the TPM will accept
another command that will modify NV

This value is an approximation and may go up or down
over time.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 45

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Capability Name Value Comments

TPM_PT_AUDIT_COUNTER_0 PT_VAR + 19 the high-order 32 bits of the command audit counter

TPM_PT_AUDIT_COUNTER_1 PT_VAR + 20 the low-order 32 bits of the command audit counter

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 46 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.14 TPM_PT_PCR (PCR Property Tag)

The TPM_PT_PCR constants are used in TPM2_GetCapability() to indicate the property being selected

or returned. The PCR properties can be read when capability == TPM_CAP_PCR_PROPERTIES.

Table 23 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>

Capability Name Value Comments

TPM_PT_PCR_FIRST 0x00000000 bottom of the range of TPM_PT_PCR properties

TPM_PT_PCR_SAVE 0x00000000 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
saved and restored by TPM_SU_STATE

TPM_PT_PCR_EXTEND_L0 0x00000001 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 0

This property is only present if a locality other than 0 is
implemented.

TPM_PT_PCR_RESET_L0 0x00000002 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 0

TPM_PT_PCR_EXTEND_L1 0x00000003 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_RESET_L1 0x00000004 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 1

This property is only present if locality 1 is implemented.

TPM_PT_PCR_EXTEND_L2 0x00000005 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_RESET_L2 0x00000006 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 2

This property is only present if localities 1 and 2 are
implemented.

TPM_PT_PCR_EXTEND_L3 0x00000007 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_RESET_L3 0x00000008 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 3

This property is only present if localities 1, 2, and 3 are
implemented.

TPM_PT_PCR_EXTEND_L4 0x00000009 a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

TPM_PT_PCR_RESET_L4 0x0000000A a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 47

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Capability Name Value Comments

reserved 0x0000000B –
0x00000010

the values in this range are reserved

They correspond to values that may be used to describe
attributes associated with the extended localities (32-
255).synthesize additional software localities. The meaning of
these properties need not be the same as the meaning for the
Extend and Reset properties above.

TPM_PT_PCR_NO_INCREMENT 0x00000011 a SET bit in the TPMS_PCR_SELECT indicates that
modifications to this PCR (reset or Extend) will not increment
the pcrUpdateCounter

TPM_PT_PCR_DRTM_RESET 0x00000012 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
reset by a DRTM event

These PCR are reset to -1 on TPM2_Startup() and reset to 0 on
a _TPM_Hash_End event following a _TPM_Hash_Start event.

TPM_PT_PCR_POLICY 0x00000013 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by policy

This property is only present if the TPM supports policy control
of a PCR.

TPM_PT_PCR_AUTH 0x00000014 a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by an authorization value

This property is only present if the TPM supports authorization
control of a PCR.

reserved 0x00000015 reserved for the next (2
nd

) TPM_PT_PCR_POLICY set

reserved 0x00000016 reserved for the next (2
nd

) TPM_PT_PCR_AUTH set

reserved 0x00000017 –
0x00000210

reserved for the 2
nd

 through 255
th

 TPM_PT_PCR_POLICY and
TPM_PT_PCR_AUTH values

reserved 0x00000211 reserved to the 256
th
, and highest allowed,

TPM_PT_PCR_POLICY set

reserved 0x00000212 reserved to the 256
th
, and highest allowed,

TPM_PT_PCR_AUTH set

reserved 0x00000213 new PCR property values may be assigned starting with this
value

TPM_PT_PCR_LAST 0x00000014 top of the range of TPM_PT_PCR properties of the
implementation

If the TPM receives a request for a PCR property with a value
larger than this, the TPM will return a zero length list and set the
moreData parameter to NO.

NOTE This is an implementation-specific value. The value shown
reflects the reference code implementation.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 48 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

6.15 TPM_PS (Platform Specific)

The platform values in Table 24 are used for the TPM_PT_PS_FAMILY_INDICATOR.

NOTE Values below six (6) have the same values as the purview assignments in TPM 1.2.

Table 24 — Definition of (UINT32) TPM_PS Constants <OUT>

Capability Name Value Comments

TPM_PS_MAIN 0x00000000 not platform specific

TPM_PS_PC 0x00000001 PC Client

TPM_PS_PDA 0x00000002 PDA (includes all mobile devices that are not specifically cell
phones)

TPM_PS_CELL_PHONE 0x00000003 Cell Phone

TPM_PS_SERVER 0x00000004 Server WG

TPM_PS_PERIPHERAL 0x00000005 Peripheral WG

TPM_PS_TSS 0x00000006 TSS WG

TPM_PS_STORAGE 0x00000007 Storage WG

TPM_PS_AUTHENTICATION 0x00000008 Authentication WG

TPM_PS_EMBEDDED 0x00000009 Embedded WG

TPM_PS_HARDCOPY 0x0000000A Hardcopy WG

TPM_PS_INFRASTRUCTURE 0x0000000B Infrastructure WG

TPM_PS_VIRTUALIZATION 0x0000000C Virtualization WG

TPM_PS_TNC 0x0000000D Trusted Network Connect WG

TPM_PS_MULTI_TENANT 0x0000000E Multi-tenant WG

TPM_PS_TC 0x0000000F Technical Committee

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 49

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

7 Handles

7.1 Introduction

Handles are 32-bit values used to reference shielded locations of various types within the TPM.

Table 25 — Definition of Types for Handles

Type Name Description

UINT32 TPM_HANDLE

Handles may refer to objects (keys or data blobs), authorization sessions (HMAC and policy), NV

Indexes, permanent TPM locations, and PCR.

7.2 TPM_HT (Handle Types)

The 32-bit handle space is divided into 256 regions of equal size with 2
24

 values in each. Each of these

ranges represents a handle type.

The type of the entity is indicated by the MSO of its handle. The values for the MSO and the entity

referenced are shown in Table 26.

Table 26 — Definition of (UINT8) TPM_HT Constants <S>

Name Value Comments

TPM_HT_PCR 0x00 PCR – consecutive numbers, starting at 0, that reference the PCR

registers

A platform-specific specification will set the minimum number of PCR
and an implementation may have more.

TPM_HT_NV_INDEX 0x01 NV Index – assigned by the caller

TPM_HT_HMAC_SESSION 0x02 HMAC Authorization Session – assigned by the TPM when the

session is created

TPM_HT_LOADED_SESSION 0x02 Loaded Authorization Session – used only in the context of

TPM2_GetCapability

This type references both loaded HMAC and loaded policy
authorization sessions.

TPM_HT_POLICY_SESSION 0x03 Policy Authorization Session – assigned by the TPM when the

session is created

TPM_HT_ACTIVE_SESSION 0x03 Active Authorization Session – used only in the context of

TPM2_GetCapability

This type references saved authorization session contexts for which
the TPM is maintaining tracking information.

TPM_HT_PERMANENT 0x40 Permanent Values – assigned by this specification in Table 27

TPM_HT_TRANSIENT 0x80 Transient Objects – assigned by the TPM when an object is loaded

into transient-object memory or when a persistent object is converted
to a transient object

TPM_HT_PERSISTENT 0x81 Persistent Objects – assigned by the TPM when a loaded transient

object is made persistent

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 50 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

When a transient object is loaded, the TPM shall assign a handle with an MSO of TPM_HT_TRANSIENT.

The object may be assigned a different handle each time it is loaded. The TPM shall ensure that handles

assigned to transient objects are unique and assigned to only one transient object at a time.

EXAMPLE If a TPM is only able to hold 4 transient objects in internal memory, it might choose to assign handles to
those objects with the values 80 00 00 0016 – 80 00 00 0316.

When a transient object is converted to a persistent object (TPM2_EvictControl()), the TPM shall validate

that the handle provided by the caller has an MSO of TPM_HT_PERSISTENT and that the handle is not

already assigned to a persistent object.

A handle is assigned to a session when the session is started. The handle shall have an MSO equal to

TPM_HT_SESSION and remain associated with that session until the session is closed or flushed. The

TPM shall ensure that a session handle is only associated with one session at a time. When the session

is loaded into the TPM using TPM2_LoadContext(), it will have the same handle each time it is loaded.

EXAMPLE If a TPM is only able to track 64 active sessions at a time, it could number those sessions using the
values xx 00 01 0016 – xx 00 01 3F16 where xx is either 0216 or 0316 depending on the session type.

7.3 Persistent Handle Sub-ranges

Persistent handles are assigned by the caller of TPM2_EvictControl(). ownerAuth or platformAuth is

required to authorize allocation of space for a persistent object. These entities are given separate ranges

of persistent handles so that they do not have to allocate from a common range of handles.

NOTE While this “namespace” allocation of the handle ranges could have been handled by convention, TPM
enforcement is used to prevent errors by the OS or malicious software from affecting the platform’s use of
the NV memory.

The Owner is allocated persistent handles in the range of 81 00 00 0016 to 81 7F FF FF16 inclusive and

the TPM will return an error if ownerAuth is used to attempt to assign a persistent handle outside of this

range.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 51

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

7.4 TPM_RH (Permanent Handles)

Table 27 lists the architecturally defined handles that cannot be changed. The handles include

authorization handles, and special handles.

Table 27 — Definition of (UINT32) TPM_RH Constants <IN, S>

Name Value Type Comments

TPM_RH_FIRST 0x40000000 R

TPM_RH_SRK 0x40000000 R not used
1

TPM_RH_OWNER 0x40000001 K, A, P
handle references the Storage Primary Seed (SPS), the
ownerAuth, and the ownerPolicy

TPM_RH_REVOKE 0x40000002 R not used
1

TPM_RH_TRANSPORT 0x40000003 R not used
1

TPM_RH_OPERATOR 0x40000004 R not used
1

TPM_RH_ADMIN 0x40000005 R not used
1

TPM_RH_EK 0x40000006 R not used
1

TPM_RH_NULL 0x40000007 K, A, P
a handle associated with the null hierarchy, an EmptyAuth
authValue, and an Empty Policy authPolicy.

TPM_RH_UNASSIGNED 0x40000008 R
value reserved to the TPM to indicate a handle location that
has not been initialized or assigned

TPM_RS_PW 0x40000009 S
authorization value used to indicate a password
authorization session

TPM_RH_LOCKOUT 0x4000000A A
references the authorization associated with the dictionary
attack lockout reset

TPM_RH_ENDORSEMENT 0x4000000B K, A, P
references the Endorsement Primary Seed (EPS),
endorsementAuth, and endorsementPolicy

TPM_RH_PLATFORM 0x4000000C K, A, P
references the Platform Primary Seed (PPS), platformAuth,
and platformPolicy

TPM_RH_LAST 0x4000000C R

the top of the reserved handle area

This is set to allow TPM2_GetCapability() to know where to
stop. It may vary as implementations add to the permanent
handle area.

Type definitions:

 R – a reserved value

 K – a Primary Seed

 A – an authorization value

 P – a policy value

 S – a session handle

Note 1 The handle is only used in a TPM that is compatible with a previous version of this specification. It is not used in any
command defined in this version of the specification.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 52 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

7.5 TPM_HC (Handle Value Constants)

The definitions in Table 28 are used to define many of the interface data types. However, the values of

these constants, other than PCR_FIRST, are informative and may be changed by an implementation as

long as the values stay within the prescribed ranges for the handle type.

NOTE PCR0 is architecturally defined to have a handle value of 0.

For the reference implementation, the handle range for sessions starts at the lowest allowed value for a

session handle. The highest value for a session handle is determined by how many active sessions are

allowed by the implementation. The MSO of the session handle will be set according to the session type.

A similar approach is used for transient objects with the first assigned handle at the bottom of the range

defined by TPM_HT_TRANSIENT and the top of the range determined by the implementation-dependent

value of MAX_LOADED_OBJECTS.

The first assigned handle for evict objects is also at the bottom of the allowed range defined by

TPM_HT_PERSISTENT and the top of the range determined by the implementation-dependent value of

MAX_EVICT_OBJECTS.

NOTE The values in Table 28 are intended to facilitate the process of making the handle larger than 32 bits in
the future. It is intended that HR_MASK and HR_SHIFT are the only values that need change to resize
the handle space.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 53

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 28 — Definition of (TPM_HANDLE) TPM_HC Constants <IN, S>

Name Value Comments

HR_HANDLE_MASK 0x00FFFFFF to mask off the HR

HR_RANGE_MASK 0xFF000000 to mask off the variable
part

HR_SHIFT 24

HR_PCR (TPM_HT_PCR << HR_SHIFT)

HR_HMAC_SESSION (TPM_HT_HMAC_SESSION << HR_SHIFT)

HR_POLICY_SESSION (TPM_HT_POLICY_SESSION << HR_SHIFT)

HR_TRANSIENT (TPM_HT_TRANSIENT << HR_SHIFT)

HR_PERSISTENT (TPM_HT_PERSISTENT << HR_SHIFT)

HR_NV_INDEX (TPM_HT_NV_INDEX << HR_SHIFT)

HR_PERMANENT (TPM_HT_PERMANENT << HR_SHIFT)

PCR_FIRST HR_PCR + 0 first PCR

PCR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1) last PCR

HMAC_SESSION_FIRST (HR_HMAC_SESSION + 0) first HMAC session

HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1) last HMAC session

LOADED_SESSION_FIRST HMAC_SESSION_FIRST used in GetCapability

LOADED_SESSION_LAST HMAC_SESSION_LAST used in GetCapability

POLICY_SESSION_FIRST (HR_POLICY_SESSION + 0) first policy session

POLICY_SESSION_LAST (POLICY_SESSION_FIRST + MAX_ACTIVE_SESSIONS-1) last policy session

TRANSIENT_FIRST (HR_TRANSIENT + 0) first transient object

ACTIVE_SESSION_FIRST POLICY_SESSION_FIRST used in GetCapability

ACTIVE_SESSION_LAST POLICY_SESSION_LAST used in GetCapability

TRANSIENT_LAST (TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1) last transient object

PERSISTENT_FIRST (HR_PERSISTENT + 0) first persistent object

PERSISTENT_LAST (PERSISTENT_FIRST + 0x00FFFFFF) last persistent object

PLATFORM_PERSISTENT (PERSISTENT_FIRST + 0x00800000) first platform persistent
object

NV_INDEX_FIRST (HR_NV_INDEX + 0) first allowed NV Index

NV_INDEX_LAST (NV_INDEX_FIRST + 0x00FFFFFF) last allowed NV Index

PERMANENT_FIRST TPM_RH_FIRST

PERMANENT_LAST TPM_RH_LAST

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 54 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8 Attribute Structures

8.1 Description

Attributes are expressed as bit fields of varying size. An attribute field structure may be 1, 2, or 4 octets in

length.

The bit numbers for an attribute structure are assigned with the number 0 assigned to the least-significant

bit of the structure and the highest number assigned to the most-significant bit of the structure.

The least significant bit is determined by treating the attribute structure as an integer. The least-significant

bit would be the bit that is set when the value of the integer is 1.

When any reserved bit in an attribute is SET, the TPM shall return TPM_RC_RESERVED_BITS. This

response code is not shown in the tables for attributes.

8.2 TPMA_ALGORITHM

This structure defines the attributes of an algorithm.

Each algorithm has a fundamental attribute: asymmetric, symmetric, or hash. In some cases (e.g.,

TPM_ALG_RSA or TPM_ALG_AES), this is the only attribute.

A mode, method, or scheme may have an associated asymmetric, symmetric, or hash algorithm.

Table 29 — Definition of (UINT32) TPMA_ALGORITHM Bits

Bit Name Definition

0 asymmetric SET (1): an asymmetric algorithm with public and private portions

CLEAR (0): not an asymmetric algorithm

1 symmetric SET (1): a symmetric block cipher

CLEAR (0): not a symmetric block cipher

2 hash SET (1): a hash algorithm

CLEAR (0): not a hash algorithm

3 object SET (1): an algorithm that may be used as an object type

CLEAR (0): an algorithm that is not used as an object type

7:4 Reserved

8 signing SET (1): a signing algorithm. The setting of asymmetric, symmetric, and hash

will indicate the type of signing algorithm.

CLEAR (0): not a signing algorithm

9 encrypting SET (1): an encryption/decryption algorithm. The setting of asymmetric,
symmetric, and hash will indicate the type of encryption/decryption algorithm.

CLEAR (0): not an encryption/decryption algorithm

10 method SET (1): a method such as a key derivative function (KDF)

CLEAR (0): not a method

31:11 Reserved

8.3 TPMA_OBJECT (Object Attributes)

8.3.1 Introduction

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 55

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

This attribute structure indicates an object’s use, its authorization types, and it relationship to other

objects.

The state of the attributes is determined when the object is created and they are never changed by the

TPM. Additionally, the setting of these structures is reflected in the integrity value of the private area of an

object in order to allow the TPM to detect modifications of the Protected Object when stored off the TPM.

8.3.2 Structure Definition

Table 30 — Definition of (UINT32) TPMA_OBJECT Bits

Bit Name Definition

0 Reserved shall be zero

1 fixedTPM SET (1): The hierarchy of the object, as indicated by its Qualified Name, may

not change.

CLEAR (0): The hierarchy of the object may change as a result of this object or

an ancestor key being duplicated for use in another hierarchy.

2 stClear SET (1): Previously saved contexts of this object may not be loaded after

Startup(CLEAR).

CLEAR (0): Saved contexts of this object may be used after a

Shutdown(STATE) and subsequent Startup().

3 Reserved shall be zero

4 fixedParent SET (1): The parent of the object may not change.

CLEAR (0): The parent of the object may change as the result of a

TPM2_Duplicate() of the object.

5 sensitiveDataOrigin SET (1): Indicates that, when the object was created with TPM2_Create() or

TPM2_CreatePrimary(), the TPM generated all of the sensitive data other than
the authValue.

CLEAR (0): A portion of the sensitive data, other than the authValue, was

provided by the caller.

6 userWithAuth SET (1): Approval of USER role actions with this object may be with an HMAC

session or with a password using the authValue of the object or a policy
session.

CLEAR (0): Approval of USER role actions with this object may only be done

with a policy session.

7 adminWithPolicy SET (1): Approval of ADMIN role actions with this object may only be done with

a policy session.

CLEAR (0): Approval of ADMIN role actions with this object may be with an
HMAC session or with a password using the authValue of the object or a policy

session.

9:8 Reserved shall be zero

10 noDA SET (1): The object is not subject to dictionary attack protections.

CLEAR (0): The object is subject to dictionary attack protections.

11 encryptedDuplication SET (1): If the object is duplicated, then symmetricAlg shall not be
TPM_ALG_NULL and newParentHandle shall not be TPM_RH_NULL.

CLEAR (0): The object may be duplicated without an inner wrapper on the

private portion of the object and the new parent may be TPM_RH_NULL.

15:12 Reserved shall be zero

16 restricted SET (1): Key usage is restricted to manipulate structures of known format; the
parent of this key shall have restricted SET.

CLEAR (0): Key usage is not restricted to use on special formats.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 56 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Bit Name Definition

17 decrypt SET (1): The private portion of the key may be used to decrypt.

CLEAR (0): The private portion of the key may not be used to decrypt.

18 sign SET (1): The private portion of the key may be used to sign.

CLEAR (0): The private portion of the key may not be used to sign.

31:19 Reserved shall be zero

8.3.3 Attribute Descriptions

8.3.3.1 Introduction

The following remaining paragraphs in this clause describe the use and settings for each of the

TPMA_OBJECT attributes. The description includes checks that are performed on the objectAttributes

when an object is created, when it is loaded, and when it is imported. In these descriptions:

Creation – indicates settings for the template parameter in TPM2_Create() or

TPM2_CreatePrimary()

Load – indicates settings for the inPublic parameter in TPM2_Load()

Import – indicates settings for the objectPublic parameter in TPM2_Import()

External – indicates settings that apply to the inPublic parameter in TPM2_LoadExternal() if both the

public and sensitive portions of the object are loaded

NOTE For TPM2_LoadExternal() when only the public portion of the object is loaded, the only attribute checks
are the checks in the validation code following Table 30 and the reserved attributes check.

For any consistency error of attributes in TPMA_OBJECT, the TPM shall return TPM_RC_ATTRIBUTES.

8.3.3.2 Bit[1] – fixedTPM

When SET, the object cannot be duplicated for use on a different TPM, either directly or indirectly and the

Qualified Name of the object cannot change. When CLEAR, the object’s Qualified Name may change if

the object or an ancestor is duplicated.

NOTE This attribute is the logical inverse of the migratable attribute in 1.2. That is, when this attribute is CLEAR,
it is the equivalent to a 1.2 object with migratable SET.

Creation – If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be

set to the same value in template. If fixedTPM is CLEAR in the parent, this attribute shall

also be CLEAR in template.

NOTE For a Primary Object, the parent is considered to have fixedTPM SET.

Load – If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be

set to the same value. If fixedTPM is CLEAR in the parent, this attribute shall also be

CLEAR.

Import – shall be CLEAR

External – shall be CLEAR if both the public and sensitive portions are loaded or if fixedParent is

CLEAR, otherwise may be SET or CLEAR

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 57

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

8.3.3.3 Bit[2] – stClear

If this attribute is SET, then saved contexts of this object will be invalidated on

TPM2_Startup(TPM_SU_CLEAR). If the attribute is CLEAR, then the TPM shall not invalidate the saved

context if the TPM received TPM2_Shutdown(TPM_SU_STATE). If the saved state is valid when checked

at the next TPM2_Startup(), then the TPM shall continue to be able to use the saved contexts.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

8.3.3.4 Bit[4] – fixedParent

If this attribute is SET, the object’s parent may not be changed. That is, this object may not be the object

of a TPM2_Duplicate(). If this attribute is CLEAR, then this object may be the object of a

TPM2_Duplicate().

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – shall be CLEAR

External – shall be CLEAR if both the public and sensitive portions are loaded; otherwise it may be

SET or CLEAR

8.3.3.5 Bit[5] – sensitiveDataOrigin

This attribute is SET for any key that was generated by TPM in TPM2_Create() or

TPM2_CreatePrimary(). If CLEAR, it indicates that the sensitive part of the object (other than the

obfuscation value) was provided by the caller.

NOTE 1 If the fixedTPM attribute is SET, then this attribute is authoritative and accurately reflects the source of
the sensitive area data. If the fixedTPM attribute is CLEAR, then validation of this attribute requires
evaluation of the properties of the ancestor keys.

Creation – If inSensitive.sensitive.data.size is zero, then this attribute shall be SET in the template;

otherwise, it shall be CLEAR in the template.

NOTE 2 The inSensitive.sensitive.data.size parameter is required to be zero for an asymmetric key so
sensitiveDataOrigin is required to be SET.

NOTE 3 The inSensitive.sensitive.data.size parameter may not be zero for a data object so sensitiveDataOrigin is
required to be CLEAR. A data object has type = TPM_ALG_KEYEDHASH and its sign and decrypt
attributes are CLEAR.

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 58 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8.3.3.6 Bit[6] – userWithAuth

If SET, authorization for operations that require USER role authorization may be given if the caller

provides proof of knowledge of the authValue of the object with an HMAC authorization session or a

password.

If this attribute is CLEAR, then then HMAC or password authorizations may not be used for USER role

authorizations.

NOTE 1 Regardless of the setting of this attribute, authorizations for operations that require USER role
authorizations may be provided with a policy session that satisfies the object's authPolicy.

NOTE 2 Regardless of the setting of this attribute, the authValue may be referenced in a policy session or used to
provide the bind value in TPM2_StartAuthSession(). However, if userWithAuth is CLEAR, then the object
may be used as the bind object in TPM2_StartAuthSession() but the session cannot be used to authorize
actions on the object. If this were allowed, then the userWithAuth control could be circumvented simply by
using the object as the bind object.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

8.3.3.7 Bit[7] – adminWithPolicy

If CLEAR, authorization for operations that require ADMIN role may be given if the caller provides proof of

knowledge of the authValue of the object with an HMAC authorization session or a password.

If this attribute is SET, then then HMAC or password authorizations may not be used for ADMIN role

authorizations.

NOTE 1 Regardless of the setting of this attribute, operations that require ADMIN role authorization may be
provided by a policy session that satisfies the object's authPolicy.

NOTE 2 This attribute is similar to userWithAuth but the logic is a bit different. When userWithAuth is CLEAR, the
authValue may not be used for USER mode authorizations. When adminWithPolicy is CLEAR, it means
that the authValue may be used for ADMIN role. Policy may always be used regardless of the setting of
userWithAuth or adminWithPolicy.

Actions that always require policy (TPM2_Duplicate()) are not affected by the setting of this attribute.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

8.3.3.8 Bit[10] – noDA

If SET, then authorization failures for the object do not affect the dictionary attack protection logic and

authorization of the object is not blocked if the TPM is in lockout.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 59

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

8.3.3.9 Bit[11] – encryptedDuplication

If SET, then when the object is duplicated, the sensitive portion of the object is required to be encrypted

with an inner wrapper and the new parent shall be an asymmetric key and not TPM_RH_NULL

NOTE 1 Enforcement of these requirements in TPM2_Duplicate() is by not allowing symmetricAlg to be
TPM_ALG_NULL and newParentHandle may not be TPM_RH_NULL.

This attribute shall not be SET in any object that has fixedTPM SET.

NOTE 2 This requirement means that encryptedDuplication may not be SET if the object cannot be directly or
indirectly duplicated.

If an object's parent has fixedTPM SET, and the object is duplicable (fixedParent == CLEAR), then

encryptedDuplication may be SET or CLEAR in the object.

NOTE 3 This allows the object at the boundary between duplicable and non-duplicable objects to have either
setting.

If an object's parent has fixedTPM CLEAR, then the object is required to have the same setting of

encryptedDuplication as its parent.

NOTE 4 This requirement forces all duplicable objects in a duplication group to have the same
encryptedDuplication setting.

Creation – shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have

the same value as its parent unless fixedTPM is SET in the object's parent, in which

case, it may be SET or CLEAR.

Load – shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have

the same value as its parent, unless fixedTPM is SET the parent, in which case, it may

be SET or CLEAR.

Import – if fixedTPM is SET in the object's new parent, then this attribute may be SET or CLEAR,

otherwise, it shall have the same setting as the new parent.

External – may be SET or CLEAR.

8.3.3.10 Bit[16] – restricted

This this attribute modifies the decrypt and sign attributes of an object.

NOTE A key with this object CLEAR may not be a parent for another object.

Creation – shall be CLEAR in template if neither sign nor decrypt is SET in template.

Load – shall be CLEAR if neither sign nor decrypt is SET in the object

Import – may be SET or CLEAR

External – shall be CLEAR

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 60 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8.3.3.11 Bit[17] – decrypt

When SET, the private portion of this key can be used to decrypt an external blob. If restricted is SET,

then the TPM will return an error if the external decrypted blob is not formatted as appropriate for the

command.

NOTE 1 Since TPM-generated keys and sealed data will contain a hash and a structure tag, the TPM can ensure
that it is not being used to improperly decrypt and return sensitive data that should not be returned. The
only type of data that may be returned after decryption is a Sealed Data Object (a keyedHash object with
decrypt and sign CLEAR).

When restricted is CLEAR, there are no restrictions on the use of the private portion of the key for

decryption and the key may be used to decrypt and return any structure encrypted by the public portion of

the key.

NOTE 2 A key with this attribute SET may be a parent for another object if restricted is SET and sign is CLEAR.

If decrypt is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an

XOR encryption key.

Creation – may be SET or CLEAR in template

Load – may be SET or CLEAR

Import – may be SET or CLEAR

External – may be SET or CLEAR

8.3.3.12 Bit[18] – sign

When this attribute is SET, the private portion of this key may be used to sign a digest. If restricted is

SET, then the key may only be used to sign a digest that was computed by the TPM. A restricted signing

key may be used to sign a TPM-generated digest. If a structure is generated by the TPM, it will begin with

TPM_GENERATED_VALUE and the TPM may sign the digest of that structure. If the data is externally

supplied and has TPM_GENERATED_VALUE as its first octets, then the TPM will not sign a digest of

that data with a restricted signing key.

If restricted is CLEAR, then the key may be used to sign any digest, whether generated by the TPM or

externally provided.

NOTE 1 Some asymmetric algorithms may not support both sign and decrypt being SET in the same key.

If sign is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an

HMAC key.

NOTE 2 A key with this attribute SET may not be a parent for another object.

Creation – shall not be SET if decrypt and restricted are both SET

Load – shall not be SET if decrypt and restricted are both SET

Import – shall not be SET if decrypt and restricted are both SET

External – shall not be SET if decrypt and restricted are both SET

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 61

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

8.4 TPMA_SESSION (Session Attributes)

This octet in each session is used to identify the session type, indicate its relationship to any handles in

the command, and indicate its use in parameter encryption.

Table 31 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>

Bit Name Meaning

0 continueSession SET (1): In a command, this setting indicates that the session is to remain active

after successful completion of the command. In a response, it indicates that the
session is still active. If SET in the command, this attribute shall be SET in the
response.

CLEAR (0): In a command, this setting indicates that the TPM should close the

session and flush any related context when the command completes successfully. In
a response, it indicates that the session is closed and the context is no longer active.

This attribute has no meaning for a password authorization and the TPM will allow
any setting of the attribute in the command and SET the attribute in the response.

This attribute will only be CLEAR in one response for a logical session. If the attribute
is CLEAR, the context associated with the session is no longer in use and the space
is available. A session created after another session is ended may have the same
handle but logically is not the same session.

This attribute has no effect if the command does not complete successfully.

1 auditExclusive SET (1): In a command, this setting indicates that the command should only be

executed if the session is exclusive at the start of the command. In a response, it
indicates that the session is exclusive. This setting is only allowed if the audit
attribute is SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is

TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS.

See "Exclusive Audit Session" clause in Part 1.

2 auditReset SET (1): In a command, this setting indicates that the audit digest of the session

should be initialized and the exclusive status of the session SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is

TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS. This setting is
always used for a response.

4:3 Reserved shall be CLEAR

5 decrypt SET (1): In a command, this setting indicates that the first parameter in the command

is symmetrically encrypted using the parameter encryption scheme described in Part
1. The TPM will decrypt the parameter after performing any HMAC computations and
before unmarshaling the parameter. In a response, the attribute is copied from the
request but has no effect on the response.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may be SET in combination with any other session attributes.

This attribute may only be SET if the first parameter of the command is a sized buffer
(TPM2B_).

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 62 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Bit Name Meaning

6 encrypt SET (1): In a command, this setting indicates that the TPM should use this session to

encrypt the first parameter in the response. In a response, it indicates that the
attribute was set in the command and that the TPM used the session to encrypt the
first parameter in the response using the parameter encryption scheme described in
Part 1 of this specification.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may only be SET if the first parameter of a response is a sized buffer
(TPM2B_).

7 audit SET (1): In a command or response, this setting indicates that the session is for audit
and that auditExclusive and auditReset have meaning. This session may also be
used for authorization, encryption, or decryption. The encrypted and encrypt fields

may be SET or CLEAR.

CLEAR (0): Session is not used for audit.

This attribute may only be SET in one session per command or response. If SET in
the command, then this attribute will be SET in the response.

8.5 TPMA_LOCALITY (Locality Attribute)

In a TPMS_CREATION_DATA structure, this structure is used to indicate the locality of the command that

created the object. No more than one of the locality attributes shall be set in the creation data.

When used in TPM2_PolicyLocality(), this structure indicates which localities are approved by the policy.

When a policy is started, all localities are allowed. If TPM2_PolicyLocality() is executed, it indicates that

the command may only be executed at specific localities. More than one locality may be selected.

EXAMPLE 1 TPM_LOC_TWO would indicate that only locality 2 is authorized.

EXAMPLE 2 TPM_LOC_ONE + TPM_LOC_TWO would indicate that locality 1 or 2 is authorized.

EXAMPLE 3 TPM_LOC_FOUR + TPM_LOC_THREE would indicate that localities 3 or 4 are authorized.

EXAMPLE 4 A value of 2116 would represent a locality of 33.

NOTE Locality values of 5 through 31 are not selectable.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 63

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

If Extended is non-zero, then an extended locality is indicated and the TPMA_LOCALITY contains an

integer value.

Table 32 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>

Bit Name Definition

0 TPM_LOC_ZERO

1 TPM_LOC_ONE

2 TPM_LOC_TWO

3 TPM_LOC_THREE

4 TPM_LOC_FOUR

7:5 Extended If any of these bits is set, an extended locality is indicated

8.6 TPMA_PERMANENT

The attributes in this structure are not changed as a result of _TPM_Init, TPM2_Startup(). Some of the

attributes in this structure may change as the result of specific commands. This structure may be read

using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property =

TPM_PT_PERMANENT).

The attributes in this structure are persistent and do not change due to any TPM2_Startup(). These

attributes may be changed as the result of specific Protected Capabilities.

Table 33 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT>

Bit Parameter Description

0 ownerAuthSet SET (1): TPM2_HierarchyChangeAuth() with ownerAuth has been executed since

the last TPM2_Clear().

CLEAR (0): ownerAuth has not been changed since TPM2_Clear().

1 endorsementAuthSet SET (1): TPM2_HierarchyChangeAuth() with endorsementAuth has been executed

since the last TPM2_Clear().

CLEAR (0): endorsementAuth has not been changed since TPM2_Clear().

2 lockoutAuthSet SET (1): TPM2_HierarchyChangeAuth() with lockoutAuth has been executed since

the last TPM2_Clear().

CLEAR (0): lockoutAuth has not been changed since TPM2_Clear().

7:3 Reserved

8 disableClear SET (1): TPM2_Clear() is disabled.

CLEAR (0): TPM2_Clear() is enabled.

NOTE See “TPM2_ClearControl” in Part 3 of this specification for details on changing
this attribute.

9 inLockout SET (1): The TPM is in lockout and commands that require authorization with other
than platformAuth will not succeed.

10 tpmGeneratedEPS SET (1): The EPS was created by the TPM.

CLEAR (0): The EPS was created outside of the TPM using a manufacturer-

specific process.

31:11 Reserved

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 64 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8.7 TPMA_STARTUP_CLEAR

These attributes are set to their default state on reset on each TPM Reset or TPM Restart. The attributes

are preserved on TPM Resume.

On each TPM2_Startup(TPM_SU_CLEAR), the TPM will set these attributes to their indicated defaults.

This structure may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES,

property = TPM_PT_STARTUP_CLEAR).

Some of attributes may be changed as the result of specific Protected Capabilities.

Table 34 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>

Bit Parameter Description

0 phEnable SET (1): (default) The platform hierarchy is enabled and platformAuth or
platformPolicy may be used for authorization.

CLEAR (0): platformAuth and platformPolicy may not be used for authorizations,

and objects in the platform hierarchy, including NV Indexes and persistent objects,
cannot be used.

NOTE See “TPM2_HierarchyControl” in Part 3 of this specification for details on
changing this attribute.

1 shEnable SET (1): (default) The Storage hierarchy is enabled and ownerAuth or ownerPolicy

may be used for authorization.

CLEAR (0): ownerAuth and ownerPolicy may not be used for authorizations, and

objects in the Storage hierarchy, including NV Indexes and persistent objects,
cannot be used.

NOTE See “TPM2_HierarchyControl” in Part 3 of this specification for details on
changing this attribute.

2 ehEnable SET (1): (default) The EPS hierarchy is enabled and endorsementAuth may be

used to authorize commands.

CLEAR (0): endorsementAuth and endorsementPolicy may not be used for

authorizations, and objects in the endorsement hierarchy, including persistent
objects, cannot be used.

NOTE See “TPM2_HierarchyControl” in Part 3 of this specification for details on
changing this attribute.

30:3 Reserved shall be zero

31 orderly SET (1): The TPM received a TPM2_Shutdown() and a matching TPM2_Startup().

CLEAR (0): TPM2_Startup(TPM_SU_CLEAR) was not preceded by a

TPM2_Shutdown() of any type.

NOTE A shutdown is orderly if the TPM receives a TPM2_Shutdown() of any type
followed by a TPM2_Startup() of any type. However, the TPM will return an error if
TPM2_Startup(TPM_SU_STATE) was not preceded by
TPM2_State_Save(TPM_SU_STATE).

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 65

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

8.8 TPMA_MEMORY

This structure of this attribute is used to report the memory management method used by the TPM for

transient objects and authorization sessions. This structure may be read using

TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_MEMORY).

If the RAM memory is shared, then context save of a session may make it possible to load an additional

transient object.

Table 35 — Definition of (UINT32) TPMA_MEMORY Bits <Out>

Bit Name Definition

0 sharedRAM SET (1): indicates that the RAM memory used for authorization session

contexts is shared with the memory used for transient objects

CLEAR (0): indicates that the memory used for authorization sessions is not

shared with memory used for transient objects

1 sharedNV SET (1): indicates that the NV memory used for persistent objects is shared

with the NV memory used for NV Index values

CLEAR (0): indicates that the persistent objects and NV Index values are

allocated from separate sections of NV

2 objectCopiedToRam SET (1): indicates that the TPM copies persistent objects to a transient-object

slot in RAM when the persistent object is referenced in a command. The TRM
is required to make sure that an object slot is available.

CLEAR (0): indicates that the TPM does not use transient-object slots when

persistent objects are referenced

31:3 Reserved shall be zero

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 66 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8.9 TPMA_CC (Command Code Attributes)

8.9.1 Introduction

This structure defines the attributes of a command from a context management perspective. The fields of

the structure indicate to the TPM Resource Manager (TRM) the number of resources required by a

command and how the command affects the TPM’s resources.

This structure is only used in a list returned by the TPM in response to TPM2_GetCapability(capability =

TPM_CAP_COMMANDS).

For a command to the TPM, only the commandIndex field and V attribute are allowed to be non-zero.

8.9.2 Structure Definition

Table 36 — Definition of (TPM_CC) TPMA_CC Bits <OUT>

Bit Name Definition

15:0 commandIndex indicates the command being selected

21:16 Reserved shall be zero

22 nv SET (1): indicates that the command may write to NV

CLEAR (0): indicates that the command does not write to NV

23 extensive SET (1): This command could flush any number of loaded contexts.

CLEAR (0): no additional changes other than indicated by the flushed attribute

24 flushed SET (1): The context associated with any transient handle in the command will

be flushed when this command completes.

CLEAR (0): No context is flushed as a side effect of this command.

27:25 cHandles indicates the number of the handles in the handle area for this command

28 rHandle SET (1): indicates the presence of the handle area in the input

29 V SET (1): indicates that the command is vendor-specific

CLEAR (0): indicates that the command is defined in a version of this

specification

31:30 Res allocated for softwarte; shall be zero

8.9.3 Field Descriptions

8.9.3.1 Bits[15:0] – commandIndex

This is the command index of the command in the set of commands. The two sets are defined by the V

attribute. If V is zero, then the commandIndex shall be in the set of commands defined in a version of this

specification. If V is 1one, then the meaning of commandIndex is as determined by the TPM vendor.

8.9.3.2 Bit[22] – nv

If this attribute is SET, then the TPM may perform an NV write as part of the command actions. This write

is independent of any write that may occur as a result of dictionary attack protection. If this attribute is

CLEAR, then the TPM shall not perform an NV write as part of the command actions.

8.9.3.3 Bit[23] – extensive

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 67

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

If this attribute is SET, then the TPM may flush many transient objects as a side effect of this command.

In Part 3, a command that has this attribute is indicated by using a “{E}” decoration in the “Description”

column of the commandCode parameter.

EXAMPLE See “TPM2_Clear” in Part 3.

NOTE The “{E}” decoration may be combined with other decorations such as “{NV}” in which case the decor ation
would be “{NV E}.”

8.9.3.4 Bit[24] – flushed

If this attribute is SET, then the TPM will flush transient objects as a side effect of this command. Any

transient objects listed in the handle area of the command will be flushed from TPM memory. Handles

associated with persistent objects, sessions, PCR, or other fixed TPM resources are not flushed.

NOTE The TRM is expected to use this value to determine how many objects are loaded into transient TPM
memory.

NOTE The “{F}” decoration may be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV F}.”

If this attribute is SET for a command, and the handle of the command is associated with a hierarchy

(TPM_RH_PLATFORM, TPM_RH_OWNER, or TPM_RH_ENDORSEMENT), all loaded objects in the

indicated hierarchy are flushed.

The TRM is expected to know the behaviour of TPM2_ContextSave(), and sessions are flushed when

context saved, but objects are not. The flushed attribute for that command shall be CLEAR.

In Part 3, a command that has this attribute is indicated by using a “{F}” decoration in the “Description”

column of the commandCode parameter.

EXAMPLE See “TPM2_SequenceComplete” in Part 3.”

8.9.3.5 Bits[27:25] – cHandles

This field indicates the number of handles in the handle area of the command. This number allows the

TRM to enumerate the handles in the handle area and find the position of the authorizations (if any).

8.9.3.6 Bit[28] – rHandle

If this attribute is SET, then the response to this command has a handle area. This area will contain no

more than one handle. This field is necessary to allow the TRM to locate the parameterSize field in the

response, which is then used to locate the authorizations.

NOTE The TRM is expected to “virtualize” the handle value for any returned handle.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 68 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

A TPM command is only allowed to have one handle in the session area.

8.9.3.7 Bit[29] – V

When this attribute is SET, it indicates that the command operation is defined by the TPM vendor. When

CLEAR, it indicates that the command is defined by a version of this specification.

8.9.3.8 Bits[31:30] – Res

This field is reserved for system software. This field is required to be zero for a command to the TPM.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 69

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9 Interface Types

9.1 Introduction

This clause contains definitions for interface types. An interface type is type checked when it is

unmarshaled. These types are based on an underlying type that is indicated in the table title by the value

in parentheses. When an interface type is used, the base type is unmarshaled and then checked to see if

it has one of the allowed values.

9.2 TPMI_YES_NO

This interface type is used in place of a Boolean type in order to eliminate ambiguity in the handling of a

octet that conveys a single bit of information. This type only has two allowed values, YES (1) and NO (0).

NOTE This list is not used as input to the TPM.

Table 37 — Definition of (BYTE) TPMI_YES_NO Type

Value Description

NO a value of 0

YES a value of 1

#TPM_RC_VALUE

9.3 TPMI_DH_OBJECT

The TPMI_DH_OBJECT interface type is a handle that references a loaded object. The handles in this

set are used to refer to either transient or persistent object. The range of these values would change

according to the TPM implementation.

NOTE These interface types should not be used by system software to qualify the keys produced by the TPM.
The value returned by the TPM shall be used to reference the object.

Table 38 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments

{TRANSIENT_FIRST:TRANSIENT_LAST} allowed range for transient objects

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

+TPM_RH_NULL the conditional value

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 70 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

9.4 TPMI_DH_PERSISTENT

The TPMI_DH_PERSISTENT interface type is a handle that references a location for a transient object.

This type is used in TPM2_EvictControl() to indicate the handle to be assigned to the persistent object.

Table 39 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type

Values Comments

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects

#TPM_RC_VALUE

9.5 TPMI_DH_ENTITY

The TPMI_DH_ENTITY interface type is TPM-defined values that are used to indicate that the handle

refers to an authValue. The range of these values would change according to the TPM implementation.

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>

Values Comments

TPM_RH_OWNER

TPM_RH_ENDORSEMENT

TPM_RH_PLATFORM

TPM_RH_LOCKOUT

{TRANSIENT_FIRST : TRANSIENT_LAST} range of object handles

{PERSISTENT_FIRST : PERSISTENT_LAST}

{NV_INDEX_FIRST : NV_INDEX_LAST}

{PCR_FIRST : PCR_LAST}

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 71

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.6 TPMI_DH_PCR

This interface type consists of the handles that may be used as PCR references. The upper end of this

range of values would change according to the TPM implementation.

NOTE 1 Typically, the 0
th

 PCR will have a handle value of zero.

NOTE 2 The handle range for PCR is defined to be the same as the handle range for PCR in previous versions of
TPM specifications.

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>

Values Comments

{PCR_FIRST:PCR_LAST}

+TPM_RH_NULL conditional value

#TPM_RC_VALUE

9.7 TPMI_SH_AUTH_SESSION

The TPMI_SH_AUTH_SESSION interface type is TPM-defined values that are used to indicate that the

handle refers to an authorization session.

Table 42 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST} range of HMAC authorization session handles

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

+TPM_RS_PW a password authorization

#TPM_RC_VALUE error returned if the handle is out of range

9.8 TPMI_SH_HMAC

This interface type is used for an authorization handle when the authorization session uses an HMAC.

Table 43 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>

Values Comments

{HMAC_SESSION_FIRST: HMAC_SESSION_LAST} range of HMAC authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

9.9 TPMI_SH_POLICY

This interface type is used for a policy handle when it appears in a policy command.

Table 44 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>

Values Comments

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST} range of policy authorization session handles

#TPM_RC_VALUE error returned if the handle is out of range

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 72 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

9.10 TPMI_DH_CONTEXT

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_Flush().

Table 45 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type

Values Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

{POLICY_SESSION_FIRST:POLICY_SESSION_LAST}

{TRANSIENT_FIRST:TRANSIENT_LAST}

#TPM_RC_VALUE

9.11 TPMI_RH_HIERARCHY

The TPMI_RH_HIERARCHY interface type is used as the type of a handle in a command when the

handle is required to be one of the hierarchy selectors.

Table 46 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL no hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.12 TPMI_RH_HIERARCHY_AUTH

This interface type is used as the type of a handle in a command when the handle is required to be one of

the hierarchy selectors or the Lockout Authorization.

Table 47 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>

Values Comments

TPM_RH_OWNER Storage hierarchy

TPM_RH_PLATFORM Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_LOCKOUT Lockout Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 73

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.13 TPMI_RH_PLATFORM

The TPMI_RH_PLATFORM interface type is used as the type of a handle in a command when the only

allowed handle is TPM_RH_PLATFORM indicating that platformAuth is required.

Table 48 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN>

Values Comments

TPM_RH_PLATFORM Platform hierarchy

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.14 TPMI_RH_OWNER

This interface type is used as the type of a handle in a command when the only allowed handle is

TPM_RH_OWNER indicating that ownerAuth is required.

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>

Values Comments

TPM_RH_OWNER Owner hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 74 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

9.15 TPMI_RH_ENDORSEMENT

This interface type is used as the type of a handle in a command when the only allowed handle is

TPM_RH_ENDORSEMENT indicating that endorsementAuth is required.

Table 50 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>

Values Comments

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.16 TPMI_RH_PROVISION

The TPMI_RH_PROVISION interface type is used as the type of the handle in a command when the only

allowed handles are either TPM_RH_OWNER or TPM_RH_PLATFORM indicating that either

platformAuth or ownerAuth are allowed.

In most cases, either platformAuth or ownerAuth may be used to authorize the commands used for

management of the resources of the TPM and this interface type will be used.

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN>

Value Comments

TPM_RH_OWNER handle for ownerAuth

TPM_RH_PLATFORM handle for platformAuth

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.17 TPMI_RH_CLEAR

The TPMI_RH_CLEAR interface type is used as the type of the handle in a command when the only

allowed handles are either TPM_RH_LOCKOUT or TPM_RH_PLATFORM indicating that either

platformAuth or lockoutAuth are allowed.

This interface type is normally used for performing or controlling TPM2_Clear().

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for lockoutAuth

TPM_RH_PLATFORM handle for platformAuth

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 75

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.18 TPMI_RH_NV_AUTH

This interface type is used to identify the source of the authorization for access to an NV location. The

handle value of a TPMI_RH_NV_AUTH shall indicate that the authorization value is either platformAuth,

ownerAuth, or the authValue. This type is used in the commands that access an NV Index (commands of

the form TPM2_NV_xxx) other than TPM2_NV_DefineSpace() and TPM2_NV_UndefineSpace().

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN>

Value Comments

TPM_RH_PLATFORM platformAuth is allowed

TPM_RH_OWNER ownerAuth is allowed

{NV_INDEX_FIRST:NV_INDEX_LAST} range for NV locations

#TPM_RC_VALUE response code returned when unmarshaling of this type fails

9.19 TPMI_RH_LOCKOUT

The TPMI_RH_LOCKOUT interface type is used as the type of a handle in a command when the only

allowed handle is TPM_RH_LOCKOUT indicating that lockoutAuth is required.

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN>

Value Comments

TPM_RH_LOCKOUT

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.20 TPMI_RH_NV_INDEX

This interface type is used to identify an NV location. This type is used in the NV commands.

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/OUT>

Value Comments

{NV_INDEX_FIRST:NV_INDEX_LAST} Range of NV Indexes

#TPM_RC_VALUE error returned if the handle is out of range

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 76 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

9.21 TPMI_ALG_HASH

A TPMI_ALG_HASH is an interface type of all the hash algorithms implemented on a specific TPM. Table

56 is a list of the hash algorithms that have an algorithm ID assigned by the TCG and does not indicate

the algorithms that will be accepted by a TPM.

NOTE An implementation would modify this table according to the implemented algorithms, changing the values
that are accepted as hash algorithms.

Table 56 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_SHA1 example

TPM_ALG_SHA256 example

TPM_ALG_SM3_256 example

TPM_ALG_SHA384 example

TPM_ALG_SHA512 example

+TPM_ALG_NULL

#TPM_RC_HASH

9.22 TPMI_ALG_ASYM (Asymmetric Algorithms)

A TPMI_ALG_ASYM is an interface type of all the asymmetric algorithms implemented on a specific TPM.

Table 57 lists each of the asymmetric algorithms that have an algorithm ID assigned by the TCG.

Table 57 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type

Values Comments

TPM_ALG_RSA

TPM_ALG_ECC

+TPM_ALG_NULL

#TPM_RC_ASYMMETRIC

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 77

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.23 TPMI_ALG_SYM (Symmetric Algorithms)

A TPMI_ALG_SYM is an interface type of all the symmetric algorithms that have an algorithm ID assigned

by the TCG and are implemented on the TPM.

The list in the table below is illustrative and will change according to the implementation. The validation

code will only accept the subset of algorithms implemented on a TPM.

NOTE The validation code produced by an example script will produce a CASE statement with a case for each of
the values in the “Values” column. The case for a value is delimited by a #ifdef/#endif pair so that if the
algorithm is not implemented on the TPM, then the case for the algorithm is not generated, and use of the
algorithm will cause a TPM error (TPM_RC_SYMMETRIC).

Table 58 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type

Values Comments

TPM_ALG_AES example

TPM_ALG_SM4 example

TPM_ALG_XOR example

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

9.24 TPMI_ALG_SYM_OBJECT

A TPMI_ALG_SYM_OBJECT is an interface type of all the TCG-defined symmetric algorithms that may

be used as companion symmetric encryption algorithm for an asymmetric object. All algorithms in this list

shall be block ciphers usable in Cipher Feedback (CFB).

Table 59 is illustrative. It would be modified to indicate the algorithms of the TPM.

NOTE TPM_ALG_XOR is not allowed in this list.

Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type

Values Comments

TPM_ALG_AES example

TPM_ALG_SM4 example

+TPM_ALG_NULL required to be present in all versions of this table

#TPM_RC_SYMMETRIC

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 78 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

9.25 TPMI_ALG_SYM_MODE

A TPMI_ALG_SYM_MODE is an interface type of all the TCG-defined block-cipher modes of operation.

This version of the table is not expected to be the table checked by the validation code. Rather, the table

would be replaced by one containing the algorithms implemented on the TPM and that the values in that

table would be checked by the input validation code.

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type

Values Comments

TPM_ALG_CTR IV will be determined by use.

If the outside provides the nonce and initial counter, then the caller can
know what IV to provide for chaining.

TPM_ALG_OFB XOR last cipher text block with last plaintext to create IV for next block

TPM_ALG_CBC IV will be determined by use.

indefinite chaining using previous output block as IV for next block

TPM_ALG_CFB shall be implemented in all TPM compliant with this specification

IV will be determined by use.

indefinite chaining using previous cipher text as IV

TPM_ALG_ECB no IV or chaining value required

+TPM_ALG_NULL

#TPM_RC_MODE

9.26 TPMI_ALG_KDF (Key and Mask Generation Functions)

A TPMI_ALG_KDF is an interface type of all the key derivation functions implemented on a specific TPM.

Table 61 is exemplary and would change based on the algorithms implemented in a TPM.

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type

Values Comments

TPM_ALG_MGF1

TPM_ALG_KDF1_SP800_108

TPM_ALG_KDF1_SP800_56a

TPM_ALG_KDF2

+TPM_ALG_NULL

#TPM_RC_KDF

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 79

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9.27 TPMI_ALG_SIG_SCHEME

This is the definition of the interface type for a signature scheme. This table would change according to

the algorithms implemented on the TPM.

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type

Values Comments

TPM_ALG_RSASSA requires that RSA be implemented

TPM_ALG_RSAPSS requires that RSA be implemented

TPM_ALG_ECDSA requires that ECC be implemented

TPM_ALG_ECDAA requires that ECC and ECDAA be implemented

TPM_ALG_ECSCHNORR

TPM_ALG_SM2 requires that ECC be implemented

TPM_ALG_HMAC present on all TPM

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a signature scheme is not correct

9.28 TPMI_ECC_KEY_EXCHANGE

This is the definition of the interface type for an ECC key exchange scheme. This table would change

according to the algorithms implemented on the TPM.

Table 63 — Definition of (TPM_ALG_ID) TPMI_ECC_KEY_EXCHANGE Type

Values Comments

TPM_ALG_ECDH used for single and two phase key exchange

TPM_ALG_ECMQV

TPM_ALG_SM2 requires that ECC be implemented

+TPM_ALG_NULL

#TPM_RC_SCHEME response code when a key exchange scheme is not correct

9.29 TPMI_ST_COMMAND_TAG

This interface type is used for the command tags.

The response code for a bad command tag has the same value as the TPM 1.2 response code

(TPM_BAD_TAG). This value is used in case the software is not compatible with this specification and an

unexpected response code might have unexpected side effects.

Table 64 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type

Values Comments

TPM_ST_NO_SESSIONS

TPM_ST_SESSIONS

#TPM_RC_BAD_TAG

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 80 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10 Structure Definitions

10.1 TPMS_ALGORITHM_DESCRIPTION

This structure is a return value for a TPM2_GetCapability() that reads the installed algorithms.

Table 65 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm

attributes TPMA_ALGORITHM the attributes of the algorithm

10.2 Hash/Digest Structures

10.2.1 TPMU_HA (Hash)

A TPMU_HA is a union of all the hash algorithms implemented on a TPM. Table 66 is exemplary and

would change based on the algorithms implemented in a TPM.

NOTE If processed by an automated tool, each entry of the table should be qualified (with #ifdef/#endif) so that if
the hash algorithm is not implemented on the TPM, the parameter associated with that hash is not
present. This will keep the union from being larger than the largest digest of a hash implemented on that
TPM.

Table 66 — Definition of TPMU_HA Union <IN/OUT, S>

Parameter Type Selector Description

sha1 [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHA1

sha256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sm3_256 [SM3_256_DIGEST_SIZE] BYTE TPM_ALG_SM3_256

sha384 [SHA384_DIGEST_SIZE] BYTE TPM_ALG_SHA384

sha512 [SHA512_DIGEST_SIZE] BYTE TPM_ALG_SHA512

null TPM_ALG_NULL

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 81

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.2.2 TPMT_HA

Table 67 shows the basic hash-agile structure used in this specification. To handle hash agility, this

structure uses the hashAlg parameter to indicate the algorithm used to compute the digest and, by

implication, the size of the digest.

When transmitted, only the number of octets indicated by hashAlg is sent.

NOTE In the exemplary code, when a TPMT_HA is allocated, the digest field is large enough to support the
largest hash algorithm in the TPMU_HA union.

Table 67 — Definition of TPMT_HA Structure <IN/OUT>

Parameter Type Description

hashAlg +TPMI_ALG_HASH selector of the hash contained in the digest that implies the
size of the digest

NOTE The leading “+” on the type indicates that this structure
should pass an indication to the unmarshaling function for
TPMI_ALG_HASH so that TPM_ALG_NULL will be
allowed if a use of a TPMT_HA allows TPM_ALG_NULL.

[hashAlg] digest TPMU_HA the digest data

10.3 Sized Buffers

10.3.1 Introduction

The “TPM2B_” prefix is used for a structure that has a size field followed by a data buffer with the

indicated number of octets. The size field is 16 bits.

When the type of the second parameter in a TPM2B_ structure is BYTE, the TPM shall unmarshal the

indicated number of octets, which may be zero.

When the type of the second parameter in the TPM2B_ structure is not BYTE, the value of the size field

shall either be zero indicating that no structure is to be unmarshaled; or it shall be identical to the number

of octets unmarshaled for the second parameter.

NOTE 1 If the TPM2B_ defines a structure and not an array of octets, then the structure is self-describing and the
TPM will be able to determine how many octets are in the structure when it is unmarshaled. If that number
of octets is not equal to the size parameter, then it is an error.

NOTE 2 The reason that a structure may be put into a TPM2B_ is that the parts of the structure may be handled
as separate opaque blocks by the application/system software. Rather than require that all of the
structures in a command or response be marshaled or unmarshaled sequentially, the size field allows the
structure to be manipulated as an opaque block. Placing a structure in a TPM2B_ also makes it possible
to use parameter encryption on the structure.

If a TPM2B_ is encrypted, the TPM will encrypt/decrypt the data field of the TPM2B_ but not the size

parameter. The TPM will encrypt/decrypt the number of octets indicated by the size field.

NOTE 3 In the reference implementation, a TPM2B type is defined that is a 16-bit size field followed by a single
byte of data. The TPM2B_ is then defined as a union that contains a TPM2B (union member ‘b’) and the
structure in the definition table (union member ‘t’). This union is used for internally generated structures
so that there is a way to define a structure of the correct size (forced by the ‘t’ member) while giving a way
to pass the structure generically as a ‘b’. Most function calls use the 't' member so that the compiler will
generate a warning if there is a type error (a TPM2B_ of the wrong type). Having the type checked helps
avoid many issues with buffer overflow caused by a too small buffer being passed to a function.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 82 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.3.2 TPM2B_DIGEST

This structure is used for a sized buffer that cannot be larger than the largest digest produced by any

hash algorithm implemented on the TPM.

As with all sized buffers, the size is checked to see if it is within the prescribed range. If not, the response

code is TPM_RC_SIZE.

NOTE For any structure, like the one below, that contains an implied size check, it is implied that TPM_RC_SIZE
is a possible response code and the response code will not be listed in the table.

Table 68 — Definition of TPM2B_DIGEST Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMU_HA)} BYTE the buffer area that can be no larger than a digest

10.3.3 TPM2B_DATA

This structure is used for a data buffer that is required to be no larger than the size of the Name of an

object. This size limit includes the algorithm ID of the hash and the hash data.

Table 69 — Definition of TPM2B_DATA Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be 0

buffer[size]{:sizeof(TPMT_HA)} BYTE the buffer area that contains the algorithm ID and the
digest

10.3.4 TPM2B_NONCE

Table 70 — Definition of Types for TPM2B_NONCE

Type Name Description

TPM2B_DIGEST TPM2B_NONCE size limited to the same as the digest structure

10.3.5 TPM2B_AUTH

This structure is used for an authorization value and limits an authValue to being no larger than the

largest digest produced by a TPM. In order to ensure consistency within an object, the authValue may be

no larger than the size of the digest produced by the object’s nameAlg. This ensures that any TPM that

can load the object will be able to handle the authValue of the object.

Table 71 — Definition of Types for TPM2B_AUTH

Type Name Description

TPM2B_DIGEST TPM2B_AUTH size limited to the same as the digest structure

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 83

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.3.6 TPM2B_OPERAND

This type is a sized buffer that can hold an operand for a comparison with an NV Index location. The

maximum size of the operand is implementation dependent but a TPM is required to support an operand

size that is at least as big as the digest produced by any of the hash algorithms implemented on the TPM.

Table 72 — Definition of Types for TPM2B_OPERAND

Type Name Description

TPM2B_DIGEST TPM2B_OPERAND size limited to the same as the digest structure

10.3.7 TPM2B_EVENT

This type is a sized buffer that can hold event data.

Table 73 — Definition of TPM2B_EVENT Structure

Parameter Type Description

size UINT16 size of the operand

buffer [size] {:1024} BYTE the operand

10.3.8 TPM2B_MAX_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for commands that use a large data

buffer such as TPM2_PCR_Event(), TPM2_Hash(), TPM2_SequenceUpdate(), or

TPM2_FieldUpgradeData().

NOTE The above list is not comprehensive and other commands may use this buffer type.

Table 74 — Definition of TPM2B_MAX_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_DIGEST_BUFFER} BYTE the operand

NOTE MAX_DIGEST_BUFFER is TPM-
dependent but is required to be at least 1,024.

10.3.9 TPM2B_MAX_NV_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for NV data commands such as

TPM2_NV_Read(), TPM2_NV_Write(), and TPM2_NV_Certify().

Table 75 — Definition of TPM2B_MAX_NV_BUFFER Structure

Parameter Type Description

size UINT16 size of the buffer

buffer [size] {:MAX_NV_INDEX_SIZE} BYTE the operand

NOTE MAX_NV_INDEX_SIZE is TPM-
dependent

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 84 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.3.10 TPM2B_TIMEOUT

This TPM-dependent structure is used to provide the timeout value for an authorization.

Table 76 — Definition of TPM2B_TIMEOUT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the timeout value

This value is fixed for a TPM implementation.

buffer [size] {:sizeof(UINT64)} BYTE the timeout value

10.3.11 TPM2B_IV

This structure is used for passing an initial value for a symmetric block cipher to or from the TPM. The

size is set to be the largest block size of any implemented symmetric cipher implemented on the TPM.

Table 77 — Definition of TPM2B_IV Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the timeout value

This value is fixed for a TPM implementation.

buffer [size] {:MAX_SYM_BLOCK_SIZE} BYTE the timeout value

10.4 Names

10.4.1 Introduction

The Name of an entity is used in place of the handle in authorization computations. The substitution

occurs in cpHash and policyHash computations.

For an entity that is defined by a public area (objects and NV Indexes), the Name is the hash of the public

structure that defines the entity. The hash is done using the nameAlg of the entity.

NOTE For an object, a TPMT_PUBLIC defines the entity. For an NV Index, a TPMS_NV_PUBLIC defines the
entity.

For entities not defined by a public area, the Name is the handle that is used to refer to the entity.

10.4.2 TPMU_NAME

Table 78 — Definition of TPMU_NAME Union <>

Parameter Type Selector Description

digest TPMT_HA when the Name is a digest

handle TPM_HANDLE when the Name is a handle

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 85

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.4.3 TPM2B_NAME

This buffer holds a Name for any entity type.

The type of Name in the structure is determined by context and the size parameter. If size is four, then

the Name is a handle. If size is zero, then no Name is present. Otherwise, the size shall be the size of a

TPM_ALG_ID plus the size of the digest produced by the indicated hash algorithm.

Table 79 — Definition of TPM2B_NAME Structure

Parameter Type Description

size UINT16 size of the Name structure

name[size]{:sizeof(TPMU_NAME)} BYTE the Name structure

10.5 PCR Structures

10.5.1 TPMS_PCR_SELECT

This structure provides a standard method of specifying a list of PCR.

PCR numbering starts at zero.

PcrSelect is an array of octets. The octet containing the bit corresponding to a specific PCR is found by

dividing the PCR number by 8.

EXAMPLE 1 The bit in pcrSelect corresponding to PCR 19 is in pcrSelect [2] (19/8 = 2).

The least significant bit in a octet is bit number 0. The bit in the octet associated with a PCR is the

remainder after division by 8.

EXAMPLE 2 The bit in pcrSelect [2] corresponding to PCR 19 is bit 3 (19 mod 8). If sizeofSelect is 3, then the
pcrSelect array that would specify PCR 19 and no other PCR is 00 00 0816.

Each bit in pcrSelect indicates whether the corresponding PCR is selected (1) or not (0). If the pcrSelect

is all zero bits, then no PCR is selected.

SizeofSelect indicates the number of octets in pcrSelect. The allowable values for sizeofSelect is

determined by the number of PCR required by the applicable platform-specific specification and the

number of PCR implemented in the TPM. The minimum value for sizeofSelect is:

 PCR_SELECT_MIN ≔ (PLATFORM_PCR + 7) / 8 (1)

where

PLATFORM_PCR the number of PCR required by the platform-specific specification

The maximum value for sizeofSelect is:

 PCR_SELECT_MAX ≔ (IMPLEMENTATION_PCR + 7) / 8 (2)

where

IMPLEMENTATION_PCR the number of PCR implemented on the TPM

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 86 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

If the TPM implements more PCR than there are bits in pcrSelect, the additional PCR are not selected.

EXAMPLE 3 If the applicable platform-specific specification requires that the TPM have a minimum of 24 PCR but the
TPM implements 32, then a PCR select of 3 octets would imply that PCR 24-31 are not selected.

Table 80 — Definition of TPMS_PCR_SELECT Structure

Parameter Type Description

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

10.5.2 TPMS_PCR_SELECTION

Table 81 — Definition of TPMS_PCR_SELECTION Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm associated with the
selection

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of selected PCR

#TPM_RC_VALUE

10.6 Tickets

10.6.1 Introduction

Tickets are evidence that the TPM has previously processed some information. A ticket is an HMAC over

the data using a secret key known only to the TPM. A ticket is a way to expand the state memory of the

TPM. A ticket is only usable by the TPM that produced it.

The formulations for tickets shown in this clause are to be used by a TPM that is compliant with this

specification.

The method of creating the ticket data is:

 HMACcontexAlg(proof, (ticketType || param { || param {…})) (3)

where

HMACcontexAlg() an HMAC using the hash used for context integrity

proof a TPM secret value (depends on hierarchy)

ticketType a value to differentiate the tickets

param one or more values that were checked by the TPM

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 87

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

The proof value used for each hierarchy is shown in Table 82.

Table 82 — Values for proof Used in Tickets

Hierarchy proof Description

None Empty Buffer

Platform phProof a value that changes with each change of the PPS

Owner shProof a value that changes with each change of the SPS

Endorsement ehProof a value that changes with each change of either the EPS or SPS

The format for a ticket is shown in Table 83. This is a template for the tickets shown in the remainder of

this clause.

Table 83 — General Format of a Ticket

Parameter Type Description

tag TPM_ST structure tag indicating the type of the ticket

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the proof value

digest TPM2B_DIGEST the HMAC over the ticket-specific data

10.6.2 A NULL Ticket

When a command requires a ticket and no ticket is available, the caller is required to provide a structure

with a ticket tag that is correct for the context. The hierarchy shall be set to TPM_RH_NULL, and digest

shall be the Empty Buffer (a buffer with a size field of zero). This construct is the NULL Ticket. When a

response indicates that a ticket is returned, the TPM may return a NULL Ticket.

NOTE Because each use of a ticket requires that the structure tag for the ticket be appropriate for the use, there
is no single representation of a NULL Ticket that will work in all circumstances. Minimally, a NULL ticket
will have a structure type that is appropriate for the context.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 88 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.6.3 TPMT_TK_CREATION

This ticket is produced by TPM2_Create() or TPM2_CreatePrimary(). It is used to bind the creation data

to the object to which it applies. The ticket is computed by

 HMACcontextAlg(proof, (TPM_ST_CREATION || name || HnameAlg(TPMS_CREATION_DATA))) (4)

where

HMACcontextAlg() an HMAC using the context integrity hash algorithm

proof a TPM secret value associated with the hierarchy associated with name

TPM_ST_CREATION a value used to ensure that the ticket is properly used

name the Name of the object to which the creation data is to be associated

HnameAlg() hash using the nameAlg of the created object

TPMS_CREATION_DATA the creation data structure associated with name

Table 84 — Definition of TPMT_TK_CREATION Structure

Parameter Type Description

tag {TPM_ST_CREATION} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_CREATION

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing name

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Creation Ticket is the tuple <TPM_ST_CREATION, TPM_RH_NULL, 0x0000>.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 89

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.6.4 TPMT_TK_VERIFIED

This ticket is produced by TPM2_VerifySignature(). This formulation is used for multiple ticket uses. The

ticket provides evidence that the TPM has validated that a digest was signed by a key with the Name of

keyName. The ticket is computed by

 HMACcontextAlg(proof, (TPM_ST_VERIFIED || digest || keyName)) (5)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy associated with

keyName

TPM_ST_VERIFIED a value used to ensure that the ticket is properly used

digest the signed digest

keyName Name of the key that signed digest

Table 85 — Definition of TPMT_TK_VERIFIED Structure

Parameter Type Description

tag {TPM_ST_VERIFIED} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_VERIFIED

hierarchy TPMI_RH_HIERARCHY+ the hierarchy containing keyName

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Verified Ticket is the tuple <TPM_ST_VERIFIED, TPM_RH_NULL, 0x0000>.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 90 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.6.5 TPMT_TK_AUTH

This ticket is produced by TPM2_PolicySigned() and TPM2_PolicySecret() when the authorization has an

expiration time. The ticket is computed by

 HMACcontextAlg(proof, (TPM_ST_AUTH_xxx || timeout || cpHash || policyRef || keyName)) (6)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the key associated

with keyName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET; used to
ensure that the ticket is properly used

timeout implementation-specific value indicating when the authorization expires

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

keyName Name of the key that signed the authorization

Table 86 — Definition of TPMT_TK_AUTH Structure

Parameter Type Description

tag {TPM_ST_AUTH_SIGNED, TPM_ST_AUTH_SECRET} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is
not TPM_ST_AUTH

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the object
used to produce the ticket

digest TPM2B_DIGEST This shall be the HMAC
produced using a proof
value of hierarchy.

EXAMPLE A NULL Auth Ticket is the tuple <TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000> or the tuple
<TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000>

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 91

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.6.6 TPMT_TK_HASHCHECK

This ticket is produced by TPM2_SequenceComplete() when the message that was digested did not start

with TPM_GENERATED_VALUE. The ticket is computed by

 HMACcontexAlg(proof, (TPM_ST_HASHCHECK || digest)) (7)

where

HMACcontexAlg () an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy indicated by the
command

TPM_ST_HASHCHECK a value used to ensure that the ticket is properly used

digest the digest of the data

Table 87 — Definition of TPMT_TK_HASHCHECK Structure

Parameter Type Description

tag {TPM_ST_HASHCHECK} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when is not TPM_ST_HASHCHECK

hierarchy TPMI_RH_HIERARCHY+ the hierarchy

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

10.7 Property Structures

10.7.1 TPMS_ALG_PROPERTY

This structure is used to report the properties of an algorithm identifier. It is returned in response to a

TPM2_GetCapability() with capability = TPM_CAP_ALG.

Table 88 — Definition of TPMS_ALG_PROPERTY Structure <OUT>

Parameter Type Description

alg TPM_ALG_ID an algorithm identifier

algProperties TPMA_ALGORITHM the attributes of the algorithm

10.7.2 TPMS_TAGGED_PROPERTY

This structure is used to report the properties that are UINT32 values. It is returned in response to a

TPM2_GetCapability().

Table 89 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>

Parameter Type Description

property TPM_PT a property identifier

value UINT32 the value of the property

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 92 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.7.3 TPMS_TAGGED_PCR_SELECT

This structure is used in TPM2_GetCapability() to return the attributes of the PCR.

Table 90 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>

Parameter Type Description

tag TPM_PT the property identifier

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {:PCR_SELECT_MAX} BYTE the bit map of PCR with the identified property

10.8 Lists

10.8.1 TPML_CC

A list of command codes may be input to the TPM or returned by the TPM depending on the command.

Table 91 — Definition of TPML_CC Structure

Parameter Type Description

count UINT32 number of commands in the commandCode list;

may be 0

commandCodes[count]{:MAX_CAP_CC} TPM_CC a list of command codes

The maximum only applies to a command code
list in a command. The response size is limited
only by the size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 93

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.8.2 TPML_CCA

This list is only used in TPM2_GetCapability(capability = TPM_CAP_COMMANDS).

The values in the list are returned in commandIndex order with vendor-specific commands returned after

other commands. Because of the other attributes, the commands may not be returned in strict numerical

order. They will be in commandIndex order.

Table 92 — Definition of TPML_CCA Structure <OUT>

Parameter Type Description

count UINT32 number of values in the commandAttributes list;
may be 0

commandAttributes[count]{:MAX_CAP_CC} TPMA_CC a list of command codes attributes

10.8.3 TPML_ALG

This list is returned by TPM2_IncrementalSelfTest().

Table 93 — Definition of TPML_ALG Structure

Parameter Type Description

count UINT32 number of algorithms in the algorithms list; may be 0

algorithms[count]{:MAX_ALG_LIST_SIZE} TPM_ALG_ID a list of algorithm IDs

The maximum only applies to an algorithm list in a
command. The response size is limited only by the
size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

10.8.4 TPML_HANDLE

This structure is used when the TPM returns a list of loaded handles when the capability in

TPM2_GetCapability() is TPM_CAP_HANDLE.

NOTE This list is not used as input to the TPM.

Table 94 — Definition of TPML_HANDLE Structure <OUT>

Name Type Description

count UINT32 the number of handles in the list

may have a value of 0

handle[count]{: MAX_CAP_HANDLES} TPM_HANDLE an array of handles

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 94 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.8.5 TPML_DIGEST

This list is used to convey a list of digest values. This type is used in TPM2_PolicyOR() and in

TPM2_PCR_Read().

Table 95 — Definition of TPML_DIGEST Structure

Parameter Type Description

count {2:} UINT32 number of digests in the list, minimum is two for
TPM2_PolicyOR().

digests[count]{:8} TPM2B_DIGEST a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE response code when count is not at least two or is
greater than eight

10.8.6 TPML_DIGEST_VALUES

This list is used to convey a list of digest values. This type is returned by TPM2_Event() and

TPM2_SequenceComplete() and is an input for TPM2_PCR_Extend().

NOTE 1 This construct limits the number of hashes in the list to the number of digests implemented in the TPM
rather than the number of PCR banks. This allows extra values to appear in a call t o
TPM2_PCR_Extend().

NOTE 2 The digest for an unimplemented hash algorithm may not be in a list because the TPM may not recognize
the algorithm as being a hash and it may not know the digest size.

Table 96 — Definition of TPML_DIGEST_VALUES Structure

Parameter Type Description

count UINT32 number of digests in the list

digests[count]{:HASH_COUNT} TPMT_HA a list of tagged digests

#TPM_RC_SIZE response code when count is greater than the possible
number of banks

10.8.7 TPM2B_DIGEST_VALUES

Digest list in a sized buffer. This list is returned by TPM2_PCR_SequenceComplete().

Table 97 — Definition of TPM2B_DIGEST_VALUES Structure

Parameter Type Description

size UINT16 size of the operand

buffer [size] {:sizeof(TPML_DIGEST_VALUES)} BYTE the operand

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 95

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.8.8 TPML_PCR_SELECTION

This list is used to indicate the PCR that are included in a selection when more than one PCR value may

be selected.

This structure is an input parameter to TPM2_PolicyPCR() to indicate the PCR that will be included in the

digest of PCR for the authorization. The structure is used in TPM2_PCR_Read() command to indicate the

PCR values to be returned and in the response to indicate which PCR are included in the list of returned

digests. The structure is an output parameter from TPM2_Create() and indicates the PCR used in the

digest of the PCR state when the object was created. The structure is also contained in the attestation

structure of TPM2_Quote().

When this structure is used to select PCR to be included in a digest, the selected PCR are concatenated

to create a “message” containing all of the PCR, and then the message is hashed using the context-

specific hash algorithm.

Table 98 — Definition of TPML_PCR_SELECTION Structure

Parameter Type Description

count UINT32 number of selection structures

A value of zero is allowed.

pcrSelections[count]{:HASH_COUNT} TPMS_PCR_SELECTION list of selections

#TPM_RC_SIZE response code when count is greater
than the possible number of banks

10.8.9 TPML_ALG_PROPERTY

This list is used to report on a list of algorithm attributes. It is returned in a TPM2_GetCapability().

Table 99 — Definition of TPML_ALG_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of algorithm properties structures

A value of zero is allowed.

algProperties[count]{:MAX_CAP_ALGS} TPMS_ALG_PROPERTY list of properties

10.8.10 TPML_TAGGED_TPM_PROPERTY

This list is used to report on a list of properties that are TPMS_TAGGED_PROPERTY values. It is

returned by a TPM2_GetCapability().

Table 100 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

tpmProperty[count]{:MAX_TPM_PROPERTIES} TPMS_TAGGED_PROPERTY an array of tagged properties

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 96 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.8.11 TPML_TAGGED_PCR_PROPERTY

This list is used to report on a list of properties that are TPMS_PCR_SELECT values. It is returned by a

TPM2_GetCapability().

Table 101 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties

A value of zero is allowed.

pcrProperty[count]{:MAX_PCR_PROPERTIES} TPMS_TAGGED_PCR_SELECT a tagged PCR selection

10.8.12 TPML_ECC_CURVE

This list is used to report the ECC curve ID values supported by the TPM. It is returned by a

TPM2_GetCapability().

Table 102 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT>

Parameter Type Description

count UINT32 number of curves

A value of zero is allowed.

eccCurves[count]{:MAX_ECC_CURVES} TPM_ECC_CURVE array of ECC curve identifiers

10.9 Capabilities Structures

10.9.1 TPMU_CAPABILITIES

Table 103 — Definition of TPMU_CAPABILITIES Union <OUT>

Parameter Type Selector Description

algorithms TPML_ALG_PROPERTY TPM_CAP_ALGS

handles TPML_HANDLE TPM_CAP_HANDLES

command TPML_CCA TPM_CAP_COMMANDS

ppCommands TPML_CC TPM_CAP_PP_COMMANDS

auditCommands TPML_CC TPM_CAP_AUDIT_COMMANDS

assignedPCR TPML_PCR_SELECTION TPM_CAP_PCRS

tpmProperties TPML_TAGGED_TPM_PROPERTY TPM_CAP_TPM_PROPERTIES

pcrProperties TPML_TAGGED_PCR_PROPERTY TPM_CAP_PCR_PROPERTIES

eccCurves TPML_ECC_CURVE TPM_CAP_ECC_CURVES TPM_ALG_ECC

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 97

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.9.2 TPMS_CAPABILITY_DATA

This data area is returned in response to a TPM2_GetCapability().

Table 104 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>

Parameter Type Description

capability TPM_CAP the capability

[capability]data TPMU_CAPABILITIES the capability data

10.10 Clock/Counter Structures

10.10.1 TPMS_CLOCK_INFO

This structure is used in each of the attestation commands.

Table 105 — Definition of TPMS_CLOCK_INFO Structure

Parameter Type Description

clock UINT64 time in milliseconds during which the TPM has been powered

This structure element is used to report on the TPM's Clock value.

The value of Clock shall be recorded in non-volatile memory no

less often than once per 2
22

milliseconds (~69.9 minutes) of TPM
operation. The reference for the millisecond timer is the TPM
oscillator.

This value is reset to zero when the Storage Primary Seed is
changed (TPM2_Clear()).

This value may be advanced by TPM2_AdvanceClock().

resetCount UINT32 number of occurrences of TPM Reset since the last TPM2_Clear()

restartCount UINT32 number of times that TPM2_Shutdown() or _TPM_Hash_Start have
occurred since the last TPM Reset or TPM2_Clear().

safe TPMI_YES_NO no value of Clock greater than the current value of Clock has been
previously reported by the TPM. Set to YES on TPM2_Clear().

10.10.2 Clock

Clock is a monotonically increasing counter that advances whenever power is applied to the TPM. The

value of Clock may be set forward with TPM2_ClockSet() if ownerAuth or platformAuth is provided. The

value of Clock is incremented each millisecond.

TPM2_Clear() will set Clock to zero.

Clock will be non-volatile but may have a volatile component that is updated every millisecond with the

non-volatile component updated at a lower rate. If the implementation uses a volatile component, the non-

volatile component shall be updated no less frequently than every 2
22

 milliseconds (~69.9 minutes). The

update rate of the non-volatile portion of Clock shall be reported by a TPM2_GetCapability() with

capability = TPM_CAP_TPM_PROPERTIES and property = TPM_PT_CLOCK_UPDATE.

10.10.3 ResetCount

This counter shall increment on each TPM Reset. This counter shall be reset to zero by TPM2_Clear().

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 98 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.10.4 RestartCount

This counter shall increment by one for each TPM Restart or TPM Resume. The restartCount shall be

reset to zero on a TPM Reset or TPM2_Clear().

10.10.5 Safe

This parameter is set to YES when the value reported in Clock is guaranteed to be unique for the current

Owner. It is set to NO when the value of Clock may have been reported in a previous attestation or

access.

This parameter will be YES if a TPM2_Startup() was preceded by TPM2_Shutdown() with no intervening

commands. It will also be YES after an update of the non-volatile bits of Clock have been updated at the

end of an update interval.

If a TPM implementation does not implement Clock, Safe shall always be NO and

TPMS_CLOCK_INFO.clock shall always be zero.

This parameter will be set to YES by TPM2_Clear().

10.10.6 TPMS_TIME_INFO

This structure is used in the TPM2_TICK attestation.

The Time value reported in this structure is reset whenever the TPM is reset. An implementation may

reset the value of Time any time after _TPM_Init and before the TPM returns after TPM2_Start(). The

value of Time shall increment continuously while power is applied to the TPM.

Table 106 — Definition of TPMS_TIME_INFO Structure

Parameter Type Description

time UINT64 time in milliseconds since the last _TPM_Init() or TPM2_Startup()

This structure element is used to report on the TPM's Time value.

clockInfo TPMS_CLOCK_INFO a structure containing the clock information

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 99

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.11 TPM Attestation Structures

10.11.1 Introduction

This clause describes the structures that are used when a TPM creates a structure to be signed. The

signing structures follow a standard format TPM2B_ATTEST with case-specific information embedded.

10.11.2 TPMS_TIME_ATTEST_INFO

This structure is used when the TPM performs TPM2_GetClock.

Table 107 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT>

Parameter Type Description

time TPMS_TIME_INFO the Time, clock, resetCount, restartCount, and Safe indicator

firmwareVersion UINT64 a vendor-specific value indicating the version number of the
firmware

10.11.3 TPMS_CERTIFY_INFO

This is the attested data for TPM2_Certify().

Table 108 — Definition of TPMS_CERTIFY_INFO Structure <OUT>

Parameter Type Description

name TPM2B_NAME Name of the certified object

qualifiedName TPM2B_NAME Qualified Name of the certified object

10.11.1 TPMS_QUOTE_INFO

This is the attested data for TPM2_Quote().

Table 109 — Definition of TPMS_QUOTE_INFO Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION information on algID, PCR selected and digest

pcrDigest TPM2B_DIGEST digest of the selected PCR using the hash of the signing key

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 100 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.11.2 TPMS_COMMAND_AUDIT_INFO

This is the attested data for TPM2_GetCommandAuditDigest().

Table 110 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>

Parameter Type Description

auditCounter UINT64 the monotonic audit counter

digestAlg TPM_ALG_ID hash algorithm used for the command audit

auditDigest TPM2B_DIGEST the current value of the audit digest

commandDigest TPM2B_DIGEST digest of the command codes being audited using digestAlg

10.11.3 TPMS_SESSION_AUDIT_INFO

This is the attested data for TPM2_GetSessionAuditDigest().

Table 111 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>

Parameter Type Description

exclusiveSession TPMI_YES_NO current exclusive status of the session

TRUE if all of the commands recorded in the sessionDigest were
executed without any intervening TPM command that did not use
this transport session

sessionDigest TPM2B_DIGEST the current value of the session audit digest

10.11.4 TPMS_CREATION_INFO

This is the attested data for TPM2_CertifyCreation().

Table 112 — Definition of TPMS_CREATION_INFO Structure <OUT>

Parameter Type Description

objectName TPM2B_NAME Name of the object

creationHash TPM2B_DIGEST creationHash

10.11.5 TPMS_NV_CERTIFY_INFO

This structure contains the Name and contents of the selected NV Index that is certified by

TPM2_NV_Certify().

Table 113 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT>

Parameter Type Description

indexName TPM2B_NAME Name of the NV Index

offset UINT16 the offset parameter of TPM2_NV_Certify()

nvContents TPM2B_MAX_NV_BUFFER contents of the NV Index

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 101

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.11.6 TPMI_ST_ATTEST

Table 114 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>

Value Description

TPM_ST_ATTEST_CERTIFY generated by TPM2_Certify()

TPM_ST_ATTEST_QUOTE generated by TPM2_Quote()

TPM_ST_ATTEST_SESSION_AUDIT generated by TPM2_GetSessionAuditDigest()

TPM_ST_ATTEST_COMMAND_AUDIT generated by TPM2_GetCommandAuditDigest()

TPM_ST_ATTEST_TIME generated by TPM2_GetTime()

TPM_ST_ATTEST_CREATION generated by TPM2_CertifyCreation()

TPM_ST_ATTEST_NV generated by TPM2_NV_Certify()

10.11.7 TPMU_ATTEST

Table 115 — Definition of TPMU_ATTEST Union <OUT>

Parameter Type Selector

certify TPMS_CERTIFY_INFO TPM_ST_ATTEST_CERTIFY

creation TPMS_CREATION_INFO TPM_ST_ATTEST_CREATION

quote TPMS_QUOTE_INFO TPM_ST_ATTEST_QUOTE

commandAudit TPMS_COMMAND_AUDIT_INFO TPM_ST_ATTEST_COMMAND_AUDIT

sessionAudit TPMS_SESSION_AUDIT_INFO TPM_ST_ATTEST_SESSION_AUDIT

time TPMS_TIME_ATTEST_INFO TPM_ST_ATTEST_TIME

nv TPMS_NV_CERTIFY_INFO TPM_ST_ATTEST_NV

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 102 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10.11.8 TPMS_ATTEST

This structure is used on each TPM-generated signed structure. The signature is over this structure.

When the structure is signed by a key in the Storage hierarchy, the values of clockInfo.resetCount,

clockInfo.restartCount, and firmwareVersion are obfuscated with a per-key obfuscation value.

Table 116 — Definition of TPMS_ATTEST Structure <OUT>

Parameter Type Description

magic TPM_GENERATED the indication that this structure was created by a TPM (always
TPM_GENERATED_VALUE)

type TPMI_ST_ATTEST type of the attestation structure

qualifiedSigner TPM2B_NAME Qualified Name of the signing key

extraData TPM2B_DATA external information supplied by caller

NOTE A TPM2B_DATA structure provides room for a digest and a
method indicator to indicate the components of the digest.
The definition of this method indicator is outside the scope
of this specification.

clockInfo TPMS_CLOCK_INFO Clock, resetCount, restartCount, and Safe

firmwareVersion UINT64 TPM-vendor-specific field identifying the firmware on the TPM

[type]attested TPMU_ATTEST the type-specific attestation information

10.11.9 TPM2B_ATTEST

This sized buffer to contain the signed structure. The attestationData is the signed portion of the structure.

The size parameter is not signed.

Table 117 — Definition of TPM2B_ATTEST Structure <OUT>

Parameter Type Description

size UINT16 size of the attested structure

attestationData[size]{:sizeof(TPMS_ATTEST)} BYTE the signed structure

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 103

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

10.12 Authorization Structures

The structures in this clause are used for all authorizations. One or more of these structures will be
present in a command or response that has a tag of TPM_ST_SESSIONS.

10.12.1 TPMS_AUTH_COMMAND

This is the format used for each of the authorizations in the session area of a command.

Table 118 — Definition of TPMS_AUTH_COMMAND Structure <IN>

Parameter Type Description

sessionHandle TPMI_SH_AUTH_SESSION+ the session handle

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

10.12.2 TPMS_AUTH_RESPONSE

This is the format for each of the authorizations in the session area of the response. If the TPM returns

TPM_RC_SUCCESS, then the session area of the response contains the same number of authorizations

as the command and the authorizations are in the same order.

Table 119 — Definition of TPMS_AUTH_RESPONSE Structure <OUT>

Parameter Type Description

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer

sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 104 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11 Algorithm Parameters and Structures

11.1 Symmetric

11.1.1 Introduction

This clause defines the parameters and structures for describing symmetric algorithms.

11.1.2 TPMI_AES_KEY_BITS

This interface type defines the supported sizes for an AES key. This type is used to allow the

unmarshaling routine to generate the proper validation code for the supported key sizes. An

implementation that supports different key sizes would have a different set of selections.

When used in TPM2_StartAuthSession(), the mode parameter shall be TPM_ALG_CFB.

NOTE 1 Key size is expressed in bits.

NOTE 2 The definition for AES_KEY_SIZES_BITS used in the reference implementation is found in Annex B

Table 120 — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type

Parameter Description

$AES_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

11.1.3 TPMI_SM4_KEY_BITS

This interface type defines the supported sizes for an SM4 key. This type is used to allow the

unmarshaling routine to generate the proper validation code for the supported key sizes. An

implementation that supports different key sizes would have a different set of selections.

NOTE SM4 only supports a key size of 128 bits.

Table 121 — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type

Parameter Description

$SM4_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 105

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.1.4 TPMU_SYM_KEY_BITS

This union is used to collect the symmetric encryption key sizes.

The xor entry is a hash algorithms selector and not a key size in bits. This overload is used in order to

avoid an additional level of indirection with another union and another set of selectors.

The xor entry is only selected in a TPMT_SYM_DEF, which is used to select the parameter encryption

value.

Table 122 — Definition of TPMU_SYM_KEY_BITS Union

Parameter Type Selector Description

aes TPMI_AES_KEY_BITS TPM_ALG_AES

SM4 TPMI_SM4_KEY_BITS TPM_ALG_SM4

sym TPM_KEY_BITS when selector may be any of the
symmetric block ciphers

xor TPMI_ALG_HASH TPM_ALG_XOR overload for using xor

NOTE TPM_ALG_NULL is not
allowed

null TPM_ALG_NULL

11.1.5 TPMU_SYM_MODE

This union allows the mode value in a TPMT_SYM_DEF or TPMT_SYM_DEF_OBJECT to be empty.

Table 123 — Definition of TPMU_SYM_MODE Union

Parameter Type Selector Description

aes TPMI_ALG_SYM_MODE TPM_ALG_AES NOTE TPM_ALG_NULL is not
allowed

SM4 TPMI_ALG_SYM_MODE TPM_ALG_SM4 NOTE TPM_ALG_NULL is not
allowed

sym TPMI_ALG_SYM_MODE when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR no mode selector

null TPM_ALG_NULL no mode selector

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 106 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.1.6 TPMU_SYM_DETAILS

This union allows additional parameters to be added for a symmetric cipher. Currently, no additional

parameters are required for any of the symmetric algorithms.

NOTE The “x” character in the table title will suppress generation of this type as the parser is not, at this time,
able to generate the proper values (a union of all empty data types). When an algorithm is added that
requires additional parameterization, the Type column will contain a value and the “x” may be removed.

Table 124 — xDefinition of TPMU_SYM_DETAILS Union

Parameter Type Selector Description

aes TPM_ALG_AES

SM4 TPM_ALG_SM4

sym when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR

null TPM_ALG_NULL

11.1.7 TPMT_SYM_DEF

The TPMT_SYM_DEF structure is used to select an algorithm to be used for parameter encryption in

those cases when different symmetric algorithms may be selected.

Table 125 — Definition of TPMT_SYM_DEF Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM indicates a symmetric algorithm

[algorithm]keyBits TPMU_SYM_KEY_BITS a supported key size

[algorithm]mode TPMU_SYM_MODE the mode for the key

//[algorithm]details TPMU_SYM_DETAILS contains additional algorithm details

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if
none of the selectors produces any data.

11.1.8 TPMT_SYM_DEF_OBJECT

This structure is used when different symmetric block cipher (not XOR) algorithms may be selected.

Table 126 — Definition of TPMT_SYM_DEF_OBJECT Structure

Parameter Type Description

algorithm +TPMI_ALG_SYM_OBJECT selects a symmetric block cipher

[algorithm]keyBits TPMU_SYM_KEY_BITS the key size

[algorithm]mode TPMU_SYM_MODE default mode

//[algorithm]details TPMU_SYM_DETAILS contains the additional algorithm details, if any

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if
none of the selectors produces any data.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 107

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.1.9 TPM2B_SYM_KEY

This structure is used to hold a symmetric key in the sensitive area of an asymmetric object.

The number of bits in the key is in keyBits in the public area. When keyBits is not an even multiple of 8

bits, the unused bits of buffer will be the most significant bits of buffer[0] and size will be rounded up to

the number of octets required to hold all bits of the key.

Table 127 — Definition of TPM2B_SYM_KEY Structure

Parameter Type Description

size UINT16 size, in octets, of the buffer containing the key; may be
zero

buffer [size] {:MAX_SYM_KEY_BYTES} BYTE the key

11.1.10 TPMS_SYMCIPHER_PARMS

This structure contains the parameters for a symmetric block cipher object.

Table 128 — Definition of TPMS_SYMCIPHER_PARMS Structure

Parameter Type Description

sym TPMT_SYM_DEF_OBJECT a symmetric block cipher

11.1.11 TPM2B_SENSITIVE_DATA

This buffer holds the secret data of a data object. It can hold as much as 128 octets of data.

MAX_SYM_DATA shall be 128.

NOTE A named value rather than a numeric is used to make coding clearer. A numeric value does not indicate
the reason that it has the specific value that is has.

Table 129 — Definition of TPM2B_SENSITIVE_DATA Structure

Parameter Type Description

size UINT16

buffer[size]{: MAX_SYM_DATA} BYTE the keyed hash private data structure

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 108 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.1.12 TPMS_SENSITIVE_CREATE

This structure defines the values to be placed in the sensitive area of a created object. This structure is

only used within a TPM2B_SENSITIVE_CREATE structure.

NOTE When sent to the TPM or unsealed, data is usually encrypted using parameter encryption.

If data.size is not zero, and the object is not a keyedHash, data.size must match the size indicated in the

keySize of public.parameters. If the object is a keyedHash, data.size may be any value up to the

maximum allowed in a TPM2B_SENSITIVE_DATA.

For an asymmetric object, data shall be an Empty Buffer and sensitiveDataOrigin shall be SET.

Table 130 — Definition of TPMS_SENSITIVE_CREATE Structure <IN>

Parameter Type Description

userAuth TPM2B_AUTH the USER auth secret value

data TPM2B_SENSITIVE_DATA data to be sealed

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 109

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.1.13 TPM2B_SENSITIVE_CREATE

This structure contains the sensitive creation data in a sized buffer. This structure is defined so that both

the userAuth and data values of the TPMS_SENSITIVE_CREATE may be passed as a single parameter

for parameter encryption purposes.

Table 131 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>

Parameter Type Description

size= UINT16 size of sensitive in octets (may not be zero)

NOTE The userAuth and data parameters in this buffer
may both be zero length but the minimum size of
this parameter will be the sum of the size fields of
the two parameters of the
TPMS_SENSITIVE_CREATE.

sensitive TPMS_SENSITIVE_CREATE data to be sealed or a symmetric key value.

11.1.14 TPMS_SCHEME_SIGHASH

This structure is the scheme data for schemes that only require a hash to complete the scheme definition.

Table 132 — Definition of TPMS_SCHEME_SIGHASH Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

11.1.15 TPMI_ALG_HASH_SCHEME

This is the list of values that may appear in a keyedHash as the scheme parameter.

Table 133 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type

Values Comments

TPM_ALG_HMAC the "signing" scheme

TPM_ALG_XOR the "obfuscation" scheme

+TPM_ALG_NULL

#TPM_RC_VALUE

11.1.16 HMAC_SIG_SCHEME

Table 134 — Definition of Types for HMAC_SIG_SCHEME

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_HMAC

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 110 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.1.17 TPMS_SCHEME_XOR

This structure is for the XOR encryption scheme.

Table 135 — Definition of TPMS_SCHEME_XOR Structure

Parameter Type Description

hashAlg +TPMI_ALG_HASH the hash algorithm used to digest the message

kdf TPMI_ALG_KDF the key derivation function

11.1.18 TPMU_SCHEME_HMAC

Table 136 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>

Parameter Type Selector Description

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the "signing" scheme

xor TPMS_SCHEME_XOR TPM_ALG_XOR the "obfuscation" scheme

null TPM_ALG_NULL

11.1.19 TPMT_KEYEDHASH_SCHEME

This structure is used for a hash signing object.

Table 137 — Definition of TPMT_KEYEDHASH_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KEYEDHASH_SCHEME selects the scheme

[scheme]details TPMU_SCHEME_KEYEDHASH the scheme parameters

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 111

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2 Asymmetric

11.2.1 Signing Schemes

11.2.1.1 Introduction

These structures are used to define the method in which the signature is to be created. These schemes

would appear in an object’s public area and in commands where the signing scheme is variable.

Every scheme is required to indicate a hash that is used in digesting the message.

11.2.1.2 RSA_SIG_SCHEMES

These are the RSA schemes that only need a hash algorithm as a scheme parameter.

For the TPM_ALG_RSAPSS signing scheme, the same hash algorithm is used for digesting TPM-

generated data (an attestation structure) and in the KDF used for the masking operation. The salt size is

always the largest salt value that will fit into the available space.

Table 138 — Definition of {RSA} Types for RSA_SIG_SCHEMES

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_RSASSA

TPMS_SCHEME_SIGHASH TPMS_SCHEME_RSAPSS

11.2.1.3 ECC_SIG_SCHEMES

These are the ECC schemes that only need a hash algorithm as a controlling parameter.

Table 139 — Definition of {ECC} Types for ECC_SIG_SCHEMES

Type Name Description

TPMS_SCHEME_SIGHASH TPMS_SCHEME_ECDSA

TPMS_SCHEME_SIGHASH TPMS_SCHEME_SM2

TPMS_SCHEME_SIGHASH TPMS_SCHEME_ECSCHNORR

11.2.1.4 TPMS_SCHEME_ECDAA

Table 140 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used to digest the message

count UINT16 the counter value that is used between TPM2_Commit() and the sign
operation

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 112 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.2.1.5 TPMU_SIG_SCHEME

Table 141 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>

Parameter Type Selector Description

rsassa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the PKCS#1v1.5 scheme

rsapss TPMS_SCHEME_RSAPSS TPM_ALG_RSAPSS the PKCS#1v2.1 PSS scheme

ecdsa TPMS_SCHEME_ECDSA TPM_ALG_ECDSA the ECDSA scheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 ECDSA from SM2

ecdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA the ECDAA scheme

ecSchnorr TPMS_SCHEME_ECSCHNORR TPM_ALG_ECSCHNORR the EC Schnorr

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the HMAC scheme

any TPMS_SCHEME_SIGHASH selector that allows access to
digest for any signing scheme

null TPM_ALG_NULL no scheme or default

11.2.1.6 TPMT_SIG_SCHEME

Table 142 — Definition of TPMT_SIG_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_SIG_SCHEME scheme selector

[scheme]details TPMU_SIG_SCHEME scheme parameters

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 113

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2.2 Encryption Schemes

11.2.2.1 Introduction

These structures are used to indicate the hash algorithm used for the encrypting process. These

schemes would appear in an object’s public area.

11.2.2.2 TPMS_SCHEME_OAEP

Table 143 — Definition of {RSA} TPMS_SCHEME_OAEP Structure

Parameter Type Description

hashAlg +TPMI_ALG_HASH the hash algorithm used to digest the message

11.2.2.3 TPMS_SCHEME_ECDH

For ECDH, KDFe is used for the key derivation function that only a hash algorithm is needed to complete

the definition.

Table 144 — Definition of {ECC} TPMS_SCHEME_ECDH Structure

Parameter Type Description

hashAlg +TPMI_ALG_HASH the hash algorithm used in the KDF

11.2.3 Key Derivation Schemes

11.2.3.1 Introduction

These structures are used to define the key derivation for symmetric secret sharing using asymmetric

methods. A secret shareing scheme is required in any asymmetric key with the decrypt attribute SET.

These schemes would appear in an object’s public area and in commands where the secret sharing

scheme is variable.

Each scheme includes a symmetric algorithm and a KDF selection.

11.2.3.2 TPMS_SCHEME_MGF1

Table 145 — Definition of TPMS_SCHEME_MGF1 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

11.2.3.3 TPMS_SCHEME_KDF1_SP800_56a

Table 146 — Definition of {ECC} TPMS_SCHEME_KDF1_SP800_56a Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 114 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.2.3.4 TPMS_SCHEME_KDF2

Table 147 — Definition of TPMS_SCHEME_KDF2 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

11.2.3.5 TPMS_SCHEME_KDF1_SP800_108

Table 148 — Definition of TPMS_SCHEME_KDF1_SP800_108 Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH the hash algorithm used in the KDF

11.2.3.6 TPMU_KDF_SCHEME

Table 149 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S>

Parameter Type Selector Description

mgf1 TPMS_SCHEME_MGF1 TPM_ALG_MGF1

kdf1_SP800_56a TPMS_SCHEME_KDF1_SP800_56a TPM_ALG_KDF1_SP800_56a

kdf2 TPMS_SCHEME_KDF2 TPM_ALG_KDF2

kdf1_sp800_108 TPMS_SCHEME_KDF1_SP800_108 TPM_ALG_KDF1_SP800_108

null TPM_ALG_NULL

11.2.3.7 TPMT_KDF_SCHEME

Table 150 — Definition of TPMT_KDF_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KDF scheme selector

[scheme]details TPMU_KDF_SCHEME scheme parameters

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 115

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2.3.8 TPMI_ALG_ASYM_SCHEME

List of all of the scheme types for any asymmetric algorithm. This is used to define the

TPMT_ASYM_SCHEME.

Table 151 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <>

Values Comments

TPM_ALG_RSASSA list of the allowed values

TPM_ALG_RSAPSS

TPM_ALG_RSAES

TPM_ALG_OAEP

TPM_ALG_ECDSA

TPM_ALG_SM2

TPM_ALG_ECDAA

TPM_ALG_ECDH

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.3.9 TPMU_ASYM_SCHEME

This union of all asymmetric schemes is used in each of the asymmetric scheme structures. The actual

scheme structure is defined by the interface type used for the selector.

EXAMPLE The TPMT_RSA_SCHEME structure uses the TPMU_ASYM_SCHEME union but the selector type is
TPMI_ALG_RSA_SCHEME. This means that the only elements of the union that can be selected for the
TPMT_RSA_SCHEME are those that are in TPMI_RSA_SCHEME.

Table 152 — Definition of TPMU_ASYM_SCHEME Union

Parameter Type Selector Description

rsassa TPMS_SCHEME_RSASSA TPM_ALG_RSASSA the PKCS#1v1.5 scheme

rsapss TPMS_SCHEME_RSAPSS TPM_ALG_RSAPSS the PKCS#1v2.1 PSS scheme

rsaes TPM_ALG_RSAES the PKCS#1v2.1 RSAES scheme

oaep TPMS_SCHEME_OAEP TPM_ALG_OAEP the PKSC#1v2.1 OAEP scheme

ecdsa TPMS_SCHEME_ECDSA TPM_ALG_ECDSA an ECDSA scheme

sm2 TPMS_SCHEME_SM2 TPM_ALG_SM2 sign or key exchange from SM2

ecdaa TPMS_SCHEME_ECDAA TPM_ALG_ECDAA an ECDAA scheme

ecSchnorr TPMS_SCHEME_ECSCHNORR TPM_ALG_ECSCHNORR elliptic curve Schnorr signature

ecdh TPM_ALG_ECDH

anySig TPMS_SCHEME_SIGHASH

null TPM_ALG_NULL no scheme or default

This selects the NULL Signature.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 116 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.2.3.10 TPMT_ASYM_SCHEME

This structure is defined to allow overlay of all of the schemes for any asymmetric object. This structure is

not sent on the interface.

Table 153 — Definition of TPMT_ASYM_SCHEME Structure <>

Parameter Type Description

scheme +TPMI_ALG_ASYM_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

11.2.4 RSA

11.2.4.1 TPMI_ALG_RSA_SCHEME

The list of values that may appear in the scheme parameter of a TPMS_RSA_PARMS structure.

Table 154 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type

Values Comments

TPM_ALG_RSASSA list of the allowed values

TPM_ALG_RSAPSS

TPM_ALG_RSAES

TPM_ALG_OAEP

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.2 TPMT_RSA_SCHEME

Table 155 — Definition of {RSA} TPMT_RSA_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 117

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2.4.3 TPMI_ALG_RSA_DECRYPT

The list of values that are allowed in a decryption scheme selection as used in TPM2_RSA_Encrypt() and

TPM2_RSA_Decrypt().

Table 156 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type

Values Comments

TPM_ALG_RSAES

TPM_ALG_OAEP

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.4 TPMT_RSA_DECRYPT

Table 157 — Definition of {RSA} TPMT_RSA_DECRYPT Structure

Parameter Type Description

scheme +TPMI_ALG_RSA_DECRYPT scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

11.2.4.5 TPM2B_PUBLIC_KEY_RSA

This sized buffer holds the largest RSA public key supported by the TPM.

NOTE The reference implementation only supports key sizes of 1,024 and 2,048 bits.

Table 158 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure

Parameter Type Description

size UINT16 size of the buffer

The value of zero is only valid for create.

buffer[size] {: MAX_RSA_KEY_BYTES} BYTE Value

11.2.4.6 TPMI_RSA_KEY_BITS

This holds the value that is the maximum size allowed for an RSA key.

NOTE 1 An implementation is allowed to provide limited support for smaller RSA key sizes. That is, a TPM may be
able to accept a smaller RSA key size in TPM2_LoadExternal() when only the public area is loaded but
not accept that smaller key size in any command that loads both the public and private portions of an RSA
key. This would allow the TPM to validate signatures using the smaller key but would prevent the TPM
from using the smaller key size for any other purpose.

NOTE 2 The definition for RSA_KEY_SIZES_BITS used in the reference implementation is found in Annex B

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 118 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 159 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type

Parameter Description

$RSA_KEY_SIZES_BITS the number of bits in the supported key

#TPM_RC_VALUE error when key size is not supported

11.2.4.7 TPM2B_PRIVATE_KEY_RSA

This sized buffer holds the largest RSA prime number supported by the TPM.

NOTE All primes are required to have exactly half the number of significant bits as the public modulus , and the
square of each prime is required to have the same number of significant bits as the public modulus.

Table 160 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure

Parameter Type Description

size UINT16

buffer[size]{:MAX_RSA_KEY_BYTES/2} BYTE

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 119

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2.5 ECC

11.2.5.1 TPM2B_ECC_PARAMETER

This sized buffer holds the largest ECC parameter (coordinate) supported by the TPM.

Table 161 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure

Parameter Type Description

size UINT16 size of value

buffer[size] {:MAX_ECC_KEY_BYTES} BYTE the parameter data

11.2.5.2 TPMS_ECC_POINT

This structure holds two ECC coordinates that, together, make up an ECC point.

Table 162 — Definition of {ECC} TPMS_ECC_POINT Structure

Parameter Type Description

x TPM2B_ECC_PARAMETER X coordinate

y TPM2B_ECC_PARAMETER Y coordinate

11.2.5.3 TPM2B_ECC_POINT

This structure is defined to allow a point to be a single sized parameter so that it may be encrypted.

NOTE If the point is to be omitted, the X and Y coordinates need to be individual ly set to Empty Buffers. The
minimum value for size will be four. It is checked indirectly by unmarshaling of the TPMS_ECC_POINT. If
the type of point were BYTE, then size could have been zero. However, this would complicate the process
of marshaling the structure.

Table 163 — Definition of {ECC} TPM2B_ECC_POINT Structure

Parameter Type Description

size= UINT16 size of the remainder of this structure

point TPMS_ECC_POINT coordinates

#TPM_RC_SIZE error returned if the unmarshaled size of point is
not exactly equal to size

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 120 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.2.5.4 TPMI_ALG_ECC_SCHEME

Table 164 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type

Values Comments

TPM_ALG_ECDSA these are the selections allowed for an ECC key

TPM_ALG_SM2

TPM_ALG_ECDAA

TPM_ALG_ECSCHNORR

TPM_ALG_ECDH

+TPM_ALG_NULL

#TPM_RC_SCHEME

11.2.5.5 TPMI_ECC_CURVE

The ECC curves implemented by the TPM.

NOTE The definition of ECC_CURVES used in the reference implementation is found in Annex B

Table 165 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type

Parameter Description

$ECC_CURVES the list of implemented curves

#TPM_RC_CURVE error when curve is not supported

11.2.5.6 TPMT_ECC_SCHEME

Table 166 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_ECC_SCHEME scheme selector

[scheme]details TPMU_SIG_SCHEME scheme parameters

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 121

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

This structure is used to report on the curve parameters of an ECC curve. It is returned by

TPM2_ECC_Parameters().

Table 167 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>

Parameter Type Description

curveID TPM_ECC_CURVE identifier for the curve

keySize UINT16 Size in bits of the key

kdf TPMT_KDF_SCHEME the default KDF and hash algorithm used in secret sharing
operations

sign TPMT_ECC_SCHEME+ If not TPM_ALG_NULL, this is the mandatory signature
scheme that is required to be used with this curve.

p TPM2B_ECC_PARAMETER Fp (the modulus)

a TPM2B_ECC_PARAMETER coefficient of the linear term in the curve equation

b TPM2B_ECC_PARAMETER constant term for curve equation

gX TPM2B_ECC_PARAMETER x coordinate of base point G

gY TPM2B_ECC_PARAMETER y coordinate of base point G

n TPM2B_ECC_PARAMETER order of G

h TPM2B_ECC_PARAMETER cofactor (a size of zero indicates a cofactor of 1)

11.3 Signatures

11.3.1 TPMS_SIGNATURE_RSASSA

Table 168 — Definition of {RSA} TPMS_SIGNATURE_RSASSA Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used to digest the message

TPM_ALG_NULL is not allowed.

sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

11.3.2 TPMS_SIGNATURE_RSAPSS

When the TPM generates a PSS signature, the salt size is the largest size allowed by the key and hash

combination.

EXAMPLE For a 2,048-bit public modulus key and SHA1 hash, the salt size is 256 – 20 – 2 = 234 octets.

NOTE While this is significantly larger than required from a security perspective, it avoids issues of whether a
particular size of salt value is sufficient.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 122 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 169 — Definition of {RSA} TPMS_SIGNATURE_RSAPSS Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process

TPM_ALG_NULL is not allowed.

sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.

11.3.3 TPMS_SIGNATURE_ECDSA

Table 170 — Definition of {ECC} TPMS_SIGNATURE_ECDSA Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process

TPM_ALG_NULL is not allowed.

signatureR TPM2B_ECC_PARAMETER

signatureS TPM2B_ECC_PARAMETER

11.3.4 TPMU_SIGNATURE

A TPMU_SIGNATURE_COMPOSITE is a union of the various signatures that is supported by a particular

TPM implementation. The union allows substitution of any signature algorithm wherever a signature is

required in a structure. Table 171 is an illustration of a TPMU_SIGNATURE for a TPM that implements

both RSA and ECC signing.

NOTE 1 All TPM are required to support a hash algorithm and the HMAC algorithm.

When a symmetric algorithm is used for signing, the signing algorithm is assumed to be an HMAC based

on the indicated hash algorithm. The HMAC key will either be referenced as part of the usage or will be

implied by context.

NOTE 2 The table below is illustrative. It would be modified to reflect the signatures produced by the TPM.

Table 171 — Definition of TPMU_SIGNATURE Union <IN/OUT, S>

Parameter Type Selector Description

rsassa TPMS_SIGNATURE_RSASSA TPM_ALG_RSASSA a PKCS#1v1.5 signature

rsapss TPMS_SIGNATURE_RSAPSS TPM_ALG_RSAPSS a PKCS#1v2.1PSS signature

ecdsa TPMS_SIGNATURE_ECDSA TPM_ALG_ECDSA an ECDSA signature

sm2 TPMS_SIGNATURE_ECDSA TPM_ALG_SM2 same format as ECDSA

ecdaa TPMS_SIGNATURE_ECDSA TPM_ALG_ECDAA same format as ECDSA

ecschnorr TPMS_SIGNATURE_ECDSA TPM_ALG_ECSCHNORR same format as ECDSA

hmac TPMT_HA TPM_ALG_HMAC HMAC signature (required to
be supported)

any TPMS_SCHEME_SIGHASH used to access the hash

null TPM_ALG_NULL the NULL signature

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 123

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.3.5 TPMT_SIGNATURE

Table 172 shows the basic algorithm-agile structure when a symmetric or asymmetric signature is

indicated. The sigAlg parameter indicates the algorithm used for the signature. This structure is output

from the attestation commands and is an input to TPM2_VerifySignature(), TPM2_PolicySigned(), and

TPM2_FieldUpgradeStart().

Table 172 — Definition of TPMT_SIGNATURE Structure

Parameter Type Description

sigAlg +TPMI_ALG_SIG_SCHEME selector of the algorithm used to construct the signature

[sigAlg]signature TPMU_SIGNATURE This shall be the actual signature information.

11.4 Key/Secret Exchange

11.4.1 Introduction

The structures in this clause are used when a key or secret is being exchanged. The exchange may be in

 TPM2_StartAuthSession() where the secret is injected for salting the session,

 TPM2_Duplicate(), TPM2_Import, or TPM2_Rewrap() where the secret is the symmetric encryption
key for the outer wrapper of a duplication blob, or

 TPM2_ActivateIdentity() or TPM2_CreateIdentity() where the secret is the symmetric encryption key
for the credential blob.

Particulars are described in Part 1.

11.4.2 TPMU_ENCRYPTED_SECRET

This structure is used to hold either an ephemeral public point for ECDH, an OAEP-encrypted block for

RSA, or a symmetrically encrypted value. This structure is defined for the limited purpose of determining

the size of a TPM2B_ENCRYPTED_SECRET.

The symmetrically encrypted value may use either CFB or XOR encryption.

NOTE Table 173 is illustrative. It would be modified depending on the algorithms supported in the TPM.

Table 173 — Definition of TPMU_ENCRYPTED_SECRET Union <S>

Parameter Type Selector Description

ecc[sizeof(TPMS_ECC_POINT)] BYTE TPM_ALG_ECC

rsa[MAX_RSA_KEY_BYTES] BYTE TPM_ALG_RSA

symmetric[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_SYMCIPHER

keyedHash[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_KEYEDHASH Any symmetrically encrypted
secret value will be limited to
be no larger than a digest.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 124 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.4.3 TPM2B_ENCRYPTED_SECRET

Table 174 — Definition of TPM2B_ENCRYPTED_SECRET Structure

Parameter Type Description

size UINT16 size of the secret value

secret[size] {:sizeof(TPMU_ENCRYPTED_SECRET)} BYTE secret

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 125

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12 Key/Object Complex

12.1 Introduction

An object description requires a TPM2B_PUBLIC structure and may require a TPMT_SENSITIVE

structure. When the structure is stored off the TPM, the TPMT_SENSITIVE structure is encrypted within a

TPM2B_PRIVATE structure.

When the object requires two components for its description, those components are loaded as separate

parameters in the TPM2_Load() command. When the TPM creates an object that requires both

components, the TPM will return them as separate parameters from the TPM2_Create() operation.

The TPM may produce multiple different TPM2B_PRIVATE structures for a single TPM2B_PUBLIC

structure. Creation of a modified TPM2B_PRIVATE structure requires that the full structure be loaded with

the TPM2_Load() command, modification of the TPMT_SENSITIVE data, and output of a new

TPM2B_PRIVATE structure.

12.2 Public Area Structures

12.2.1 Description

This clause defines the TPM2B_PUBLIC structure and the higher-level substructure that may be

contained in a TPM2B_PUBLIC. The higher-level structures that are currently defined for inclusion in a

TPM2B_PUBLIC are the

 structures for asymmetric keys,

 structures for symmetric keys, and

 structures for sealed data.

12.2.2 TPMI_ALG_PUBLIC

Table 175 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type

Values Comments

TPM_ALG_KEYEDHASH required of all TPM

TPM_ALG_SYMCIPHER required of all TPM

TPM_ALG_RSA At least one asymmetric algorithm shall be implemented.

TPM_ALG_ECC At least one asymmetric algorithm shall be implemented.

#TPM_RC_TYPE response code when a public type is not supported

12.2.3 Type-Specific Parameters

12.2.3.1 Description

The public area contains two fields (parameters and unique) that vary by object type. The parameters

field varies according to the type of the object but the contents may be the same across multiple

instances of a particular type. The unique field format also varies according to the type of the object and

will also be unique for each instance.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 126 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

For a symmetric key (type == TPM_ALG_SYMCIPHER), HMAC key (type == TPM_ALG_KEYEDHASH)

or data object (also, type == TPM_ALG_KEYEDHASH), the contents of unique shall be computed from

components of the sensitive area of the object as follows:

 unique ≔ HnameAlg(seedValue || sensitive) (8)

where

HnameAlg() the hash algorithm used to compute the Name of the object

seedValue the digest-sized obfuscation value in the sensitive area of a symmetric
key or symmetric data object found in a
TPMT_SENSITIVE.seedValue.buffer

sensitive the secret key/data of the object in the
TPMT_SENSITIVE.sensitive.any.buffer

12.2.3.2 TPMU_PUBLIC_ID

Table 176 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S>

Parameter Type Selector Description

keyedHash TPM2B_DIGEST TPM_ALG_KEYEDHASH

sym TPM2B_DIGEST TPM_ALG_SYMCIPHER

rsa TPM2B_PUBLIC_KEY_RSA TPM_ALG_RSA

ecc TPMS_ECC_POINT TPM_ALG_ECC

12.2.3.3 TPMS_KEYEDHASH_PARMS

This structure describes the parameters that would appear in the public area of a KEYEDHASH object.

Note Although the names are the same, the types of the structures are not the same as for asymmetric
parameter lists.

Table 177 — Definition of TPMS_KEYEDHASH_PARMS Structure

Parameter Type Description

scheme TPMT_KEYEDHASH_SCHEME+ Indicates the signing method used for a keyedHash signing
object. This field also determines the size of the data field for a
data object created with TPM2_Create(). This field shall not be set
to TPM_ALG_NULL in a template if either sign or encrypt is SET.

12.2.3.4 TPMS_ASYM_PARMS

This structure contains the common public area parameters for an asymmetric key. The first two

parameters of the parameter definition structures of an asymmetric key shall have the same two first

components.

NOTE The sign parameter may have a different type in order to allow different schemes to be selected for each
asymmetric type but the first parameter of each scheme definition shall be a TPM_ALG_ID for a valid
signing scheme.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 127

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 178 — Definition of TPMS_ASYM_PARMS Structure <>

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ the companion symmetric algorithm for a restricted
decryption key and shall be set to a supported symmetric
algorithm

This field is optional for keys that are not decryption keys
and shall be set to TPM_ALG_NULL if not used.

scheme TPMT_ASYM_SCHEME+ for a key with the sign attribute SET, a valid signing
scheme for the key type

for a key with the decrypt attribute SET, a valid key
exchange protocol

for a key with sign and decrypt attributes, shall be
TPM_ALG_NULL

12.2.3.5 TPMS_RSA_PARMS

A TPM compatible with this specification and supporting RSA shall support numPrimes of two and an

exponent of zero. Support for other values is optional. Use of other exponents in duplicated keys is not

recommended because the resulting keys would not be interoperable with other TPMs.

NOTE 1 Implementations are not required to check that exponent is the default exponent. They may fail to load the
key if exponent is not zero. The reference implementation allows the values listed in the table.

Table 179 — Definition of {RSA} TPMS_RSA_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a
supported symmetric algorithm, key size, and mode.

if the key is not a restricted decryption key, this field
shall be set to TPM_ALG_NULL.

scheme TPMT_RSA_SCHEME+ for a signing key, shall be either TPM_ALG_RSAPSS
TPM_ALG_RSASSA or TPM_ALG_NULL

for an unrestricted decryption key, shall be
TPM_ALG_RSAES, TPM_ALG_OAEP, or
TPM_ALG_NULL unless the object also has the sign
attribute

for a restricted decryption key, this field shall be
TPM_ALG_NULL

NOTE When both sign and decrypt are SET, restricted
shall be CLEAR and scheme shall be
TPM_ALG_NULL.

keyBits TPMI_RSA_KEY_BITS number of bits in the public modulus

#TPM_RC_KEY_SIZE

exponent UINT32 the public exponent

A prime number greater than 2.

When zero, indicates that the exponent is the default
of 2

16
 + 1

#TPM_RC_VALUE

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 128 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.2.3.6 TPMS_ECC_PARMS

This structure contains the parameters for prime modulus ECC.

Table 180 — Definition of {ECC} TPMS_ECC_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a supported
symmetric algorithm, key size. and mode.

if the key is not a restricted decryption key, this field shall be
set to TPM_ALG_NULL.

scheme TPMT_ECC_SCHEME+ If the sign attribute of the key is SET, then this shall be a valid
signing scheme.

NOTE If the sign parameter in curveID indicates a mandatory
scheme, then this field shall have the same value.

If the decrypt attribute of the key is SET, then this shall be a
valid key exchange scheme or TPM_ALG_NULL.

If the key is a Storage Key, then this field shall be
TPM_ALG_NULL.

curveID TPMI_ECC_CURVE ECC curve ID

kdf TPMT_KDF_SCHEME+ an optional key derivation scheme for generating a symmetric
key from a Z value

If the kdf parameter associated with curveID is not
TPM_ALG_NULL then this is required to be NULL.

NOTE There are currently no commands where this parameter
has effect and, in the reference code, this field needs to
be set to TPM_ALG_NULL.

12.2.3.7 TPMU_PUBLIC_PARMS

Table 181 defines the possible parameter definition structures that may be contained in the public portion

of a key.

Table 181 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Parameter Type Selector Description
(1)

keyedHashDetail TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH sign | encrypt | neither

symDetail TPMT_SYM_DEF_OBJECT TPM_ALG_SYMCIPHER a symmetric block cipher

rsaDetail TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign
(2)

eccDetail TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign
(2)

asymDetail TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTES

1) Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign may be set.

2) “+” indicates that both may be set but one shall be set. “|” indicates the optional settings.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 129

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.2.3.8 TPMT_PUBLIC_PARMS

This structure is used in TPM2_TestParms() to validate that a set of algorithm parameters is supported by

the TPM.

Table 182 — Definition of TPMT_PUBLIC_PARMS Structure

Parameter Type Description

type TPMI_ALG_PUBLIC the algorithm to be tested

[type]parameters TPMU_PUBLIC_PARMS the algorithm details

12.2.4 TPMT_PUBLIC

Table 183 defines the public area structure. The Name of the object is nameAlg concatenated with the

digest of this structure using nameAlg.

Table 183 — Definition of TPMT_PUBLIC Structure

Parameter Type Description

type TPMI_ALG_PUBLIC “algorithm” associated with this object

nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object

NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.

objectAttributes TPMA_OBJECT attributes that, along with type, determine the manipulations of this

object

authPolicy TPM2B_DIGEST optional policy for using this key

The policy is computed using the nameAlg of the object.

NOTE Shall be the Empty Buffer if no authorization policy is present.

[type]parameters TPMU_PUBLIC_PARMS the algorithm or structure details

[type]unique TPMU_PUBLIC_ID the unique identifier of the structure

For an asymmetric key, this would be the public key.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 130 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.2.5 TPM2B_PUBLIC

This sized buffer is used to embed a TPMT_PUBLIC in a command.

Table 184 — Definition of TPM2B_PUBLIC Structure

Parameter Type Description

size= UINT16 size of publicArea

NOTE The “=” will force the TPM to try to unmarshal a
TPMT_PUBLIC and check that the unmarshaled size
matches the value of size. If all the required fields of
a TPMT_PUBLIC are not present, the TPM will return
an error (generally TPM_RC_SIZE) when attempting
to unmarshal the TPMT_PUBLIC.

publicArea +TPMT_PUBLIC the public area

NOTE The “+” indicates that the caller may specify that use
of TPM_ALG_NULL is allowed for nameAlg.

12.3 Private Area Structures

12.3.1 Introduction

The structures in 12.3 define the contents and construction of the private portion of a TPM object. A

TPM2B_PRIVATE along with a TPM2B_PUBLIC are needed to describe a TPM object.

A TPM2B_PRIVATE area may be encrypted by different symmetric algorithms or, in some cases, not

encrypted at all.

12.3.2 Sensitive Data Structures

12.3.2.1 Introduction

The structures in 12.3.2 define the presumptive internal representations of the sensitive areas of the

various entities. A TPM may store the sensitive information in any desired format but when constructing a

TPM_PRIVATE, the formats in this clause shall be used.

12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC

This structure is defined for coding purposes. For IO to the TPM, the sensitive portion of the key will be in

a canonical form. For an RSA key, this will be one of the prime factors of the public modulus. After

loading, it is typical that other values will be computed so that computations using the private key will not

need to start with just one prime factor. This structure allows the vendor-specific structure to use the

space of the

The value for RSA_VENDOR_SPECIFIC is determined by the vendor.

Table 185 — Definition of {RSA} TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<>

Parameter Type Description

size UINT16

buffer[size]{:PRIVATE_VENDOR_SPECIFIC_BYTES} BYTE

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 131

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.3.2.3 TPMU_SENSITIVE_COMPOSITE

Table 186 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S>

Parameter Type Selector Description

rsa TPM2B_PRIVATE_KEY_RSA TPM_ALG_RSA a prime factor of the public
key

ecc TPM2B_ECC_PARAMETER TPM_ALG_ECC the integer private key

bits TPM2B_SENSITIVE_DATA TPM_ALG_KEYEDHASH the private data

sym TPM2B_SYM_KEY TPM_ALG_SYMCIPHER the symmetric key

any TPM2B_PRIVATE_VENDOR_SPECIFIC vendor-specific size for key
storage

12.3.2.4 TPMT_SENSITIVE

Table 187 — Definition of TPMT_SENSITIVE Structure

Parameter Type Description

sensitiveType TPMI_ALG_PUBLIC identifier for the sensitive area

This shall be the same as the type parameter of the
associated public area.

authValue TPM2B_AUTH user authorization data

The authValue may be a zero-length string.

This value shall not be larger than the size of the
digest produced by the nameAlg of the object.

seedValue TPM2B_DIGEST for asymmetric key object, the optional protection
seed; for other objects, the obfuscation value

This value shall not be larger than the size of the
digest produced by nameAlg of the object.

[sensitiveType]sensitive TPMU_SENSITIVE_COMPOSITE the type-specific private data

12.3.3 TPM2B_SENSITIVE

The TPM2B_SENSITIVE structure is used as a parameter in TPM2_LoadExternal(). It is an unencrypted

sensitive area but it may be encrypted using parameter encryption.

NOTE When this structure is unmarshaled, the size of the sensitiveType determines what type of value is
unmarshaled. Each value of sensitiveType is associated with a TPM2B. It is the maximum size for each of
the TPM2B values will determine if the unmarshal operation is successful. Since there is no selector for
the any or vendor options for the union, the maximum input and output sizes for a TMP2B_SENSITIVE
are not affected by the sizes of those parameters.

Table 188 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the private structure

sensitiveArea TPMT_SENSITIVE an unencrypted sensitive area

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 132 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.3.4 Encryption

A TPMS_SENSITIVE is the input to the encryption process. All TPMS_ENCRYPT structures are CFB-

encrypted using a key and Initialization Vector (IV) that are derived from a seed value.

The method of generating the key and IV is described in “Protected Storage” subclause “Symmetric

Encryption.” in Part 1.

12.3.5 Integrity

The integrity computation is used to ensure that a protected object is modified when stored in memory

outside of the TPM.

The method of protecting the integrity of the sensitive area is described in “Protected Storage” subclause

“Integrity” in Part 1.

12.3.6 _PRIVATE

This structure is defined to size the contents of a TPM2B_PRIVATE. This structure is not directly

marshaled or unmarshaled.

For TPM2_Duplicate() and TPM2_Import(), the TPM2B_PRIVATE may contain multiply encrypted data

and two integrity values. In some cases, the sensitive data is not encrypted and the integrity value is not

present.

For TPM2_Load() and TPM2_Create(), integrityInner is always present.

If integrityInner is present, it and sensitive are encrypted as a single block.

When an integrity value is not needed, it is not present and it is not represented by an Empty Buffer.

Table 189 — Definition of _PRIVATE Structure <>

Parameter Type Description

integrityOuter TPM2B_DIGEST

integrityInner TPM2B_DIGEST could also be a TPM2B_IV

sensitive TPMT_SENSITIVE the sensitive area

12.3.7 TPM2B_PRIVATE

The TPM2B_PRIVATE structure is used as a parameter in multiple commands that create, load, and

modify the sensitive area of an object.

Table 190 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S>

Parameter Type Description

size UINT16 size of the private structure

buffer[size] {:sizeof(_PRIVATE)} BYTE an encrypted private area

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 133

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.4 Identity Object

12.4.1 Description

An identity object is used to convey credential protection value (CV) to a TPM that can load the object

associated with the object. The CV is encrypted to a storage key on the target TPM, and if the credential

integrity checks and the proper object is loaded in the TPM, then the TPM will return the CV.

12.4.2 _ID_OBJECT

This structure is used for sizing the TPM2_ID_OBJECT.

Table 191 — Definition of _ID_OBJECT Structure <>

Parameter Type Description

integrityHMAC TPM2B_DIGEST HMAC using the nameAlg of the storage key on the target
TPM

encIdentity TPM2B_DIGEST credential protector information returned if name matches the
referenced object

All of the encIdentity is encrypted, including the size field.

NOTE The TPM is not required to check that the size is not larger
than the digest of the nameAlg. However, if the size is
larger, the ID object may not be usable on a TPM that has
no digest larger than produced by nameAlg.

12.4.3 TPM2B_ID_OBJECT

This structure is an output from TPM2_MakeCredential() and is an input to TPM2_ActivateCredential().

Table 192 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the credential structure

credential[size]{:sizeof(_ID_OBJECT)} BYTE an encrypted credential area

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 134 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

13 NV Storage Structures

13.1 TPM_NV_INDEX

A TPM_NV_INDEX is used to reference a defined location in NV memory. The format of the Index is

changed from TPM 1.2 in order to include the Index in the reserved handle space. Handles in this range

use the digest of the public area of the Index as the Name of the entity in authorization computations

The 32-bit TPM 1.2 NV Index format is shown in Figure 4. In order to allow the Index to fit into the 24 bits

available in the reserved handle space, the Index value format is changed as shown in Figure 5.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

1
6

1
5

0
0

T P U D reserved Purview Index

Figure 4 — TPM 1.2 TPM_NV_INDEX

3
1

2
4

2
3

2
2

2
1

0
0

TPM_HT_NV_INDEX S Index

Figure 5 — TPM 2.0 TPM_NV_INDEX

NOTE This TPM_NV_INDEX format does not retain the Purview field and the D bit is not a part of an Index
handle as in TPM 1.2. The TPMA_NV_PLATFORMCREATE attribute is a property of an Index that
provides functionality similar to the D bit.

A valid Index handle will have an MSO of TPM_HT_NV_INDEX.

NOTE This structure is not used. It is defined here to indicate how the fields of the handle are assigned. The
exemplary unmarshaling code unmarshals a TPM_HANDLE and validates that it is in the range for an
NV_INDEX.

Table 193 — Definition of (UINT32) TPM_NV_INDEX Bits <>

Bit Name Definition

21:0 index The index of the NV location

23:22 space The S field in Figure 5. Selects among the possible spaces. See Table 194.

31:24 RH_NV constant value of TPM_HT_NV_INDEX indicating the NV Index range

 #TPM_RC_VALUE response code returned if unmarshaling of this type fails because the handle
value is incorrect

Table 194 — Options for space Field of TPM_NV_INDEX

Value Assigned by Description

002 TCG Indexes are assigned by the TCG either in the TPM main specification (that is,
this specification) or in a platform-specific specification.

012 Owner Indexes in this space are assigned by the TPM owner.

102 PM Indexes in this space are assigned by the platform manufacturer.

112 TPM manufacturer Indexes in this space are assigned by the TPM manufacturer and the format of
the index field is defined by the TPM manufacturer.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 135

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

13.2 TPMA_NV (NV Index Attributes)

This structure allows the TPM to keep track of the data and permissions to manipulate an NV Index.

The platform controls (TPMA_NV_PPWRITE and TPMA_NV_PPREAD) and owner controls

(TPMA_NV_OWNERWRITE and TPMA_NV_OWNERREAD) give the platform and owner access to NV

Indexes using platformAuth or ownerAuth rather than the authValue or authPolicy of the Index.

If access to an NV Index is to be restricted based on PCR, then an appropriate authPolicy shall be

provided.

NOTE platformAuth or ownerAuth can be provided in any type of authorization session or as a password.

If TPMA_NV_AUTHREAD is SET, then the Index may be read if the Index authValue is provided. If

TPMA_NV_POLICYREAD is SET, then the Index may be read if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET.

If TPMA_NV_AUTHWRITE is SET, then the Index may be written if the Index authValue is provided. If

TPMA_NV_POLICYWRITE is SET, then the Index may be written if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET.

If TPMA_NV_WRITELOCKED is SET, then the Index may not be written. If TPMA_NV_WRITEDEFINE is

SET, TPMA_NV_WRITELOCKED may not be CLEAR except by deleting and redefining the Index. If

TPMA_NV_WRITEDEFINE is CLEAR, then TPMA_NV_WRITELOCK will be CLEAR on the next

TPM2_Startup(TPM_SU_CLEAR).

If TPMA_NV_READLOCKED is SET, then the Index may not be read. TPMA_NV_READLOCK will be

CLEAR on the next TPM2_Startup(TPM_SU_CLEAR).

NOTE The TPM is expected to maintain indicators to indicate that the Index is temporarily locked. The state of
these indicators is reported in the TPMA_NV_READLOCKED and TPMA_NV_WRITELOCKED attributes.

If TPMA_NV_EXTEND is SET, then writes to the Index will cause an update of the Index using the extend

operation with the nameAlg used to create the digest.

Only one of TPMA_NV_EXTEND, TPMA_NV_COUNTER, or TPMA_NV_BITS may be set.

When the Index is created (TPM2_NV_DefineSpace()), TPMA_NV_WRITELOCKED,
TPMA_NV_READLOCKED, TPMA_NV_WRITTEN shall all be CLEAR in the parameter that defines the
attributes of the created Index.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 136 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 195 — Definition of (UINT32) TPMA_NV Bits

Bit Name Description

0 TPMA_NV_PPWRITE SET (1): The Index data can be written if platformAuth is provided.

CLEAR (0): Writing of the Index data cannot be authorized with

platformAuth.

1 TPMA_NV_OWNERWRITE SET (1): The Index data can be written if ownerAuth is provided.

CLEAR (0): Writing of the Index data cannot be authorized with

ownerAuth.

2 TPMA_NV_AUTHWRITE SET (1): Authorizations to change the Index contents that require

USER role may be provided with an HMAC session or password.

CLEAR (0): Authorizations to change the Index contents that require

USER role may not be provided with an HMAC session or password.

3 TPMA_NV_POLICYWRITE SET (1): Authorizations to change the Index contents that require

USER role may be provided with a policy session.

CLEAR (0): Authorizations to change the Index contents that require

USER role may not be provided with a policy session.

NOTE TPM2_NV_ChangeAuth() always requires that authorization be
provided in a policy session.

4 TPMA_NV_COUNTER SET (1): Index contains an 8-octet value that is to be used as a

counter and can only be modified with TPM2_NV_Increment().

CLEAR (0): The Index is not a counter.

5 TPMA_NV_BITS SET (1): Index contains an 8-octet value to be used as a bit field and

can only be modified with TPM2_NV_SetBits().

CLEAR (0): The Index is not a bit field.

6 TPMA_NV_EXTEND SET (1): Index contains a digest-sized value used like a PCR. The

Index may only be modified using TPM2_NV_Extend. The extend will
use the nameAlg of the Index.

CLEAR (0): Index is not a PCR.

9:7 Reserved shall be zero

reserved for use in defining additional write controls

10 TPMA_NV_POLICY_DELETE SET (1): Index may not be deleted unless the authPolicy is satisfied.

CLEAR (0): Index may be deleted with proper platform or owner

authorization.

11 TPMA_NV_WRITELOCKED SET (1): Index cannot be written.

CLEAR (0): Index can be written.

12 TPMA_NV_WRITEALL SET (1): A partial write of the Index data is not allowed. The write

size shall match the defined space size.

CLEAR (0): Partial writes are allowed. This setting is required if

TPMA_NV_BITS is SET.

13 TPMA_NV_WRITEDEFINE SET (1): TPM2_NV_WriteLock() may be used to prevent further

writes to this location.

CLEAR (0): TPM2_NV_WriteLock() does not block subsequent

writes.

14 TPMA_NV_WRITE_STCLEAR SET (1): TPM2_NV_WriteLock() may be used to prevent further

writes to this location until the next TPM Reset or TPM Restart.

CLEAR (0): A write to this Index with a data size of zero does not

change the write access.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 137

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Bit Name Description

15 TPMA_NV_GLOBALLOCK SET (1): If TPM2_NV_GlobalLock() is successful, then further writes

to this location are not permitted until the next TPM Reset or TPM
Restart.

CLEAR (0): TPM2_NV_GlobalLock() has no effect on the writing of

the data at this Index.

16 TPMA_NV_PPREAD SET (1): The Index data can be read if platformAuth is provided.

CLEAR (0): Reading of the Index data cannot be authorized with
platformAuth.

17 TPMA_NV_OWNERREAD SET (1): The Index data can be read if ownerAuth is provided.

CLEAR (0): Reading of the Index data cannot be authorized with
ownerAuth.

18 TPMA_NV_AUTHREAD SET (1): The Index data may be read if the authValue is provided.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authValue.

19 TPMA_NV_POLICYREAD SET (1): The Index data may be read if the authPolicy is satisfied.

CLEAR (0): Reading of the Index data cannot be authorized with the
Index authPolicy.

24:20 Reserved shall be zero

reserved for use in defining additional read controls

25 TPMA_NV_NO_DA SET (1): Authorization failures of the Index do not affect the DA logic

and authorization of the Index is not blocked when the TPM is in
Lockout mode.

CLEAR (0): Authorization failures of the Index will increment the

authorization failure counter and authorizations of this Index are not
allowed when the TPM is in Lockout mode.

26 TPMA_NV_ORDERLY SET (1): NV Index state is only required to be saved when the TPM

performs an orderly shutdown (TPM2_Shutdown()). Only an Index
with TPMA_NV_COUNTER SET may have this setting.

CLEAR (0): NV Index state is required to be persistent after the

command to update the Index completes successfully (that is, the NV
update is synchronous with the update command).

27 TPMA_NV_CLEAR_STCLEAR SET (1): TPMA_NV_WRITTEN for the Index is CLEAR by TPM

Reset or TPM Restart.

CLEAR (0): TPMA_NV_WRITTEN is not changed by TPM Restart.

NOTE This attribute may only be SET if TPMA_NV_COUNTER is not
SET.

NOTE If the TPMA_NV_ORDERLY is SET, TPMA_NV_WRITTEN will
be CLEAR by TPM Reset.

28 TPMA_NV_READLOCKED SET (1): Reads of the Index are blocked until the next TPM Reset or

TPM Restart.

CLEAR (0): Reads of the Index are allowed if proper authorization is

provided.

29 TPMA_NV_WRITTEN SET (1): Index has been written.

CLEAR (0): Index has not been written.

30 TPMA_NV_PLATFORMCREATE SET (1): This Index may be undefined with platformAuth but not with

ownerAuth. The TPM will ensure that this attribute is SET when the
Index is defined using platformAuth.

CLEAR (0): This Index may be undefined using ownerAuth but not
with platformAuth.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 138 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Bit Name Description

31 TPMA_NV_READ_STCLEAR SET (1): TPM2_NV_ReadLock() may be used to SET

TPMA_NV_READLOCKED for this Index.

CLEAR (0): TPM2_NV_ReadLock() has no effect on this Index.

13.3 TPMS_NV_PUBLIC

This structure describes an NV Index.

Table 196 — Definition of TPMS_NV_PUBLIC Structure

Name Type Description

nvIndex TPMI_RH_NV_INDEX the handle of the data area

nameAlg TPMI_ALG_HASH hash algorithm used to compute the name of the
Index and used for the authPolicy

attributes TPMA_NV the Index attributes

authPolicy TPM2B_DIGEST the access policy for the Index

dataSize{:MAX_NV_INDEX_SIZE} UINT16 the size of the data area

The maximum size is implementation-
dependent. The minimum maximum size is
platform-specific.

#TPM_RC_SIZE response code returned when the requested size
is too large for the implementation

13.4 TPM2B_NV_PUBLIC

This structure is used when a TPMS_NV_PUBLIC is sent on the TPM interface.

Table 197 — Definition of TPM2B_NV_PUBLIC Structure

Name Type Description

size= UINT16 size of nvPublic

nvPublic TPMS_NV_PUBLIC the public area

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 139

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14 Context Data

14.1 Introduction

This clause defines the contents of the TPM2_ContextSave() response parameters and

TPM2_ContextLoad() command parameters.

If the parameters provided by the caller in TPM2_ContextLoad() do not match the values returned by the

TPM when the context was saved, the integrity check of the TPM2B_CONTEXT will fail and the object or

session will not be loaded.

14.2 TPM2B_CONTEXT_SENSITIVE

This structure holds the object or session context data. When saved, the full structure is encrypted.

Table 198 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size]{:MAX_CONTEXT_SIZE} BYTE the sensitive data

14.3 TPMS_CONTEXT_DATA

This structure holds the integrity value and the encrypted data for a context.

Table 199 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S>

Parameter Type Description

integrity TPM2B_DIGEST the integrity value

encrypted TPM2B_CONTEXT_SENSITIVE the sensitive area

14.4 TPM2B_CONTEXT_DATA

This structure is used in a TPMS_CONTEXT.

Table 200 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size] {:sizeof(TPMS_CONTEXT_DATA)} BYTE

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 140 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.5 TPMS_CONTEXT

This structure is used in TPM2_ContextLoad() and TPM2_ContextSave(). If the values of the

TPMS_CONTEXT structure in TPM2_ContextLoad() are not the same as the values when the context

was saved (TPM2_ContextSave()), then the TPM shall not load the context.

Saved object contexts shall not be loaded as long as the associated hierarchy is disabled.

Saved object contexts are invalidated when the Primary Seed of their hierarchy changes. Objects in the

Endorsement hierarchy are invalidated when either the EPS or SPS is changed.

When an object has the stClear attribute, it shall not be possible to reload the context or any descendant

object after a TPM Reset or TPM Restart.

NOTE 1 The reference implementation prevents reloads after TPM Restart by including the current value of a
clearCount in the saved object context. When an object is loaded, this value is compared with the current
value of the clearCount if the object has the stClear attribute. If the values are not the same, then the
object cannot be loaded.

A sequence value is contained within the integrity-protected part of the saved context. The sequence

value is repeated in the sequence parameter of the TPMS_CONTEXT of the context. The sequence

parameter, along with other values, is used in the generation the protection values of the context.

If the integrity value of the context is valid, but the sequence value of the decrypted context does not

match the value in the sequence parameter, then TPM shall enter the failure mode because this is

indicative of a specific type of attack on the context values.

NOTE 2 If the integrity value is correct, but the decryption fails and produces the wrong value for sequence, this
implies that either the TPM is faulty or an external entity is able to forge an integrity value for the context
but they have insufficient information to know what the encryption key of the context. Since the TPM
generated the valid context, then there is no reason for the sequence value in the context to be decrypted
incorrectly other than the TPM is faulty or the TPM is under attack. In either case, it is appropriate for the
TPM to enter failure more.

Table 201 — Definition of TPMS_CONTEXT Structure

Name Type Description

sequence UINT64 the sequence number of the context

NOTE Transient object contexts and session
contexts used different counters.

savedHandle TPMI_DH_CONTEXT the handle of the session, object or sequence

hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the context

contextBlob TPM2B_CONTEXT_DATA the context data and integrity HMAC

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 141

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.6 Parameters of TPMS_CONTEXT

14.6.1 sequence

The sequence parameter is used to differentiate the contexts and to allow the TPM to create a different

encryption key for each context. Objects and sessions use different sequence counters. The sequence

counter for objects (transient and sequence) is incremented when an object context is saved, and the

sequence counter for sessions increments when a session is created or when it is loaded

(TPM2_ContextLoad()). The session sequence number is the contextID counter.

For a session, the sequence number also allows the TRM to find the “older” contexts so that they may be

refreshed if the contextID are too widely separated.

If an input value for sequence is larger than the value used in any saved context, the TPM shall return an

error (TPM_RC_VALUE) and do no additional processing of the context.

If the context is a session context and the input value for sequence is less than the current value of

contextID minus the maximum range for sessions, the TPM shall return an error (TPM_RC_VALUE) and

do no additional processing of the context.

14.6.2 handle

For a session, this is the handle that was assigned to the session when it was saved. For a transient

object, the handle will have one of the values shown in Table 202.

If the handle type for savedHandle is TPM_HT_TRANSIENT, then the low order bits are used to

differentiate static objects from sequence objects.

If an input value for handle is outside of the range of values used by the TPM, the TPM shall return an

error (TPM_RC_VALUE) and do no additional processing of the context.

Table 202 — Context Handle Values

Value Description

0x02xxxxxx an HMAC session context

0x03xxxxxx a policy session context

0x80000000 an ordinary transient object

0x80000001 a sequence object

0x80000002 a transient object with the stClear attribute SET

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 142 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.6.3 hierarchy

This is the hierarchy (TPMI_RH_HIERARCHY) for the saved context and determines the proof value used

in the construction of the encryption and integrity values for the context. For session and sequence

contexts, the hierarchy is TPM_RC_NULL. The hierarchy for a transient object may be TPM_RH_NULL

but it is not required.

14.7 Context Protection

14.7.1 Context Integrity

The integrity of the context blob is protected by an HMAC. The integrity value is constructed such that

changes to the component values will invalidate the context and prevent it from being loaded.

Previously saved contexts for objects in the Platform hierarchy shall not be loadable after the PPS is

changed.

Previously saved contexts for objects in the Storage hierarchy shall not be loadable after the SPS is

changed.

Previously saved contexts for objects in the Endorsement hierarchy shall not be loadable after either the

EPS or SPS is changed.

Previously saved sessions shall not be loadable after the SPS changes.

Previously saved contexts for objects that have their stClear attribute SET shall not be loadable after a

TPM Restart. If a Storage Key has its stClear attribute SET, the descendants of this key shall not be

loadable after TPM Restart.

Previously saved contexts for a session and objects shall not be loadable after a TPM Reset.

A saved context shall not be loaded if its HMAC is not valid. The equation for computing the HMAC for a

context is found in “Context Integrity Protection” in Part 1.

14.7.2 Context Confidentiality

The context data of sessions and objects shall be protected by symmetric encryption using CFB. The

method for computing the IV and encryption key is found in “Context Confidentiality Protection” in Part 1.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 143

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15 Creation Data

15.1 TPMS_CREATION_DATA

This structure provides information relating to the creation environment for the object. The creation data

includes the parent Name, parent Qualified Name, and the digest of selected PCR. These values

represent the environment in which the object was created. Creation data allows a relying party to

determine if an object was created when some appropriate protections were present.

When the object is created, the structure shown in Table 203 is generated and a ticket is computed over

this data.

If the parent is a permanent handle (TPM_RH_OWNER, TPM_RH_PLATFORM,

TPM_RH_ENDORSEMENT, or TPM_RH_NULL), then parentName and parentQualifiedName will be set

to the parent handle value and parentNameAlg will be TPM_ALG_NULL.

Table 203 — Definition of TPMS_CREATION_DATA Structure <OUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION list indicating the PCR included in pcrDigest

pcrDigest TPM2B_DIGEST digest of the selected PCR using nameAlg of the object for
which this structure is being created

pcrDigest.size shall be zero if the pcrSelect list is empty.

locality TPMA_LOCALITY the locality at which the object was created

parentNameAlg TPM_ALG_ID nameAlg of the parent

parentName TPM2B_NAME Name of the parent at time of creation

The size will match digest size associated with parentNameAlg
unless it is TPM_ALG_NULL, in which case the size will be 4
and parentName will be the hierarchy handle.

parentQualifiedName TPM2B_NAME Qualified Name of the parent at the time of creation

Size is the same as parentName.

outsideInfo TPM2B_DATA association with additional information added by the key
creator

This will be the contents of the outsideInfo parameter in
TPM2_Create() or TPM2_CreatePrimary().

15.2 TPM2B_CREATION_DATA

This structure is created by TPM2_Create() and TPM2_CreatePrimary(). It is never entered into the TPM

and never has a size of zero.

Table 204 — Definition of TPM2B_CREATION_DATA Structure <OUT>

Parameter Type Description

size= UINT16 size of the creation data

creationData TPMS_CREATION_DATA

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 144 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 Annex A
(informative)

Algorithm Constants

A.1 Introduction

This annex contains constants that are defined by algorithms.

A.2 Allowed Hash Algorithms

A.2.1 SHA1

Table 205 — Defines for SHA1 Hash Values

Name Value Description

SHA1_DIGEST_SIZE 20 Values are in octets.

SHA1_BLOCK_SIZE 64

SHA1_DER_SIZE 15

SHA1_DER {0x30,0x21,0x30,0x09,0x06,0x05,0x2B,0x0E,
0x03,0x02,0x1A,0x05,0x00,0x04,0x14}

A.2.2 SHA256

Table 206 — Defines for SHA256 Hash Values

Name Value Description

SHA256_DIGEST_SIZE 32 Values are in octets.

SHA256_BLOCK_SIZE 64

SHA256_DER_SIZE 19

SHA256_DER {0x30,0x31,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x01,0x05,
0x00,0x04,0x20}

A.2.3 SHA384

Table 207 — Defines for SHA384 Hash Values

Name Value Description

SHA384_DIGEST_SIZE 48 Values are in octets.

SHA384_BLOCK_SIZE 128

SHA384_DER_SIZE 19

SHA384_DER {0x30,0x41,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x02,0x05,
0x00,0x04,0x30}

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 145

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

A.2.4 SHA512

Table 208 — Defines for SHA512 Hash Values

Name Value Description

SHA512_DIGEST_SIZE 64 Values are in octets.

SHA512_BLOCK_SIZE 128

SHA512_DER_SIZE 19

SHA512_DER {0x30,0x51,0x30,0x0d,0x06,0x09,0x60,0x86,
0x48,0x01,0x65,0x03,0x04,0x02,0x03,0x05,
0x00,0x04,0x40}

A.2.5 SM3_256

Table 209 — Defines for SM3_256 Hash Values

Name Value Description

SM3_256_DIGEST_SIZE 32 Values are in octets.

SM3_256_BLOCK_SIZE 64 ??

SM3_256_DER_SIZE 18

SM3_256_DER {0x30,0x30,0x30,0x0c,0x06,0x08,0x2a,0x81,
0x1c,0x81,0x45,0x01,0x83,0x11,0x05,0x00,
0x04,0x20}

Unknown

A.3 Architectural Limits

Table 210 — Defines for Architectural Limits Values

Name Value Description

MAX_SESSION_NUMBER 3 the maximum number of authorization sessions that may be in a
command

This value may be increased if new commands require more than
two authorization handles.

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 146 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 Annex B
(informative)

Implementation Definitions

B.1 Introduction

This annex contains some of the tables that are used to define the desired implementation for the

automated tools.

NOTE The reference implementation assumes that stdint.h is used.

B.2 Logic Values

The values in this clause are used to see the generation of the subsequent tables. These values should

not be changed.

Table 211 — Defines for Logic Values

Name Value Description

YES 1

NO 0

TRUE 1

FALSE 0

SET 1

CLEAR 0

B.3 Processor Values

These values are used to control generation of octet-swapping routines. The canonical octet ordering for

the TPM input/output buffer is “big endian” with the most significant octet of any datum at the lowest

address.

NOTE The setting for the exemplar is for the x86 family of processor.

Table 212 — Defines for Processor Values

Name Value Description

BIG_ENDIAN_TPM NO set to YES or NO according to the processor

LITTLE_ENDIAN_TPM YES set to YES or NO according to the processor

NOTE BIG_ENDIAN and LITTLE_ENDIAN shall be set to opposite values.

NO_AUTO_ALIGN NO set to YES if the processor does not allow unaligned accesses

NOTE If LITTLE_ENDIAN is YES, then the setting of this value has no effect.

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 147

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

B.4 Implemented Algorithms

Table 213 is used to indicate the algorithms that are implemented in a TPM. The selections in the Value

column may be changed to reflect the implementation. The values shown are illustrative.

The "Implemented" column contains a "Y", "YES", or blank to indicate that the command is present in the

implementation, an "N" or "NO" to indicate that the command is not implemented.

NOTE The leading and trailing “_” characters are to avoid name space collisions with some crypto libraries.

Table 213 — Defines for Implemented Algorithms

Algorithm Name Implemented Comments

RSA YES

SHA1 YES

HMAC YES REQUIRED, do not change this value

AES YES

MGF1 YES

XOR YES

KEYEDHASH YES REQUIRED, do not change this value

SHA256 YES

SHA384 NO

SHA512 NO

SM3_256 YES

SM4 YES

RSASSA (YES * RSA) requires RSA

RSAES (YES * RSA) requires RSA

RSAPSS (YES * RSA) requires RSA

OAEP (YES * RSA) requires RSA

ECC YES

ECDH (YES * ECC) requires ECC

ECDSA (YES * ECC) requires ECC

ECDAA (YES * ECC) requires ECC

SM2 (YES * ECC) requires ECC

ECSCHNORR (YES * ECC) requires ECC

ECMQV (NO * ECC) requires ECC

SYMCIPHER YES REQUIRED, at least one symmetric algorithm shall be implemented

KDF1_SP800_56a (YES * ECC) requires ECC

KDF2 NO

KDF1_SP800_108 YES

CTR YES

OFB YES

CBC YES

CFB YES REQUIRED, do not change this value

ECB YES

B.5 Implemented Commands

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 148 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

This table is used to indicate which of the commands are implemented. In the reference implementation,

this table determines which commands can be called and drives the generation of various command-

dependent switch statements.

The "Implemented or Dependent" column contains a "Y", "YES", or blank to indicate that the command is

present in the implementation; an "N" or "NO" to indicate that the command is not implemented; and an

algorithm value if implementation of the command is dependent on a setting in Table 213. Linkage to

Table 213 is not required and is provide as a convenience.

To indicate that the command is implemented, only "Y", "N", blank, or a value from Table 213 is allowed.

Table 214 — Defines for Implemented Commands

Name
Implemented
or Dependent Comments

ActivateCredential YES

Certify Y

 CertifyCreation Y

 ChangeEPS Y

ChangePPS Y

 Clear Y

 ClearControl Y

 ClockRateAdjust Y

ClockSet Y

 Commit ECC

ContextLoad Y Context

ContextSave Y Context

Create Y

 CreatePrimary Y

 DictionaryAttackLockReset Y

 DictionaryAttackParameters Y

Duplicate Y

 ECC_Parameters ECC

 ECDH_KeyGen ECC

 ECDH_ZGen ECC

EncryptDecrypt Y

 EventSequenceComplete Y

EvictControl Y

FieldUpgradeData N

FieldUpgradeStart N

 FirmwareRead N

 FlushContext Y Context

GetCapability Y

GetCommandAuditDigest Y

 GetRandom Y

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 149

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name
Implemented
or Dependent Comments

GetSessionAuditDigest Y

GetTestResult Y

 GetTime Y

 Hash Y

 HashSequenceStart Y

HierarchyChangeAuth Y

 HierarchyControl Y

 HMAC Y

 HMAC_Start Y

Import Y

 IncrementalSelfTest Y

 Load Y

 LoadExternal Y

MakeCredential Y

 NV_Certify Y

NV_ChangeAuth Y

 NV_DefineSpace Y

NV_Extend Y

NV_GlobalWriteLock Y

 NV_Increment Y

 NV_Read Y

NV_ReadLock Y

 NV_ReadPublic Y NV

NV_SetBits Y

 NV_UndefineSpace Y

 NV_UndefineSpaceSpecial Y

NV_Write Y

 NV_WriteLock Y

ObjectChangeAuth Y

 PCR_Allocate Y

 PCR_Event Y PCR

PCR_Extend Y

PCR_Read Y PCR

PCR_Reset Y PCR

PCR_SetAuthPolicy Y

 PCR_SetAuthValue Y

PolicyAuthorize Y Policy

PolicyAuthValue Y Policy

PolicyCommandCode Y Policy

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 150 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name
Implemented
or Dependent Comments

PolicyCounterTimer Y Policy

PolicyCpHash Y Policy

PolicyDuplicationSelect Y Policy

PolicyGetDigest Y Policy

PolicyLocality Y Policy

PolicyNameHash Y Policy

PolicyNV Y Policy

PolicyOR Y Policy

PolicyPassword Y Policy

PolicyPCR Y Policy

PolicyPhysicalPresence Y Policy

PolicyRestart Y

 PolicySecret Y Policy

PolicySigned Y Policy

PolicyTicket Y Policy

PP_Commands Y

 Quote Y

ReadClock Y

 ReadPublic Y

 Rewrap Y

 RSA_Decrypt RSA

RSA_Encrypt RSA

 SelfTest Y

 SequenceComplete Y

 SequenceUpdate Y

SetAlgorithmSet Y

 SetCommandCodeAuditStatus Y

 SetPrimaryPolicy Y

 Shutdown Y

Sign Y

 StartAuthSession Y

 Startup Y

 StirRandom Y

TestParms Y

Unseal Y

 VerifySignature Y

 ZGen_2Phase Y

EC_Ephemeral Y

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 151

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

B.6 Algorithm Constants

B.6.1 RSA

Table 215 — Defines for RSA Algorithm Constants

Name Value Comments

RSA_KEY_SIZES_BITS {1024, 2048} braces because this is a
list value

MAX_RSA_KEY_BITS 2048

MAX_RSA_KEY_BYTES ((MAX_RSA_KEY_BITS + 7) / 8)

B.6.2 ECC

Table 216 — Defines for ECC Algorithm Constants

Name Value Comments

ECC_CURVES {TPM_ECC_NIST_P256, TPM_ECC_BN_P256,
TPM_ECC_SM2_P256}

ECC_KEY_SIZES_BITS {256} this is a list value with
length of one

MAX_ECC_KEY_BITS 256

MAX_ECC_KEY_BYTES ((MAX_ECC_KEY_BITS + 7) / 8)

B.6.3 AES

Table 217 — Defines for AES Algorithm Constants

Name Value Comments

AES_KEY_SIZES_BITS {128}

MAX_AES_KEY_BITS 128

MAX_AES_BLOCK_SIZE_BYTES 16

MAX_AES_KEY_BYTES ((MAX_AES_KEY_BITS + 7) / 8)

B.6.4 SM4

Table 218 — Defines for SM4 Algorithm Constants

Name Value Comments

SM4_KEY_SIZES_BITS {128}

MAX_SM4_KEY_BITS 128

MAX_SM4_BLOCK_SIZE_BYTES 16

MAX_SM4_KEY_BYTES ((MAX_SM4_KEY_BITS + 7) / 8)

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 152 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

B.6.5 Symmetric

The definitions in this table are derived from the implemented symmetric algorithms.

Table 219 — Defines for Symmetric Algorithm Constants

Name Value Comments

MAX_SYM_KEY_BITS MAX_AES_KEY_BITS

MAX_SYM_KEY_BYTES MAX_AES_KEY_BYTES

MAX_SYM_BLOCK_SIZE MAX_AES_BLOCK_SIZE_BYTES

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 153

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

B.7 Implementation Specific Values

The values listed in Table 220 are defined for a specific TPM implementation. The numbers in the Value

column may be changed to reflect the implementation. The values shown are illustrative.

Table 220 — Defines for Implementation Values

Name Value Description

FIELD_UPGRADE_IMPLEMENTED NO temporary define

BSIZE UINT16 size used for internal storage of
the size field of a TPM2B

This is the definition used for
the reference design.
Compilation with this value
changed may cause warnings
about conversions.

BUFFER_ALIGNMENT 4 sets the size granularity for the
buffers in a TPM2B structure

TPMxB buffers will be assigned
a space that is a multiple of this
value. This does not set the size
limits for IO. Those are set by
the canonical form of the
TPMxB

IMPLEMENTATION_PCR 24 the number of PCR in the TPM

PLATFORM_PCR 24 the number of PCR required by
the relevant platform
specification

DRTM_PCR 17 the DRTM PCR

NUM_LOCALITIES 5 the number of localities
supported by the TPM

This is expected to be either 5
for a PC, or 1 for just about
everything else.

MAX_HANDLE_NUM 3 the maximum number of
handles in the handle area

This should be produced by the
Part 3 parser but is here for
now.

MAX_ACTIVE_SESSIONS 64 the number of simultaneously
active sessions that are
supported by the TPM
implementation

CONTEXT_SLOT UINT16 the type of an entry in the array
of saved contexts

CONTEXT_COUNTER UINT64 the type of the saved session
counter

MAX_LOADED_SESSIONS 3 the number of sessions that the
TPM may have in memory

MAX_SESSION_NUM 3 this is the current maximum
value

Trusted Platform Module Library Part 2: Structures Copyright © TCG 2006-2013

Page 154 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Name Value Description

MAX_LOADED_OBJECTS 3 the number of simultaneously
loaded objects that are
supported by the TPM; this
number does not include the
objects that may be placed in
NV memory by
TPM2_EvictControl().

MIN_EVICT_OBJECTS 2 the minimum number of evict
objects supported by the TPM

PCR_SELECT_MIN ((PLATFORM_PCR+7)/8)

PCR_SELECT_MAX ((IMPLEMENTATION_PCR+7)/8)

NUM_POLICY_PCR_GROUP 1 number of PCR groups that
have individual policies

NUM_AUTHVALUE_PCR_GROUP 1 number of PCR groups that
have individual authorization
values

MAX_CONTEXT_SIZE 4000 This may be larger than
necessary

MAX_DIGEST_BUFFER 1024

MAX_NV_INDEX_SIZE 1024 maximum data size allowed in
an NV Index

MAX_CAP_BUFFER 1024

NV_MEMORY_SIZE 16384 size of NV memory in octets

NUM_STATIC_PCR 16

MAX_ALG_LIST_SIZE 64 number of algorithms that can
be in a list

TIMER_PRESCALE 100000 nominal value for the pre-scale
value of Clock (the number of
cycles of the TPM's oscillator for
each increment of Clock)

PRIMARY_SEED_SIZE 32 size of the Primary Seed in
octets

CONTEXT_ENCRYPT_ALG TPM_ALG_AES context encryption algorithm

CONTEXT_ENCRYPT_KEY_BITS MAX_SYM_KEY_BITS context encryption key size in
bits

CONTEXT_ENCRYPT_KEY_BYTES ((CONTEXT_ENCRYPT_KEY_BITS+7
)/8)

CONTEXT_INTEGRITY_HASH_ALG TPM_ALG_SHA256 context integrity hash algorithm

CONTEXT_INTEGRITY_HASH_SIZE SHA256_DIGEST_SIZE number of byes in the context
integrity digest

PROOF_SIZE CONTEXT_INTEGRITY_HASH_SIZE size of proof value in octets

This size of the proof should be
consistent with the digest size
used for context integrity.

NV_CLOCK_UPDATE_INTERVAL 12 the update interval expressed
as a power of 2 seconds

A value of 12 is 4,096 seconds
(~68 minutes).

NUM_POLICY_PCR 1 number of PCR that allow
policy/auth

Trusted Platform Module Library Part 2: Structures

Family “2.0” Published Page 155

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Name Value Description

MAX_COMMAND_SIZE 4096 maximum size of a command

MAX_RESPONSE_SIZE 4096 maximum size of a response

ORDERLY_BITS 8 number between 1 and 32
inclusive

MAX_ORDERLY_COUNT ((1 << ORDERLY_BITS) - 1) maximum count of orderly
counter before NV is updated

This must be of the form 2N – 1
where 1 ≤ N ≤ 32.

ALG_ID_FIRST TPM_ALG_FIRST used by GetCapability()
processing to bound the
algorithm search

ALG_ID_LAST TPM_ALG_LAST used by GetCapability()
processing to bound the
algorithm search

MAX_SYM_DATA 128 this is the maximum number of
octets that may be in a sealed
blob.

MAX_RNG_ENTROPY_SIZE 64

RAM_INDEX_SPACE 512

RSA_DEFAULT_PUBLIC_EXPONENT 0x00010001 216 + 1

ENABLE_PCR_NO_INCREMENT YES indicates if the
TPM_PT_PCR_NO_INCREME
NT group is implemented

CRT_FORMAT_RSA YES

PRIVATE_VENDOR_SPECIFIC_BYTES ((MAX_RSA_KEY_BYTES/2) * (3 +
CRT_FORMAT_RSA * 2))

