Trusted Platform Module Library
Part 2: Structures

Family “2.0”

Level 00 Revision 01.16

October 30, 2014

Published

Contact: admin@trustedcomputinggroup.org

TCG Published

Copyright © TCG 2006-2014

Trusted Platform Module Library Part 2: Structures

Licenses and Notices

1. Copyright Licenses:

e Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to
reproduce, create derivative works, distribute, display and perform the Source Code and
derivative works thereof, and to grant others the rights granted herein.

e The TCG grants to the user of the other parts of the specification (other than the Source Code)
the rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

2. Source Code Distribution Conditions:

o Redistributions of Source Code must retain the above copyright licenses, this list of conditions
and the following disclaimers.

e Redistributions in binary form must reproduce the above copyright licenses, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the
distribution.

3. Disclaimers:

e THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES)
THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE.
Contact TCG Administration (admin@trustedcomputinggroup.org) for information on specification
licensing rights available through TCG membership agreements.

e THIS SPECIFICATION IS PROVIDED "AS 1S" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF
ANY PROPOSAL, SPECIFICATION OR SAMPLE.

e Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in
any way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

Page ii TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

mailto:admin@trustedcomputinggroup.org

Part 2: Structures Trusted Platform Module Library

CONTENTS

S Yol o] o1 TP PP PP PP PP 1
2 Terms and defiNItIONSeeiiiiiiii et e e e e e e e e e e e s et e e e e e e e e eeeaae e e e nnnreees 1
3 Symbols and abbreViated tEIMS.t 1
I [0 =1 (T o [PPSR PUPR PRSPPI 1
4.1 T 0o [1 o 1o T o PRSP 1

4.2 N F= T = To O] g 1S] =T o | £ RSP PUSRTR 2

4.3 Data Type AlIaSes (LYPEUETS)eeeiiiiiiieeiiiie ettt e e sbreee e 3

4.4 [10T g 1T =i o] PRSP PURRRR 3

4.5 T T g r= o = Y o= T PP PP RPPPPPPTN 4

4.6 Y = £ T PP UPPT PRSP 5

4.7 SEIUCTUIE DEFINILIONS ...t nnn e 6

4.8 (O] oo 111 0T g F=T I I8/ o =1 S 7

4.9 L6010} oL PP PP R PRI 7
49.1 T 0o [o 1o T o ST OPPRRRRR 7

49.2 L8 a1 g T = {1 T1 (o] o PSSR 8

493 UNION INSTANCE ..ttt ettt et e e e e s e e e s e e e s sr e e e e nrneeeenas 9

49.4 Union Selector DEfiNItiON...........ouiiiiiiiie e 10

4,10 Bit Field DefinitiONScuiiiii it e s e e e e e e e s st e e e e e e anrnrreraaeeeeaann 11
I o = 0 0= (= g I 1 SRS PPRRRR 12

v 0t 7 A\ o To T 1o g TN 1Y/ = Vo o 1P PRPPPRRR 13
412.1 T 0o [o 1o T o P PSRRI 13

412.2 AlGOorithm TOKEN SEMEANTICScoiiiiiiiiiiiiee ittt e e e e 13

412.3 Algorithm TOKENS iN UNIONSccoiiiiiiiiiiiie ittt e s e e 13

412.4 Algorithm Tokens in INterface TYPESeii it 14

4125 Algorithm Tokens for Table RepliCatioNccoouiiiiiiiiieiiie e 14

G TS 1 . = S @ 1= o (1 T 16
I B - L = W I 11 (=T o] o PRSP PPERR 16
415 SrUCUIe VAlIAALIONSoeiiiiiiiieiiiie ettt ettt e et e e e e nbae e e e e 18
416 Name PrefiX CONVENTION........cceeiiiiree oottt e e s eee e e e e s s st e e e e e e s s senteeeaeaeesaansnneeeeeeeeeaanns 18
o A o - 1= W 1o o]0 T=T o | S TR PTPRT 19
4.18 Parameter Unmarshaling EFTOrS.......oc.uuiiiiiiiiii et 19

T = 7= LY R Y/ oL PP PP PP PTPPTTT 21
51 PHIMITIVE TYPES oottt e bbbt e skt e e s bttt e s bt e e e s bbbe e e s ananeeas 21

5.2 Specification LOgIC Value CONSIANTScoiuiiiiiiiiiiie ittt 21

5.3 MISCEIIANEOUS TYPES ..eiiiiiiiiee ittt ettt ettt et ekt e e s bbbt e e s bbbt e e s nbbe e e s nnnneeas 22

LI ©70] 0151 7= 1 T 23
6.1 TPM_SPEC (Specification VErsion VAlUES)uuuuuuuiuueiuirimieirisirieisisisininininsn... 23

6.2 TPM_GENERATEDciitiiiiiie ittt sttt esbe e s be e e snbeeanre e 23

8.3 TPIM_ALG _ID ..ottt ettt bbbt h bt s bttt ab e e s nnae s 24

6.4 TPM_ECC_CURVEcoiiiiiiiii ittt ettt et e e kbt e e st e e s nannee s 27

6.5 TPM_CC (COMMANA COUES) ...civiieeiiiiiiie ettt ettt ettt e et e e e e sabe e e e eeee 28
6.5.1 FOIMAL.. ... 28

6.5.2 (DTS ot o] 1 o] o EO TP PETPRO 29

6.5.3 B Y O O I 1 o o RO OTPRR 30

6.6 TPM_RC (RESPONSE COUES) ..cciieiiiiiiiiiiiiie e ettt e ettt e e e e e et e e e e e e s e abab e e ee e e e e e e anneeeees 33
6.6.1 D=2 od €1 1o o RO PRSPPI 33

6.6.2 RESPONSE COUE FOMMIALS ...ooiviiieeiiiiie ettt ettt e e e e e nnneeeas 34

6.6.3 TPM_RC VAIUES ...ttt ettt et e e st e s et e e e 36

6.7 TPM_CLOCK _ADJUST ...ttt ittt sttt ettt ettt sttt e bt s b et e s bb e e sbbe e s be e e sabeeanneens 42

6.8 TPM_EO (EA ArithmetiC OPErands)........ccoiuuieeiiiiieeiiiiie ettt e 42

6.9 TPM_ST (STTUCLUIE TAUS) . vvveeeeiutieeeeiititeeeitete e e sttt e e s sttt e e s stbee e e s stbee e e e snbeeeeesnbeeeeesnbeeeessnbeeeeennens 43
Family “2.0” TCG Published Page iii

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

6.10 TPM_SU (Startup TYPE) ..ocecvereeeieeeesiieiiiereee e e s s sininnee e e e e s snnnnsneees
6.11 TPM_SE (S€SSION TYPE) ..iicuvrrieiieeeiiiiiiiiereeeeesssnnieeeeeae e s snnnenneens
6.12 TPM_CAP (CapabilitieS)......ccccuvrreeeiiiiiiiieiie e
6.13 TPM_PT (Property Tag)ccceuurreemiirireeeiiieeeesiieeessineeessrneee e
6.14 TPM_PT_PCR (PCR Property Tag)cooeeeriurreerrirreeenniiieeeanns
6.15 TPM_PS (Platform SPecifiC)........ccoocureeiiiiiiiiiiiiie e
T HANAIES e
7.1 INEFOAUCHION ...
7.2 TPM_HT (Handle TYPES)....uuuririeeeeiiiiiiiiieeee e e ciinveeee e e e e e
7.3 Persistent Handle Sub-ranges............cccovveeiiiiiee e
7.4 TPM_RH (Permanent Handles).........cccccvveiiiiiiiniiiee e
7.5 TPM_HC (Handle Value Constants)cccccueveviiieeenniieneenenn
8 ALrDULE SITUCIUIES. ...
8.1 [1S od g o] 1o o PSSR
8.2 TPMA_ALGORITHM ..coiiiiiiiiiiiiiee ettt
8.3 TPMA_OBJECT (Object Attributes)ccovcveveiiiiiieiiieee e
8.3.1 INErOTUCTION. ...eeieiiiic e
8.3.2 Structure DefiNitioNn..........cccvviiiiiieii e
8.3.3 Attribute DeSCIPLIONScovcvvveeiiiie e
8.3.3.1 INErOAUCTION ...
8.3.3.2 Bit[1] — fIXEATPM ...ooiiiiiiieiee e
8.3.3.3 Bit[2] — StClear.........coouviiiiiiee e
8.3.34 Bit[4] — fixedParent..........cccveveiiieie e
8.3.3.5 Bit[5] — sensitiveDataOrigin...........cccoocveeeiiivereenenn
8.3.3.6 Bit[6] — userWithAuth.............cccoiiii
8.3.3.7 Bit[7] — adminWithPoIliCY..........coccoieiiiiieiieee
8.3.3.8 Bit[10] —NODAoeiiiiiiie et
8.3.3.9 Bit[11] — encryptedDuplicationccccccevvveeeneenn.
8.3.3.10 Bit[16] — restrictedccccceveveveiiii
8.3.3.11 Bit[17] —decrypt ...ccooveveiiieiei
8.3.3.12 Bit[18] = SIgN...teiiiiiiiiieiiiiiee e
8.4 TPMA_SESSION (Session AttribUtes)vvvvvevevvivirininieinininnn,
8.5 TPMA_LOCALITY (Locality AHHDULE)ccevvvieieiiiiiee e
8.6 TPMA_PERMANENT ...t
8.7 TPMA_STARTUP_CLEARoitiiiiiieiiiiieieiiieieieieveveeeieevnieieeeeeees
8.8 TPMA_MEMORY ...oiiiiiiiiiiiiiiiieieiiieieieieiebeieiebeveeeeeeeeeeeeeeneneennenees
8.9 TPMA_CC (Command Code Attributes)cccocevveeeeriicnnnenn.
8.9.1 INErOUCTION.eeeiiiic e
8.9.2 Structure Definition.........ccccooviveiiiie e
8.9.3 Field DeSCHIPIONS......ccoiiiiiiiiiiiee e
8.9.3.1 Bits[15:0] — commandindeX...........cccoecveeeinirereenne
8.9.3.2 Bit[22] = NV oo
8.9.3.3 Bit[23] — €XIENSIVE ...t
8.9.3.4 Bit[24] — flushed..........ccccoeviiiiiiii e
8.9.35 Bits[27:25] — cHandlesccoooviiieiiiiiiniiiieeee,
8.9.3.6 Bit[28] — rHandle.............ccoeeiiiiiiiii e
8.9.3.7 Bit[29] = Ve
8.9.3.8 BitS[31:30] — RES ..eiiiiiiiiiiiiiiee e
1S T 101 =Y 1 = Lo ST I8/ o 1= RS
9.1 T 0o [1 o 1o T o SRR
9.2 TPMI_YES NO oot
9.3 TPMI_DH OBJIECT ...coiiuiieeeeeeeeeeeeeeeeeeveneeeee e eaneenenenan
9.4 TPMI_DH_PERSISTENToutiiiiiiiiiiiiiiiiiiiiieieieieieieeeieieenenenennnens
9.5 TPMI_DH_ENTITY oo
9.6 TPMI_DH PCR ...oooviiicieeeeeeeeeeeeee et
Page iv TCG Published

October 30, 2014

Copyright © TCG 2006-2014

Part 2: Structures

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

9.7 TPMI_SH_AUTH_SESSION ..ottt e e e e e e e s s annnnnees 78
9.8 TPMI_SH_HMAC ..ottt e e e s e e e e e e e s e bbb e e e e e e e e s s nnnee s 78
9.9 TPMI_SH_POLICY ..ttt ettt e e s e e e e e e e s e bt e e e e e e e e s annnnnees 78
0.10 TPMI_DH _CONTEXT ceiiiiiiiiitttiett ettt e e e ettt et e e e e s st e teeeeaaeseaasnbeaeeeeaaeseaannbnnneeeaeeeeaanns 78
9.11 TPMI_RH_HIERARCHY ...ttt ettt e e e e e et e e e e e e e e snnbraeeeaaeeeeanns 79
9.12 TPMI_RH _ENABLESttt et e e e e e st e e e e e e e e e snnbaneeeeaeeeeanns 79
9.13 TPMI_RH_HIERARCHY _AUTH ...ttt e et e e e e e e e st aae e e e e e e e e annes 80
9.14 TPMI_RH_PLATFORM ...ttt e e e e s sttt e e e e e e e e annbaaeeeaaeeeeanns 80
9.15 TPMI_RH_OWNER ..ottt ettt e ettt e e e e e st et e e e e e e e e snnnbaeaeeeaaeeeann 80
9.16 TPMI_RH_ENDORSEMENToottiiiiiiiitiiitit ettt e et e e e e e s e snib e e e e e e e e e annes 81
9.17 TPMI_RH_PROVISIONttt e et e e e e e e s s b e e e e e e e e e aaanbrreeeeeeeeeann 81
9.18 TPMI_RH_CLEAR ...ttt e e e e et e e e e e e st brneeeeeeeeann 81
9.19 TPMI_RH_NV_AUTH ..ottt e e e e e s e e e e e e e e annbnrnreeeeeeeanas 82
9.20 TPMI_RH_LOCKOUT ..ottt ettt e e e e et e e e e e e st e et e e e e e e annbnreeeeeeeeeanns 82
9.21 TPMI_RH_NV _INDEX ... it iitttiiitie ettt ettt e ettt e e e s e s bbb r e e e e e e e aanbrnneeeeeeeeann 82
.22 TPMI_ALG _HASH ..ottt e e e ettt e e e e e s bbb e e e e e e e e snnbrtaeeeaeeeeanns 83
9.23 TPMI_ALG_ASYM (Asymmetric AlgOrithIMS)ccoiuiiiiiiiiiieiiiiie e 83
9.24 TPMI_ALG_SYM (Symmetric AIgOrthMS)c..ooiiiiiiiiiiiiiiie e 84
9.25 TPMI_ALG _SYM _OBUJECT ...itttiiiiieii ittt e e s sttt et e e e s s s sttt e e e e e s s snnntaaeeeaeaeesannntnnaeeeeeesesnnns 84
9.26 TPMI_ALG_SYM_MODE ...ttt ettt e s e e e e e e e e st e e e e e e e s annnbnneeeeaeeeeannns 84
9.27 TPMI_ALG_KDF (Key and Mask Generation FUNCHONS).........c.ueieiiiiiieiiiiiie e 85
9.28 TPMI_ALG_SIG_SCHEMEtiiiiiiiiiii ettt e e e et e e e e e e e 85
9.29 TPMI_ECC_KEY_EXCHANGEccoiiitiiiiiie ettt e e e e et e e e e e e e 85
9.30 TPMI_ST_COMMAND _TAGtittiiiiiiiitetittt ettt e e e et e e e e e s aabe e e e e e e e e e aaanbanreeaaaeaeann 86
10 SrUCIUre DEfINILIONSeeeiiiiieei ittt e e e s et e e e e e e s e e bbb b e et e e e e e s e anbbbe e e e e aeeeaanrnrnees 87
00 R I Y ST /| PSR 87
10.2 TPMS_ALGORITHM_DESCRIPTION ...oiiiiiiiiiiiiiiieie ettt e 87
10.3 HaSh/DIQESt SITUCIUIES.......cceeiei ettt 87
10.3.1 TPMU_HA (HASh) ..ttt ettt a e e et e e e e e s st e eeeeeeeaann 87
10.3.2 LI SRS PRRRRRN 88
10.4 SIZEA BUFFEIS ...ttt e e e s et e e e e e s st e e e e e e e e e nneree s 88
104.1 T 0T [o 1o T o SRR 88
10.4.2 TPM2B_DIGEST ...ttt e e e et e e e e e s bbb e e e e e e e e aaes 89
10.4.3 TPM2B D AT A ettt e e e ettt e e e e e e bbb e e e e e e e e e abnrareeaaeeeaaaa 89
10.4.4 TPM2B_INONCE ...ttt ettt e e e e e s bbb e et e e e e e s aaabbbeeeeaeeeeann 89
10.4.5 TPM2B_AUTH ettt e e e e e e bbb et e e e e e st b e e eeeaeeeaans 90
10.4.6 TPM2B_OPERAND ... ettt ettt e et e e e e e e e st b be e e e e e e e e aans 90
10.4.7 TPM2B_EVENT ..ottt e e e e e s bbb e et e e e e e st b e e eeeeeeeanns 90
10.4.8 TPM2B_MAX _BUFFERootiiii ittt ettt a e e et a e e e s e snntneeeeaeeeneenes 90
10.4.9 TPM2B_MAX_NV_BUFFER ...ttt a e e s sntnaenea e e e e e e 91
10.4.20 TPM2B_TIMEOUT ..ciiii ittt e et e e e e e s e st e e e e e e s e annanaeneaeeeseannsnneneeeens 91
02 5 I O I =\ 22 = SO 91
105 NAIMES .. 92
10.5.1 Ta oo (¥ ex i o] o DU TR PPP PR PRI 92
10.5.2 TPMU_NADME ...ttt e e e e e e s bbb e et e e e e e aaabbbbeeeaeeeeanns 92
10.5.3 TPM2B_INAME ...ttt e ettt e e e e e s bbb e et e e e e e e aanbabeeeeaeeeeann 92
O G = O o s 1 1 [od 11] =P 93
10.6.1 TPMS_PCR_SELECT ...ttt ettt a ettt e e e e e e e st e e e eaa e e e e annns 93
10.6.2 TPMS_PCR_SELECTION ..ottt ettt e e e e e e e e e e e ennes 94
O A N (o3 (=] £ TP P PRPUPRI 94
10.7.1 0o [o 1o T o PSSP 94
10.7.2 N N1 1 T 2= SR 95
10.7.3 TPMT_TK _CREATION .oitiiiiiiii ettt ettt e s s e e s e e s s nntntanee e e e s s snnnsnneneeeeenennns 95
10.7.4 TPMT_TK VERIFIED ...otttiiiiiiii ettt et et ee e s e e e s etntaeea e e e e s snnntnnaneeaeeneannns 96
10.7.5 TPMT _TK AUTH ettt e e e s e e e e e e s s et e bae e e e e e e s sensnraneeaeeeeaanns 97
Family “2.0” TCG Published Page v

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.7.6 TPMT_TK _HASHCHECKci ittt 98
10.8 Property SHIUCIUIES........cooiiiiiiiiie e 98
10.8.1 TPMS_ALG_PROPERTY ittt 98
10.8.2 TPMS_TAGGED _PROPERTY .o 98
10.8.3 TPMS _TAGGED PCR _SELECT ..o 99
0 TR T 1= 1 99
10.9.1 TPML _CCo 99
10.9.2 TPML CCA 99
10.9.3 TPML ALG ... 100
10.9.4 TPML_HANDLE ... 100
10.9.5 TPML_DIGEST .o 100
10.9.6 TPML_DIGEST _VALUES ...ttt 101
10.9.7 TPM2B_DIGEST _VALUES ...ttt 101
10.9.8 TPML_PCR_SELECTION.....ciiiiiiiiie ettt 101
10.9.9 TPML_ALG _PROPERTY .ottt 102
10.9.10 TPML_TAGGED_TPM _PROPERTY ...tittittiiiiiiiiuieiiieininininininisieiersisie ... 102
10.9.11 TPML_TAGGED_PCR_PROPERTY ..eoitiiiiiiiiiiiiitee ettt iaeee e e e e e s snnvneeeeae s 102
10.9.12 TPML_ECC CURVE ...ttt ettt a et a e e e s e st e e e e e e s s annrneeeeaee s 102
10.10 Capabilities StTUCIUIES........cceeieieeeeeee e 103
10.10.1 TPMU_CAPABILITIESottt ittt e et e e e e s nnteeee e e e e e s e snnrneeeeaeens 103
10.10.2 TPMS _CAPABILITY DATA .ottt sttt e e e st e e e e e s e snnrneeeeaee s 103
10.11 ClOCK/COUNLET SETUCTUIESeieeeeieiieee e ettt e e et s e et e e e et e e e e saa s e s e st e e s et e e e satasesessasesstaeeessnnses 104
10.11.1 TPMS_CLOCK INFOuuitiuiiiuiiieiuieieinnninnninnennrnnnnereesrersesms——————————————————. 104
0 T 5t T2 1 [o1 TP 105
Ot I G T =YY= (o 11 | | SN 105
Ot I O A 1Y = 1 (o T | 105
0 20 5t T T - (TN 105
10.11.6 TPMS _TIME_INFO ...ciiiiiiiiiiiiie ettt e e e e e e e s e st ee e e e e e s e snnrneeeaaeens 105
10.12 TPM AtESIAtION STIUCTUIES.....ceuniiiiie et e e e e e s e e e st e e e s et e s e saa e e s sba e eraansas 106
0 T 2 N 1 (Yo 0o 1T o T 106
10.12.2 TPMS TIME_ATTEST INFO ..ottt e e snnaeee e e e 106
10.12.3 TPMS _CERTIFY _INFO ...ttt ettt e e e s ntetee e e e e e s e annnneeeaaee s 106
10.12.1 TPMS_QUOTE_INFOuuuuiuiiiuiiieiiiiieietnieierersinreisrsrsrnesreesmsmerersss—————————————. 106
10.12.2 TPMS_COMMAND_AUDIT _INFO.....uutuiiiiiiiiiuiuiuieieininieisinrninrsinisrnrsnnn ... 107
10.12.3 TPMS_SESSION_AUDIT _INFO.....cuuiiiiiiiuiiiuieiuiuieieinininisinininisiersenmsn ... 107
10.12.4 TPMS_CREATION _INFOuuiiiiiiiiiiiiiuieieinieinininiensieeninreesismsrsrsrsrsn——.——————. 107
10.12.5 TPMS_NV_CERTIFY _INFO ...oiiiiiiiiiiiiieiiieieimieieieieinineniersisinrssrersn ... 107
10.12.6 TPMI_ST _ATTEST .oittitituiuiuiuiuitieietuteunueiererererererererer..—.—————————————————.———.———.—.————————————. 108
10.12.7 TPMU _ATTEST coetiiiii e ittt e e e e s et e e e e e e st tae e e e e e s e snntaeeeeaeeeseannnsnnneeeeens 108
10.12.8 TPMS ATTEST oitiiiiiiiiiiictiiiiet e e s ettt e e e e e s e et e e e e e e e sn s tataeeaeeeesanntataeeaeeeaeannnrnneneeeens 109
O e T I =\ 2 A I I) S 110
10.13 AULNOIZALION SITUCTUIES ...ouviieii ittt et e e e e st e e e s e e s e e b e e s st e e eeaanaas 110
10.13.1 TPMS_AUTH_COMMAND ...coiiiiiiiiieiit et e ettt e et e e e e s e s enteeee e e e e e s e annnnneeeeeeens 110
10.13.2 TPMS_AUTH_RESPONSEoutiiiiiiiiiiiiiiiiiiiiiiiieieieieieisieiersrersesserssnrsrsrsrsrsrsrsrsrnrnnnnn 110

11 Algorithm Parameters and STIUCLUIESuueiiiiiiiiiiiiiie ettt e e e e e e s ee e e e e e e e eneeeeees 111
5 R 1Y o 1] 0 0= o PSPPI 111
11.1.1 1) 0]0 18 Te3 1 o] o FUE T 111
11.1.2 TPMI_TALG.S KEY BITS...o i, 111
11.1.3 TPMU_SYM _KEY BITS ..o 111
11.1.4 TPMU_SYM_MODEotiiiiiie ettt e e e e s er e e e e e s s s ns e en e e e e e snnnsnseeeeeeeenannns 112
11.1.5 TPMU_SYM _DETAILS ...ttt e e e e st e e e e e e s s s aaen e e e e e s nnnnnaneeeaeenannns 112
11.1.6 TPMT _SYM _DEF ..ttt e e e e e e s e st e e e e e e s nnnnnteeeeeeeeeannns 112
11.1.7 TPMT_SYM _DEF OBJIECT ... iiiiiiiee ettt e e s s stee e e e e s s sneaeen e e e e e s nnnnaaneeeaeenannns 113
11.1.8 TPM2B_SYM_KEY ..itiiiiiie ettt ettt e e e s e s te e e e e e s e s st ee e e e e e annnntaneeeeeenaanns 113
Page vi TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

11.1.9 TPMS_SYMCIPHER_PARMScoiiiiiiii ittt 113
11.1.10 TPM2B_SENSITIVE_DATA ..ottt ettt sttt nnne e e nnnneees 114
11.1.11 TPMS_SENSITIVE_CREATEtttiii ittt ettt sttt 114
11.1.12 TPM2B_SENSITIVE _CREATE......ott ittt srtte ettt e e 114
11.1.13 TPMS_SCHEME_HASH ...ttt e e nnnre e e s nnnaees 115
11.1.14 TPMS_SCHEME_ECDAA ..ottt ettt e et a e et a e e nnnae e e s nnnaeeas 115
11.1.15 TPMI_ALG_HASH_SCHEMEooiiiiitiiiii ittt e e a e e e e nnnaees 115
11.1.16 HMAC _SIG_SCHEMEciitiiiie ittt ettt et e s a e e e e s e e e s nnssaeesnnnneeas 115
11.1.17 TPMS_SCHEME_XORciiiiiiii ittt ittt sttt e e s niaa e st e e e s nnaa e e e s nnnsaeesnnneeeas 115
11.1.18 TPMU_SCHEME_HMACooiiiiiiiiiie ittt ettt sttt st e st e e nnneeees 116
11.1.19 TPMT_KEYEDHASH_SCHEMEciititiiiiiiie ittt 116
N NS o 4 =T 1 o P PRRP O 117
11.2.1 SIGNING SCREIMES e e e 117
11.2.1.1 T 10T o (1o 1o T o 1R PR TP 117
11.2.1.2 RSA SigNature SChEMES.ccoiiiiiiiiiiii et 117
11.2.1.3 ECC SIgnature SChEMESccoii ittt e e e e e e e 117
11.2.1.4 TPMU_SIG_SCHEME.......ciititiiiiiiiie ittt e e e e snanee s 118
11.2.1.5 TPMT_SIG_SCHEMEciiiiiiiiiiiiiii ettt 118
11.2.2 ENCryption SCREMESviiiiiie e e 118
11.2.21 INEFOAUCTION ...t e e e et e e e e e e e e s b breeeeee s 118
11.2.2.2 RSA ENCryption SChemMESccooviiiiiiiiiie e 118
11.2.2.3 ECC Key EXchange SChemes ..o 119
11.2.3 Key Derivation SCNEIMES........uuuuiiiuiiiiiiiiiuiiiiiaieieieraerareeererererarererererererererererrrererernrnrnne 119
11.2.3.1 T 0o 11 Tox 1o T o SRRSO 119
11.2.3.2 TPMU_KDF_SCHEME e 119
11.2.3.3 TPMT_KDF_SCHEME ... 119
11.2.3.4 TPMI_ALG_ASYM_SCHEMEcotiiiiiiiiiiiiiiie ettt 119
11.2.35 TPMU_ASYM_SCHEME........cotiiiiiiiiiiiiii ettt a e e e 120
11.2.3.6 TPMT_ASYM_SCHEMEootiiiiiiiieiiiit ettt e e nnnnee s 120
11.2.4 [PSSP 121
11.2.4.1 TPMI_ALG_RSA_SCHEMEccctttiiiiiii ettt 121
11.2.4.2 TPMT_RSA_SCHEME ..ottt ittt e e e nnaeeas 121
11.2.4.3 TPMI_ALG_RSA DECRY P e 121
11.2.4.4 TPMT _RSA DECRY P e e e e e 121
11.2.4.5 TPM2B_PUBLIC_KEY RS A . e 122
11.2.46 TPMI_RSA KEY BITS ...cooioiiieceeeeeeeeceee e en s nenaen, 122
11.2.4.7 TPM2B_PRIVATE_KEY _RSA e 122
11.2.5 O PRSP 123
11.2.5.1 TPM2B_ECC_PARAMETERco ittt 123
11.2.5.2 TPMS_ECC_POINT ...ttt ittt ettt e a e st e e s aesnsaeeesnnnneeas 123
11.2.5.3 TPM2B_ECC_POINT ..ottt ettt s et st e e s e e s snaae e e s nnsaeeesnnnaeeas 123
11.2.5.4 TPMI_ALG_ECC_SCHEMEcccctiiiiiiiiiie ittt 124
11.2.55 TPMI_ECC_CURVE.......oiiiiiiiie ittt ettt ettt a e e e s nnsaeaesnnsneeas 124
11.2.5.6 TPMT_ECC _SCHEME 124
11.2.5.7 TPMS_ALGORITHM_DETAIL _ECC... i 125
G I S [0 [0 F= LU (= TP PPUPROP 125
11.3.1 TPMS_SIGNATURE_RSA ... 125
11.3.2 TPMS_SIGNATURE_ECC......co oottt 126
11.3.3 TPMU_SIGNATURE ...t 126
11.3.4 TPMT_SIGNATURE ..ottt ittt e et e et e e st e e e staee e e sntaeeessnraeeeeans 126
114 KeyY/SECIret EXCRANGEciiiiiiiiie ittt ettt e e s eb e e s e e s snneeeas 127
1141 Ta oo [0 ox i o] o D TP PP 127
11.4.2 TPMU_ENCRYPTED_SECRET ...oiiiiiiiis ittt sttt ettt e e sitee e staee e staeee e sneneeaeans 127
11.4.3 TPM2B_ENCRYPTED_SECRETtiiiiiiiiiie ittt staee et e e seneee e 127
Family “2.0” TCG Published Page vii

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Trusted Platform Module Library

12 Key/ODbJeCt COMPIEX...ccuiiiiiiieee st e e e e e

P20 A 191 0 To [0 T3 {0 o T
12.2 PUbIiC Area StTUCIUIESee et

1221 DESCHPLION .ttt
12.2.2 TPMI_ALG_PUBLICoiiiiiiiieiiiiee e
12.2.3 Type-Specific Parameters..........ccoceviveeeiiiiee e

12.2.3.1 [T ot o] ({01 o SRR
12.2.3.2 TPMU_PUBLIC_ID....ccceeiiveiiie e siee e
12.2.3.3 TPMS_KEYEDHASH_PARMSccccoiiveiiieiinenns
12.2.3.4 TPMS_ASYM_PARMScccooviiiiiiii e
12.2.3.5 TPMS_RSA PARMSccoiiiiieiiiee et
12.2.3.6 TPMS_ECC_PARMS.......cccciie et
12.2.3.7 TPMU_PUBLIC_PARMScocvi et
12.2.3.8 TPMT_PUBLIC_PARMS.......c.cceviite et

12.2.4 TPMT_PUBLIC ...coooiiiiiiiiicii e
12.2.5 TPM2B_PUBLIC ...

12.3 Private Area SITUCIUIESooeeveiiiieee et

12.3.1 11010 [8Te3 1 o] o F T
12.3.2 Sensitive Data StrUCTUIES.........vveeeeeeiieeeeeee e

12.3.2.1 [Y1010 [Te3 1 o] o R
12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC...............
12.3.2.3 TPMU_SENSITIVE_COMPOSITE.......cccoccvveeennnns
12.3.2.4 TPMT_SENSITIVEcoiiiiiiiiiie e

12.3.3 TPM2B_SENSITIVEooviiiiiiieiieee e
12.3.4 [o3 Y/ o] 1o o PR
12.3.5 T (T 1Y 2SR
12.3.6 CPRIVATE ot
12.3.7 TPM2B_PRIVATE ...t

12.4 Identity ObJeCt......cccooiiiiiiii

1241 DESCHPLION .ttt
1242 _ID_OBJIECT ..ottt
12.4.3 TPM2B_ID_OBJIECT ...ooiiiiiiiieiiieee e

13 NV StOrage SITUCTUINEScoeeeiiiiiiiiieie ettt e e e aab e e e aeees

131 TPM_NV_INDEX ..ottt
13.2 TPMA_NV (NV Index AtribULES)coeeviiiieiiiiiieeiee e
13.3 TPMS_NV_PUBLIC....cooiiiiiiiiiieiee e
13.4 TPM2B_NV_PUBLIC........coiiiiiiiiiie e

I o]] (=) (D - =

2 R 1) 1 Yo 18 o { o] o I R
14.2 TPM2B_CONTEXT_SENSITIVE......ccooiiieeeeeiieeeeee e
14.3 TPMS_CONTEXT _DATA ..ot
14.4 TPM2B_CONTEXT_DATA ..ot
145 TPMS _CONTEXT .oiiiiiiiiiiciiieiee ettt e e e e
14.6 Parameters of TPMS_CONTEXT.......ccccciiiiiiiii

14.6.1 SEUUENCEciiieieieee ettt
14.6.2 savedHaNdIeoooiiiii
14.6.3 RIEFArCNYccoii i

14.7 ConteXt Prot@CHONoiiiiie e
14.7.1 ConteXt INLEGIILY ..oooiveieieiiiee e

14.7.2 Context Confidentialitycccuveeiiieiiiiiiiiiee e

SR O =T (0] o [D= =

15.1 TPMS_CREATION_DATA ..ot
152 TPM2B_CREATION_DATA ..ot

Page viii TCG Published
October 30, 2014 Copyright © TCG 2006-2014

Part 2: Structures

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Tables

Table 1 — Name PrefiX CONVENTIONuiiiiiiiiiei ettt et e e et e e e sbr e e e s abneeeean 18
Table 2 — UNMAarshaliNg EITOISuuiiiiiiiiiiiiee ettt e et e e e st e e e s sbb e e e e sbreeeean 20
Table 3 — DefiNitioN OFf BASE TYPESeiiiiiiiiiiiiiiee ettt ettt e ettt ettt e e e st e e e abb e e e s abe e e e e sbe e e e e sbreeeeabneeeeans 21
Table 4 — Defines fOr LOGIC VAIUEBScceiiiiiiiie ettt s st e e e e e s st e e e e e s e s nntnaneeeeaeeeennns 21
Table 5 — Definition of Types for Documentation CIaritycccuevvieeiiiiiiieieee e 22
Table 6 — Definition of (UINT32) TPM_SPEC CONStANS <>.......ccciiiieiiiiiiiiiireeeeesiiinineeeesessssnnnneeeeessennnns 23
Table 7 — Definition of (UINT32) TPM_GENERATED Constants <O>ccccccccviiiiiiiiieeesesiiiiiieeeee e 23
Table 8 — Legend for TPM_ALG _ID TabBIE.....cciieiiiiiiiiieiie sttt e e e e st e e e e e e s sntnane e e e e e e e nnnns 24
Table 9 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>......ccccccceviiiiiireeeesiiiiiiineee e e 25
Table 10 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S>cccccceeerrnnnns 27
Table 11 — TPM Command Format Fields DeSCIPHONc.oiiuiiiiiiiiiiee it 28
Table 12 — Legend for Command Code TabIeSueiiiiiiiiiiiiiei e e e 29
Table 13 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>cccocvevveeernnns 30
Table 14 — Format-Zero RESPONSE COUESeeiiiiiiiiiiiiiee ettt ettt e et e e e sbe e e e sbe e e e e sbneeeean 35
Table 15 — Format-One RESPONSE COUESvuiiiiiiiieeiiiiiee ettt ettt et e e et e e e sbre e e e sbbeeeesbneeeean 36
Table 16 — ResSpoNse COUE GrOUPINGS ...ccceiviiieieieieieieee ettt ettt ettt ettt ettt ettt et ettt et et et et et et et et e ee e e e e aaaeees 36
Table 17 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>cccccvvviiiiiiiiiieveieeeeeeeeeeee 36
Table 18 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN>..........ccccccccvvviviviiiiiiiiiicceeeceeeee, 42
Table 19 — Definition of (UINT16) TPM_EO Constants <IN/OUT>.........ccccccveiiiiiiiiieeeeeeeeeeee 42
Table 20 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>.......ccccccciiiiiiiiiiieeeeeeeeeeeeeeeee 43
Table 21 — Definition of (UINT16) TPM_SU Constants <IN> ... 45
Table 22 — Definition of (UINT8) TPM_SE Constants <IN>coieiiiiiiiiiriee e ssieieeee e e e 45
Table 23 — Definition of (UINT32) TPM_CAP CONSLANTSccoiuiiiiiiiiiieiiiiiee ettt sineee e 46
Table 24 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>ccccoiveeiiiiiiiiiree e srieiieee e e e 47
Table 25 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>ccccoieiiiiiiiiiiieee e 52
Table 26 — Definition of (UINT32) TPM_PS Constants SOUT>ciiiiiiiiiiiiiieeeiiiiee et 54
Table 27 — Definition of Types for HandIeSooviiiiiiiiii 55
Table 28 — Definition of (UINT8) TPM_HT Constants <S> ... 55
Table 29 — Definition of (TPM_HANDLE) TPM_RH Constants <S>..........cccccccciiiiiiiiieeveeeeeeeee 57
Table 30 — Definition of (TPM_HANDLE) TPM_HC Constants <S>.........ccccccccviiiiiiiiiiiiieeceeeeeeeeeeeeeee 59
Table 31 — Definition of (UINT32) TPMA_ALGORITHM BitSccoiiiiiiiiiiiiiiiiiee i 60
Table 32 — Definition of (UINT32) TPMA_OBJECT BIlSccoiiiiiiiiiiie ettt 61
Table 33 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT> ... e e erineeeen e e 67
Table 34 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>cuiiiiiiiee e srinieeee e e 69
Table 35 — Definition of (UINT32) TPMA_PERMANENT Bits KOUT>uiiiiieiiiiiiiieiiee e criiiieee e e e 70
Table 36 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>.....ccciiiiiiiiiiiee e cciiiieie e e 71
Table 37 — Definition of (UINT32) TPMA_MEMORY BitS <OUL>cocoiiiiieiiiiiee et e e streee e 72
Family “2.0” TCG Published Page ix

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Table 38 — Definition of (TPM_CC) TPMA _CC BitS KOUT>cciiiiiiiiiiiiiiie ettt sraee e 73
Table 39 — Definition of (BYTE) TPMI_YES _NO TYPE ..evieeiiiiiiiiiiieie e e iesitiieee e e e e e sssiniaeee e e e s e ssnsnnneeeaeeennnnns 76
Table 40 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT TYPE.....cettiuteiieriieriieriesiee e eieesieesiee e 76
Table 41 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT TYPE ..cc.eeiiiiieiiieeiieeniiee s 77
Table 42 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>ccccooiiiiiiiiiiie e 77
Table 43 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>ccoiiiiiiiieiiie e 77
Table 44 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/JOUT>cccccvueenen. 78
Table 45 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>.......cocoiiiiiiiniieiie e 78
Table 46 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <INJOUT>cccceciriiiiienienieninns 78
Table 47 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT TYPE ...cccuveiuieriieriieiie e iieesiee e 78
Table 48 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY TYPEccceeiiiiiiiiiiiiiieeiee s 79
Table 49 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES TYPEccctiiieiieiie e 79
Table 50 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>........cccccevverrirnnne 80
Table 51 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN>cccoooiniiiiiiienieniienenne 80
Table 52 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>ccccceiiiiniiiiniie e 80
Table 53 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>.........cccccocverrrerrernnn, 81
Table 54 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN>.......c.cccoevieererererssnnns 81
Table 55 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>ccccooviveererreeeeersseennisnennns 81
Table 56 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH TYpe <IN>cccovvrvrieeeerenerseens 82
Table 57 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN>cccvivreeieeeererereeens 82
Table 58 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/JOUT>cccccecveererrrrnnn, 82
Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH TYPE...cccutiiiiiieiieiie ettt 83
Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM TYPE ..ccuetiiiiiiaiieniie e siie et sieesiee e 83
Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM TYPEeiiiiiiiiiieiie et 84
Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT TYPEeerierieririieiieeieesiee e 84
Table 63 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE TYPEccceerirrerrirniiiieeiee e nieesinens 84
Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF TYPEuutiiiiiiiiieiiiiee ettt sineee e 85
Table 65 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME TYPEceeiiiiiiiiiiiieeeiiieee e 85
Table 66 — Definition of (TPM_ALG_ID}{ECC} TPMI_ECC_KEY_EXCHANGE TYP€ocvvvvverererrrrnnnn, 85
Table 67 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG TYPEeetiiiiiieeiiiiiee e iiieeeeeiieee e siieee e 86
Table 68 — Definition of TPMS_EMPTY Structure <INJOUT>cciiiiiiiiiiiiieiiiiee et 87
Table 69 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>.......ccvvvevviiiiiviiniieeenninns 87
Table 70 — Definition of TPMU_HA Union <IN/OUT, S> ..., 88
Table 71 — Definition of TPMT_HA Structure <IN/JOUT>cccciiiiiiiie 88
Table 72 — Definition of TPM2B_DIGEST SIIUCLUIEccooviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e, 89
Table 73 — Definition of TPM2B_DATA StrUCIUIEoooeiiiiiiiiieeeeeeeeeeeeeeeee e, 89
Table 74 — Definition of Types for TPM2B_NONCEcocoiiiiiiiiiiiie et ee e e 89
Table 75 — Definition of Types for TPM2B_AUTHoiiiiiiiiiiie e 90
Table 76 — Definition of Types for TPM2B_OPERANDcociiiiiiiiiiiiiiiiee et 90
Page x TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Table 77 — Definition of TPM2B_EVENT StrUCIUIEcuviieiiiiiiiiiieii e e sestieee e e e s st e e e e e e s snnrnnee e e e e e e 90
Table 78 — Definition of TPM2B_MAX_BUFFER StrUCLUIEcueviieeiiiiiiiiieeee e eicinieeee e e e e e ssinvneee e e e e 90
Table 79 — Definition of TPM2B_MAX_NV_BUFFER StrUCIUIEcccoiiiiiiiieie e ccciiieie e e e e 91
Table 80 — Definition of TPM2B_TIMEOUT Structure <IN/OUT>coiiiiiiiiiiiiee i 91
Table 81 — Definition of TPM2B_IV Structure <IN/OUT> ...t e e 91
Table 82 — Definition of TPMU_NAME UNION <> ... 92
Table 83 — Definition of TPM2B_NAME SEIUCLUIEueiiiiiiiiiiiiiiieie et e e e e e e e e sieeeeeeaeeeeenns 92
Table 84 — Definition of TPMS_PCR_SELECT SHIUCLUIEcuviiiiiie ettt a e sinreeeea e e 93
Table 85 — Definition of TPMS_PCR_SELECTION StIUCLUIE.......cotiiiiiiiiiiiiieiee e eieiiiiece e e e seieieeeee e e 94
Table 86 — Values for proof USed iN TICKELScciiiiiiiiiiiiee ettt e e 94
Table 87 — General FOrmat 0f @ TICKEL..........cviiiiiiieiei e 95
Table 88 — Definition of TPMT_TK_CREATION STrUCIUIE........uuviiiiieeeiiiiiieeeee e sseiieee e e e e s sinvneee e e e e e 95
Table 89 — Definition of TPMT_TK_VERIFIED StruCture...........cooovvviieiiiieeeeeeeeee 96
Table 90 — Definition of TPMT_TK_AUTH StrUCIUIecoeveviiiieiiieieeee e 97
Table 91 — Definition of TPMT_TK_HASHCHECK StruCtUIe..........coovviiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee e 98
Table 92 — Definition of TPMS_ALG_PROPERTY Structure KOUT>........coiiiiiiiiiiiiiee e 98
Table 93 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>........cooiiiiiiiiiiiieieiiieee e 98
Table 94 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>cociiiiiiiiieieiiieee e 99
Table 95 — Definition 0f TPML_CC SEUCIUIEcciiuiiiiiiiiiee ettt ettt e et e e e sbneeeean 99
Table 96 — Definition of TPML_CCA StruCture SOUT>......coiiiiiiiiiiiiiee ittt e sineee e 99
Table 97 — Definition of TPML_ALG SEIUCTUIEcocuuiiiiiiiiiee ittt e e a e nanneees 100
Table 98 — Definition of TPML_HANDLE Structure <OUT>........cccooviiiiiiiiiiieeeeeeeeeeeee 100
Table 99 — Definition of TPML_DIGEST StrUCIUIE.........ccoeviiiiiiiiieeeeeeeee e 100
Table 100 — Definition of TPML_DIGEST_VALUES StruCtUreccoovvviiiiiiiiiiieeeeeeeeeeeeeeeeeeee 101
Table 101 — Definition of TPM2B_DIGEST_VALUES StrUCtUrecoovvvviiiieiiieieieeeeeeeeeeeeeeeeee 101
Table 102 — Definition of TPML_PCR_SELECTION StrUCLUI€cccvvveieiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeee 101
Table 103 — Definition of TPML_ALG_PROPERTY Structure KOUT>c..cviiiieeiiiiiiiieeee e eeiieieeeeen 102
Table 104 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>coccocieiiiieeeinnnnnn. 102
Table 105 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>coccocveiiiiieeinnnenn. 102
Table 106 — Definition of {ECC} TPML_ECC_CURVE Structure KOUT>......occiiiiiiiiiieiiieee e 102
Table 107 — Definition of TPMU_CAPABILITIES UNioN SOUT>.....coiiiiiiiiiiiiiieiee e e seieeee e 103
Table 108 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>cccovveiiiiiiee i 103
Table 109 — Definition of TPMS_CLOCK _INFO StrUCIUIe.........coveviiiiiiiiiiiieeeeeee 104
Table 110 — Definition of TPMS_TIME_INFO StruCtureoooveviiiiiiiiiieeeeee 105
Table 111 — Definition of TPMS_TIME_ATTEST _INFO Structure KOUT>......cccooiiiiiiiiiiieieeeiniiieeeennn 106
Table 112 — Definition of TPMS_CERTIFY_INFO Structure <OUT>.......ccuiiiiiiiieiiiiiiieee e 106
Table 113 — Definition of TPMS_QUOTE_INFO Structure <OUT> ..., 106
Table 114 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>ccciiiiiieeiiiiiiieeeeen, 107
Table 115 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>cooooieiiiiiieiiieee e, 107
Family “2.0” TCG Published Page xi

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Table 116 — Definition of TPMS_CREATION_INFO Structure <OUT>oviiiieeiiiiiiieeeee e 107
Table 117 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT>.......ccoveeiiiiiiiiieeeee e secniineeeeens 107
Table 118 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>.....cccoiiiiiiieiienie e 108
Table 119 — Definition of TPMU_ATTEST UNIioN SOUT> ..ot 108
Table 120 — Definition of TPMS_ATTEST Structure KOUT>uiiiiiiieiiiiiiiiieeeee e 109
Table 121 — Definition of TPM2B_ATTEST Structure SOUT>uiiiiiiiiiiiiiiiieeee e 110
Table 122 — Definition of TPMS_AUTH_COMMAND Structure <IN>.........cccccooeiiiiiiiiiieeeee e 110
Table 123 — Definition of TPMS_AUTH_RESPONSE Structure <OUT>.......ciiiiiiiiiiiiieeeee e 110
Table 124 — Definition of {IALG.S} (TPM_KEY_BITS) TPMI_!ALG.S_KEY_BITS Typecccccerrurrnn 111
Table 125 — Definition of TPMU_SYM_KEY_BITS UNION........ccctiiiiiie e sesineee e e e e e sinineneeee s 111
Table 126 — Definition of TPMU_SYM_MODE URNIONccvviiiiiiiiiiiieice it e e e s s sinaeeeee e e s s snnnnneeeee s 112
Table 127 —xDefinition of TPMU_SYM_DETAILS UNIONccooiiiiiiieiie et e e siivnee e e e e sanvnnneeee s 112
Table 128 — Definition of TPMT_SYM_DEF StruCtUIecccoveviiiiiiiieieeeeeeeeeeeeeeeeeeeee et 112
Table 129 — Definition of TPMT_SYM_DEF_OBJECT StrUCLUI€.........ccvvveieiiiiieiiieieeeeeeeeeeeeeceeeeeeeeeeeeee e 113
Table 130 — Definition of TPM2B_SYM_KEY StrUCIUI€........ccovvviviiiiiiiieieeeeeeeeeeeeeeee e 113
Table 131 — Definition of TPMS_SYMCIPHER_PARMS SrUCTUIEcocuviiiiiiiiieiiiieee i 113
Table 132 — Definition of TPM2B_SENSITIVE_DATA SIIUCTUIEceviiiiiiiieiiiiiie e 114
Table 133 — Definition of TPMS_SENSITIVE_CREATE Structure <IN>ccccciiiiiieiniiiee e 114
Table 134 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>........ccccccciiiiiiieiniieee e, 114
Table 135 — Definition of TPMS_SCHEME_HASH StrUCIUIEccuviiiiiiiiieiiiieee e 115
Table 136 — Definition of {ECC} TPMS_SCHEME_ECDAA StrUCIUI€........ccoiiiiiieiiiiie e 115
Table 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type.........cccceeuerurnne. 115
Table 138 — Definition of Types for HMAC_SIG_SCHEME ... 115
Table 139 — Definition of TPMS_SCHEME_XOR StruCtUIreccovvvviiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee 115
Table 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>.......cccccociiiieiiiranieen 116
Table 141 — Definition of TPMT_KEYEDHASH_SCHEME StrUCTUIEc.covviiiiiiieee e 116
Table 142 — Definition of {RSA} Types for RSA Signature SChemescccoovviiiiiiiiie i 117
Table 143 — Definition of {ECC} Types for ECC Sighature SChemesc.cevvveeeiiiiiiiieeeeeesesiieieeeenn 117
Table 144 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>cccoiiiiiiiiiiiie e 118
Table 145 — Definition of TPMT_SIG_SCHEME StrUCTUIEciiiiiiiiiiiiiiee e 118
Table 146 — Definition of Types for {RSA} Encryption SChemMESccooiiiiiiiiiiiiiiiie e 118
Table 147 — Definition of Types for {ECC} ECC Key EXChangecoooiiiiiiiiiiiiiiee e 119
Table 148 — Definition of Types for KDF SChEMEScoiiiiiiiiiiiiiiiie et 119
Table 149 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S>cccceiiieeiiee e 119
Table 150 — Definition of TPMT_KDF_SCHEME Structurecccccveviviiiiiie 119
Table 151 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME TYPe <>......ccccevveererreerneanne 120
Table 152 — Definition of TPMU_ASYM_SCHEME UNION ... 120
Table 153 — Definition of TPMT_ASYM_SCHEME Structure <>.........ccccccciiviiiiiiiiie 120
Table 154 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME TYP€.....cccscsvrvrrrrrrrrrnns 121
Page xii TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Table 155 — Definition of {RSA} TPMT_RSA SCHEME StrUCLUIeccoocviiiieiie et ee e eeiieeeeeee s 121
Table 156 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT TYPe......cccvervrrverrennne 121
Table 157 — Definition of {RSA} TPMT_RSA DECRYPT StrUCIUIEcoocvviiiiiiiee et seeinnee e 121
Table 158 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA StrUCIUIeccovvieiiiiiiiiiiieiee e 122
Table 159 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS TYPE....cccceceriiiieriireiieene 122
Table 160 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA StruCtUre........ccccovviiuiiiiiiieeeieiiiiieeennn 122
Table 161 — Definition of {ECC} TPM2B_ECC_PARAMETER StrUCtUIecccoeeiiiiiiiiiiieiee e 123
Table 162 — Definition of {ECC} TPMS_ECC_POINT StrUCIUIEccveeiiiiiiiiieiiee et 123
Table 163 — Definition of {ECC} TPM2B_ECC_POINT StrUCIUIEcccceeiiiiiiiiiiiiieeeieiiiiieee e eiiiieee e 123
Table 164 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME TYP€coovervrrrernennne. 124
Table 165 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE TYPe.....ccoeeriererrienienne 124
Table 166 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure.................. 124
Table 167 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>........ccccevuennee. 125
Table 168 — Definition of {RSA} TPMS_SIGNATURE_RSA SIrUCTUIEcovviiiieiieiieniee e 125
Table 169 — Definition of Types for {RSA} SIgnatureooovvviveiiii e, 125
Table 170 — Definition of {ECC} TPMS_SIGNATURE_ECC SIIUCIUIEccciiviiieiiiiie e 126
Table 171 — Definition of Types for {ECC} TPMS_SIGNATUE_ECCc..cooiiiiiiiiiiiie e 126
Table 172 — Definition of TPMU_SIGNATURE Union <IN/OUT, S>......cciiiiiiiiieeeieiiiiieee e 126
Table 173 — Definition of TPMT_SIGNATURE SHrUCIUIEcuvviiiiiiiiieiiiie e 126
Table 174 — Definition of TPMU_ENCRYPTED_SECRET UNiON <S>cooiiiiiiiiiiiiie e 127
Table 175 — Definition of TPM2B_ENCRYPTED_SECRET StrUCIUIe........cccoiiuiiieiiiiiieiiiiee e 127
Table 176 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC TYPEcoviiiiiiiieiienee e 128
Table 177 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S>cccccciiiiiiiieeie e 129
Table 178 — Definition of TPMS_KEYEDHASH_PARMS StruCture.........cccccccevvviviiiiiiiiieieveeeeeeeee 129
Table 179 — Definition of TPMS_ASYM_PARMS SHrUCLUIE <>ccoiviiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee e 130
Table 180 — Definition of {RSA} TPMS_RSA PARMS StruCtUre.........ccccccvevvviiiiiiiiiieeeeeeeeeee 131
Table 181 — Definition of {ECC} TPMS_ECC_PARMS SEtIUCIUIEccoiiiiiieiiiiiie e 131
Table 182 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>......coccoiiiiiiiiiiiiieee e 132
Table 183 — Definition of TPMT_PUBLIC_PARMS StrUCIUIEcoiuiiiiiiiiiie it 132
Table 184 — Definition of TPMT_PUBLIC StrUCIUIEcccuuiiiiiiiiiie ettt 133
Table 185 — Definition of TPM2B_PUBLIC STIUCIUIE..........ciiiiiiiieiiiiii et 133
Table 186 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<>.........ccccccccevnvrereinnnnnn. 134
Table 187 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S>cccceviiiriiirenieen 134
Table 188 — Definition of TPMT_SENSITIVE StrUCIUreooooviiiiiiie 135
Table 189 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>cccciiiiiiiiii 135
Table 190 — Definition of _PRIVATE StrUCLUIre <> ..o 136
Table 191 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S>ccccciiiiii 136
Table 192 — Definition of _ID_OBJECT SITUCIUINE <>.....uciiiiiiiiiiiiiiieiee e ee ettt e e e e et e e e e e e s e e saaaraneeea s 137
Table 193 — Definition of TPM2B_ID_OBJECT Structure <IN/JOUT>c..coiiiiiiiiiiiiiie e 137
Family “2.0” TCG Published Page xiii

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Table 194 — Definition of (UINT32) TPM_NV _INDEX BitS <>......uuuiiiiiiiiiiiiiiiriie e sssineee e e e e e s ssnnnenneeee s 138
Table 195 — Definition of (UINT32) TPMA_NV BILSuuiiiiieeiiiiiiiiieiie s sveee e e e e s ssireee e e e e e s s nnnnnnaeeeee s 140
Table 196 — Definition of TPMS_NV_PUBLIC StrUCIUIE.........cccuviiieiee e i s ciiiiie e e e sesireee e e e e e s eanennneeee s 142
Table 197 — Definition of TPM2B_NV_PUBLIC STrUCIUIE.......ccuuiiiiiiiee et 142
Table 198 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/JOUT>........ccccceeeiiiiiiiiiinnennn. 143
Table 199 — Definition of TPMS_CONTEXT_DATA Structure <IN/JOUT, S>......cccccviiiriiriniie e 143
Table 200 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>ccooiiiiiiiiiieeeiiiiiiiieeennn 143
Table 201 — Definition of TPMS_CONTEXT STTUCLUIEoeiiiiiiiiiiiiiiie et eeieeeee e e 144
Table 202 — Context HANAIE VAIUES...........oiiiiiiiiieiieee ettt 145
Table 203 — Definition of TPMS_CREATION_DATA Structure <OUT>cccoviiiiiiieiieiie e 147
Table 204 — Definition of TPM2B_CREATION_DATA Structure <OUT>cccoiiiiiiienieiie e 147
Page xiv TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Figures

Figure 1 — COmMMANG FOIMIALuiiiiiiiiiiieiite ettt e st e s et e e s aabbe e e s anb e e e e anbneeeenees 28
Figure 2 — Format-Zero RESPONSE COUES.......cuiiuiiiieiiiiiie ittt ettt s s i e e aebe e e e 34
Figure 3 — FOrmat-One RESPONSE COUESoiiiiuiiiieiiiiiie ittt ettt e st e s s e e e anbe e e e enees 35
Figure 4 — TPM 1.2 TPM_NV_INDEXciiiitiiiieiriie et nnne e e e e nnneas 138
Figure 5 — TPM 2.0 TPM_NV_INDEXciiittiiiieiiiie et e s nnne e e ennneas 138
Family “2.0” TCG Published Page xv

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Part 2: Structures Trusted Platform Module Library

Trusted Platform Module Library

Part 2: Structures

1 Scope

This part of the Trusted Platform Module Library specification contains the definitions of the constants,
flags, structure, and union definitions used to communicate with the TPM. Values defined in this
document are used by the TPM commands defined in TPM 2.0 Part 3: Commands and by the functions in
TPM 2.0 Part 4: Supporting Routines.

NOTE The structures in this document are the canonical form of the structures on the interface. All structures
are "packed" with no octets of padding between structure elements. The TPM-internal form of the
structures is dependent on the processor and compiler for the TPM implementation.

2 Terms and definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.
4 Notation

4.1 Introduction

The information in this document is formatted so that it may be converted to standard computer-language
formats by an automated process. The purpose of this automated process is to minimize the transcription
errors that often occur during the conversion process.

For the purposes of this document, the conventions given in TPM 2.0 Part 1 apply.

In addition, the conventions and notations in this clause describe the representation of various data so
that it is both human readable and amenable to automated processing.

When a table row contains the keyword “reserved” (all lower case) in columns 1 or 2, the tools will not
produce any values for the row in the table.

NOTE 1 In the examples in this clause 4, the unmarshaling routines are shown as returning bool. In the code of
the reference implementation, the return value is a TPM_RC. A bool is used in the examples, because
the meaning of a TPM_RC is not yet defined.

NOTE 2 The unmarshaling code examples are the actual code that would be produced by the automatic code
generator used in the construction of the reference code. The actual code contains additional parameter
checking that is omitted for clarity of the principle being illustrated. Actual examples of the code are found
in TPM 2.0 Part 4.

Family “2.0” TCG Published Page 1
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.2 Named Constants

A named constant is a numeric value to which a name has been assigned. In the C language, this is done
with a #define statement. In this specification, a named constant is defined in a table that has a title that
starts with “Definition” and ends with “Constants.”

The table title will indicate the name of the class of constants that are being defined in the table. The title
will include the data type of the constants in parentheses.

The table in Example 1 names a collection of 16-bit constants and Example 2 shows the C code that
might be produced from that table by an automated process.

NOTE A named constant (#define) has no data type in C and an enumeration would be a better choice for
many of the defined constants. However, the C language does not allow an enumerated type to have a
storage type other than int so the method of using a combination of typedef and #define is used.

EXAMPLE 1
Table xx — Definition of (UINT16) COUNTING Constants
Parameter Value Description
first 1 decimal value is implicitly the size of the
second 0x0002 hex value will match the number of bits in the constant
third 3
fourth 0x0004
EXAMPLE 2
/* The C language equivalent of the constants from the table above */
typedef UINT16 COUNTING;
#define first 1
#define second 0x0002
#define third 3
#define fourth 0x0004
Page 2 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

4.3 Data Type Aliases (typedefs)
When a group of named items is assigned a type, it is placed in a table that has a title starting with
“Definition of Types.” In this specification, defined types have names that use all upper-case characters.

The table in Example 1 shows how typedefs would be defined in this specification and Example 2 shows
the C-compatible code that might be produced from that table by an automated process.

EXAMPLE 1
Table xx — Definition of Types for Some Purpose
Type Name Description
unsigned short UINT16
UINT16 SOME_TYPE
unsigned long UINT32
UINT32 LAST_TYPE
EXAMPLE 2

/* C language equivalent of the typedefs from the table above */
typedef unsigned short UINT16;

typedef UINT16 SOME_TYPE;
typedef unsigned long UINT32;
typedef UINT32 LAST TYPE;

4.4 Enumerations

A table that defines an enumerated data type will start with the word “Definition” and end with “Values.”

A value in parenthesis will denote the intrinsic data size of the value and may have the values "INT8",
"UINT8", "INT16", “UINT16”, "INT32", and “UINT32.” If this value is not present, “UINT16” is assumed.

Most C compilers set the type of an enumerated value to be an integer on the machine — often 16 bits —
but this is not always consistent. To ensure interoperability, the enumeration values may not exceed
32,384,

The table in Example 1 shows how an enumeration would be defined in this specification. Example 2
shows the C code that might be produced from that table by an automated process.

EXAMPLE 1
Table xx — Definition of (UINT16) CARD_SUIT Values
Suit Names Value Description
CLUBS 0x0000
DIAMONDS 0x000D
HEARTS 0x001A
SPADES 0x0027
EXAMPLE 2

/* C language equivalent of the structure defined in the table above */
typedef enum {

CLUBS = 0x0000,
DIAMONDS = 0x000D,
HEARTS = 0x001a,
SPADES = 0x0027
} CARD_SUIT;
Family “2.0” TCG Published Page 3

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.5 Interface Type

An interface type is used for an enumeration that is checked by the unmarshaling code. This type is
defined for purposes of automatic generation of the code that will validate the type. The title will start with
the keyword “Definition” and end with the keyword “Type.” A value in parenthesis indicates the base type
of the interface. The table may contain an entry that is prefixed with the “#” character to indicate the
response code if the validation code determines that the input parameter is the wrong type.

EXAMPLE 1
Table xx — Definition of (CARD_SUIT) RED_SUIT Type

Values Comments

HEARTS

DIAMONDS

#TPM_RC_SUIT response code returned when the unmarshaling of this type fails

NOTE TPM_RC_SUIT is an example and no such response
code is actually defined in this specification.

EXAMPLE 2

/* Validation code that might be automatically generated from table above */
if ((*target '= HEARTS) && (*target !'= DIAMONDS))
return TPM RC_SUIT;

In some cases, the allowed values are numeric values with no associated mnemonic. In such a case, the
list of numeric values may be given a name. Then, when used in an interface definition, the name would
have a "$" prefix to indicate that a named list of values should be substituted.

To illustrate, assume that the implementation only supports two sizes (1024 and 2048 bits) for keys
associated with some algorithm (MY algorithm).

EXAMPLE 3
Table xx — Defines for MY Algorithm Constants
Name Value Comments
MY_KEY_SIZES_BITS {1024, 2048} braces because this is a list value
Page 4 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Then, whenever an input value would need to be a valid MY key size for the implementation, the value
$MY_KEY_SIZES BITS could be used. Given the definition for MY_KEY_SIZES BITS in example 3
above, the tables in example 4 and 5 below, are equivalent.

EXAMPLE 4
Table xx — Definition of (UINT16) MY_KEY_BITS Type
Parameter Description
{1024, 2048} the number of bits in the supported key
EXAMPLE 5
Table xx — Definition of (UINT16) MY_KEY_BITS Type
Parameter Description
$MY_KEY_SIZES_BITS the number of bits in the supported key
4.6 Arrays

Arrays are denoted by a value in square brackets (“[]”) following a parameter name. The value in the
brackets may be either an integer value such as “[20]” or the name of a component of the same structure
that contains the array.

The table in Example 1 shows how a structure containing fixed and variable-length arrays would be
defined in this specification. Example 2 shows the C code that might be produced from that table by an
automated process.

EXAMPLE 1
Table xx — Definition of A_STRUCT Structure
Parameter Type Description
array1[20] UINT16 an array of 20 UINT16s
a_size UINT16
array2[a_size] UINT32 an array of UINT32 values that has a
number of elements determined by
a_size above
EXAMPLE 2

/* C language equivalent of the typedefs from the table above */
typedef struct {

UINT16 arrayl[20];
UINT16 a_size;
UINT32 array2[];
} A_STRUCT;
Family “2.0” TCG Published Page 5

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.7 Structure Definitions

The tables used to define structures have a title that starts with the word “Definition” and ends with
“Structure.” The first column of the table will denote the reference names for the structure members; the
second column the data type of the member; and the third column a synopsis of the use of the element.

The table in Example 1 shows an example of how a structure would be defined in this specification and
Example 2 shows the C code that might be produced from the table by an automated process. Example 3
illustrates the type of unmarshaling code that could be generated using the information available in the
table.

EXAMPLE 1
Table xx — Definition of SIMPLE_STRUCTURE Structure
Parameter Type Description
tag TPM_ST
valuel INT32
value2 INT32
EXAMPLE 2

/* C language equivalent of the structure defined in the table above */
typedef struct {

TPM_ST tag;
INT32 valuel
INT32 value2;

} SIMPLE STRUCTURE;
EXAMPLE 3

bool SIMPLE_STRUCTURE Unmarshal (SIMPLE_ STRUCTURE *target, BYTE **buffer, INT32 *size)
{
// I1If unmarshal of tag succeeds
if (TPM_ST Unmarshal ((TPM_ST *)&(target->tag), buffer, size))
// then unmarshal valuel, and if that succeeds...
if (INT32_Unmarshal ((INT32 *)&(target->valuel, buffer, size))
// then return the results of unmarshaling values
return (INT32_Unmarshal ((INT32 *)&(target->value2, buffer, size))
// if unmarshal of tag or value failed, return failure
return FALSE;

Page 6 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

A table may have a term in {}. This indicates that the table is conditionally compiled. It is commonly used
when a table's inclusion is based on the implementation of a cryptographic algorithm. See, for example,
Table 156 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA DECRYPT Type, which is dependent
on the RSA algorithm.

4.8 Conditional Types

An enumeration may contain an extended value indicated by “+” preceding the name in the "Value"
column. This “+” indicates that this is a conditional value that may be allowed in certain situations.

NOTE In many cases, the input values are algorithm IDs. When two collections of algorithm IDs differ only
because one collection allows TPM_ALG_NULL and the other does not, it is preferred that there not be
two completely different enumerations because this leads to many casts. To avoid this, the “+” can be
added to a TPM_ALG_NULL value in the table defining the type. When the use of that type allows
TPM_ALG_NULL to be in the set, the use would append a “+” to the instance.

EXAMPLE

Table xx — Definition of (CARD_SUIT) TPMI_CARD_SUIT Type

Values Comments

SPADES

HEARTS

DIAMONDS

CLUBS

+JOKER an optional value that may be allowed

#TPM_RC_SUIT response code returned when the input value is not one of
the values above

When an interface type is used, a “+” will be appended to the type specification for the parameter when
the conditional value is allowed. If no “+” is present, then the conditional value is not allowed.

EXAMPLE 1
Table xx — Definition of POKER_CARD Structure
Parameter Type Description
suit TPMI_CARD_SUIT+ allows joker
number UINT8 the card value
EXAMPLE 2
Table xx — Definition of BRIDGE_CARD Structure
Parameter Type Description
suit TPMI_CARD_SUIT does not allow joker
number UINT8 the card value
4.9 Unions

49.1 Introduction

Family “2.0” TCG Published Page 7
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

A union allows a structure to contain a variety of structures or types. The union has members, only one of
which is present at a time. Three different tables are required to fully characterize a union so that it may
be communicated on the TPM interface and used by the TPM:

1) union definition;
2) union instance; and

3) union selector definition.

4.9.2 Union Definition

The table in Example 1 illustrates a union definition. The title of a union definition table starts with
“Definition” and ends with “Union.” The “Parameter” column of a union definition lists the different names
that are used when referring to a specific type. The “Type” column identifies the data type of the member.
The “Selector” column identifies the value that is used by the marshaling and unmarshaling code to
determine which case of the union is present.

If a parameter is the keyword “null,” then this denotes a selector with no contents. The table in Example 1
illustrates a union in which a conditional null selector is allowed to indicate an empty union member.

Example 2 shows how the table would be converted into C-compatible code.

The expectation is that the unmarshaling code for the union will validate that the selector for the union is
one of values in the selector list.

EXAMPLE 1
Table xx — Definition of NUMBER_UNION Union

Parameter Type Selector Description

a_byte BYTE BYTE_SELECT

an_int int INT_SELECT

a_float float FLOAT_SELECT

+null NULL_SELECT the empty branch
EXAMPLE 2

// C-compatible version of the union defined in the table above
typedef union {

BYTE a_byte;
int an_int;
float a_float;

} NUMBER_UNION;

EXAMPLE 3

Page 8 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

// Possible auto-generated code to unmarshal a union in Example 2 based on the
// input value of selector
bool NUMBER UNION Unmarshal (NUMBER UNION *target, BYTE **buffer,
INT32 *size, UINT32 selector)
{
switch (selector) {
case BYTE SELECT:
return BYTE Unmarshal ((BYTE *)& (target->a byte), buffer, size);
case INT SELECT:
return INT Unmarshal ((int *)&(target->an_int), buffer, size);
case FLOAT SELECT:
return FLOAT Unmarshal ((float *)&(target->a_float), buffer, size);
case NULL_SELECT:
return;

A table may have a type with no selector. This is used when the first part of the structure for all union
members is identical. This type is a programming convenience, allowing code to reference the common
members without requiring a case statement to determine the specific structure. In object oriented
programming terms, this type is a superclass and the types with selectors are subclasses.

4.9.3 Union Instance

When a union is used in a structure that is sent on the interface, the structure will minimally contain a
selector and a union. The selector value indicates which of the possible union members is present so that
the unmarshaling code can unmarshal the correct type. The selector may be any of the parameters that
occur in the structure before the union instance. To denote the structure parameter that is used as the
selector, its name is in brackets (“[]”) placed before the parameter name associated with the union.

The table in Example 1 shows the definition of a structure that contains a union and a selector. Example 2
shows how the table would be converted into C-compatible code and Example 3 shows how the
unmarshaling code would handle the selector.

EXAMPLE 1
Table xx — Definition of STRUCTURE_WITH_UNION Structure
Parameter Type Description
select NUMBER_SELECT |a value indicating the type in number
[select] number |NUMBER_UNION [a union as shown in 4.9.2
EXAMPLE 2

// C-compatible version of the union structure in the table above
typedef struct {

NUMBER_SELECT select;

NUMBER_UNION number;
} STRUCT WITH_UNION;

EXAMPLE 3

Family “2.0” TCG Published Page 9
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

// Possible unmarshaling code for the structure above
bool STRUCT WITH_UNION Unmarshal (STRUCT WITH_UNION *target, BYTE **buffer, INT32 *size)
{

// Unmarshal the selector value

if (!NUMBER SELECT Unmarshal ((NUMBER SELECT *)&target->select, buffer, size))

return FALSE;

// Use the unmarshaled selector value to indicate to the union unmarshal

// function which unmarshaling branch to follow.

return (NUMBER UNION Unmarshal ((NUMBER UNION *) & (target->number),

buffer, size, (UINT32)target->select);

4.9.4 Union Selector Definition
The selector definition limits the values that are used in unmarshaling a union. Two different selector sets
applied to the same union define different types.

For the union in 4.9.2, a selector definition should be limited to no more than four values, one for each of
the union members. The selector definition could have fewer than four values.

In Example 1, the table defines a value for each of the union members.

EXAMPLE 1
Table xx — Definition of (INT8) NUMBER_SELECT Values <IN>
Name Value Comments
BYTE_SELECT 3
INT_SELECT 2
FLOAT_SELECT 1
NULL_SELECT 0

The unmarshaling code would limit the input values to the defined values. When the NUMBER_SELECT
is used in the union instance of 4.9.3, any of the allowed union members of NUMBER_UNION could be
present.

A different selection could be used to limit the values in a specific instance. To get the different selection,
a new structure is defined with a different selector. The table in example 2 illustrates a way to subset the
union. The base type of the selection is NUMBER_SELECT so a NUMBER_SELECT will be unmarshaled
before the checks are made to see if the value is in the correct range for JUST_INTEGERS types. If the
base type had been UINT8, then no checking would occur prior to checking that the value is in the
allowed list. In this particular case, the effect is the same in either case since the only values that will be
accepted by the unmarshaling code for JUST_INTEGER are BYTE_SELECT and INT_SELECT.

EXAMPLE 2
Table xx — Definition of (NUMBER_SELECT) AN_INTEGER Type <IN>
Values Comments
{BYTE_SELECT, INT_SELECT} list of allowed values
NOTE Since NULL_SELECT is not in the list of values accepted as a JUST_INTEGER, the “+” modifier will have
no effect if used for a JUST_INTEGERS type shown in Example 3.
Page 10 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

The selector in Example 2 can then be used in a subset union as shown in Example 3.
EXAMPLE 3

Table xx — Definition of JUST_INTEGERS Structure

Parameter Type Description

select AN_INTEGER a value indicating the type in number

[select] number |NUMBER_UNION [a union as shown in 4.9.2

4.10 Bit Field Definitions

A table that defines a structure containing bit fields has a title that starts with “Definition” and ends with
“Bits.” A type identifier in parentheses in the title indicates the size of the datum that contains the bit
fields.

When the bit fields do not occupy consecutive locations, a spacer field is defined with a name of
“Reserved.” Bits in these spaces are reserved and shall be zero.

The table in Example 1 shows how a structure containing bit fields would be defined in this specification.
Example 2 shows the C code that might be produced from that table by an automated process.

When a field has more than one bit, the range is indicated by a pair of numbers separated by a colon (*:”).
The numbers will be in high:low order.

EXAMPLE1
Table xx — Definition of (UINT32) SOME_ATTRIBUTE Bits
Bit Name Action
0 zeroth_bit SET (1): what to do if bitis 1
CLEAR (0): what to do if bitis O
1 first_bit SET (1): what to do if bitis 1
CLEAR (0): what to do if bitis 0
6:2 Reserved A placeholder that spans 5 bits
7 third_bit SET (1): what to do if bitis 1
CLEAR (0): what to do if bitis 0
31:8 |Reserved Placeholder to fill 32 bits
EXAMPLE 2

/* C language equivalent of the attributes structure defined in the table above */
typedef struct {
int zeroth bit : 1;
int first bit 1;
int Reserved3 : 5;
int third bit 1;
int Reserved?7 2
} SOME_ATTRIBUTE;

4;

NOTE The packing of bit fields into an integer is compiler and tool chain dependent. This C language equivalent
is valid for a compiler that packs bit fields from the least significant bit to the most significant bit. It is
likely to be correct for a little endian processor and likely to be incorrect for a big endian processor.

Family “2.0” TCG Published Page 11
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.11 Parameter Limits

A parameter used in a structure may be given a set of values that can be checked by the unmarshaling
code. The allowed values for a parameter may be included in the definition of the parameter by
appending the values and delimiting them with braces ({ }’). The values are comma-separated
expressions. A range of numbers may be indicated by separating two expressions with a colon (“:”). The
first number is an expression that represents the minimum allowed value and the second number
indicates the maximum. If the minimum or maximum value expression is omitted, then the range is open-
ended.

Parameter limits expressed using braces apply only to inputs to the TPM. Any value returned by the TPM
is assumed to be valid.

The maximum size of an array may be indicated by putting a “{}” delimited expression following the
square brackets (“[1”) that indicate that the value is an array.

EXAMPLE

Table xx — Definition of B_STRUCT Structure

Parameter Type Description

valuel {20:25} UINT16 a parameter that must have a value between
20 and 25, inclusive

value2 {20} UINT16 a parameter that must have a value of 20

value3 {:25} INT16 a parameter that may be no larger than 25

Since the parameter is signed, the minimum
value is the largest negative integer that may
be expressed in 16 bits.

value4 {20:} a parameter that must be at least 20

value5 {1,2,3,5} UINT16 a parameter that may only have one of the
four listed values

value6 {1, 2, 10:(10+10)} [UINT32 a parameter that may have a value of 1, 2, or
be between 10 and 20

arrayl[valuel] BYTE Because the index refers to valuel, which is a
value limited to be between 20 and 25
inclusive, arrayl is an array that may have
between 20 and 25 octets. This is not the
preferred way to indicate the upper limit for an
array as it does not indicate the upper bound
of the size.

NOTE This is a limitation of the current
parser. A different parser could
associate the range of valuel with this
value and compute the maximum size
of the array.

array2[value4]{:25} BYTE an array that may have between 20 and 25
octets

This arrangement is used to allow the
automatic code generation to allocate 25
octets to store the largest array2 that can be
unmarshaled. The code generation can
determine from this expression that value4
shall have a value of 25 or less. From the
definition of value4 above, it can determine
that value4 must have a value of at least 20.

Page 12 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
4.12 Algorithm Macros

4.12.1 Introduction

This specification is intended to be algorithm agile in two different ways. In the first, agility is provided by
allowing different subsets of the algorithms listed in the TCG registry. In the second, agility is provided by
allowing the list of algorithms in the TCG registry to change without requiring changes to this
specification.

This second form of algorithm agility is accomplished by using placeholder tokens that represent all of the
algorithms of a particular type. The type of the algorithm is indicated by the letters in the Type column of
the TPM_ALG_ID table in the TCG registry.

The use of these tokens is described in the remainder of this clause 4.12.

4.12.2 Algorithm Token Semantics

The string “!ALG” or “lalg” indicates the algorithm token. This token may be followed by an algorithm type

selection. The presence of the type selection is indicated by a period (*.”) following the token. The
selection is all alphanumeric characters following the period.

NOTE In this selection context, the underscore character (“_") is not considered an alphanumeric character.

The selection is either an exclusive selection or an inclusive selection. An exclusive selection is one for
which the Type entry for the algorithm is required to exactly match the type selection of the token. An
inclusive selection is one where the Type entry for the algorithm is required to contain all of the characters
of the selection but may contain additional attributes.

EXAMPLE 1 The “IALG.AX” token would select those algorithms that only have the ‘A’ and ‘X’ types (that is, an
asymmetric signing algorithm). The “IALG.ax” token would select those algorithms that at least have ‘A’
and ‘X’ types but would include algorithms with other types such as ‘ANX’ (asymmetric signing and
anonymous asymmetric signing).

When a replacement is made, the token will be replaced by an algorithm root identifier using either upper
or lower case. If the algorithm token is part of another word, then the replacement uses upper case
characters, otherwise, lower case is used.

NOTE The root identifier of an algorithm is the name in the TPM_ALG_ID table with “TPM_ALG_" removed. For
example TPM_ALG_SHA1 has “SHA1” as its root.

The typical use of these tokens follows.

4.12.3 Algorithm Tokens in Unions

A common place for algorithm tokens is in a union of values that are dependent on the type of the
algorithm

EXAMPLE 1 An algorithm token indicating all hashes would be “/ALG.H” and could be used in a table to indicate that a
union contains all defined hashes.

Table A — Definition of TPMU_HA Union

Parameter Type Selector Description
IALG.H ['ALG_DIGEST_SIZE] BYTE TPM_ALG_!ALG all hashes
null TPM_ALG_NULL
Family “2.0” TCG Published Page 13

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

If the TCG registry only contained SHA1, SHA256, and the SM3_256 hash algorithm identifiers, then the
table above would be semantically equivalent to:

Table xx — Definition of TPMU_HA Union

Parameter Type Selector Description
shal [SHA1_DIGEST_SIZE] BYTE TPM_ALG_SHA1
sha256 [SHA256_DIGEST_SIZE] BYTE TPM_ALG_SHA256

sm3_256 [SM3_256_DIGEST_SIZE] |BYTE TPM_ALG_SM3_256

null TPM_ALG_NULL

As shown in table A, the case of the replacement is determined by context. When !ALG is not an element
of a longer name, then lower case characters are used. When !ALG is part of a longer name (indicated by
leading or trailing underscore (“_”), then upper case is used for the replacement.

Only one occurrence of the algorithm type (such as !ALG.H) is required for a line. If a line contains
multiple list selections they are required to be identical.

If a table contains multiple lines with algorithm tokens, then each line is expanded separately.

4.12.4 Algorithm Tokens in Interface Types

An interface type is often used with a union to create a tagged structure — the structure contains a union
and a tag to indicate which of the union elements is actually present. The interface type for a tagged
structure will usually contain the same elements as the union.

EXAMPLE If SHA1, SHA256, and SM3_256 are the only defined hash algorithms, then an interface type to select a
hash would be:

Table xx — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments
TPM_ALG_SHA1 example
TPM_ALG_SHA256 example
TPM_ALG_SM3_256 example

+TPM_ALG_NULL

#TPM_RC_HASH

An equivalent table may be represented using an algorithm macro.

Table xx — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_!ALG.H all hash algorithms defined by the TCG

+TPM_ALG_NULL

#TPM_RC_HASH

4.12.5 Algorithm Tokens for Table Replication

When a table is used to define an algorithm-specific value, that table may be replicated using the
algorithm replacement token to create a table with values specific to the algorithm type. This type of
replication is indicated by using an algorithm token in the name of the table.

Page 14 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
EXAMPLE If AES and SM4 are the only defined symmetric block ciphers, then:

Table xx — Definition of {{ALG.S} (TPM_KEY_BITS) TPMI_!ALG_KEY_BITS Type

Parameter Description

$IALG_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

has the same meaning as:

Table xx — Definition of {AES} (TPM_KEY_BITS) TPMI_AES_KEY_BITS Type

Parameter Description

$AES_KEY_SIZES BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

Table xx — Definition of {SM4} (TPM_KEY_BITS) TPMI_SM4_KEY_BITS Type

Parameter Description

$SM4_KEY_SIZES_BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

Family “2.0” TCG Published Page 15
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.13 Size Checking

In some structures, a size field is present to indicate the number of octets in some subsequent part of the
structure. In the B_STRUCT table in 4.11, value4 indicates how many octets to unmarshal for array2. This
semantic applies when the size field determines the number of octets to unmarshal. However, in some
cases, the subsequent structure is self-defining. If the size precedes a parameter that is not an octet
array, then the unmarshaled size of that parameter is determined by its data type. The table in Example 1
shows a structure where the size parameter would nominally indicate the number of octets in the
remainder of the structure.

EXAMPLE 1
Table xx — Definition of C_STRUCT Structure
Parameter Type Comments
size UINT16 the expected size of the remainder of the
structure
aninteger UINT32 a 4-octet value

In this particular case, the value of size would be incorrect if it had any value other than 4. So that the
table parser is able to know that the purpose of the size parameter is to define the number of octets
expected in the remainder of the structure, an equal sign (“=") is appended to the parameter name.

In the example below, the size= causes the parser to generate validation code that will check that the

unmarshaled size of someStructure and someData adds to the value unmarshaled for size. When the “=
decoration is present, a value of zero is not allowed for the size.

EXAMPLE 2

Table xx — Definition of D_STRUCT Structure

Parameter Type Comments

size= UINT16 the size of a structure

The “=” indicates that the TPM is required to
validate that the remainder of the D_STRUCT
structure is exactly the value in size. That is,
the number of bytes in the input buffer used
to successfully unmarshal someStructure
must be the same as size.

someStructure A_STRUCT a structure to be unmarshaled

The size of the structure is computed when it
is unmarshaled. Because an “=" is present on
the definition of size, the TPM is required to
validate that the unmarshaled size exactly
matches size.

someData UINT32 a value

4.14 Data Direction

A structure or union may be input (IN), output (OUT), or internal. An input structure is sent to the TPM and
is unmarshaled by the TPM. An output structure is sent from the TPM and is marshaled by the TPM. An
internal structure is not used outside of the TPM except that it may be included in a saved context.

By default, structures are assumed to be both IN and OUT and the code generation tool will generate
both marshaling and unmarshaling code for the structure. This default may be changed by using values
enclosed in angle brackets (“<>") as part of the table title. If the angle brackets are empty, then the
Page 16 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

structure is internal and neither marshaling nor unmarshaling code is generated. If the angle brackets
contain the letter “I” (such as in “IN” or “in” or “i”), then the structure is input and unmarshaling code will be
generated. If the angle brackets contain the letter “O” (such as in “OUT” or “out” or “0”), then the structure
is output and marshaling code will be generated.

EXAMPLE 1 Both of the following table titles would indicate a structure that is used in both input and output

Table xx — Definition of TPMS_A Structure
Table xx — Definition of TPMS_A Structure <IN/OUT>

EXAMPLE 2 The following table title would indicate a structure that is used only for input
Table xx — Definition of TPMS_A Structure <IN>
EXAMPLE 3 The following table title would indicate a structure that is used only for output

Table xx — Definition of TPMS_A Structure <OUT>

Family “2.0” TCG Published Page 17
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

4.15 Structure Validations

By default, when a structure is used for input to the TPM, the code generation tool will generate the
unmarshaling code for that structure. Auto-generation may be suppressed by adding an “S” within the
angle brackets.

EXAMPLE The following table titles indicate a structure for which the auto-generation of the validation code is to be
suppressed.
Table xx — Definition of TPMT_A Structure <S>
Table xx — Definition of TPMT_A Structure <IN, S>
Table xx — Definition of TPMT_A Structure <IN/OUT, S>

4.16 Name Prefix Convention

Parameters are constants, variables, structures, unions, and structure members. Structure members are
given a name that is indicative of its use, with no special prefix. The other parameter types are named
according to their type with their name starting with “TPMx_", where “x” is an optional character to indicate
the data type.

In some cases, additional qualifying characters will follow the underscore. These are generally used when
dealing with an enumerated data type.

Table 1 — Name Prefix Convention

Prefix Description

TPM an indication/signal from the TPM’s system interface

TPM_ a constant or an enumerated type

TPM2_ a command defined by this specification

TPM2B _ a structure that is a sized buffer where the size of the buffer is contained in a 16-bit, unsigned
value
The first parameter is the size in octets of the second parameter. The second parameter may be
any type.

TPMA_ a structure where each of the fields defines an attribute and each field is usually a single bit

All the attributes in an attribute structure are packed with the overall size of the structure
indicated in the heading of the attribute description (UINT8, UINT16, or UINT32).

TPM_ALG_ an enumerated type that indicates an algorithm
A TPM_ALG _ is often used as a selector for a union.

TPMI_ an interface type
The value is specified for purposes of dynamic type checking when unmarshaled.

TPML_ a list length followed by the indicated number of entries of the indicated type
This is an array with a length field.

TPMS_ a structure that is not a size buffer or a tagged buffer or a list

TPMT_ a structure with the first parameter being a structure tag, indicating the type of the structure that
follows

A structure tag may be either a TPMT_ST_ or TPM_ALG_ depending on context.

TPMU_ a union of structures, lists, or unions

If a union exists, there will normally be a companion TPMT_ that is the expression of the union
in a tagged structure, where the tag is the selector indicating which member of the union is
present.

Page 18 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

TPM_Xx_ an enumeration value of a particular type

The value of “xx” will be indicative of the use of the enumerated type. A table of “TPM_xx"
constant definitions will exist to define each of the TPM_xx_ values.

EXAMPLE 1 TPM_CC_ indicates that the type is used for a commandCode. The allowed
enumeration values will be found in the table defining the TPM_CC constants (Table 13).
EXAMPLE 2 TPM_RC_ indicates that the type is used for a responseCode. The allowed enumeration

values are in Table 17.

4,17 Data Alignment

The data structures in this TPM 2.0 Part 2 use octet alignment for all structures. When used in a table to
indicate a maximum size, the sizeof () function returns the octet-aligned size of the structure, with no
padding.

4.18 Parameter Unmarshaling Errors

The TPM commands are defined in TPM 2.0 Part 3. The command definition includes C code that details
the actions performed by that command. The code is written assuming that the parameters of the
command have been unmarshaled.

NOTE 1 An implementation is not required to process parameters in this manner or to separate the parameter
parsing from the command actions. This method was chosen for the specification so that the normative
behavior described by the detailed actions would be clear and unencumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the
parameters for use by the command-specific action code. No data movement need take place but it is
required that the TPM validate that the parameters meet the requirements of the expected data type as
defined in this TPM 2.0 Part 2.

When an error is encountered while unmarshaling a command parameter, an error response code is
returned and no command processing occurs. A table defining a data type may have response codes
embedded in the table to indicate the error returned when the input value does not match the parameters
of the table.

EXAMPLE 1 Table 13 has a listing of TPM command code values. The last row in the table contains
"#TPM_RC_COMMAND_CODE" indicating the response code that is returned if the TPM is unmarshaling
a value that it expects to be a TPM_CC and the input value is not in the table.

NOTE 2 In the reference implementation, a parameter number is added to the response code so that the offending
parameter can be isolated.

Family “2.0” TCG Published Page 19
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

In many cases, the table contains no specific response code value and the return code will be determined
as defined in Table 2.

Table 2 — Unmarshaling Errors

Response code Usage

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_VALUE A parameter does not have one of its allowed values

TPM_RC_TAG Ahparameter that should be a structure tag has a value that is not supported by
the TPM

In some commands, a parameter may not be used because of various options of that command.
However, the unmarshaling code is required to validate that all parameters have values that are allowed
by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command
actions.

Page 20 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

5 Base Types

5.1 Primitive Types

The types listed in Table 3 are the primitive types on which all of the other types and structures are
based. The values in the “Type” column should be edited for the compiler and computer on which the
TPM is implemented. The values in the “Name” column should remain the same because these values
are used in the remainder of the specification.

NOTE The types are compatible with the C99 standard and should be defined in stdint.h that is provided with a
C99-compliant compiler;

The parameters in the Name column should remain in the order shown.

Table 3 — Definition of Base Types

Type Name Description

uint8_t UINT8 unsigned, 8-bit integer
uint8_t BYTE unsigned 8-bit integer
int8_t INT8 signed, 8-bit integer
int BOOL abitinan int

This is not used across the interface but is used in many places in the code. If
the type were sent on the interface, it would have to have a type with a specific
number of bytes.

uintl6_t UINT16 unsigned, 16-bit integer
intl6_t INT16 signed, 16-bit integer
uint32_t UINT32 unsigned, 32-bit integer
int32_t INT32 signed, 32-bit integer
uint64_t UINT64 unsigned, 64-bit integer
int64_t INT64 signed, 64-bit integer

5.2 Specification Logic Value Constants

Table 4 — Defines for Logic Values

Name Value [Description

TRUE 1
FALSE
YES
NO
SET

O|Fr,r|O|FL,|O

CLEAR

Family “2.0” TCG Published Page 21
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

5.3 Miscellaneous Types

These types are defined either for compatibility with previous versions of this specification or for clarity of
this specification.

Table 5 — Definition of Types for Documentation Clarity

Type Name Description

UINT32 TPM_ALGORITHM_ID this is the 1.2 compatible form of the TPM_ALG_ID

UINT32 TPM_MODIFIER_INDICATOR

UINT32 TPM_AUTHORIZATION_SIZE the authorizationSize parameter in a command

UINT32 TPM_PARAMETER_SIZE the parameterSize parameter in a command

UINT16 TPM_KEY_SIZE a key size in octets

UINT16 TPM_KEY_BITS a key size in bits
Page 22 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

6 Constants

Trusted Platform Module Library

6.1 TPM_SPEC (Specification Version Values)

These values are readable with TPM2_GetCapability().

NOTE This table will require editing when the specification is updated.

Table 6 — Definition of (UINT32) TPM_SPEC Constants <>

Name Value Comments

TPM_SPEC_FAMILY 0x322E3000 ASCII “2.0” with null terminator
TPM_SPEC_LEVEL 00 the level number for the specification
TPM_SPEC_VERSION 116 the version number of the spec (001.16 * 100)
TPM_SPEC_YEAR 2014 the year of the version
TPM_SPEC_DAY_OF_YEAR 303 the day of the year (October 30, 2014)

6.2 TPM_GENERATED

This constant value differentiates TPM-generated structures from non-TPM structures.

Table 7 — Definition of (UINT32) TPM_GENERATED Constants <O>

Name

Value

Comments

TPM_GENERATED_VALUE

0xff544347 |OxFF ‘TCG’ (FF 54 43 471¢)

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 23
Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

6.3 TPM_ALG_ID

The TCG maintains a registry of all algorithms that have an assigned algorithm ID. That registry is the
definitive list of algorithms that may be supported by a TPM.

NOTE Inclusion of an algorithm does NOT indicate that the necessary claims of the algorithm are available
under reasonable and non-discriminatory (RAND) terms from a TCG member.

Table 9 is a copy of the TPM_ALG_ID constants table in the TCG Algorithm registry as of the date of
publication of this specification. Table 9 is provided for illustrative purposes only.

An algorithm ID is often used like a tag to determine the type of a structure in a context-sensitive way.
The values for TPM_ALG_ID shall be in the range of 00 00,5 — 7F FFy5. Other structure tags will be in the
range 80 00,5 — FF FF.

NOTE In TPM 1.2, these were defined as 32-bit constants. This specification limits the future size of the
algorithm ID to 16 bits. The TPM_ALGORITHM_ID data type will continue to be a 32-bit number.

An algorithm shall not be assigned a value in the range 00 C1,5 — 00 C64¢ in order to prevent any overlap
with the command structure tags used in TPM 1.2.

The implementation of some algorithms is dependent on the presence of other algorithms. When there is
a dependency, the algorithm that is required is listed in column labeled "D" (dependent) in Table 9.

EXAMPLE Implementation of TPM_ALG_RSASSA requires that the RSA algorithm be implemented.

TPM_ALG_KEYEDHASH and TPM_ALG_NULL are required of all TPM implementations.

Table 8 — Legend for TPM_ALG_ID Table

Column Title Comments

Algorithm Name the mnemonic name assigned to the algorithm
Value the numeric value assigned to the algorithm
Type The allowed values are:

A — asymmetric algorithm with a public and private key
S — symmetric algorithm with only a private key

H — hash algorithm that compresses input data to a digest value. Can also indicate a
method that uses a hash

X — signing algorithm

N — an anonymous signing algorithm

E — an encryption algorithm

M — a method such as a mask generation function
O — an object type

C (Classification) The allowed values are:
A — Assigned

S — TCG Standard

L — TCG Legacy

Dep (Dependent) Indicates which other algorithm is required to be implemented if this
algorithm is implemented
Reference the reference document that defines the algorithm
Comments clarifying information
Page 24 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Table 9 — Definition of (UINT16) TPM_ALG_ID Constants <IN/OUT, S>

Algorithm Name Value |Type |Dep | C | Reference Comments
TPM_ALG_ERROR 0x0000 should not occur
TPM_ALG_RSA 0x0001 [AO A | IETF RFC 3447 the RSA algorithm
TPM_ALG_SHA 0x0004 A | ISO/IEC 10118-3 the SHAL algorithm
TPM_ALG_SHA1 0x0004 A | ISO/IEC 10118-3 redefinition for documentation
consistency
TPM_ALG_HMAC 0x0005 |H X A | ISO/IEC 9797-2 Hash Message Authentication
Code (HMAC) algorithm
TPM_ALG_AES 0x0006 |S A | ISO/IEC 18033-3 the AES algorithm with
various key sizes
TPM_ALG_MGF1 0x0007 |H M A | IEEE Std 1363™-2000 |hash-based mask-generation
IEEE Std 1363a™- function
2004
TPM_ALG_KEYEDHASH 0x0008 |H E S | TCG TPM 2.0 library an encryption or signing
X0 specification algorithm using a keyed hash
May also refer to a data object
that is neither signing nor
encrypting
TPM_ALG_XOR Ox000A |HS A | TCG TPM 2.0 library the XOR encryption algorithm
specification
TPM_ALG_SHA256 0x000B |H A | ISO/IEC 10118-3 the SHA 256 algorithm
TPM_ALG_SHA384 0x000C |H A | ISO/IEC 10118-3 the SHA 384 algorithm
TPM_ALG_SHA512 0x000D |H A | ISO/IEC 10118-3 the SHA 512 algorithm
TPM_ALG_NULL 0x0010 S | TCG TPM 2.0 library Null algorithm
specification
TPM_ALG_SM3_256 0x0012 A | GM/T 0004-2012 SM3 hash algorithm
TPM_ALG_SM4 0x0013 A | GM/T 0002-2012 SM4 symmetric block cipher
TPM_ALG_RSASSA 0x0014 |AX |RSA| A | IETF RFC 3447 a signature algorithm defined
in section 8.2 (RSASSA-
PKCS1-v1_5)
TPM_ALG_RSAES 0x0015 |AE |RSA| A | IETF RFC 3447 a padding algorithm defined in
section 7.2 (RSAES-PKCS1-
vl_b)
TPM_ALG_RSAPSS 0x0016 |AX |RSA| A | IETF RFC 3447 a signature algorithm defined
in section 8.1 (RSASSA-PSS)
TPM_ALG_OAEP 0x0017 |A E|RSA| A | IETF RFC 3447 a padding algorithm defined in
H section 7.1 (RSAES_OAEP)
TPM_ALG_ECDSA 0x0018 |[AX |ECC| A | ISO/IEC 14888-3 signature algorithm using
elliptic curve cryptography
(ECC)

Family “2.0”

Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 25
October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Algorithm Name Value |Type [Dep Reference Comments
TPM_ALG_ECDH 0x0019 |AM |ECC NIST SP800-56A secret sharing using ECC
Based on context, this can be
either One-Pass Diffie-
Hellman, C(1, 1, ECC CDH)
defined in 6.2.2.2 or Full
Unified Model C(2, 2, ECC
CDH) defined in 6.1.1.2
TPM_ALG_ECDAA Ox001A |A X|ECC TCG TPM 2.0 library elliptic-curve based,
N specification anonymous signing scheme
TPM_ALG_SM2 0x001B |[AX |ECC GMI/T 0003.1-2012 SM2 — depending on context,
GM/T 0003.2-2012 either an elliptic-curve based,
signature algorithm or a key
GMIT 0003.3-2012 exchange protocol
GM/T 0003.5-2012 NOTE Type listed as signing
but, other uses are
allowed according to
context.
TPM_ALG_ECSCHNORR 0x001C |AX |ECC TCG TPM 2.0 library elliptic-curve based Schnorr
specification signature
TPM_ALG_ECMQV 0x001D |AM |ECC NIST SP800-56A two-phase elliptic-curve key
exchange — C(2, 2, ECC
MQV) section 6.1.1.4
TPM_ALG_KDF1_SP800_56A |0x0020 |[HM |ECC NIST SP800-56A concatenation key derivation
function (approved alternative
1) section 5.8.1
TPM_ALG_KDF2 0x0021 (HM IEEE Std 1363a-2004 | key derivation function KDF2
section 13.2
TPM_ALG_KDF1_SP800_108 |0x0022 |HM NIST SP800-108 a key derivation method
Section 5.1 KDF in Counter
Mode
TPM_ALG_ECC 0x0023 |[AO ISO/IEC 15946-1 prime field ECC
TPM_ALG_SYMCIPHER 0x0025 |O TCG TPM 2.0 library the object type for a
specification symmetric block cipher
TPM_ALG_CAMELLIA 0x0026 S ISO/IEC 18033-3 Camellia is symmetric block
cipher. The Camellia
algorithm with various key
sizes
TPM_ALG_CTR 0x0040 |SE ISO/IEC 10116 Counter mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.
TPM_ALG_OFB 0x0041 (S E ISO/IEC 10116 Output Feedback mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.
Page 26 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Algorithm Name

Value

Type

Dep | C | Reference

Comments

TPM_ALG_CBC

0x0042

SE

ISO/IEC 10116

Cipher Block Chaining mode
— if implemented, all
symmetric block ciphers (S
type) implemented shall be
capable of using this mode.

TPM_ALG_CFB

0x0043

SE

A | ISO/IEC 10116

Cipher Feedback mode — if
implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

TPM_ALG_ECB

0x0044

SE

A | ISO/IEC 10116

Electronic Codebook mode —
if implemented, all symmetric
block ciphers (S type)
implemented shall be capable
of using this mode.

NOTE This mode is not
recommended for uses unless
the key is frequently rotated
such as in video codecs

reserved

0x00C1
through
0x00C6

0x00C1 — 0x00C6 are
reserved to prevent any
overlap with the command
structure tags used in TPM
1.2

reserved

0x8000
through
OXFFFF

reserved for other structure
tags

6.4 TPM_ECC_CURVE

The TCG maintains a registry of all curves that have an assigned curve identifier. That registry is the
definitive list of curves that may be supported by a TPM.

Table 10 is a copy of the TPM_ECC_CURVE constants table in the TCG registry as of the date of
publication of this specification. Table 10 is provided for illustrative purposes only.

Table 10 — Definition of (UINT16) {ECC} TPM_ECC_CURVE Constants <IN/OUT, S>

Name Value Comments
TPM_ECC_NONE 0x0000

TPM_ECC_NIST_P192 0x0001

TPM_ECC_NIST_P224 0x0002

TPM_ECC_NIST_P256 0x0003

TPM_ECC_NIST_P384 0x0004

TPM_ECC_NIST_P521 0x0005

TPM_ECC_BN_P256 0x0010 curve to support ECDAA
TPM_ECC_BN_P638 0x0011 curve to support ECDAA

Family “2.0”

Level 00 Revision 01.16

TCG Published

Copyright © TCG 2006-2014

Page 27
October 30, 2014

Trusted Platform Module Library Part 2: Structures

Name

Value Comments

TPM_ECC_SM2_P256

0x0020

#TPM_RC_CURVE

6.5

6.5.1

Format

TPM_CC (Command Codes)

A command is a 32-bit structure with fields assigned as shown in Figure 1.

3B 22

11 0

Res |V |Reserved Command Index

Figure 1 — Command Format

Table 11 — TPM Command Format Fields Description

Bit Name Definition
15:0 |Command Index the index of the command
28:16 |Reserved shall be zero
29 \Y SET(1): the command is vendor specific
CLEAR(0): the command is not vendor specific
31:30 |Res shall be zero
Page 28 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

6.5.2 Description

Table 12 provides the legend for the interpretation of the column data in Table 13.

Table 12 — Legend for Command Code Tables

Allowed
Column Values Comments
Name Command Name of the command
Code Name
Command Code Numeric value the numeric value for the commandCode
NV Write blank, Y, O indicates whether the command may cause an NV write operation

If this column contains a “Y,” then successful completion of the

command is expected to cause modification of the NV memory

because of the command actions.

If the column contains an “O,” then the command may cause a

modification to NV associated with an orderly shutdown. That is, the

command may modify the orderly save state of NV, in which case, an

NV write will be necessary.

NOTE1 Any command may be delayed in order for the TPM to complete
NV actions due to a previous command or because of an
asynchronous update of Clock.

NOTE 2 Any command with an authorization value may cause an NV write
on an authorization failure but the command does not complete
successfully.

If the entry is blank, then writing to NV is not allowed in the command

actions.

Physical Presence blank, Y indicates whether the Platform Authorization for this command may
require confirmation through a physical presence indication

Decrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a command

Blank indicates that no size field is present and no parameter

encryption is allowed.

Encrypt blank, 2, 4 A numeric value that indicates the number of octets in the size field of
the first parameter of a response

Blank indicates that no size field is present and no parameter

encryption is allowed.

Family “2.0” TCG Published Page 29

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

6.5.3 TPM_CC Listing

Part 2: Structures

Table 13 lists the command codes and their attributes. The only normative column in this table is the
column indicating the command code assigned to a specific command (the "Command Code" column).
For all other columns, the command and response tables in TPM 2.0 Part 3 are definitive.

Table 13 — Definition of (UINT32) TPM_CC Constants (Numeric Order) <IN/OUT, S>

2lsdlsls

Command | = '§§ ? ?
Name Code ; 5l &1 5| Comments
TPM_CC_FIRST 0x0000011F ggsr‘;‘é"gn i;a‘;::mghta't\i"cf‘r{ decrease
TPM_CC_PP_FIRST 0X0000011F ﬁgﬁg&?gﬁgﬁgﬁa;"’aﬁg'g d%ic(;ease i
TPM_CC_NV_UndefineSpaceSpecial 0x0000011F |Y |Y
TPM_CC_EvictControl 0x00000120 [y |Y
TPM_CC_HierarchyControl 0x00000121 Y |Y
TPM_CC_NV_UndefineSpace 0x00000122 |Y |Y
TPM_CC_ChangeEPS 0x00000124 Y |Y
TPM_CC_ChangePPS 0x00000125 |Y [Y
TPM_CC_Clear 0x00000126 |Y [Y
TPM_CC_ClearControl 0x00000127 |Y |Y
TPM_CC_ClockSet 0x00000128 |Y [Y
TPM_CC_HierarchyChangeAuth 0x00000129 |Y Y [2
TPM_CC_NV_DefineSpace 0x0000012A Y |Y 2
TPM_CC_PCR_Allocate 0x0000012B |Y [Y
TPM_CC_PCR_SetAuthPolicy 0x0000012C Y [y |2
TPM_CC_PP_Commands 0x0000012D Y |Y
TPM_CC_SetPrimaryPolicy 0x0000012E |Y Y [2
TPM_CC_FieldUpgradeStart 0x0000012F |0 Y [2
TPM_CC_ClockRateAdjust 0x00000130 |0 [Y
TPM_CC_CreatePrimary 0x00000131 Y 2 2
TPM_CC_NV_GlobalWriteLock 0x00000132 [O |Y
TPM_CC_PP_LAST 0x00000132 Compile variable
TPM_CC_GetCommandAuditDigest 0x00000133 |Y 2
TPM_CC_NV_Increment 0x00000134 |Y
TPM_CC_NV_SetBits 0x00000135 |Y
TPM_CC_NV_Extend 0x00000136 [Y
TPM_CC_NV_Write 0x00000137 |Y 2

Page 30
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

glzgzls
Name gg[jnemand E -;;% g g Comments

Zjoa|AQ|w
TPM_CC_NV_WriteLock 0x00000138 |Y
TPM_CC_DictionaryAttackLockReset 0x00000139 |0
TPM_CC_DictionaryAttackParameters 0x0000013A |Y
TPM_CC_NV_ChangeAuth 0x0000013B |Y 2
TPM_CC_PCR_Event 0x0000013C |0 2 PCR
TPM_CC_PCR_Reset 0x0000013D |O PCR
TPM_CC_SequenceComplete 0x0000013E (O 2 2
TPM_CC_SetAlgorithmSet 0x0000013F [Y
TPM_CC_SetCommandCodeAuditStatus | 0x00000140 |Y
TPM_CC_FieldUpgradeData 0x00000141 |O 2
TPM_CC_IncrementalSelfTest 0x00000142 O
TPM_CC_SelfTest 0x00000143 [0
TPM_CC_Startup 0x00000144 Y
TPM_CC_Shutdown 0x00000145 |Y
TPM_CC_StirRandom 0x00000146 |Y 2
TPM_CC_ActivateCredential 0x00000147 2 2
TPM_CC_Certify 0x00000148 |0 2 2
TPM_CC_PolicyNV 0x00000149 2 Policy
TPM_CC_CertifyCreation 0x0000014A |O 2 2
TPM_CC_Duplicate 0x0000014B 2 2
TPM_CC_GetTime 0x0000014C [O 2
TPM_CC_GetSessionAuditDigest 0x0000014D O 2
TPM_CC_NV_Read 0x0000014E 2
TPM_CC_NV_ReadLock 0x0000014F [0
TPM_CC_ObjectChangeAuth 0x00000150 2 |2
TPM_CC_PolicySecret 0x00000151 2 Policy
TPM_CC_Rewrap 0x00000152 2 2
TPM_CC_Create 0x00000153 2 2
TPM_CC_ECDH_ZGen 0x00000154 2 2
TPM_CC_HMAC 0x00000155 2 2
TPM_CC_Import 0x00000156 2 2
TPM_CC_Load 0x00000157 2 2
TPM_CC_Quote 0x00000158 [0 2 2

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 31
October 30, 2014

Trusted Platform Module Library

Part 2: Structures

2lsdl=| =
Command é éé % %
Name Code > |2 2| @| €| Comments
Zjoa|AQ|w
TPM_CC_RSA_ Decrypt 0x00000159
TPM_CC_HMAC_Start 0x0000015B
TPM_CC_SequenceUpdate 0x0000015C
TPM_CC_Sign 0x0000015D
TPM_CC_Unseal 0x0000015E
TPM_CC_PolicySigned 0x00000160 Policy
TPM_CC_ContextLoad 0x00000161 (O Context
TPM_CC_ContextSave 0x00000162 |O Context
TPM_CC_ECDH_KeyGen 0x00000163
TPM_CC_EncryptDecrypt 0x00000164
TPM_CC_FlushContext 0x00000165 |O Context
TPM_CC_LoadExternal 0x00000167
TPM_CC_MakeCredential 0x00000168
TPM_CC_NV_ReadPublic 0x00000169 NV
TPM_CC_PolicyAuthorize 0x0000016A Policy
TPM_CC_PolicyAuthValue 0x0000016B Policy
TPM_CC_PolicyCommandCode 0x0000016C Policy
TPM_CC_PolicyCounterTimer 0x0000016D Policy
TPM_CC_PolicyCpHash 0x0000016E Policy
TPM_CC_PolicyLocality 0x0000016F Policy
TPM_CC_PolicyNameHash 0x00000170 Policy
TPM_CC_PolicyOR 0x00000171 Policy
TPM_CC_PolicyTicket 0x00000172 Policy
TPM_CC_ReadPublic 0x00000173
TPM_CC_RSA_Encrypt 0x00000174
TPM_CC_StartAuthSession 0x00000176 (O
TPM_CC_VerifySignature 0x00000177
TPM_CC_ECC_Parameters 0x00000178
TPM_CC_FirmwareRead 0x00000179
TPM_CC_GetCapability 0x0000017A
TPM_CC_GetRandom 0x0000017B
TPM_CC_GetTestResult 0x0000017C
TPM_CC_Hash 0x0000017D
Page 32 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

glzgzls
Command | =2 Z’\% 2 2
Name Code ; x5l 81 5| Comments
TPM_CC_PCR_Read 0X0000017E PCR
TPM_CC_PolicyPCR 0x0000017F Policy
TPM_CC_PolicyRestart 0x00000180
TPM_CC_ReadClock 0x00000181
TPM_CC_PCR_Extend 0x00000182 |0 2
TPM_CC_PCR_SetAuthValue 0x00000183 |N 2
TPM_CC_NV_Certify 0x00000184 |0
TPM_CC_EventSequenceComplete 0x00000185 |0
TPM_CC_HashSequenceStart 0x00000186
TPM_CC_PolicyPhysicalPresence 0x00000187 Policy
TPM_CC_PolicyDuplicationSelect 0x00000188 Policy
TPM_CC_PolicyGetDigest 0x00000189 Policy
TPM_CC_TestParms 0x0000018A
TPM_CC_Commit 0x0000018B |0 2 2
TPM_CC_PolicyPassword 0x0000018C Policy
TPM_CC_ZGen_2Phase 0x0000018D 2 2
TPM_CC_EC_Ephemeral 0x0000018E
TPM_CC_PolicyNvWritten 0x0000018F Policy
TPM CC LAST OX0000018F Compile _variable. May increase
- - based on implementation.
#TPM_RC_COMMAND_CODE

6.6 TPM_RC (Response Codes)

6.6.1 Description
Each return from the TPM has a 32-bit response code. The TPM will always set the upper 20 bits (31:12)
of the response code to 0 00 00, and the low-order 12 bits (11:00) will contain the response code.

When a command succeeds, the TPM shall return TPM_RC_SUCCESS (0 00,¢) and will update any
authorization-session nonce associated with the command.

When a command fails to complete for any reason, the TPM shall return

e aTPM_ST (UINT16) with a value of TPM_TAG_RSP_COMMAND or TPM_ST_NO_SESSIONS,
followed by

e a UINT32 (responseSize) with a value of 10, followed by
e a UINT32 containing a response code with a value other than TPM_RC_SUCCESS.

Commands defined in this specification will use a tag of either TPM_ST_NO_SESSIONS or
TPM_ST_SESSIONS. Error responses will use a tag value of TPM_ST_NO_SESSIONS and the

Family “2.0” TCG Published Page 33
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

response code will be as defined in this specification. Commands that use tags defined in the TPM 1.2
specification will use TPM_TAG_RSP_COMMAND in an error and a response code defined in TPM 1.2.

If the tag of the command is not a recognized command tag, the TPM error response will differ depending
on TPM 1.2 compatibility. If the TPM supports 1.2 compatibility, the TPM shall return a tag of
TPM_TAG_RSP_COMMAND and an appropriate TPM 1.2 response code (TPM_BADTAG =
00 00 00 1E;e). If the TPM does not have compatibilty with TPM 1.2, the TPM shall return
TPM_ST_NO_SESSION and a response code of TPM_RC_TAG.

When a command fails, the TPM shall not update the authorization-session nonces associated with the
command and will not close the authorization sessions used by the command. Audit digests will not be
updated on an error. Unless noted in the command actions, a command that returns an error shall leave
the state of the TPM as if the command had not been attempted. The exception to this principle is that a
failure due to an authorization failure may update the dictionary-attack protection values.

6.6.2 Response Code Formats

The response codes for this specification are defined such that there is no overlap between the response
codes used for this specification and those assigned in previous TPM specifications.

The formats defined in this clause only apply when the tag for the response is TPM_ST_NO_SESSIONS.

The response codes use two different format groups. One group contains the TPM 1.2 compatible
response codes and the response codes for this specification that are not related to command
parameters. The second group contains the errors that may be associated with a command parameter,
handle, or session.

Figure 2 shows the format for the response codes when bit 7 is zero.

1/1/0|j0|0|0O|O|O|O|O|O]|O
bit |1/0|9|8|7|6|5|4|3|2|1]|0
S|T|r]V]|F E
Figure 2 — Format-Zero Response Codes
Page 34 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

The field definitions are:

Table 14 — Format-Zero Response Codes

Bit | Name Definition
06:00 E the error number
The interpretation of this field is dependent on the setting of the F and S fields.
07 F format selector
CLEAR when the format is as defined in this Table 14 or when the response code is
TPM_RC_BAD_TAG.
08 \Y, version
SET (1): The error number is defined in this specification and is returned when the response tag
is TPM_ST_NO_SESSIONS.
CLEAR (0): The error number is defined by a previous TPM specification. The error number is
returned when the response tag is TPM_TAG_RSP_COMMAND.
NOTE In any error number returned by a TPM, the F (bit 7) and V (bit 8) attributes shall be CLEAR
when the response tag is TPM_TAG_RSP_COMMAND value used in TPM 1.2.
09 | Reserved | shall be zero.
10 T TCG/Vendor indicator
SET (1): The response code is defined by the TPM vendor.
CLEAR (0): The response code is defined by the TCG (a value in this specification).
NOTE This attribute does not indicate a vendor-specific code unless the F attribute (bit[07]) is CLEAR.
11 S severity

SET (1): The response code is a warning and the command was not necessarily in error. This
command indicates that the TPM is busy or that the resources of the TPM have to be adjusted in
order to allow the command to execute.

CLEAR (0): The response code indicates that the command had an error that would prevent it
from running.

When the format bit (bit 7) is SET, then the error occurred during the unmarshaling or validation of an
input parameter to the TPM. Figure 3 shows the format for the response codes when bit 7 is one.

1/1|00j{0|0O|J0OjO|0O|O|O|O
bit]1/0(9|8|7|6|5[|4|3|2|1]|0
N 1|P E

Figure 3 — Format-One Response Codes

There are 64 errors with this format. The errors can be associated with a parameter, handle, or session.
The error number for this format is in bits[05:00]. When an error is associated with a parameter, 0 4044 is
added and N is set to the parameter number.

For an error associated with a handle, a parameter number (1 to 7) is added to the N field. For an error
associated with a session, a value of 8 plus the session number (1 to 7) is added to the N field. In other
words, if P is clear, then a value of 0 to 7 in the N field will indicate a handle error, and a value of 8 — 15
will indicate a session error.

NOTE

If an implementation is not able to designate the handle, session, or parameter in error, then P and N will
be zero.

Family “2.0”
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

TCG Published Page 35

Trusted Platform Module Library Part 2: Structures
The field definitions are:

Table 15 — Format-One Response Codes

Bit | Name | Definition

05:00 E the error number
The error number is independent of the other settings.

06 P SET (1): The error is associated with a parameter.
CLEAR (0): The error is associated with a handle or a session.

07 F the response code format selector
This field shall be SET for the format in this table.

11:08 N the number of the handle, session, or parameter in error

If P is SET, then this field is the parameter in error. If P is CLEAR, then this field indicates the
handle or session in error. Handles use values of N between 0000, and 0111,. Sessions use
values between 1000, and 1111,.

The groupings of response codes are determined by bits 08, 07, and 06 of the response code as
summarized in Table 16.

Table 16 — Response Code Groupings

Bit

8 | 7 | 6 | Definition

0| O | x | aresponse code defined by TPM 1.2

NOTE An “x” in a column indicates that this may be either 0 or 1 and not affect the grouping of the response
code.

1| 0| x| aresponse code defined by this specification with no handle, session, or parameter number modifier

x | 1] 0] aresponse code defined by this specification with either a handle or session number modifier

x | 1| 1] aresponse code defined by this specification with a parameter number modifier

6.6.3 TPM_RC Values

In general, response codes defined in TPM 2.0 Part 2 will be unmarshaling errors and will have the F
(format) bit SET. Codes that are unique to TPM 2.0 Part 3 will have the F bit CLEAR but the V (version)
attribute will be SET to indicate that it is a TPM 2.0 response code. See Response Code Details in TPM
2.0 Part 1.

NOTE The constant RC_VERL1 is used to indicate that the V attribute is SET and the constant RC_FMT1 is used
to indicate that the F attribute is SET and that the return code is variable based on handle, session, and
parameter modifiers.

Table 17 — Definition of (UINT32) TPM_RC Constants (Actions) <OUT>

Name Value Description

TPM_RC_SUCCESS 0x000

TPM_RC_BAD_TAG Ox01E defined for compatibility with TPM 1.2

RC_VER1 0x100 set for all format O response codes
TPM_RC_INITIALIZE RC_VER1 + 0x000 | TPM not initialized

Page 36 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Name

Value

Description

TPM_RC_FAILURE

RC_VER1 + 0x001

commands not being accepted because of a TPM
failure
NOTE This may be

TPM2_GetTestResult() as
parameter.

returned by
the testResult

TPM_RC_SEQUENCE

RC_VER1 + 0x003

improper use of a sequence handle

TPM_RC_PRIVATE

RC_VER1 + 0x00B

TPM_RC_HMAC

RC_VER1 + 0x019

TPM_RC_DISABLED

RC_VERL + 0x020

TPM_RC_EXCLUSIVE

RC_VER1 + 0x021

command failed because audit sequence required
exclusivity

TPM_RC_AUTH_TYPE

RC_VER1 + 0x024

authorization handle is not correct for command

TPM_RC_AUTH_MISSING

RC_VERL + 0x025

command requires an authorization session for
handle and it is not present.

TPM_RC_POLICY

RC_VERL + 0x026

policy Failure In Math Operation or an invalid
authPolicy value

TPM_RC_PCR

RC_VER1 + 0x027

PCR check fail

TPM_RC_PCR_CHANGED

RC_VERL + 0x028

PCR have changed since checked.

TPM_RC_UPGRADE

RC_VER1 + 0x02D

for all commands other than
TPM2_FieldUpgradeData(), this code indicates
that the TPM is in field upgrade mode; for
TPM2_FieldUpgradeData(), this code indicates
that the TPM is not in field upgrade mode

TPM_RC_TOO_MANY_CONTEXTS

RC_VER1 + 0x02E

context ID counter is at maximum.

TPM_RC_AUTH_UNAVAILABLE

RC_VER1 + 0x02F

authValue or is not available for

selected entity.

authPolicy

TPM_RC_REBOOT

RC_VERL + 0x030

a _TPM_Init and Startup(CLEAR) is
before the TPM can resume operation.

required

TPM_RC_UNBALANCED

RC_VER1 + 0x031

the protection algorithms (hash and symmetric) are
not reasonably balanced. The digest size of the
hash must be larger than the key size of the
symmetric algorithm.

TPM_RC_COMMAND_SIZE

RC_VER1 + 0x042

command commandSize value is inconsistent with
contents of the command buffer; either the size is
not the same as the octets loaded by the hardware
interface layer or the value is not large enough to
hold a command header

TPM_RC_COMMAND_CODE

RC_VERL + 0x043

command code not supported

TPM_RC_AUTHSIZE

RC_VER1 + 0x044

the value of authorizationSize is out of range or the
number of octets in the Authorization Area is
greater than required

TPM_RC_AUTH_CONTEXT

RC_VERL + 0x045

use of an authorization session with a context
command or another command that cannot have
an authorization session.

TPM_RC_NV_RANGE

RC_VER1 + 0x046

NV offset+size is out of range.

TPM_RC_NV_SIZE

RC_VER1 + 0x047

Requested allocation size is larger than allowed.

TPM_RC_NV_LOCKED

RC_VER1 + 0x048

NV access locked.

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 37
October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Name

Value

Description

TPM_RC_NV_AUTHORIZATION

RC_VER1 + 0x049

NV access authorization fails in command actions
(this failure does not affect lockout.action)

TPM_RC_NV_UNINITIALIZED

RC_VER1 + 0x04A

an NV Index is used before being initialized or the
state saved by TPM2_Shutdown(STATE) could not
be restored

TPM_RC_NV_SPACE

RC_VER1 + 0x04B

insufficient space for NV allocation

TPM_RC_NV_DEFINED

RC_VER1 + 0x04C

NV Index or persistend object already defined

TPM_RC_BAD_CONTEXT

RC_VER1 + 0x050

context in TPM2_ContextLoad() is not valid

TPM_RC_CPHASH

RC_VER1 + 0x051

cpHash value already set or not correct for use

TPM_RC_PARENT

RC_VER1 + 0x052

handle for parent is not a valid parent

TPM_RC_NEEDS_TEST

RC_VER1 + 0x053

some function needs testing.

TPM_RC_NO_RESULT

RC_VER1 + 0x054

returned when an internal function cannot process
a request due to an unspecified problem. This
code is usually related to invalid parameters that
are not properly filtered by the input unmarshaling
code.

TPM_RC_SENSITIVE

RC_VER1 + 0x055

the sensitive area did not unmarshal correctly after
decryption — this code is used in lieu of the other
unmarshaling errors so that an attacker cannot
determine where the unmarshaling error occurred

RC_MAX_FMO RC_VER1 + Ox07F | largest version 1 code that is not a warning

New Subsection

This bit is SET in all format 1 response codes
RC_FMT1 0x080 The codes in this group may have a value added to

them to indicate the handle, session, or parameter
to which they apply.

TPM_RC_ASYMMETRIC

RC_FMT1 + 0x001

asymmetric algorithm not supported or not correct

TPM_RC_ATTRIBUTES

RC_FMT1 + 0x002

inconsistent attributes

TPM_RC_HASH

RC_FMT1 + 0x003

hash algorithm not supported or not appropriate

TPM_RC_VALUE

RC_FMT1 + 0x004

value is out of range or is not correct for the
context

TPM_RC_HIERARCHY

RC_FMT1 + 0x005

hierarchy is not enabled or is not correct for the
use

TPM_RC_KEY_SIZE

RC_FMT1 + 0x007

key size is not supported

TPM_RC_MGF

RC_FMT1 + 0x008

mask generation function not supported

TPM_RC_MODE

RC_FMT1 + 0x009

mode of operation not supported

TPM_RC_TYPE

RC_FMT1 + 0x00A

the type of the value is not appropriate for the use

TPM_RC_HANDLE

RC_FMT1 + 0x00B

the handle is not correct for the use

TPM_RC_KDF

RC_FMT1 + 0x00C

unsupported key derivation function or function not
appropriate for use

TPM_RC_RANGE

RC_FMT1 + 0x00D

value was out of allowed range.

TPM_RC_AUTH_FAIL

RC_FMT1 + OX00E

the authorization HMAC check failed and DA
counter incremented

TPM_RC_NONCE

RC_FMT1 + OXO0F

invalid nonce size

TPM_RC_PP

RC_FMT1 + 0x010

authorization requires assertion of PP

Page 38
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Name

Value

Description

TPM_RC_SCHEME

RC_FMT1 + 0x012

unsupported or incompatible scheme

TPM_RC_SIZE

RC_FMT1 + 0x015

structure is the wrong size

TPM_RC_SYMMETRIC

RC_FMT1 + 0x016

unsupported symmetric algorithm or key size, or
not appropriate for instance

TPM_RC_TAG

RC_FMT1 + 0x017

incorrect structure tag

TPM_RC_SELECTOR

RC_FMT1 + 0x018

union selector is incorrect

TPM_RC_INSUFFICIENT

RC_FMT1 + Ox01A

the TPM was unable to unmarshal a value
because there were not enough octets in the input
buffer

TPM_RC_SIGNATURE

RC_FMT1 + 0x01B

the signature is not valid

TPM_RC_KEY

RC_FMT1 + 0x01C

key fields are not compatible with the selected use

TPM_RC_POLICY_FAIL

RC_FMT1 + 0x01D

a policy check failed

TPM_RC_INTEGRITY

RC_FMT1 + Ox01F

integrity check failed

TPM_RC_TICKET

RC_FMT1 + 0x020

invalid ticket

TPM_RC_RESERVED_BITS

RC_FMT1 + 0x021

reserved bits not set to zero as required

TPM_RC_BAD_AUTH

RC_FMT1 + 0x022

authorization failure without DA implications

TPM_RC_EXPIRED

RC_FMT1 + 0x023

the policy has expired

TPM_RC_POLICY_CC

RC_FMT1 + 0x024

the commandCode in the policy is not the
commandCode of the command or the command
code in a policy command references a command
that is not implemented

TPM_RC_BINDING

RC_FMT1 + 0x025

public and sensitive portions of an object are not
cryptographically bound

TPM_RC_CURVE

RC_FMT1 + 0x026

curve not supported

TPM_RC_ECC_POINT

RC_FMT1 + 0x027

point is not on the required curve.

New Subsection

RC_WARN

0x900

set for warning response codes

TPM_RC_CONTEXT_GAP

RC_WARN + 0x001

gap for context ID is too large

TPM_RC_OBJECT_MEMORY

RC_WARN + 0x002

out of memory for object contexts

TPM_RC_SESSION_MEMORY

RC_WARN + 0x003

out of memory for session contexts

TPM_RC_MEMORY

RC_WARN + 0x004

out of shared object/session memory or need
space for internal operations

TPM_RC_SESSION_HANDLES

RC_WARN + 0x005

out of session handles — a session must be flushed
before a new session may be created

TPM_RC_OBJECT_HANDLES

RC_WARN + 0x006

out of object handles — the handle space for
objects is depleted and a reboot is required

NOTE This cannot occur on the reference
implementation.
NOTE There is no reason why an implementation

would implement a design that would deplete
handle space. Platform specifications are
encouraged to forbid it.

TPM_RC_LOCALITY

RC_WARN + 0x007

bad locality

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Page 39
October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Name

Value

Description

TPM_RC_YIELDED

RC_WARN + 0x008

the TPM has suspended operation on the
command; forward progress was made and the
command may be retried.

See TPM 2.0 Part 1, “Multi-tasking.”

NOTE This cannot
implementation.

occur on the reference

TPM_RC_CANCELED

RC_WARN + 0x009

the command was canceled

TPM_RC_TESTING

RC_WARN + 0x00A

TPM is performing self-tests

TPM_RC_REFERENCE_HO

RC_WARN + 0x010

the 1% handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H1

RC_WARN + 0x011

the 2" handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H2

RC_WARN + 0x012

the 3" handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H3

RC_WARN + 0x013

the 4™ handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H4

RC_WARN + 0x014

the 5" handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H5

RC_WARN + 0x015

the 6" handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_H6

RC_WARN + 0x016

the 7" handle in the handle area references a
transient object or session that is not loaded

TPM_RC_REFERENCE_S0

RC_WARN + 0x018

the 1% authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S1

RC_WARN + 0x019

the 2" authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S?2

RC_WARN + 0x01A

the 3" authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S3

RC_WARN + 0x01B

the 4th authorization session handle references a
session that is not loaded

TPM_RC_REFERENCE_S4

RC_WARN + 0x01C

the 5" session handle references a session that is
not loaded

TPM_RC_REFERENCE_S5

RC_WARN + 0x01D

the 6" session handle references a session that is
not loaded

TPM_RC_REFERENCE_S6

RC_WARN + Ox01E

the 71" authorization session handle references a
session that is not loaded

TPM_RC_NV_RATE

RC_WARN + 0x020

the TPM is rate-limiting accesses to prevent
wearout of NV

TPM_RC_LOCKOUT

RC_WARN + 0x021

authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in
DA lockout mode

TPM_RC_RETRY

RC_WARN + 0x022

the TPM was not able to start the command

TPM_RC_NV_UNAVAILABLE

RC_WARN + 0x023

the command may require writing of NV and NV is
not current accessible

TPM_RC_NOT_USED

RC_WARN + Ox7F

this value is reserved and shall not be returned by
the TPM

Additional Defines

Page 40
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”

Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Name Value Description

TPM_RC_H 0x000 add to a handle-related error

TPM_RC_P 0x040 add to a parameter-related error

TPM_RC_S 0x800 add to a session-related error

TPM RC 1 0x100 add to a parameter-, handle-, or session-related
- = error

TPM RC 2 0x200 add to a parameter-, handle-, or session-related
- = error

TPM RC 3 0x300 add to a parameter-, handle-, or session-related
- = error

TPM RC 4 0x400 add to a parameter-, handle-, or session-related
- = error

TPM RC 5 0x500 add to a parameter-, handle-, or session-related
- = error

TPM RC 6 0X600 add to a parameter-, handle-, or session-related
- = error

TPM RC 7 0x700 add to a parameter-, handle-, or session-related
- = error

TPM_RC_8 0x800 add to a parameter-related error

TPM_RC_9 0x900 add to a parameter-related error

TPM_RC_A 0xA00 add to a parameter-related error

TPM_RC B 0xB00O add to a parameter-related error

TPM_RC_C 0xCO00 add to a parameter-related error

TPM_RC_D 0xDO00 add to a parameter-related error

TPM_RC_E OXEOO0 add to a parameter-related error

TPM_RC _F 0xF00 add to a parameter-related error

TPM_RC_N_MASK 0xF00 number mask

Family “2.0” TCG Published Page 41

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

6.7 TPM_CLOCK_ADJUST

Part 2: Structures

A TPM_CLOCK_ADJUST value is used to change the rate at which the TPM internal oscillator is divided.

A change to the divider will change the rate at which Clock and Time change.

NOTE The recommended adjustments are approximately 1% for a course adjustment, 0.1% for a medium
adjustment, and the minimum possible on the implementation for the fine adjustment (e.g., one count of
the pre-scalar if possible).

Table 18 — Definition of (INT8) TPM_CLOCK_ADJUST Constants <IN>

Name

Value

Comments

TPM_CLOCK_COARSE_SLOWER |-3

Slow the Clock update rate by one coarse adjustment step.

TPM_CLOCK_MEDIUM_SLOWER |-2

Slow the Clock update rate by one medium adjustment step.

TPM_CLOCK_FINE_SLOWER -1

Slow the Clock update rate by one fine adjustment step.

TPM_CLOCK_NO_CHANGE

No change to the Clock update rate.

TPM_CLOCK_FINE_FASTER

Speed the Clock update rate by one fine adjustment step.

Speed the Clock update rate by one medium adjustment step.

0
1
TPM_CLOCK_MEDIUM_FASTER |2
TPM_CLOCK_COARSE_FASTER |3

Speed the Clock update rate by one coarse adjustment step.

#TPM_RC_VALUE

6.8 TPM_EO (EA Arithmetic Operands)

Table 19 — Definition of (UINT16) TPM_EO Constants <IN/OUT>

Operation Name Value Comments
TPM_EO_EQ 0x0000 A=B
TPM_EO_NEQ 0x0001 A#B
TPM_EO_SIGNED_GT 0x0002 A > B signed

TPM_EO_UNSIGNED_GT 0x0003

A > B unsigned

TPM_EO SIGNED LT 0x0004 A < B signed

TPM_EO_UNSIGNED LT 0x0005 A < B unsigned

TPM_EO_SIGNED_GE 0x0006 A = B signed

TPM_EO_UNSIGNED_GE 0x0007 A = B unsigned

TPM_EO_SIGNED_LE 0x0008 A < B signed

TPM_EO_UNSIGNED_LE 0x0009 A < B unsigned

TPM_EO_BITSET 0x000A All bits SET in B are SET in A. ((A&B)=B)
TPM_EO_BITCLEAR 0x000B All bits SET in B are CLEAR in A. ((A&B)=0)

#TPM_RC_VALUE

Response code returned when unmarshaling of this type fails

Page 42

October 30, 2014

TCG Published Family “2.0”

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

6.9 TPM_ST (Structure Tags)

Structure tags are used to disambiguate structures. They are 16-bit values with the most significant bit
SET so that they do not overlap TPM_ALG_ID values. A single exception is made for the value
associated with TPM_ST_RSP_COMMAND (0x00C4), which has the same value as the
TPM_TAG_RSP_COMMAND tag from earlier versions of this specification. This value is used when the
TPM is compatible with a previous TPM specification and the TPM cannot determine which family of
response code to return because the command tag is not valid.

Many of the structures defined in this document have parameters that are unions of other structures. That
is, a parameter may be one of several structures. The parameter will have a selector value that indicates
which of the options is actually present.

In order to allow the marshaling and unmarshaling code to determine which of the possible structures is
allowed, each selector will have a unique interface type and will constrain the number of possible tag
values.

Table 20 defines the structure tags values. The definition of many structures is context-sensitive using an
algorithm ID. In cases where an algorithm ID is not a meaningful way to designate the structure, the
values in this table are used.

Table 20 — Definition of (UINT16) TPM_ST Constants <IN/OUT, S>

Name Value Comments

TPM_ST_RSP_COMMAND 0x00C4 | tag value for a response; used when there is an error
in the tag. This is also the value returned from a TPM
1.2 when an error occurs. This value is used in this
specification because an error in the command tag
may prevent determination of the family. When this tag
is used in the response, the response code will be
TPM_RC_BAD_TAG (0 1Eie), which has the same
numeric value as the TPM 1.2 response code for

TPM_BADTAG.
NOTE In a previously published version of this
specification, TPM_RC_BAD_TAG was

incorrectly assigned a value of 0x030 instead of
30 (0x01e). Some implementations my return the
old value instead of the new value.

TPM_ST_NULL 0X8000 | no structure type specified

TPM_ST_NO_SESSIONS 0x8001 | tag value for a command/response for a command
defined in this specification; indicating that the
command/response has no attached sessions and no
authorizationSize/parameterSize value is present

If the responseCode from the TPM is not
TPM_RC_SUCCESS, then the response tag shall
have this value.

TPM_ST_SESSIONS 0x8002 | tag value for a command/response for a command
defined in this specification; indicating that the
command/response has one or more attached
sessions and the authorizationSize/parameterSize
field is present

Family “2.0” TCG Published Page 43
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Name Value Comments

reserved 0x8003 | When used between application software and the TPM
resource manager, this tag indicates that the
command has no sessions and the handles are using
the Name format rather than the 32-bit handle format.

NOTE 1 The response to application software will have a
tag of TPM_ST_NO_SESSIONS.

Between the TRM and TPM, this tag would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has no associated sessions.

NOTE2 This tag is not used by all TPM or TRM
implementations.

reserved 0x8004 | When used between application software and the TPM
resource manager, this tag indicates that the
command has sessions and the handles are using the
Name format rather than the 32-bit handle format.
NOTE1 If the command completes successfully, the
response to application software will have a tag
of TPM_ST_SESSIONS.
Between the TRM and TPM, would occur in a
response from a TPM that overlaps the tag parameter
of a request with the tag parameter of a response,
when the response has authorization sessions.

NOTE2 This tag is not used by all TPM or TRM
implementations.

TPM_ST_ATTEST_NV 0x8014 | tag for an attestation structure
TPM_ST_ATTEST_COMMAND_AUDIT 0x8015 | tag for an attestation structure
TPM_ST_ATTEST_SESSION_AUDIT 0x8016 | tag for an attestation structure
TPM_ST_ATTEST_CERTIFY 0x8017 | tag for an attestation structure
TPM_ST_ATTEST_QUOTE 0x8018 | tag for an attestation structure
TPM_ST_ATTEST_TIME 0x8019 | tag for an attestation structure
TPM_ST _ATTEST_CREATION 0x801A | tag for an attestation structure
reserved 0x801B | do not use
NOTE This was previously assigned to

TPM_ST_ATTEST_NV. The tag is changed
because the structure has changed

TPM_ST_CREATION 0x8021 | tag for a ticket type
TPM_ST_VERIFIED 0x8022 | tag for a ticket type
TPM_ST_AUTH_SECRET 0x8023 | tag for a ticket type
TPM_ST_HASHCHECK 0x8024 | tag for a ticket type
TPM_ST_AUTH_SIGNED 0x8025 | tag for a ticket type
TPM_ST_FU_MANIFEST 0x8029 | tag for a structure describing a Field Upgrade Policy

6.10 TPM_SU (Startup Type)
These values are used in TPM2_Startup() to indicate the shutdown and startup mode. The defined
startup sequences are:
a) TPM Reset — Two cases:
1) Shutdown(CLEAR) followed by Startup(CLEAR)

Page 44 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

2) Startup(CLEAR) with no Shutdown()

Trusted Platform Module Library

b) TPM Restart — Shutdown(STATE) followed by Startup(CLEAR)
¢) TPM Resume — Shutdown(STATE) followed by Startup(STATE)

TPM_SU values of 80 00,5 and above are reserved for internal use of the TPM and may not be assigned

values.

NOTE In the reference code, a value of FF FFys indicates that the startup state has not been set. If this was
defined in this table to be, say, TPM_SU_NONE, then TPM_SU_NONE would be a valid input value but
the caller is not allowed to indicate the that the startup type is TPM_SU_NONE so the reserved value is
defined in the implementation as required for internal TPM uses.

Table 21 — Definition of (UINT16) TPM_SU Constants <IN>

Name Value Description

TPM_SU_CLEAR 0x0000 on TPM2_Shutdown(), indicates that the TPM should prepare
for loss of power and save state required for an orderly startup
(TPM Reset).
on TPM2_Startup(), indicates that the TPM should perform
TPM Reset or TPM Restart

TPM_SU_STATE 0x0001 on TPM2_Shutdown(), indicates that the TPM should prepare

for loss of power and save state required for an orderly startup
(TPM Restart or TPM Resume)

on TPM2_Startup(), indicates that the TPM should restore the
state saved by TPM2_Shutdown(TPM_SU_STATE)

#TPM_RC_VALUE

response code when incorrect value is used

6.11 TPM_SE (Session Type)

This type is used in TPM2_StartAuthSession() to indicate the type of the session to be created.

Table 22 — Definition of (UINT8) TPM_SE Constants <IN>

Name Value Description

TPM_SE_HMAC 0x00

TPM_SE_POLICY 0x01

TPM_SE_TRIAL 0x03 The policy session is being used to compute the policyHash and

not for command authorization.

This setting modifies some policy commands and prevents
session from being used to authorize a command.

#TPM_RC_VALUE

response code when incorrect value is used

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 45

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

6.12 TPM_CAP (Capabilities)

The TPM_CAP values are used in TPM2_GetCapability() to select the type of the value to be returned.
The format of the response varies according to the type of the value.

Table 23 — Definition of (UINT32) TPM_CAP Constants

Capability Name Value Property Type Return Type

TPM_CAP_FIRST 0x00000000

TPM_CAP_ALGS 0x00000000 |TPM_ALG_ID® TPML_ALG_PROPERTY
TPM_CAP_HANDLES 0x00000001 | TPM_HANDLE TPML_HANDLE
TPM_CAP_COMMANDS 0x00000002 | TPM_CC TPML_CCA
TPM_CAP_PP_COMMANDS 0x00000003 |TPM_CC TPML_CC
TPM_CAP_AUDIT_COMMANDS [0x00000004 |TPM_CC TPML_CC

TPM_CAP_PCRS 0x00000005 | reserved TPML_PCR_SELECTION
TPM_CAP_TPM_PROPERTIES |0x00000006 |TPM_PT TPML_TAGGED_TPM_PROPERTY
TPM_CAP_PCR_PROPERTIES [0x00000007 |TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY
TPM_CAP_ECC_CURVES 0x00000008 |TPM_ECC_CURVEY TPML_ECC_CURVE
TPM_CAP_LAST 0x00000008

TPM_CAP_VENDOR_PROPERTY |0x00000100 [manufacturer specific manufacturer-specific values
#TPM_RC_VALUE

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

Page 46 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

6.13 TPM_PT (Property Tag)

Trusted Platform Module Library

The TPM_PT constants are used in TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES) to
indicate the property being selected or returned.

The values in the fixed group (PT_FIXED) are not changeable through programmatic means other than a
firmware update. The values in the variable group (PT_VAR) may be changed with TPM commands but
should be persistent over power cycles and only changed when indicated by the detailed actions code.

Table 24 — Definition of (UINT32) TPM_PT Constants <IN/OUT, S>

Capability Name Value Comments
TPM_PT_NONE 0x00000000 |indicates no property type
PT_GROUP 0x00000100 |The number of properties in each group.
NOTE The first group with any properties is group 1
(PT_GROUP * 1). Group 0 is reserved.
PT_FIXED PT_GROUP *1|the group of fixed properties returned as
TPMS_TAGGED_PROPERTY
The values in this group are only changed due to a
firmware change in the TPM.
TPM_PT_FAMILY_INDICATOR PT_FIXED + 0 | a 4-octet character string containing the TPM Family value
(TPM_SPEC_FAMILY)
TPM_PT_LEVEL PT_FIXED + 1 |the level of the specification
NOTE 1 For this specification, the level is zero.
NOTE 2 The level is on the title page of the specification.
TPM_PT_REVISION PT_FIXED + 2 |the specification Revision times 100
EXAMPLE Revision 01.01 would have a value of 101.
NOTE The Revision value is on the title page of the
specification.
TPM_PT_DAY_OF _YEAR PT_FIXED + 3 |the specification day of year using TCG calendar
EXAMPLE November 15, 2010, has a day of year value of 319
(00 00 01 3Fy).
NOTE The specification date is on the title page of the
specification.
TPM_PT_YEAR PT_FIXED + 4 |the specification year using the CE
EXAMPLE The year 2010 has a value of 00 00 07 DAss.
NOTE The specification date is on the title page of the
specification.
TPM_PT_MANUFACTURER PT_FIXED + 5 |the vendor ID unique to each TPM manufacturer
TPM_PT_VENDOR_STRING_1 PT_FIXED + 6 |the first four characters of the vendor ID string
NOTE When the vendor string is fewer than 16 octets, the
additional property values do not have to be present.
A vendor string of 4 octets can be represented in one
32-bit value and no null terminating character is
required.
TPM_PT_VENDOR_STRING_2 PT_FIXED + 7 |the second four characters of the vendor ID string
TPM_PT_VENDOR_STRING_3 PT_FIXED + 8 |the third four characters of the vendor ID string
TPM_PT_VENDOR_STRING_4 PT_FIXED + 9 |the fourth four characters of the vendor ID sting
TPM_PT_VENDOR_TPM_TYPE PT_FIXED + 10| vendor-defined value indicating the TPM model
TPM_PT_FIRMWARE_VERSION 1 PT_FIXED + 11 [the most-significant 32 bits of a TPM vendor-specific value
indicating the version number of the firmware. See
10.12.2 and 10.12.8.
Family “2.0” TCG Published Page 47

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Capability Name

Value

Comments

TPM_PT_FIRMWARE_VERSION_2

PT_FIXED + 12

the least-significant 32 bits of a TPM vendor-specific value
indicating the version number of the firmware. See
10.12.2 and 10.12.8.

TPM_PT_INPUT_BUFFER

PT_FIXED + 13

the maximum size of
TPM2B_MAX_BUFFER)

a parameter (typically, a

TPM_PT_HR_TRANSIENT_MIN

PT_FIXED + 14

the minimum number of transient objects that can be held
in TPM RAM

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification

to which the TPM is built.

TPM_PT_HR_PERSISTENT_MIN

PT_FIXED + 15

the minimum number of persistent objects that can be
held in TPM NV memory

NOTE This minimum shall be no less than the minimum
value required by the platform-specific specification

to which the TPM is built.

TPM_PT_HR_LOADED_MIN

PT_FIXED + 16

the minimum number of authorization sessions that can
be held in TPM RAM
NOTE This minimum shall be no less than the minimum

value required by the platform-specific specification
to which the TPM is built.

TPM_PT_ACTIVE_SESSIONS_MAX

PT_FIXED + 17

the number of authorization sessions that may be active at
atime

A session is active when it has a context associated with
its handle. The context may either be in TPM RAM or be
context saved.

NOTE This value shall be no less than the minimum value
required by the platform-specific specification to

which the TPM is built.

TPM_PT_PCR_COUNT

PT_FIXED + 18

the number of PCR implemented

NOTE This number is determined by the defined
attributes, not the number of PCR that are populated.

TPM_PT_PCR_SELECT_MIN

PT_FIXED + 19

the minimum number of octets in a

TPMS_PCR_SELECT.sizeOfSelect

NOTE This value is not determined by the number of PCR
implemented but by the number of PCR required by
the platform-specific specification with which the TPM
is compliant or by the implementer if not adhering to
a platform-specific specification.

TPM_PT_CONTEXT_GAP_MAX

PT_FIXED + 20

the maximum allowed difference (unsigned) between the
contextlD values of two saved session contexts

This value shall be at least 2*°-1 (65535).

PT_FIXED + 21

skipped

TPM_PT_NV_COUNTERS_MAX

PT_FIXED + 22

the maximum number of NV Indexes that are allowed to
have the TPMA_NV_COUNTER attribute SET

NOTE It is allowed for this value to be larger than the
number of NV Indexes that can be defined. This
would be indicative of a TPM implementation that did
not use different implementation technology for
different NV Index types.

TPM_PT_NV_INDEX_MAX

PT_FIXED + 23

the maximum size of an NV Index data area

TPM_PT_MEMORY

PT_FIXED + 24

a TPMA_MEMORY indicating the memory management
method for the TPM

TPM_PT_CLOCK_UPDATE

PT_FIXED + 25

interval, in milliseconds, between updates to the copy of
TPMS_CLOCK_INFO.clock in NV

Page 48
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Capability Name Value Comments
TPM_PT_CONTEXT_HASH PT_FIXED + 26 [the algorithm used for the integrity HMAC on saved
contexts and for hashing the fuData of
TPM2_FirmwareRead()
TPM_PT_CONTEXT_SYM PT_FIXED + 27 TPM_ALG_ID, the algorithm used for encryption of saved
contexts
TPM_PT_CONTEXT_SYM_SIZE PT_FIXED + 28 TPM_KEY_BITS, the size of the key used for encryption
of saved contexts
TPM_PT_ORDERLY_COUNT PT_FIXED + 29|the modulus - 1 of the count for NV update of an orderly
counter
The returned value is MAX_ORDERLY_COUNT.
This will have a value of 2" — 1 where 1 < N < 32
NOTE An “orderly counter” is an NV Index with
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
both SET.
NOTE When the low-order bits of a counter equal this value,
an NV write occurs on the next increment.
TPM_PT_MAX_COMMAND_SIZE PT_FIXED + 30|the maximum value for commandSize in a command
TPM_PT_MAX_RESPONSE_SIZE PT_FIXED + 31|the maximum value for responseSize in a response
TPM_PT_MAX_DIGEST PT_FIXED + 32| the maximum size of a digest that can be produced by the
TPM
TPM_PT_MAX_OBJECT_CONTEXT |PT_FIXED + 33|the maximum size of an object context that will be
returned by TPM2_ContextSave
TPM_PT_MAX_SESSION_CONTEXT |PT_FIXED + 34[the maximum size of a session context that will be
returned by TPM2_ContextSave
TPM_PT_PS_FAMILY_INDICATOR PT_FIXED + 35| platform-specific family (a TPM_PS value)(see Table 26)
NOTE The platform-specific values for the TPM_PT_PS
parameters are in the relevant platform-specific
specification. In the reference implementation, all of
these values are 0.
TPM_PT_PS LEVEL PT_FIXED + 36 [the level of the platform-specific specification
TPM_PT_PS_REVISION PT_FIXED + 37[the specification Revision times 100 for the platform-
specific specification
TPM_PT_PS_DAY_OF_YEAR PT_FIXED + 38(the platform-specific specification day of year using TCG
calendar
TPM_PT_PS_YEAR PT_FIXED + 39 [the platform-specific specification year using the CE
TPM_PT_SPLIT_MAX PT_FIXED + 40|the number of split signing operations supported by the
TPM
TPM_PT_TOTAL_COMMANDS PT_FIXED + 41| total number of commands implemented in the TPM
TPM_PT_LIBRARY_COMMANDS PT_FIXED + 42| number of commands from the TPM library that are
implemented
TPM_PT_VENDOR_COMMANDS PT_FIXED + 43| number of vendor commands that are implemented
TPM_PT_NV_BUFFER_MAX PT_FIXED + 44 |the maximum data size in one NV write command
PT_VAR PT_GROUP *2[the group of variable properties returned as
TPMS_TAGGED_PROPERTY
The properties in this group change because of a
Protected Capability other than a firmware update. The
values are not necessarily persistent across all power
transitions.
Family “2.0” TCG Published Page 49

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Capability Name

Value

Comments

TPM_PT_PERMANENT

PT VAR +0

TPMA_PERMANENT

TPM_PT_STARTUP_CLEAR

PT_VAR +1

TPMA_STARTUP_CLEAR

TPM_PT_HR_NV_INDEX

PT_VAR + 2

the number of NV Indexes currently defined

TPM_PT_HR_LOADED

PT VAR +3

the number of authorization sessions currently loaded into
TPM RAM

TPM_PT_HR_LOADED_AVAIL

PT_VAR + 4

the number of additional authorization sessions, of any
type, that could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
loaded. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session would fit into RAM.

TPM_PT_HR_ACTIVE

PT VAR +5

the number of active authorization sessions currently
being tracked by the TPM

This is the sum of the loaded and saved sessions.

TPM_PT_HR_ACTIVE_AVAIL

PT_VAR +6

the number of additional authorization sessions, of any
type, that could be created

This value is an estimate. If this value is at least 1, then at
least one authorization session of any type may be
created. Any command that changes the RAM memory
allocation can make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one authorization session could be created.

TPM_PT_HR_TRANSIENT_AVAIL

PT VAR +7

estimate of the number of additional transient objects that
could be loaded into TPM RAM

This value is an estimate. If this value is at least 1, then at
least one object of any type may be loaded. Any
command that changes the memory allocation can make
this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one transient object would fit into RAM.

TPM_PT_HR_PERSISTENT

PT_VAR + 8

the number of persistent objects currently loaded into
TPM NV memory

TPM_PT_HR_PERSISTENT_AVAIL

PT_VAR +9

the number of additional persistent objects that could be
loaded into NV memory

This value is an estimate. If this value is at least 1, then at
least one object of any type may be made persistent. Any
command that changes the NV memory allocation can
make this estimate invalid.

NOTE A valid implementation may return 1 even if more
than one persistent object would fit into NV memory.

TPM_PT_NV_COUNTERS

PT_VAR + 10

the number of defined NV Indexes that have NV
TPMA_NV_COUNTER attribute SET

Page 50
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Capability Name Value Comments

TPM_PT_NV_COUNTERS_AVAIL PT_VAR + 11 |the number of additional NV Indexes that can be defined
with their TPMA_NV_COUNTER and
TPMA_NV_ORDERLY attribute SET
This value is an estimate. If this value is at least 1, then at
least one NV Index may be created with the
TPMA_NV_COUNTER and TPMA_NV_ORDERLY
attributes SET. Any command that changes the NV
memory allocation can make this estimate invalid.
NOTE A valid implementation may return 1 even if more
than one NV counter could be defined.

TPM_PT_ALGORITHM_SET PT_VAR + 12 |code that limits the algorithms that may be used with the
TPM

TPM_PT_LOADED_CURVES PT_VAR + 13 |the number of loaded ECC curves

TPM_PT_LOCKOUT_COUNTER PT_VAR + 14 [the current value of the lockout counter (failedTries)

TPM_PT_MAX_AUTH_FAIL PT_VAR + 15 |the number of authorization failures before DA lockout is
invoked

TPM_PT_LOCKOUT_INTERVAL PT_VAR + 16 [the number of seconds before the value reported by
TPM_PT_LOCKOUT_COUNTER is decremented

TPM_PT_LOCKOUT_RECOVERY PT_VAR + 17 |the number of seconds after a lockoutAuth failure before
use of lockoutAuth may be attempted again

TPM_PT_NV_WRITE_RECOVERY PT_VAR + 18 [number of milliseconds before the TPM will accept
another command that will modify NV
This value is an approximation and may go up or down
over time.

TPM_PT_AUDIT_COUNTER_O PT_VAR + 19 [the high-order 32 bits of the command audit counter

TPM_PT_AUDIT_COUNTER_1 PT_VAR + 20 [the low-order 32 bits of the command audit counter

Family “2.0” TCG Published Page 51

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

6.14 TPM_PT_PCR (PCR Property Tag)

Part 2: Structures

The TPM_PT_PCR constants are used in TPM2_GetCapability() to indicate the property being selected
or returned. The PCR properties can be read when capability == TPM_CAP_PCR_PROPERTIES.

Table 25 — Definition of (UINT32) TPM_PT_PCR Constants <IN/OUT, S>

Capability Name \Value Comments
TPM_PT_PCR_FIRST 0x00000000 | bottom of the range of TPM_PT_PCR properties
TPM_PT_PCR_SAVE 0x00000000 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
saved and restored by TPM_SU_STATE
TPM_PT_PCR_EXTEND_LO 0x00000001 |[a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality O
This property is only present if a locality other than 0 is
implemented.
TPM_PT_PCR_RESET_LO 0x00000002 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality O
TPM_PT_PCR_EXTEND_L1 0x00000003 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 1
This property is only present if locality 1 is implemented.
TPM_PT_PCR_RESET_L1 0x00000004 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 1
This property is only present if locality 1 is implemented.
TPM_PT_PCR_EXTEND_L2 0x00000005 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 2
This property is only present if localites 1 and 2 are
implemented.
TPM_PT_PCR_RESET_L2 0x00000006 |[a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 2
This property is only present if localites 1 and 2 are
implemented.
TPM_PT_PCR_EXTEND_L3 0x00000007 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 3
This property is only present if localities 1, 2, and 3 are
implemented.
TPM_PT_PCR_RESET_L3 0x00000008 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be reset by TPM2_PCR_Reset() from locality 3
This property is only present if localites 1, 2, and 3 are
implemented.
TPM_PT_PCR_EXTEND_L4 0x00000009 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR
may be extended from locality 4
This property is only present if localities 1, 2, 3, and 4 are
implemented.
TPM_PT_PCR_RESET_L4 0x0000000A |a SET bit in the TPMS_PCR_SELECT indicates that the PCR

may be reset by TPM2_PCR_Reset() from locality 4

This property is only present if localities 1, 2, 3, and 4 are
implemented.

Page 52
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Capability Name \Value Comments
reserved 0x0000000B - the values in this range are reserved
0x00000010 They correspond to values that may be used to describe

attributes associated with the extended localities (32-
255).synthesize additional software localities. The meaning of
these properties need not be the same as the meaning for the
Extend and Reset properties above.

TPM_PT_PCR_NO_INCREMENT [0x00000011 |a SET bit in the TPMS_PCR_SELECT indicates that
modifications to this PCR (reset or Extend) will not increment
the pcrUpdateCounter

TPM_PT_PCR_DRTM_RESET [0x00000012 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
reset by a D-RTM event
These PCR are reset to -1 on TPM2_Startup() and reset to 0 on
a _TPM_Hash_End event following a _TPM_Hash_Start event.

TPM_PT_PCR_POLICY 0x00000013 |a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by policy
This property is only present if the TPM supports policy control
of a PCR.

TPM_PT_PCR_AUTH 0x00000014 | a SET bit in the TPMS_PCR_SELECT indicates that the PCR is
controlled by an authorization value
This property is only present if the TPM supports authorization
control of a PCR.

reserved 0x00000015 | reserved for the next (2“") TPM_PT_PCR_POLICY set

reserved 000000016 | reserved for the next (2"*) TPM_PT_PCR_AUTH set

reserved 0x00000017 — reserved for the 2™ through 255™ TPM_PT_PCR_POLICY and

0x00000210 | TPM_PT_PCR_AUTH values

reserved 0x00000211 reserved to the 256", and highest allowed,
TPM_PT_PCR_POLICY set

reserved 0x00000212 reserved to the 256”‘, and highest allowed,
TPM_PT_PCR_AUTH set

reserved 0x00000213 |new PCR property values may be assigned starting with this
value

TPM_PT_PCR_LAST 0x00000014 |[top of the range of TPM_PT_PCR properties of the

implementation

If the TPM receives a request for a PCR property with a value
larger than this, the TPM will return a zero length list and set the
moreData parameter to NO.

NOTE This is an implementation-specific value. The value shown
reflects the reference code implementation.

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 53
October 30, 2014

Trusted Platform Module Library

6.15 TPM_PS (Platform Specific)

Part 2: Structures

The platform values in Table 26 are used for the TPM_PT_PS_FAMILY_INDICATOR.

NOTE

Values below six (6) have the same values as the purview assignments in TPM 1.2.

Table 26 — Definition of (UINT32) TPM_PS Constants <OUT>

Capability Name \Value Comments
TPM_PS_MAIN 0x00000000 | not platform specific
TPM_PS_PC (0x00000001 PC Client
TPM_PS_PDA 0x00000002 | PDA (includes all mobile devices that are not specifically cell
phones)
TPM_PS_CELL_PHONE 0x00000003 | Cell Phone
TPM_PS_SERVER 0x00000004 Server WG
TPM_PS_PERIPHERAL 0x00000005 Peripheral WG
TPM_PS_TSS 0x00000006 |TSS WG
TPM_PS_STORAGE 000000007 | Storage WG
TPM_PS_AUTHENTICATION 0x00000008 Authentication WG
TPM_PS_EMBEDDED 0x00000009 Embedded WG
TPM_PS_HARDCOPY 0xO000000A | Hardcopy WG
TPM_PS_INFRASTRUCTURE 0x0000000B Infrastructure WG
TPM_PS_VIRTUALIZATION 0x0000000C | Virtualization WG
TPM_PS_TNC 0x0000000D | Trusted Network Connect WG
TPM_PS_MULTI_TENANT 0XO000000E | Multi-tenant WG
TPM_PS TC 0XO000000F [Technical Committee

Page 54
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

7 Handles

7.1 Introduction

Handles are 32-bit values used to reference shielded locations of various types within the TPM.

Table 27 — Definition of Types for Handles

Type Name Description

UINT32 TPM_HANDLE

Handles may refer to objects (keys or data blobs), authorization sessions (HMAC and policy), NV
Indexes, permanent TPM locations, and PCR.

7.2 TPM_HT (Handle Types)

The 32-bit handle space is divided into 256 regions of equal size with 2?* values in each. Each of these
ranges represents a handle type.

The type of the entity is indicated by the MSO of its handle. The values for the MSO and the entity
referenced are shown in Table 28.

Table 28 — Definition of (UINT8) TPM_HT Constants <S>

Name Value Comments
TPM_HT_PCR 0x00 PCR - consecutive numbers, starting at 0, that reference the PCR
registers

A platform-specific specification will set the minimum number of PCR
and an implementation may have more.

TPM_HT_NV_INDEX 0x01 NV Index — assigned by the caller

TPM_HT_HMAC_SESSION 0x02 HMAC Authorization Session — assigned by the TPM when the
session is created

TPM_HT_LOADED_SESSION |0x02 Loaded Authorization Session — used only in the context of
TPM2_GetCapability

This type references both loaded HMAC and loaded policy
authorization sessions.

TPM_HT_POLICY_SESSION 0x03 Policy Authorization Session — assigned by the TPM when the
session is created

TPM_HT_ACTIVE_SESSION 0x03 Active Authorization Session — used only in the context of
TPM2_GetCapability

This type references saved authorization session contexts for which
the TPM is maintaining tracking information.

TPM_HT_PERMANENT 0x40 Permanent Values — assigned by this specification in Table 29

TPM_HT_TRANSIENT 0x80 Transient Objects — assigned by the TPM when an object is loaded
into transient-object memory or when a persistent object is converted
to a transient object

TPM_HT_PERSISTENT 0x81 Persistent Objects — assigned by the TPM when a loaded transient
object is made persistent

Family “2.0” TCG Published Page 55
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

When a transient object is loaded, the TPM shall assign a handle with an MSO of TPM_HT_TRANSIENT.
The object may be assigned a different handle each time it is loaded. The TPM shall ensure that handles
assigned to transient objects are unique and assigned to only one transient object at a time.

EXAMPLE If a TPM is only able to hold 4 transient objects in internal memory, it might choose to assign handles to
those objects with the values 80 00 00 00,5 — 80 00 00 036.

When a transient object is converted to a persistent object (TPM2_EvictControl()), the TPM shall validate
that the handle provided by the caller has an MSO of TPM_HT_PERSISTENT and that the handle is not
already assigned to a persistent object.

A handle is assigned to a session when the session is started. The handle shall have an MSO equal to
TPM_HT_SESSION and remain associated with that session until the session is closed or flushed. The
TPM shall ensure that a session handle is only associated with one session at a time. When the session
is loaded into the TPM using TPM2_LoadContext(), it will have the same handle each time it is loaded.

EXAMPLE If a TPM is only able to track 64 active sessions at a time, it could number those sessions using the
values xx 00 01 0036 — xx 00 01 3F;6 where xx is either 02,5 or 03,6 depending on the session type.

7.3 Persistent Handle Sub-ranges

Persistent handles are assigned by the caller of TPM2_EvictControl(). Owner Authorization or Platform
Authorization is required to authorize allocation of space for a persistent object. These entities are given
separate ranges of persistent handles so that they do not have to allocate from a common range of
handles.

NOTE While this “namespace” allocation of the handle ranges could have been handled by convention, TPM
enforcement is used to prevent errors by the OS or malicious software from affecting the platform’s use of
the NV memory.

The Owner is allocated persistent handles in the range of 81 00 00 0045 to 81 7F FF FFy¢ inclusive and
the TPM will return an error if Owner Authorization is used to attempt to assign a persistent handle
outside of this range.

Page 56 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

7.4 TPM_RH (Permanent Handles)

Trusted Platform Module Library

Table 29 lists the architecturally defined handles that cannot be changed. The handles include
authorization handles, and special handles.

Table 29 — Definition of (TPM_HANDLE) TPM_RH Constants <S>

Name Value Type Comments
TPM_RH_FIRST 0x40000000 (R
TPM_RH_SRK 0x40000000 |R not used”
handle references the Storage Primary Seed (SPS), the
TPM_RH_OWNER 0x40000001 (K, A, P ownerAuth, and the ownerPolicy
TPM_RH_REVOKE 0x40000002 |R not used”
TPM_RH_TRANSPORT 0x40000003 (R not used*
TPM_RH_OPERATOR 0x40000004 (R not used*
TPM_RH_ADMIN 0x40000005 |[R not used*
TPM_RH_EK 0x40000006 |R not used*
a handle associated with the null hierarchy, an EmptyAuth
TPM_RH_NULL 0x40000007 K, A, P authValue, and an Empty Policy authPolicy.
TPM RH UNASSIGNED 0x40000008 |R value reserved to the TPM to indicate a handle location that
- = has not been initialized or assigned
authorization value wused to indicate a password
TPM_RS_PW 0x40000009 1S authorization session
references the authorization associated with the dictionary
TPM_RH_LOCKOUT 0x4000000A (A attack lockout reset
TPM RH ENDORSEMENT |0x4000000B |K A P references the Endorsement Primary Seed (EPS),
- = e endorsementAuth, and endorsementPolicy
references the Platform Primary Seed (PPS), platformAuth,
TPM_RH_PLATFORM 0x4000000C |[K, A, P and platformPolicy
TPM_RH_PLATFORM_NV |0x4000000D |(C for phEnableNV
Start of a range of authorization values that are vendor-
specific. A TPM may support any of the values in this range
TPM RH AUTH 00 0x40000010 |A as are needed for vendor-specific purposes.
Disabled if ehEnable is CLEAR.
NOTE “Any” includes “none”.
TPM_RH_AUTH_FF 0x4000010F (A End of the range of vendor-specific authorization values.
the top of the reserved handle area
TPM RH LAST 0x4000010F |R This is set to allow TPM2_GetCapability() to know where to

stop. It may vary as implementations add to the permanent
handle area.

Type definitions:
R — areserved value
K —a Primary Seed
A — an authorization value
P — a policy value
S — a session handle
C - a control
Note 1

The handle is only used in a TPM that is compatible with a previous version of this specification. It is not used in any
command defined in this version of the specification.

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 57
October 30, 2014

Trusted Platform Module Library Part 2: Structures

7.5 TPM_HC (Handle Value Constants)

The definitions in Table 30 are used to define many of the interface data types.

These values, that indicate ranges, are informative and may be changed by an implementation as long as
the values stay within the prescribed ranges for the handle type:

e HMAC_SESSION_FIRST—HMAC_SESSION_LAST,

e LOADED_SESSION_FIRST—LOADED_SESSION_LAST,

e POLICY_SESSION_FIRST—POLICY_SESSION_LAST,

e TRANSIENT_FIRST—TRANSIENT_LAST,

e ACTIVE_SESSION_FIRST—ACTIVE_SESSION_LAST,

e PCR_FIRST—PCR_LAST

These values are input by the caller. The TPM implementation should support the entire range:
e PERSISTENT_FIRST—PERSISTENT_LAST,

e PLATFORM_PERSISTENT—PLATFORM_PERSISTENT+0x007FFFFF,
e NV_INDEX_FIRST—NV_INDEX_LAST,

. PERMANENT_FIRST—PERMANENT_LAST

NOTE PCRO is architecturally defined to have a handle value of 0.

For the reference implementation, the handle range for sessions starts at the lowest allowed value for a
session handle. The highest value for a session handle is determined by how many active sessions are
allowed by the implementation. The MSO of the session handle will be set according to the session type.

A similar approach is used for transient objects with the first assigned handle at the bottom of the range
defined by TPM_HT_TRANSIENT and the top of the range determined by the implementation-dependent
value of MAX_LOADED_OBJECTS.

The first assigned handle for evict objects is also at the bottom of the allowed range defined by
TPM_HT_PERSISTENT and the top of the range determined by the implementation-dependent value of
MAX_EVICT_OBJECTS.

NOTE The values in Table 30 are intended to facilitate the process of making the handle larger than 32 bits in
the future. It is intended that HR_MASK and HR_SHIFT are the only values that need change to resize
the handle space.

Page 58 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Table 30 — Definition of (TPM_HANDLE) TPM_HC Constants <S>

Name Value Comments

HR_HANDLE_MASK OxOOFFFFFF to mask off the HR

HR_RANGE_MASK 0xFF000000 to mask off the variable
part

HR_SHIFT 24

HR_PCR (TPM_HT_PCR << HR_SHIFT)

HR_HMAC_SESSION (TPM_HT_HMAC_SESSION << HR_SHIFT)

HR_POLICY_SESSION (TPM_HT_POLICY_SESSION << HR_SHIFT)

HR_TRANSIENT (TPM_HT_TRANSIENT << HR_SHIFT)

HR_PERSISTENT (TPM_HT_PERSISTENT << HR_SHIFT)

HR_NV_INDEX (TPM_HT_NV_INDEX << HR_SHIFT)

HR_PERMANENT (TPM_HT_PERMANENT << HR_SHIFT)

PCR_FIRST (HR_PCR + 0) first PCR

PCR_LAST (PCR_FIRST + IMPLEMENTATION_PCR-1) last PCR

HMAC_SESSION_FIRST |(HR_HMAC_SESSION + 0) first HMAC session

HMAC_SESSION_LAST (HMAC_SESSION_FIRST+MAX_ACTIVE_SESSIONS-1) last HMAC session

LOADED_SESSION_FIRST | HMAC_SESSION_FIRST used in GetCapability

LOADED_SESSION_LAST |HMAC_SESSION_LAST used in GetCapability

POLICY_SESSION_FIRST |(HR_POLICY_SESSION + 0) first policy session

POLICY_SESSION_LAST |[(POLICY_SESSION_FIRST + MAX_ACTIVE_SESSIONS-1) | last policy session

TRANSIENT_FIRST (HR_TRANSIENT + 0) first transient object

ACTIVE_SESSION_FIRST [POLICY_SESSION_FIRST used in GetCapability

ACTIVE_SESSION_LAST [POLICY_SESSION_LAST used in GetCapability

TRANSIENT_LAST (TRANSIENT_FIRST+MAX_LOADED_OBJECTS-1) last transient object

PERSISTENT_FIRST (HR_PERSISTENT + 0) first persistent object

PERSISTENT_LAST (PERSISTENT_FIRST + OXOOFFFFFF) last persistent object

PLATFORM_PERSISTENT | (PERSISTENT_FIRST + 0x00800000) first platform persistent
object

NV_INDEX_FIRST (HR_NV_INDEX + 0) first allowed NV Index

NV_INDEX_LAST (NV_INDEX_FIRST + OX00FFFFFF) last allowed NV Index

PERMANENT_FIRST TPM_RH_FIRST

PERMANENT_LAST TPM_RH_LAST

Family “2.0” TCG Published Page 59

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

8 Attribute Structures

8.1 Description
Attributes are expressed as bit fields of varying size. An attribute field structure may be 1, 2, or 4 octets in
length.

The bit numbers for an attribute structure are assigned with the number 0 assigned to the least-significant
bit of the structure and the highest number assigned to the most-significant bit of the structure.

The least significant bit is determined by treating the attribute structure as an integer. The least-significant
bit would be the bit that is set when the value of the integer is 1.

When any reserved bit in an attribute is SET, the TPM shall return TPM_RC_RESERVED_BITS. This
response code is not shown in the tables for attributes.

8.2 TPMA_ALGORITHM

This structure defines the attributes of an algorithm.

Each algorithm has a fundamental attribute: asymmetric, symmetric, or hash. In some cases (e.g.,
TPM_ALG_RSA or TPM_ALG_AES), this is the only attribute.

A mode, method, or scheme may have an associated asymmetric, symmetric, or hash algorithm.

Table 31 — Definition of (UINT32) TPMA_ALGORITHM Bits

Bit Name Definition

0 asymmetric SET (1): an asymmetric algorithm with public and private portions
CLEAR (0): not an asymmetric algorithm

1 symmetric SET (1): a symmetric block cipher
CLEAR (0): not a symmetric block cipher

2 hash SET (1): a hash algorithm
CLEAR (0): not a hash algorithm

3 object SET (1): an algorithm that may be used as an object type
CLEAR (0): an algorithm that is not used as an object type

74 Reserved

8 signing SET (1): a signing algorithm. The setting of asymmetric, symmetric, and hash
will indicate the type of signing algorithm.

CLEAR (0): not a signing algorithm

9 encrypting SET (1): an encryption/decryption algorithm. The setting of asymmetric,
symmetric, and hash will indicate the type of encryption/decryption algorithm.

CLEAR (0): not an encryption/decryption algorithm

10 method SET (1): a method such as a key derivative function (KDF)
CLEAR (0): not a method

31:11 |Reserved

Page 60 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

8.3 TPMA_OBJECT (Object Attributes)

8.3.1 Introduction
This attribute structure indicates an object’s use, its authorization types, and its relationship to other
objects.

The state of the attributes is determined when the object is created and they are never changed by the
TPM. Additionally, the setting of these structures is reflected in the integrity value of the private area of an
object in order to allow the TPM to detect modifications of the Protected Object when stored off the TPM.

8.3.2 Structure Definition
Table 32 — Definition of (UINT32) TPMA_OBJECT Bits

Bit Name Definition

0 Reserved shall be zero

1 fixedTPM SET (1): The hierarchy of the object, as indicated by its Qualified Name, may
not change.

CLEAR (0): The hierarchy of the object may change as a result of this object or
an ancestor key being duplicated for use in another hierarchy.

2 stClear SET (1): Previously saved contexts of this object may not be loaded after
Startup(CLEAR).

CLEAR (0): Saved contexts of this object may be used after a
Shutdown(STATE) and subsequent Startup().

3 Reserved shall be zero

4 fixedParent SET (1): The parent of the object may not change.

CLEAR (0): The parent of the object may change as the result of a
TPM2_Duplicate() of the object.

5 sensitiveDataOrigin SET (1): Indicates that, when the object was created with TPM2_Create() or
TPM2_CreatePrimary(), the TPM generated all of the sensitive data other than
the authValue.

CLEAR (0): A portion of the sensitive data, other than the authValue, was
provided by the caller.

6 userWithAuth SET (1): Approval of USER role actions with this object may be with an HMAC
session or with a password using the authValue of the object or a policy
session.

CLEAR (0): Approval of USER role actions with this object may only be done
with a policy session.

7 adminWithPolicy SET (1): Approval of ADMIN role actions with this object may only be done with
a policy session.

CLEAR (0): Approval of ADMIN role actions with this object may be with an
HMAC session or with a password using the authValue of the object or a policy
session.

9:8 Reserved shall be zero

10 noDA SET (1): The object is not subject to dictionary attack protections.

CLEAR (0): The object is subject to dictionary attack protections.

11 encryptedDuplication SET (1): If the object is duplicated, then symmetricAlg shall not be
TPM_ALG_NULL and newParentHandle shall not be TPM_RH_NULL.

CLEAR (0): The object may be duplicated without an inner wrapper on the
private portion of the object and the new parent may be TPM_RH_NULL.

15:12 |Reserved shall be zero

Family “2.0” TCG Published Page 61

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Bit Name Definition
16 restricted SET (1): Key usage is restricted to manipulate structures of known format; the
parent of this key shall have restricted SET.
CLEAR (0): Key usage is not restricted to use on special formats.
17 decrypt SET (1): The private portion of the key may be used to decrypt.
CLEAR (0): The private portion of the key may not be used to decrypt.
18 sign SET (1): The private portion of the key may be used to sign.
CLEAR (0): The private portion of the key may not be used to sign.
31:19 |Reserved shall be zero
8.3.3 Attribute Descriptions
8.3.3.1 Introduction

The following remaining paragraphs in this clause describe the use and settings for each of the
TPMA_OBJECT attributes. The description includes checks that are performed on the objectAttributes
when an object is created, when it is loaded, and when it is imported. In these descriptions:

Creation

Load

Import

External

NOTE

indicates settings for the template parameter in TPM2_Create() or
TPM2_CreatePrimary()

indicates settings for the inPublic parameter in TPM2_Load()
indicates settings for the objectPublic parameter in TPM2_Import()

indicates settings that apply to the inPublic parameter in TPM2_LoadExternal() if both the
public and sensitive portions of the object are loaded

For TPM2_LoadExternal() when only the public portion of the object is loaded, the only attribute checks
are the checks in the validation code following Table 32 and the reserved attributes check.

For any consistency error of attributes in TPMA_OBJECT, the TPM shall return TPM_RC_ATTRIBUTES.

Page 62
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

TCG Published Family “2.0”

Part 2: Structures Trusted Platform Module Library

8.3.3.2 Bit[1] - fixed TPM

When SET, the object cannot be duplicated for use on a different TPM, either directly or indirectly and the
Qualified Name of the object cannot change. When CLEAR, the object’s Qualified Name may change if
the object or an ancestor is duplicated.

NOTE This attribute is the logical inverse of the migratable attribute in 1.2. That is, when this attribute is CLEAR,
it is the equivalent to a 1.2 object with migratable SET.

Creation If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be
set to the same value in template. If fixedTPM is CLEAR in the parent, this attribute shall
also be CLEAR in template.

NOTE For a Primary Object, the parent is considered to have fixedTPM SET.

Load If fixedTPM is SET in the object's parent, then fixedTPM and fixedParent shall both be
set to the same value. If fixedTPM is CLEAR in the parent, this attribute shall also be
CLEAR.

Import shall be CLEAR

External shall be CLEAR if both the public and sensitive portions are loaded or if fixedParent is

CLEAR, otherwise may be SET or CLEAR

8.3.3.3 Bit[2] - stClear

If this attribute is SET, then saved contexts of this object will be invalidated on
TPM2_Startup(TPM_SU_CLEAR). If the attribute is CLEAR, then the TPM shall not invalidate the saved
context if the TPM received TPM2_Shutdown(TPM_SU_STATE). If the saved state is valid when checked
at the next TPM2_Startup(), then the TPM shall continue to be able to use the saved contexts.

Creation may be SET or CLEAR in template
Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.4 Bit[4] - fixedParent

If this attribute is SET, the object’s parent may not be changed. That is, this object may not be the object
of a TPM2_Duplicate(). If this attribute is CLEAR, then this object may be the object of a
TPM2_Duplicate().

Creation may be SET or CLEAR in template

Load may be SET or CLEAR

Import shall be CLEAR

External shall be CLEAR if both the public and sensitive portions are loaded; otherwise it may be
SET or CLEAR

8.3.3.5 Bit[5] — sensitiveDataOrigin

This attribute is SET for any key that was generated by TPM in TPM2_Create() or
TPM2_CreatePrimary(). If CLEAR, it indicates that the sensitive part of the object (other than the
obfuscation value) was provided by the caller.

Family “2.0” TCG Published Page 63
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

NOTE 1 If the fixedTPM attribute is SET, then this attribute is authoritative and accurately reflects the source of
the sensitive area data. If the fixedTPM attribute is CLEAR, then validation of this attribute requires
evaluation of the properties of the ancestor keys.

Creation If inSensitive.sensitive.data.size is zero, then this attribute shall be SET in the template;
otherwise, it shall be CLEAR in the template.

NOTE 2 The inSensitive.sensitive.data.size parameter is required to be zero for an asymmetric key so
sensitiveDataOrigin is required to be SET.

NOTE 3 The inSensitive.sensitive.data.size parameter may not be zero for a data object so sensitiveDataOrigin is
required to be CLEAR. A data object has type = TPM_ALG_KEYEDHASH and its sign and decrypt
attributes are CLEAR.

Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.6 Bit[6] — userWithAuth

If SET, authorization for operations that require USER role authorization may be given if the caller
provides proof of knowledge of the authValue of the object with an HMAC authorization session or a
password.

If this attribute is CLEAR, then HMAC or password authorizations may not be used for USER role
authorizations.

NOTE 1 Regardless of the setting of this attribute, authorizations for operations that require USER role
authorizations may be provided with a policy session that satisfies the object's authPolicy.

NOTE 2 Regardless of the setting of this attribute, the authValue may be referenced in a policy session or used to
provide the bind value in TPM2_StartAuthSession(). However, if userWithAuth is CLEAR, then the object
may be used as the bind object in TPM2_StartAuthSession() but the session cannot be used to authorize
actions on the object. If this were allowed, then the userWithAuth control could be circumvented simply by
using the object as the bind object.

Creation may be SET or CLEAR in template
Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.7 Bit[7] — adminWithPolicy
If CLEAR, authorization for operations that require ADMIN role may be given if the caller provides proof of
knowledge of the authValue of the object with an HMAC authorization session or a password.

If this attribute is SET, then then HMAC or password authorizations may not be used for ADMIN role
authorizations.

NOTE 1 Regardless of the setting of this attribute, operations that require ADMIN role authorization may be
provided by a policy session that satisfies the object's authPolicy.

NOTE 2 This attribute is similar to userWithAuth but the logic is a bit different. When userWithAuth is CLEAR, the
authValue may not be used for USER mode authorizations. When adminWithPolicy is CLEAR, it means
that the authValue may be used for ADMIN role. Policy may always be used regardless of the setting of
userWithAuth or adminWithPolicy.

Page 64 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Actions that always require policy (TPM2_Duplicate()) are not affected by the setting of this attribute.

Creation may be SET or CLEAR in template
Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.8 Bit[10] - noDA

If SET, then authorization failures for the object do not affect the dictionary attack protection logic and
authorization of the object is not blocked if the TPM is in lockout.

Creation may be SET or CLEAR in template
Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.9 Bit[11] — encryptedDuplication

If SET, then when the object is duplicated, the sensitive portion of the object is required to be encrypted
with an inner wrapper and the new parent shall be an asymmetric key and not TPM_RH_NULL

NOTE 1 Enforcement of these requirements in TPM2_Duplicate() is by not allowing symmetricAlg to be
TPM_ALG_NULL and not allowing newParentHandle to be TPM_RH_NULL.

This attribute shall not be SET in any object that has fixedTPM SET.

NOTE 2 This requirement means that encryptedDuplication may not be SET if the object cannot be directly or
indirectly duplicated.

If an object's parent has fixedTPM SET, and the object is duplicable (fixedParent == CLEAR), then
encryptedDuplication may be SET or CLEAR in the object.

NOTE 3 This allows the object at the boundary between duplicable and non-duplicable objects to have either
setting.

If an object's parent has fixedTPM CLEAR, then the object is required to have the same setting of
encryptedDuplication as its parent.

NOTE 4 This requirement forces all duplicable objects in a duplication group to have the same
encryptedDuplication setting.

Creation shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have
the same value as its parent unless fixedTPM is SET in the object's parent, in which
case, it may be SET or CLEAR.

Load shall be CLEAR if fixedTPM is SET. If fixedTPM is CLEAR, then this attribute shall have
the same value as its parent, unless fixedTPM is SET the parent, in which case, it may
be SET or CLEAR.

Import if fixedTPM is SET in the object's new parent, then this attribute may be SET or CLEAR,
otherwise, it shall have the same setting as the new parent.
External may be SET or CLEAR.

8.3.3.10 Bit[16] — restricted

Family “2.0” TCG Published Page 65
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

This this attribute modifies the decrypt and sign attributes of an object.

NOTE A key with this object CLEAR may not be a parent for another object.

Creation shall be CLEAR in template if neither sign nor decrypt is SET in template.
Load shall be CLEAR if neither sign nor decrypt is SET in the object

Import may be SET or CLEAR

External shall be CLEAR

8.3.3.11 Bit[17] — decrypt

When SET, the private portion of this key can be used to decrypt an external blob. If restricted is SET,
then the TPM will return an error if the external decrypted blob is not formatted as appropriate for the
command.

NOTE 1 Since TPM-generated keys and sealed data will contain a hash and a structure tag, the TPM can ensure
that it is not being used to improperly decrypt and return sensitive data that should not be returned. The
only type of data that may be returned after decryption is a Sealed Data Object (a keyedHash object with
decrypt and sign CLEAR).

When restricted is CLEAR, there are no restrictions on the use of the private portion of the key for
decryption and the key may be used to decrypt and return any structure encrypted by the public portion of
the key.

NOTE 2 A key with this attribute SET may be a parent for another object if restricted is SET and sign is CLEAR.

If decrypt is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an
XOR encryption key.

Creation may be SET or CLEAR in template
Load may be SET or CLEAR
Import may be SET or CLEAR
External may be SET or CLEAR

8.3.3.12 Bit[18] — sign

When this attribute is SET, the private portion of this key may be used to sign a digest. If restricted is
SET, then the key may only be used to sign a digest that was computed by the TPM. A restricted signing
key may be used to sign a TPM-generated digest. If a structure is generated by the TPM, it will begin with
TPM_GENERATED_VALUE and the TPM may sign the digest of that structure. If the data is externally
supplied and has TPM_GENERATED_VALUE as its first octets, then the TPM will not sign a digest of
that data with a restricted signing key.

If restricted is CLEAR, then the key may be used to sign any digest, whether generated by the TPM or
externally provided.

NOTE 1 Some asymmetric algorithms may not support both sign and decrypt being SET in the same key.

If sign is SET on an object with type set to TPM_ALG_KEYEDHASH, it indicates that the object is an
HMAC key.

NOTE 2 A key with this attribute SET may not be a parent for another object.
Creation shall not be SET if decrypt and restricted are both SET
Page 66 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Load shall not be SET if decrypt and restricted are both SET
Import shall not be SET if decrypt and restricted are both SET
External shall not be SET if decrypt and restricted are both SET

8.4 TPMA_SESSION (Session Attributes)

This octet in each session is used to identify the session type, indicate its relationship to any handles in
the command, and indicate its use in parameter encryption.

If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must be SET.

Table 33 — Definition of (UINT8) TPMA_SESSION Bits <IN/OUT>

Bit | Name Meaning

0 | continueSession SET (1): In a command, this setting indicates that the session is to remain active
after successful completion of the command. In a response, it indicates that the
session is still active. If SET in the command, this attribute shall be SET in the
response.

CLEAR (0): In a command, this setting indicates that the TPM should close the

session and flush any related context when the command completes successfully. In
a response, it indicates that the session is closed and the context is no longer active.

This attribute has no meaning for a password authorization and the TPM will allow
any setting of the attribute in the command and SET the attribute in the response.

This attribute will only be CLEAR in one response for a logical session. If the attribute
is CLEAR, the context associated with the session is no longer in use and the space
is available. A session created after another session is ended may have the same
handle but logically is not the same session.

This attribute has no effect if the command does not complete successfully.

1 | auditExclusive SET (1): In a command, this setting indicates that the command should only be
executed if the session is exclusive at the start of the command. In a response, it
indicates that the session is exclusive. This setting is only allowed if the audit
attribute is SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is
TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS.

See "Exclusive Audit Session" clause in TPM 2.0 Part 1.

2 | auditReset SET (1): In a command, this setting indicates that the audit digest of the session
should be initialized and the exclusive status of the session SET.

CLEAR (0): If audit is CLEAR, then this field is reserved but the error is
TPM_RC_ATTRIBUTES rather than TPM_RC_RESERVED_BITS. This setting is
always used for a response.

4:3 | Reserved shall be CLEAR

Family “2.0” TCG Published Page 67
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Bit | Name Meaning

5 | decrypt SET (1): In a command, this setting indicates that the first parameter in the command
is symmetrically encrypted using the parameter encryption scheme described in TPM
2.0 Part 1. The TPM will decrypt the parameter after performing any HMAC
computations and before unmarshaling the parameter. In a response, the attribute is
copied from the request but has no effect on the response.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may be SET in combination with any other session attributes.

This attribute may only be SET if the first parameter of the command is a sized buffer
(TPM2B_).

6 | encrypt SET (1): In a command, this setting indicates that the TPM should use this session to
encrypt the first parameter in the response. In a response, it indicates that the
attribute was set in the command and that the TPM used the session to encrypt the
first parameter in the response using the parameter encryption scheme described in
TPM 2.0 Part 1.

CLEAR (0): Session not used for encryption.

For a password authorization, this attribute will be CLEAR in both the command and
response.

This attribute may only be SET in one session per command.

This attribute may be SET in a session that is not associated with a command
handle. Such a session is provided for purposes of encrypting a parameter and not
for authorization.

This attribute may only be SET if the first parameter of a response is a sized buffer
(TPM2B.).

7 | audit SET (1): In a command or response, this setting indicates that the session is for audit
and that auditExclusive and auditReset have meaning. This session may also be
used for authorization, encryption, or decryption. The encrypted and encrypt fields
may be SET or CLEAR.

CLEAR (0): Session is not used for audit.
This attribute may only be SET in one session per command or response. If SET in
the command, then this attribute will be SET in the response.

Page 68 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

8.5 TPMA_LOCALITY (Locality Attribute)

Ina TPMS_CREATION_DATA structure, this structure is used to indicate the locality of the command that
created the object. No more than one of the locality attributes shall be set in the creation data.

When used in TPM2_PolicyLocality(), this structure indicates which localities are approved by the policy.
When a policy is started, all localities are allowed. If TPM2_PolicyLocality() is executed, it indicates that
the command may only be executed at specific localities. More than one locality may be selected.

EXAMPLE 1 TPM_LOC_TWO would indicate that only locality 2 is authorized.

EXAMPLE 2 TPM_LOC_ONE + TPM_LOC_TWO would indicate that locality 1 or 2 is authorized.
EXAMPLE 3 TPM_LOC_FOUR + TPM_LOC_THREE would indicate that localities 3 or 4 are authorized.
EXAMPLE 4 A value of 21,6 would represent a locality of 33.

NOTE Locality values of 5 through 31 are not selectable.

If Extended is non-zero, then an extended locality is indicated and the TPMA_LOCALITY contains an
integer value.

Table 34 — Definition of (UINT8) TPMA_LOCALITY Bits <IN/OUT>

Bit Name Definition

0 TPM_LOC_ZERO
1 TPM_LOC_ONE
2 TPM_LOC_TWO
3 TPM_LOC_THREE
4

-

TPM_LOC_FOUR

5 Extended If any of these bits is set, an extended locality is indicated

Family “2.0” TCG Published Page 69
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

8.6

Part 2: Structures

TPMA_PERMANENT

The attributes in this structure are persistent and are not changed as a result of _TPM_Init or any
TPM2_Startup(). Some of the attributes in this structure may change as the result of specific Protected
Capabilities. This structure may be read using TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTIES, property = TPM_PT_PERMANENT).

Table 35 — Definition of (UINT32) TPMA_PERMANENT Bits <OUT>

Bit [Parameter Description

0 | ownerAuthSet SET (1): TPM2_HierarchyChangeAuth() with ownerAuth has been executed since
the last TPM2_Clear().
CLEAR (0): ownerAuth has not been changed since TPM2_Clear().

1|endorsementAuthSet | SET (1): TPM2_HierarchyChangeAuth() with endorsementAuth has been executed
since the last TPM2_Clear().
CLEAR (0): endorsementAuth has not been changed since TPM2_Clear().

2 | lockoutAuthSet SET (1): TPM2_HierarchyChangeAuth() with lockoutAuth has been executed since
the last TPM2_Clear().
CLEAR (0): lockoutAuth has not been changed since TPM2_Clear().

7:3 |Reserved

8 | disableClear SET (1): TPM2_Clear() is disabled.
CLEAR (0): TPM2_Clear() is enabled.
NOTE See “TPM2_ClearControl” in TPM 2.0 Part 3 for details on changing this attribute.

9 | inLockout SET (1): The TPM is in lockout and commands that require authorization with other
than Platform Authorization or Lockout Authorization will not succeed.

10 | tpmGeneratedEPS SET (1): The EPS was created by the TPM.
CLEAR (0): The EPS was created outside of the TPM using a manufacturer-
specific process.
31:11 | Reserved
Page 70 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

8.7 TPMA_STARTUP_CLEAR

These attributes are set to their default state on reset on each TPM Reset or TPM Restart. The attributes
are preserved on TPM Resume.

On each TPM2_Startup(TPM_SU_CLEAR), the TPM will set these attributes to their indicated defaults.

This structure may be read using TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES,
property = TPM_PT_STARTUP_CLEAR).

Some of attributes may be changed as the result of specific Protected Capabilities.

Table 36 — Definition of (UINT32) TPMA_STARTUP_CLEAR Bits <OUT>

Bit [Parameter Description

0| phEnable SET (1): The platform hierarchy is enabled and platformAuth or platformPolicy may
be used for authorization.

CLEAR (0): platformAuth and platformPolicy may not be used for authorizations,
and objects in the platform hierarchy, including persistent objects, cannot be used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this

attribute.
1|shEnable SET (1): The Storage hierarchy is enabled and ownerAuth or ownerPolicy may be
used for authorization. NV indices defined using owner authorization are
accessible.

CLEAR (0): ownerAuth and ownerPolicy may not be used for authorizations, and
objects in the Storage hierarchy, persistent objects, and NV indices defined using
owner authorization cannot be used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

2| ehEnable SET (1): The EPS hierarchy is enabled and Endorsement Authorization may be
used to authorize commands.

CLEAR (0): Endorsement Authorization may not be used for authorizations, and
objects in the endorsement hierarchy, including persistent objects, cannot be used.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing this
attribute.

3| phEnableNV SET (1): NV indices that have TPMA_PLATFORM_CREATE SET may be read or
written. The platform can create define and undefine indices.

CLEAR (0): NV indices that have TPMA_PLATFORM_CREATE SET may not be
read or written (TPM_RC_HANDLE). The platform cannot define
(TPM_RC_HIERARCHY) or undefined (TPM_RC_HANDLE) indices.

NOTE See “TPM2_HierarchyControl” in TPM 2.0 Part 3 for details on changing
this attribute.

NOTE

read refers to these commands: TPM2_NV_Read, TPM2_NV_ReadPublic,
TPM_NV_Certify, TPM2_PolicyNV

write refers to these commands: TPM2_NV_Write, TPM2_NV_Increment,
TPM2_NV_Extend, TPM2_NV_SetBits

NOTE The TPM must query the index TPMA_PLATFORM_CREATE attribute to
determine whether phEnableNV is applicable. Since the TPM will return
TPM_RC_HANDLE if the index does not exist, it also returns this error code if the
index is disabled. Otherwise, the TPM would leak the existence of an index even
when disabled.

30:4 | Reserved shall be zero

Family “2.0” TCG Published Page 71
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

Bit [Parameter Description

31| orderly SET (1): The TPM received a TPM2_Shutdown() and a matching TPM2_Startup().

CLEAR (0): TPM2_Startup(TPM_SU_CLEAR) was not preceded by a

TPM2_Shutdown() of any type.

NOTE A shutdown is orderly if the TPM receives a TPM2_Shutdown() of any type
followed by a TPM2_Startup() of any type. However, the TPM will return an error if
TPM2_Startup(TPM_SU_STATE) was not preceded by
TPM2_State_Save(TPM_SU_STATE).

8.8 TPMA_MEMORY

This structure of this attribute is used to report the memory management method used by the TPM for
transient objects and authorization sessions. This structure may be read using
TPM2_GetCapability(capability = TPM_CAP_TPM_PROPERTIES, property = TPM_PT_MEMORY).

If the RAM memory is shared, then context save of a session may make it possible to load an additional
transient object.

Table 37 — Definition of (UINT32) TPMA_MEMORY Bits <Out>

Bit |Name Definition

0| sharedRAM SET (1): indicates that the RAM memory used for authorization session
contexts is shared with the memory used for transient objects

CLEAR (0): indicates that the memory used for authorization sessions is not
shared with memory used for transient objects

1| sharedNV SET (1): indicates that the NV memory used for persistent objects is shared
with the NV memory used for NV Index values

CLEAR (0): indicates that the persistent objects and NV Index values are
allocated from separate sections of NV

2 | objectCopiedToRam SET (1): indicates that the TPM copies persistent objects to a transient-object
slot in RAM when the persistent object is referenced in a command. The TRM
is required to make sure that an object slot is available.

CLEAR (0): indicates that the TPM does not use transient-object slots when
persistent objects are referenced

31:3 | Reserved shall be zero

Page 72 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
8.9 TPMA_CC (Command Code Attributes)

8.9.1 Introduction

This structure defines the attributes of a command from a context management perspective. The fields of
the structure indicate to the TPM Resource Manager (TRM) the number of resources required by a
command and how the command affects the TPM’s resources.

This structure is only used in a list returned by the TPM in response to TPM2_GetCapability(capability =
TPM_CAP_COMMANDS).
For a command to the TPM, only the commandindex field and V attribute are allowed to be non-zero.

8.9.2 Structure Definition

Table 38 — Definition of (TPM_CC) TPMA_CC Bits <OUT>

Bit |Name Definition
15:0 | commandindex indicates the command being selected
21:16 | Reserved shall be zero
22 |nv SET (1): indicates that the command may write to NV

CLEAR (0): indicates that the command does not write to NV

23 | extensive SET (1): This command could flush any number of loaded contexts.
CLEAR (0): no additional changes other than indicated by the flushed attribute

24 | flushed SET (1): The context associated with any transient handle in the command will
be flushed when this command completes.

CLEAR (0): No context is flushed as a side effect of this command.

27:25| cHandles indicates the number of the handles in the handle area for this command
28 | rHandle SET (1): indicates the presence of the handle area in the response
29|V SET (1): indicates that the command is vendor-specific

CLEAR (0): indicates that the command is defined in a version of this
specification

31:30 | Res allocated for software; shall be zero

8.9.3 Field Descriptions

8.9.3.1 Bits[15:0] — commandindex

This is the command index of the command in the set of commands. The two sets are defined by the V
attribute. If V is zero, then the commandindex shall be in the set of commands defined in a version of this
specification. If V is one, then the meaning of commandindex is as determined by the TPM vendor.

8.9.3.2 Bit[22] - nv

If this attribute is SET, then the TPM may perform an NV write as part of the command actions. This write
is independent of any write that may occur as a result of dictionary attack protection. If this attribute is
CLEAR, then the TPM shall not perform an NV write as part of the command actions.

Family “2.0” TCG Published Page 73
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

8.9.3.3 Bit[23] — extensive

If this attribute is SET, then the TPM may flush many transient objects as a side effect of this command.
In TPM 2.0 Part 3, a command that has this attribute is indicated by using a “{E}” decoration in the
“Description” column of the commandCode parameter.

EXAMPLE See “TPM2_Clear” in TPM 2.0 Part 3.

NOTE The “{E}” decoration may be combined with other decorations such as “{NV}” in which case the decoration
would be “{NV E}.”

8.9.3.4 Bit[24] - flushed

If this attribute is SET, then the TPM will flush transient objects as a side effect of this command. Any
transient objects listed in the handle area of the command will be flushed from TPM memory. Handles
associated with persistent objects, sessions, PCR, or other fixed TPM resources are not flushed.

NOTE The TRM is expected to use this value to determine how many objects are loaded into transient TPM
memory.
NOTE The “{F}" decoration may be combined with other decorations such as “{NV}” in which case the decoration

would be “{NV F}.”

If this attribute is SET for a command, and the handle of the command is associated with a hierarchy
(TPM_RH_PLATFORM, TPM_RH_OWNER, or TPM_RH_ENDORSEMENT), all loaded objects in the
indicated hierarchy are flushed.

The TRM is expected to know the behaviour of TPM2_ContextSave(), and sessions are flushed when
context saved, but objects are not. The flushed attribute for that command shall be CLEAR.

In TPM 2.0 Part 3, a command that has this attribute is indicated by using a “{F}” decoration in the
“Description” column of the commandCode parameter.

EXAMPLE See “TPM2_SequenceComplete” in TPM 2.0 Part 3.”

8.9.3.5 Bits[27:25] — cHandles

This field indicates the number of handles in the handle area of the command. This number allows the
TRM to enumerate the handles in the handle area and find the position of the authorizations (if any).

Page 74 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

8.9.3.6 Bit[28] — rHandle
If this attribute is SET, then the response to this command has a handle area. This area will contain no

more than one handle. This field is necessary to allow the TRM to locate the parameterSize field in the
response, which is then used to locate the authorizations.

NOTE The TRM is expected to “virtualize” the handle value for any returned handle.

A TPM command is only allowed to have one handle in the session area.

8.9.3.7 Bit[29] - V

When this attribute is SET, it indicates that the command operation is defined by the TPM vendor. When
CLEAR, it indicates that the command is defined by a version of this specification.

8.9.3.8 Bits[31:30] — Res

This field is reserved for system software. This field is required to be zero for a command to the TPM.

Family “2.0” TCG Published Page 75
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

9 Interface Types

9.1 Introduction

This clause contains definitions for interface types. An interface type is type checked when it is
unmarshaled. These types are based on an underlying type that is indicated in the table title by the value
in parentheses. When an interface type is used, the base type is unmarshaled and then checked to see if
it has one of the allowed values.

9.2 TPMI_YES_NO

This interface type is used in place of a Boolean type in order to eliminate ambiguity in the handling of a
octet that conveys a single bit of information. This type only has two allowed values, YES (1) and NO (0).

NOTE This list is not used as input to the TPM.

Table 39 — Definition of (BYTE) TPMI_YES_NO Type

Value Description
NO a value of 0
YES a value of 1

#TPM_RC_VALUE

9.3 TPMI_DH_OBJECT

The TPMI_DH_OBJECT interface type is a handle that references a loaded object. The handles in this
set are used to refer to either transient or persistent object. The range of these values would change
according to the TPM implementation.

NOTE These interface types should not be used by system software to qualify the keys produced by the TPM.
The value returned by the TPM shall be used to reference the object.

Table 40 — Definition of (TPM_HANDLE) TPMI_DH_OBJECT Type

Values Comments
{TRANSIENT_FIRST:-TRANSIENT_LAST} allowed range for transient objects
{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects
+TPM_RH_NULL the conditional value
#TPM_RC_VALUE

Page 76 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

9.4 TPMI_DH_PERSISTENT

The TPMI_DH_PERSISTENT interface type is a handle that references a location for a transient object.
This type is used in TPM2_EvictControl() to indicate the handle to be assigned to the persistent object.

Table 41 — Definition of (TPM_HANDLE) TPMI_DH_PERSISTENT Type

Values Comments

{PERSISTENT_FIRST:PERSISTENT_LAST} allowed range for persistent objects
#TPM_RC_VALUE

9.5 TPMI_DH_ENTITY

The TPMI_DH_ENTITY interface type is TPM-defined values that are used to indicate that the handle
refers to an authValue. The range of these values would change according to the TPM implementation.

Table 42 — Definition of (TPM_HANDLE) TPMI_DH_ENTITY Type <IN>

Values Comments
TPM_RH_OWNER
TPM_RH_ENDORSEMENT

TPM_RH_PLATFORM

TPM_RH_LOCKOUT

{TRANSIENT_FIRST : TRANSIENT_LAST} range of object handles

{PERSISTENT_FIRST : PERSISTENT_LAST}
{NV_INDEX_FIRST : NV_INDEX_LAST}
{PCR_FIRST : PCR_LAST}

{TPM_RH_AUTH_00 : TPM_RH_AUTH_FF} range of vendor-specific authorization values
+TPM_RH_NULL conditional value
#TPM_RC_VALUE

9.6 TPMI_DH_PCR

This interface type consists of the handles that may be used as PCR references. The upper end of this
range of values would change according to the TPM implementation.

NOTE 1 Typically, the 0™ PCR will have a handle value of zero.

NOTE 2 The handle range for PCR is defined to be the same as the handle range for PCR in previous versions of
TPM specifications.

Table 43 — Definition of (TPM_HANDLE) TPMI_DH_PCR Type <IN>

Values Comments

{PCR_FIRST:PCR_LAST}

+TPM_RH_NULL conditional value
#TPM_RC_VALUE

Family “2.0” TCG Published Page 77
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

9.7 TPMI_SH_AUTH_SESSION

Part 2: Structures

The TPMI_SH_AUTH_SESSION interface type is TPM-defined values that are used to indicate that the

handle refers to an authorization session.

Table 44 — Definition of (TPM_HANDLE) TPMI_SH_AUTH_SESSION Type <IN/OUT>

Values

Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

range of HMAC authorization session handles

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST}

range of policy authorization session handles

+TPM_RS_PW

a password authorization

#TPM_RC_VALUE

error returned if the handle is out of range

9.8 TPMI_SH_HMAC

This interface type is used for an authorization handle when the authorization session uses an HMAC.

Table 45 — Definition of (TPM_HANDLE) TPMI_SH_HMAC Type <IN/OUT>

Values

Comments

{HMAC_SESSION_FIRST: HMAC_SESSION_LAST}

range of HMAC authorization session handles

#TPM_RC_VALUE

error returned if the handle is out of range

9.9 TPMI_SH_POLICY

This interface type is used for a policy handle when it appears in a policy command.

Table 46 — Definition of (TPM_HANDLE) TPMI_SH_POLICY Type <IN/OUT>

Values

Comments

{POLICY_SESSION_FIRST: POLICY_SESSION_LAST}

range of policy authorization session handles

#TPM_RC_VALUE

error returned if the handle is out of range

9.10 TPMI_DH_CONTEXT

This type defines the handle values that may be used in TPM2_ContextSave() or TPM2_Flush().

Table 47 — Definition of (TPM_HANDLE) TPMI_DH_CONTEXT Type

Values

Comments

{HMAC_SESSION_FIRST : HMAC_SESSION_LAST}

{POLICY_SESSION_FIRST:POLICY_SESSION_LAST}

{TRANSIENT_FIRST:TRANSIENT_LAST}

#TPM_RC_VALUE

Page 78
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

9.11 TPMI_RH_HIERARCHY

Trusted Platform Module Library

The TPMI_RH_HIERARCHY interface type is used as the type of a handle in a command when the
handle is required to be one of the hierarchy selectors.

Table 48 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY Type

Values

Comments

TPM_RH_OWNER

Storage hierarchy

TPM_RH_PLATFORM

Platform hierarchy

TPM_RH_ENDORSEMENT

Endorsement hierarchy

+TPM_RH_NULL

no hierarchy

#TPM_RC_VALUE

response code returned when the unmarshaling of this type fails

9.12 TPMI_RH_ENABLES

The TPMI_RH_ENABLES interface type is used as the type of a handle in a command when the handle
is required to be one of the hierarchy or NV enables.

Table 49 — Definition of (TPM_HANDLE) TPMI_RH_ENABLES Type

Values

Comments

TPM_RH_OWNER

Storage hierarchy

TPM_RH_PLATFORM

Platform hierarchy

TPM_RH_ENDORSEMENT

Endorsement hierarchy

TPM_RH_PLATFORM_NV

Platform NV

+TPM_RH_NULL

no hierarchy

#TPM_RC_VALUE

response code returned when the unmarshaling of this type fails

Family “2.0”
Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 79
October 30, 2014

Trusted Platform Module Library Part 2: Structures

9.13 TPMI_RH_HIERARCHY_AUTH

This interface type is used as the type of a handle in a command when the handle is required to be one of
the hierarchy selectors or the Lockout Authorization.

Table 50 — Definition of (TPM_HANDLE) TPMI_RH_HIERARCHY_AUTH Type <IN>

Values Comments

TPM_RH_OWNER
TPM_RH_PLATFORM

Storage hierarchy

Platform hierarchy

TPM_RH_ENDORSEMENT Endorsement hierarchy

TPM_RH_LOCKOUT Lockout Authorization

#TPM_RC_VALUE

response code returned when the unmarshaling of this type fails

9.14 TPMI_RH_PLATFORM

The TPMI_RH_PLATFORM interface type is used as the type of a handle in a command when the only
allowed handle is TPM_RH_PLATFORM indicating that Platform Authorization is required.

Table 51 — Definition of (TPM_HANDLE) TPMI_RH_PLATFORM Type <IN>

Values Comments

TPM_RH_PLATFORM
#TPM_RC_VALUE

Platform hierarchy

response code returned when the unmarshaling of this type fails

9.15 TPMI_RH_OWNER

This interface type is used as the type of a handle in a command when the only allowed handle is
TPM_RH_OWNER indicating that Owner Authorization is required.

Table 52 — Definition of (TPM_HANDLE) TPMI_RH_OWNER Type <IN>

Values Comments

TPM_RH_OWNER Owner hierarchy

+TPM_RH_NULL

may allow the null handle

#TPM_RC_VALUE

response code returned when the unmarshaling of this type fails

Page 80
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

9.16 TPMI_RH_ENDORSEMENT

This interface type is used as the type of a handle in a command when the only allowed handle is
TPM_RH_ENDORSEMENT indicating that Endorsement Authorization is required.

Table 53 — Definition of (TPM_HANDLE) TPMI_RH_ENDORSEMENT Type <IN>

Values Comments

TPM_RH_ENDORSEMENT Endorsement hierarchy

+TPM_RH_NULL may allow the null handle

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.17 TPMI_RH_PROVISION

The TPMI_RH_PROVISION interface type is used as the type of the handle in a command when the only
allowed handles are either TPM_RH_OWNER or TPM_RH_PLATFORM indicating that either Platform
Authorization or Owner Authorization are allowed.

In most cases, either Platform Authorization or Owner Authorization may be used to authorize the
commands used for management of the resources of the TPM and this interface type will be used.

Table 54 — Definition of (TPM_HANDLE) TPMI_RH_PROVISION Type <IN>

Value Comments

TPM_RH_OWNER handle for Owner Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.18 TPMI_RH_CLEAR

The TPMI_RH_CLEAR interface type is used as the type of the handle in a command when the only
allowed handles are either TPM_RH_LOCKOUT or TPM_RH_PLATFORM indicating that either Platform
Authorization or Lockout Authorization are allowed.

This interface type is normally used for performing or controlling TPM2_Clear().

Table 55 — Definition of (TPM_HANDLE) TPMI_RH_CLEAR Type <IN>

Value Comments

TPM_RH_LOCKOUT handle for Lockout Authorization

TPM_RH_PLATFORM handle for Platform Authorization

#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

Family “2.0” TCG Published Page 81

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

9.19 TPMI_RH_NV_AUTH

This interface type is used to identify the source of the authorization for access to an NV location. The
handle value of a TPMI_RH_NV_AUTH shall indicate that the authorization value is either Platform
Authorization, Owner Authorization, or the authValue. This type is used in the commands that access an
NV Index (commands of the form TPM2_NV_xxx) other than TPM2_NV_DefineSpace() and
TPM2_NV_UndefineSpace().

Table 56 — Definition of (TPM_HANDLE) TPMI_RH_NV_AUTH Type <IN>

Value Comments
TPM_RH_PLATFORM Platform Authorization is allowed
TPM_RH_OWNER Owner Authorization is allowed

{NV_INDEX_FIRST:NV_INDEX_LAST} range for NV locations

#TPM_RC_VALUE response code returned when unmarshaling of this type fails

9.20 TPMI_RH_LOCKOUT

The TPMI_RH_LOCKOUT interface type is used as the type of a handle in a command when the only
allowed handle is TPM_RH_LOCKOUT indicating that Lockout Authorization is required.

Table 57 — Definition of (TPM_HANDLE) TPMI_RH_LOCKOUT Type <IN>

Value Comments
TPM_RH_LOCKOUT handle for Lockout Authorization
#TPM_RC_VALUE response code returned when the unmarshaling of this type fails

9.21 TPMI_RH_NV_INDEX

This interface type is used to identify an NV location. This type is used in the NV commands.

Table 58 — Definition of (TPM_HANDLE) TPMI_RH_NV_INDEX Type <IN/JOUT>

Value Comments

{NV_INDEX_FIRST:NV_INDEX_LAST} Range of NV Indexes

#TPM_RC_VALUE error returned if the handle is out of range

Page 82 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

9.22 TPMI_ALG_HASH

A TPMI_ALG_HASH is an interface type of all the hash algorithms implemented on a specific TPM. The
selector in Table 59 indicates all of the hash algorithms that have an algorithm ID assigned by the TCG
and does not indicate the algorithms that will be accepted by a TPM.

NOTE When implemented, each of the algorithm entries is delimted by #ifdef and #endif so that, if the algorithm
is not implemented in a specific TPM, that algorithm is not included in the interface type.

Table 59 — Definition of (TPM_ALG_ID) TPMI_ALG_HASH Type

Values Comments

TPM_ALG_!ALG.H all hash algorithms defined by the TCG

+TPM_ALG_NULL
#TPM_RC_HASH

9.23 TPMI_ALG_ASYM (Asymmetric Algorithms)

A TPMI_ALG_ASYM is an interface type of all the asymmetric algorithms implemented on a specific TPM.
Table 60 lists each of the asymmetric algorithms that have an algorithm ID assigned by the TCG.

Table 60 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM Type

Values Comments

TPM_ALG_!ALG.AO all asymmetric object types

+TPM_ALG_NULL

#TPM_RC_ASYMMETRIC

Family “2.0” TCG Published Page 83
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

9.24 TPMI_ALG_SYM (Symmetric Algorithms)

A TPMI_ALG_SYM is an interface type of all the symmetric algorithms that have an algorithm 1D assigned
by the TCG and are implemented on the TPM.

NOTE The validation code produced by an example script will produce a CASE statement with a case for each of
the values in the “Values” column. The case for a value is delimited by a #ifdef/#endif pair so that if the
algorithm is not implemented on the TPM, then the case for the algorithm is not generated, and use of the
algorithm will cause a TPM error (TPM_RC_SYMMETRIC).

Table 61 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM Type

Values Comments

TPM_ALG_!ALG.S all symmetric block ciphers

TPM_ALG_XOR required

+TPM_ALG_NULL required to be present in all versions of this table
#TPM_RC_SYMMETRIC

9.25 TPMI_ALG_SYM_OBJECT
A TPMI_ALG_SYM_OBJECT is an interface type of all the TCG-defined symmetric algorithms that may

be used as companion symmetric encryption algorithm for an asymmetric object. All algorithms in this list
shall be block ciphers usable in Cipher Feedback (CFB).

NOTE TPM_ALG_XOR is not allowed in this list.

Table 62 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_OBJECT Type

Values Comments

TPM_ALG_!ALG.S all symmetric block ciphers

+TPM_ALG_NULL required to be present in all versions of this table
#TPM_RC_SYMMETRIC

9.26 TPMI_ALG_SYM_MODE

A TPMI_ALG_SYM_MODE is an interface type of all the TCG-defined block-cipher modes of operation.

Table 63 — Definition of (TPM_ALG_ID) TPMI_ALG_SYM_MODE Type

Values Comments

TPM_ALG_!ALG.SE all symmetric block cipher encryption/decryption modes

+TPM_ALG_NULL

#TPM_RC_MODE

Page 84 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

9.27 TPMI_ALG_KDF (Key and Mask Generation Functions)

A TPMI_ALG_KDEF is an interface type of all the key derivation functions implemented on a specific TPM.
Table 64 is exemplary and would change based on the algorithms implemented in a TPM.

Table 64 — Definition of (TPM_ALG_ID) TPMI_ALG_KDF Type

Values

Comments

TPM_ALG_!ALG.HM

all defined hash-based key and mask generation functions

+TPM_ALG_NULL

#TPM_RC_KDF

9.28 TPMI_ALG_SIG_SCHEME

This is the definition of the interface type for any signature scheme.

Table 65 — Definition of (TPM_ALG_ID) TPMI_ALG_SIG_SCHEME Type

Values

Comments

TPM_ALG_!ALG.ax

all asymmetric signing schemes including anonymous schemes

TPM_ALG_HMAC

present on all TPM

+TPM_ALG_NULL

#TPM_RC_SCHEME

response code when a signature scheme is not correct

9.29 TPMI_ECC_KEY_EXCHANGE

This is the definition of the interface type for an ECC key exchange scheme.

NOTE Because of the “{ECC}” in the table title, the only values in this table will be those that are dependent on
ECC being implemented, even if they otherwise have the correct type attributes.

Table 66 — Definition of (TPM_ALG_ID)}{ECC} TPMI_ECC_KEY_EXCHANGE Type

Values Comments
TPM_ALG_'ALG.AM any ECC key exchange method
TPM_ALG_SM2 SM2 is typed as signing but may be used as a key-exchange protocol

+TPM_ALG_NULL

#TPM_RC_SCHEME

response code when a key exchange scheme is not correct

Family “2.0”
Level 00 Revision 01.16

TCG Published Page 85
Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

9.30 TPMI_ST_COMMAND_TAG

This interface type is used for the command tags.

The response code for a bad command tag has the same value as the TPM 1.2 response code
(TPM_BAD_TAG). This value is used in case the software is not compatible with this specification and an
unexpected response code might have unexpected side effects.

Table 67 — Definition of (TPM_ST) TPMI_ST_COMMAND_TAG Type
Values Comments
TPM_ST_NO_SESSIONS
TPM_ST_SESSIONS

#TPM_RC_BAD_TAG

Page 86 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10 Structure Definitions

10.1 TPMS_EMPTY

This structure is used as a placeholder. In some cases, a union will have a selector value with no data to
unmarshal when that type is selected. Rather than leave the entry empty, TPMS_EMPTY may be
selected. Alternatively, a more descriptive value may be created as a type of TPMS_EMPTY (such as,
TPMS_SCHEME_RSAES).

NOTE The tool chain will special case this structure and create the marshaling and unmarshaling code for this
structure but not create a type definition. The unmarshaling code for this structure will return
TPM_RC_SUCCESS and the marshaling code will return 0.

Table 68 — Definition of TPMS_EMPTY Structure <IN/OUT>

Parameter Type Description

a structure with no member

10.2 TPMS_ALGORITHM_DESCRIPTION

This structure is a return value for a TPM2_GetCapability() that reads the installed algorithms.

Table 69 — Definition of TPMS_ALGORITHM_DESCRIPTION Structure <OUT>

Parameter Type Description
alg TPM_ALG_ID an algorithm
attributes TPMA_ALGORITHM the attributes of the algorithm

10.3 Hash/Digest Structures

10.3.1 TPMU_HA (Hash)

A TPMU_HA is a union of all the hash algorithms implemented on a TPM.

NOTE 1 The 'ALG.H and 'ALG.H values represent all algorithms defined in the TCG registry as being type “H”.

Family “2.0” TCG Published Page 87
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

NOTE 2 If processed by an automated tool, each entry of the table should be qualified (with #ifdef/#endif) so that if
the hash algorithm is not implemented on the TPM, the parameter associated with that hash is not
present. This will keep the union from being larger than the largest digest of a hash implemented on that

TPM.
Table 70 — Definition of TPMU_HA Union <IN/OUT, S>
Parameter Type Selector Description
IALG.H [IALG.H_DIGEST_SIZE] BYTE TPM_ALG_!ALG.H all hashes
null TPM_ALG_NULL

10.3.2 TPMT_HA

Table 71 shows the basic hash-agile structure used in this specification. To handle hash agility, this
structure uses the hashAlg parameter to indicate the algorithm used to compute the digest and, by
implication, the size of the digest.

When transmitted, only the number of octets indicated by hashAlg is sent.

NOTE In the reference code, when a TPMT_HA is allocated, the digest field is large enough to support the
largest hash algorithm in the TPMU_HA union.

Table 71 — Definition of TPMT_HA Structure <IN/OUT>

Parameter Type Description

hashAlg +TPMI_ALG_HASH selector of the hash contained in the digest that implies the
size of the digest

NOTE The leading “+” on the type indicates that this structure
should pass an indication to the unmarshaling function for
TPMI_ALG_HASH so that TPM_ALG_NULL will be
allowed if a use of a TPMT_HA allows TPM_ALG_NULL.

[hashAlg] digest TPMU_HA the digest data

10.4 Sized Buffers

10.4.1 Introduction

The “TPM2B_" prefix is used for a structure that has a size field followed by a data buffer with the
indicated number of octets. The size field is 16 bits.

When the type of the second parameter in a TPM2B_ structure is BYTE, the TPM shall unmarshal the
indicated number of octets, which may be zero.

When the type of the second parameter in the TPM2B__ structure is not BYTE, the value of the size field
shall either be zero indicating that no structure is to be unmarshaled; or it shall be identical to the number
of octets unmarshaled for the second parameter.

NOTE 1 If the TPM2B_ defines a structure and not an array of octets, then the structure is self-describing and the
TPM will be able to determine how many octets are in the structure when it is unmarshaled. If that number
of octets is not equal to the size parameter, then it is an error.

NOTE 2 The reason that a structure may be put into a TPM2B_ is that the parts of the structure may be handled
as separate opaque blocks by the application/system software. Rather than require that all of the
structures in a command or response be marshaled or unmarshaled sequentially, the size field allows the
structure to be manipulated as an opaque block. Placing a structure in a TPM2B_ also makes it possible
to use parameter encryption on the structure.

Page 88 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

If a TPM2B_ is encrypted, the TPM will encrypt/decrypt the data field of the TPM2B_ but not the size
parameter. The TPM will encrypt/decrypt the number of octets indicated by the size field.

NOTE 3 In the reference implementation, a TPM2B type is defined that is a 16-bit size field followed by a single
byte of data. The TPM2B_ is then defined as a union that contains a TPM2B (union member ‘b’) and the
structure in the definition table (union member ‘t’). This union is used for internally generated structures
so that there is a way to define a structure of the correct size (forced by the ‘' member) while giving a way
to pass the structure generically as a ‘b’. Most function calls use the 't" member so that the compiler will
generate a warning if there is a type error (a TPM2B_ of the wrong type). Having the type checked helps
avoid many issues with buffer overflow caused by a too small buffer being passed to a function.

10.4.2 TPM2B_DIGEST

This structure is used for a sized buffer that cannot be larger than the largest digest produced by any
hash algorithm implemented on the TPM.

As with all sized buffers, the size is checked to see if it is within the prescribed range. If not, the response
code is TPM_RC_SIZE.

NOTE For any structure, like the one below, that contains an implied size check, it is implied that TPM_RC_SIZE
is a possible response code and the response code will not be listed in the table.

Table 72 — Definition of TPM2B_DIGEST Structure

Parameter Type Description
size UINT16 size in octets of the buffer field; may be 0
buffer[size]{:sizeof(TPMU_HA)} BYTE the buffer area that can be no larger than a digest

10.4.3 TPM2B_DATA

This structure is used for a data buffer that is required to be no larger than the size of the Name of an
object. This size limit includes the algorithm ID of the hash and the hash data.

Table 73 — Definition of TPM2B_DATA Structure

Parameter Type Description

size UINT16 size in octets of the buffer field; may be O

buffer[size]{:sizeof(TPMT_HA)} BYTE the buffer area that contains the algorithm ID and the
digest

10.4.4 TPM2B_NONCE

Table 74 — Definition of Types for TPM2B_NONCE

Type Name Description
TPM2B_DIGEST TPM2B_NONCE size limited to the same as the digest structure
Family “2.0” TCG Published Page 89

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.4.5 TPM2B_AUTH

This structure is used for an authorization value and limits an authValue to being no larger than the
largest digest produced by a TPM. In order to ensure consistency within an object, the authValue may be
no larger than the size of the digest produced by the object's nameAlg. This ensures that any TPM that
can load the object will be able to handle the authValue of the object.

Table 75 — Definition of Types for TPM2B_AUTH

Type Name Description

TPM2B_DIGEST TPM2B_AUTH size limited to the same as the digest structure

10.4.6 TPM2B_OPERAND
This type is a sized buffer that can hold an operand for a comparison with an NV Index location. The

maximum size of the operand is implementation dependent but a TPM is required to support an operand
size that is at least as big as the digest produced by any of the hash algorithms implemented on the TPM.

Table 76 — Definition of Types for TPM2B_OPERAND

Type Name Description

TPM2B_DIGEST TPM2B_OPERAND size limited to the same as the digest structure

10.4.7 TPM2B_EVENT

This type is a sized buffer that can hold event data.

Table 77 — Definition of TPM2B_EVENT Structure

Parameter Type Description
size UINT16 size of the operand buffer
buffer [size] {:1024} BYTE the operand

10.4.8 TPM2B_MAX_BUFFER

This type is a sized buffer that can hold a maximally sized buffer for commands that use a large data
buffer such as TPM2_PCR_Event(), TPM2_Hash(), TPM2_SequenceUpdate(), or
TPM2_FieldUpgradeData().

NOTE The above list is not comprehensive and other commands may use this buffer type.

Table 78 — Definition of TPM2B_MAX_ BUFFER Structure

Parameter Type Description
size UINT16 size of the buffer
buffer [size] {{MAX_DIGEST_BUFFER} |BYTE the operand

NOTE MAX_DIGEST_BUFFER is TPM-
dependent but is required to be at least 1,024.

Page 90 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

10.4.9 TPM2B_MAX_NV_BUFFER

Trusted Platform Module Library

This type is a sized buffer that can hold a maximally sized buffer for NV data commands such as
TPM2_NV_Read(), TPM2_NV_Write(), and TPM2_NV_Certify().

Table 79 — Definition of TPM2B_MAX_NV_BUFFER Structure

Parameter Type Description
size UINT16 size of the buffer
buffer [size] {{MAX_NV_BUFFER_SIZE} |BYTE the operand

NOTE MAX_NV_BUFFER_SIZE is TPM-
dependent

10.4.10 TPM2B_TIMEOUT

This TPM-dependent structure is used to provide the timeout value for an authorization.

Table 80 — Definition of TPM2B_TIMEOUT Structure <IN/OUT>

Parameter Type Description
size UINT16 size of the timeout value

This value is fixed for a TPM implementation.
buffer [size] {:sizeof(UINT64)} BYTE the timeout value

10.4.11 TPM2B_IV

This structure is used for passing an initial value for a symmetric block cipher to or from the TPM. The
size is set to be the largest block size of any implemented symmetric cipher implemented on the TPM.

Table 81 — Definition of TPM2B_IV Structure <IN/OUT>

Parameter Type Description
size UINT16 size of the timeout value
This value is fixed for a TPM implementation.
buffer [size] {MAX_SYM_BLOCK_SIZE} |BYTE the timeout value
Family “2.0” TCG Published Page 91
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.5 Names

10.5.1 Introduction

The Name of an entity is used in place of the handle in authorization computations. The substitution
occurs in cpHash and policyHash computations.

For an entity that is defined by a public area (objects and NV Indexes), the Name is the hash of the public
structure that defines the entity. The hash is done using the nameAlg of the entity.

NOTE For an object, a TPMT_PUBLIC defines the entity. For an NV Index, a TPMS_NV_PUBLIC defines the
entity.

For entities not defined by a public area, the Name is the handle that is used to refer to the entity.
10.5.2 TPMU_NAME

Table 82 — Definition of TPMU_NAME Union <>

Parameter Type Selector [Description
digest TPMT_HA when the Name is a digest
handle TPM_HANDLE when the Name is a handle

10.5.3 TPM2B_NAME

This buffer holds a Name for any entity type.

The type of Name in the structure is determined by context and the size parameter. If size is four, then
the Name is a handle. If size is zero, then no Name is present. Otherwise, the size shall be the size of a
TPM_ALG_ID plus the size of the digest produced by the indicated hash algorithm.

Table 83 — Definition of TPM2B_NAME Structure

Parameter Type Description

size UINT16 size of the Name structure
namel[sizel{:sizeof(TPMU_NAME)} BYTE the Name structure

Page 92 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
10.6 PCR Structures

10.6.1 TPMS_PCR_SELECT

This structure provides a standard method of specifying a list of PCR.
PCR numbering starts at zero.

pcrSelect is an array of octets. The octet containing the bit corresponding to a specific PCR is found by
dividing the PCR number by 8.

EXAMPLE 1 The bit in pcrSelect corresponding to PCR 19 is in pcrSelect [2] (19/8 = 2).

The least significant bit in a octet is bit number 0. The bit in the octet associated with a PCR is the
remainder after division by 8.

EXAMPLE 2 The bit in pcrSelect [2] corresponding to PCR 19 is bit 3 (19 mod 8). If sizeofSelect is 3, then the
pcrSelect array that would specify PCR 19 and no other PCR is 00 00 08 .

Each bit in pcrSelect indicates whether the corresponding PCR is selected (1) or not (0). If the pcrSelect
is all zero bits, then no PCR is selected.

sizeofSelect indicates the number of octets in pcrSelect. The allowable values for sizeofSelect is
determined by the number of PCR required by the applicable platform-specific specification and the
number of PCR implemented in the TPM. The minimum value for sizeofSelect is:

PCR_SELECT_MIN :=(PLATFORM_PCR +7) /8 (1)
where

PLATFORM_PCR the number of PCR required by the platform-specific specification

The maximum value for sizeofSelect is:
PCR_SELECT _MAX := (IMPLEMENTATION_PCR + 7) / 8 (2)
where
IMPLEMENTATION_PCR the number of PCR implemented on the TPM

If the TPM implements more PCR than there are bits in pcrSelect, the additional PCR are not selected.

EXAMPLE 3 If the applicable platform-specific specification requires that the TPM have a minimum of 24 PCR but the
TPM implements 32, then a PCR select of 3 octets would imply that PCR 24-31 are not selected.

Table 84 — Definition of TPMS_PCR_SELECT Structure

Parameter Type Description

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array
pcrSelect [sizeofSelect] {{PCR_SELECT_MAX} |BYTE the bit map of selected PCR
#TPM_RC_VALUE

Family “2.0” TCG Published Page 93
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures
10.6.2 TPMS_PCR_SELECTION

Table 85 — Definition of TPMS_PCR_SELECTION Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm associated with the
selection

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array

pcrSelect [sizeofSelect] {{PCR_SELECT_MAX} |BYTE the bit map of selected PCR

#TPM_RC_VALUE

10.7 Tickets

10.7.1 Introduction

Tickets are evidence that the TPM has previously processed some information. A ticket is an HMAC over
the data using a secret key known only to the TPM. A ticket is a way to expand the state memory of the
TPM. A ticket is only usable by the TPM that produced it.

The formulations for tickets shown in this clause are to be used by a TPM that is compliant with this
specification.

The method of creating the ticket data is:

HMAC contexaig(proof, (ticketType || param { [| param {...})) (3)
where
HMAC ontexaig() an HMAC using the hash used for context integrity
proof a TPM secret value (depends on hierarchy)
ticketType a value to differentiate the tickets
param one or more values that were checked by the TPM

The proof value used for each hierarchy is shown in Table 86.

Table 86 — Values for proof Used in Tickets

Hierarchy proof Description

None Empty Buffer

Platform phProof a value that changes with each change of the PPS

Owner shProof a value that changes with each change of the SPS

Endorsement ehProof a value that changes with each change of either the EPS or SPS
Page 94 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

The format for a ticket is shown in Table 87. This is a template for the tickets shown in the remainder of
this clause.

Table 87 — General Format of a Ticket

Parameter Type Description

tag TPM_ST structure tag indicating the type of the ticket
hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the proof value

digest TPM2B_DIGEST the HMAC over the ticket-specific data

10.7.2 A NULL Ticket

When a command requires a ticket and no ticket is available, the caller is required to provide a structure
with a ticket tag that is correct for the context. The hierarchy shall be set to TPM_RH_NULL, and digest
shall be the Empty Buffer (a buffer with a size field of zero). This construct is the NULL Ticket. When a
response indicates that a ticket is returned, the TPM may return a NULL Ticket.

NOTE Because each use of a ticket requires that the structure tag for the ticket be appropriate for the use, there
is no single representation of a NULL Ticket that will work in all circumstances. Minimally, a NULL ticket
will have a structure type that is appropriate for the context.

10.7.3 TPMT_TK_CREATION

This ticket is produced by TPM2_Create() or TPM2_CreatePrimary(). It is used to bind the creation data
to the object to which it applies. The ticket is computed by

HMAC soncextaig(proof, (TPM_ST_CREATION /| name || Hyameay(TPMS_CREATION_DATA))) (4)

where
HMAC ontextag() an HMAC using the context integrity hash algorithm
proof a TPM secret value associated with the hierarchy associated with
name
TPM_ST_CREATION a value used to ensure that the ticket is properly used
name the Name of the object to which the creation data is to be associated
Hyameaig() hash using the nameAlg of the created object

TPMS_CREATION_DATA the creation data structure associated with name

Table 88 — Definition of TPMT_TK_CREATION Structure

Parameter Type Description

tag {TPM_ST_CREATION} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when tag is not TPM_ST_CREATION

hierarchy TPMI_RH_HIERARCHY+ |[the hierarchy containing name

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Creation Ticket is the tuple <TPM_ST_CREATION, TPM_RH_NULL, 0x0000>.

Family “2.0” TCG Published Page 95
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.7.4 TPMT_TK_VERIFIED

This ticket is produced by TPM2_VerifySignature(). This formulation is used for multiple ticket uses. The
ticket provides evidence that the TPM has validated that a digest was signed by a key with the Name of
keyName. The ticket is computed by

HMAC contextaig(proof, (TPM_ST_VERIFIED [/ digest || keyName)) (5)
where
HMAC ontextaig() an HMAC using the context integrity hash
proof a TPM secret value associated with the hierarchy associated with

TPM_ST_VERIFIED

keyName

a value used to ensure that the ticket is properly used

digest the signed digest
keyName Name of the key that signed digest
Table 89 — Definition of TPMT_TK_VERIFIED Structure
Parameter Type Description
tag {TPM_ST_VERIFIED} TPM_ST ticket structure tag

#TPM_RC_TAG

error returned when tag is not TPM_ST_VERIFIED

hierarchy TPMI_RH_HIERARCHY+ [the hierarchy containing keyName

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

EXAMPLE A NULL Verified Ticket is the tuple <TPM_ST_VERIFIED, TPM_RH_NULL, 0x0000>.

Page 96 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.7.5 TPMT_TK_AUTH

This ticket is produced by TPM2_PolicySigned() and TPM2_PolicySecret() when the authorization has an
expiration time. The ticket is computed by

HMAC ontextaig(proof, (TPM_ST_AUTH_xxx [[timeout [[cpHash [| policyRef || authName)) (6)

where
HMAC ontextaig() an HMAC using the context integrity hash
proof a TPM secret value associated with the hierarchy of the object
associated with authName
TPM_ST_AUTH_xxx either TPM_ST _AUTH_SIGNED or TPM_ST_AUTH_SECRET; used to
ensure that the ticket is properly used
timeout implementation-specific value indicating when the authorization
expires
cpHash optional hash of the authorized command
policyRef optional reference to a policy value
authName Name of the object that signed the authorization
Table 90 — Definition of TPMT_TK_AUTH Structure
Parameter Type Description
tag {TPM_ST_AUTH_SIGNED, TPM_ST_AUTH_SECRET}|TPM_ST ticket structure tag
#TPM_RC_TAG error returned when tag is
not TPM_ST_AUTH
hierarchy TPMI_RH_HIERARCHY+ [the hierarchy of the object
used to produce the ticket
digest TPM2B_DIGEST This shall be the HMAC
produced using a proof
value of hierarchy.
EXAMPLE A NULL Auth Ticket is the tuple <TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000> or the tuple
<TPM_ST_AUTH_SIGNED, TPM_RH_NULL, 0x0000>
Family “2.0” TCG Published Page 97

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.7.6 TPMT_TK_HASHCHECK

This ticket is produced by TPM2_SequenceComplete() when the message that was digested did not start
with TPM_GENERATED_VALUE. The ticket is computed by

HMAC concexaig(proof, (TPM_ST_HASHCHECK [/ digest)) (7
where
HMAC ontexaig () an HMAC using the context integrity hash
proof a TPM secret value associated with the hierarchy indicated by the
command

TPM_ST_HASHCHECK a value used to ensure that the ticket is properly used
digest the digest of the data

Table 91 — Definition of TPMT_TK_HASHCHECK Structure

Parameter Type Description

tag {TPM_ST_HASHCHECK} TPM_ST ticket structure tag

#TPM_RC_TAG error returned when is not TPM_ST_HASHCHECK

hierarchy TPMI_RH_HIERARCHY+ [the hierarchy

digest TPM2B_DIGEST This shall be the HMAC produced using a proof value
of hierarchy.

10.8 Property Structures

10.8.1 TPMS_ALG_PROPERTY

This structure is used to report the properties of an algorithm identifier. It is returned in response to a
TPM2_GetCapability() with capability = TPM_CAP_ALG.

Table 92 — Definition of TPMS_ALG_PROPERTY Structure <OUT>

Parameter Type Description
alg TPM_ALG_ID an algorithm identifier
algProperties TPMA_ALGORITHM the attributes of the algorithm

10.8.2 TPMS_TAGGED_PROPERTY

This structure is used to report the properties that are UINT32 values. It is returned in response to a
TPM2_GetCapability().

Table 93 — Definition of TPMS_TAGGED_PROPERTY Structure <OUT>

Parameter Type Description

property TPM_PT a property identifier

value UINT32 the value of the property

Page 98 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.8.3 TPMS_TAGGED_PCR_SELECT

This structure is used in TPM2_GetCapability() to return the attributes of the PCR.

Table 94 — Definition of TPMS_TAGGED_PCR_SELECT Structure <OUT>

Parameter Type Description

tag TPM_PT the property identifier

sizeofSelect {PCR_SELECT_MIN:} UINT8 the size in octets of the pcrSelect array
pcrSelect [sizeofSelect] {{PCR_SELECT_MAX} |BYTE the bit map of PCR with the identified property
10.9 Lists

10.9.1 TPML_CC

A list of command codes may be input to the TPM or returned by the TPM depending on the command.

Table 95 — Definition of TPML_CC Structure

Parameter Type Description

count UINT32 number of commands in the commandCode list;
may be 0

commandCodes[count]{:MAX_CAP_CC} TPM_CC a list of command codes

The maximum only applies to a command code
list in a command. The response size is limited
only by the size of the parameter buffer.

#TPM_RC_SIZE response code when count is greater than the
maximum allowed list size

10.9.2 TPML_CCA

This list is only used in TPM2_GetCapability(capability = TPM_CAP_COMMANDYS).

The values in the list are returned in commandindex order with vendor-specific commands returned after
other commands. Because of the other attributes, the commands may not be returned in strict numerical
order. They will be in commandIindex order.

Table 96 — Definition of TPML_CCA Structure <OUT>

Parameter Type Description

count UINT32 number of values in the commandAttributes list;
may be 0

commandAttributes[count]{:MAX_CAP_CC} TPMA_CC a list of command codes attributes

Family “2.0” TCG Published Page 99

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

10.9.3 TPML_ALG

This list is returned by TPM2_IncrementalSelfTest().

Part 2: Structures

Table 97 — Definition of TPML_ALG Structure

Parameter

Type

Description

count

UINT32

number of algorithms in the algorithms list; may be 0

algorithms[count]{:MAX_ALG_LIST_SIZE}

TPM_ALG_ID |a list of algorithm IDs

The maximum only applies to an algorithm list in a
command. The response size is limited only by the
size of the parameter buffer.

#TPM_RC_SIZE

response code when count is greater than the
maximum allowed list size

10.9.4 TPML_HANDLE

This structure is used when the TPM returns a list of loaded handles when the capability in
TPM2_GetCapability() is TPM_CAP_HANDLE.

NOTE This list is not used as input to the TPM.

Table 98 — Definition of TPML_HANDLE Structure <OUT>

Name Type Description

count UINT32 the number of handles in the list
may have a value of 0

handle[count]{: MAX_CAP_HANDLES} | TPM_HANDLE | an array of handles

#TPM_RC_SIZE

response code when count is greater than the
maximum allowed list size

10.9.5 TPML_DIGEST

This list is used to convey a list of digest values.

TPM2_PCR_Read().

This type is used in TPM2_PolicyOR() and in

Table 99 — Definition of TPML_DIGEST Structure

Parameter

Type

Description

count {2:}

UINT32

number of digests in the list, minimum is two for
TPM2_PolicyOR().

digests[count]{:8}

TPM2B_DIGEST

a list of digests

For TPM2_PolicyOR(), all digests will have been
computed using the digest of the policy session. For
TPM2_PCR_Read(), each digest will be the size of the
digest for the bank containing the PCR.

#TPM_RC_SIZE

response code when count is not at least two or is
greater than eight

Page 100
October 30, 2014

TCG Published Family “2.0”
Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.9.6 TPML_DIGEST_VALUES

This list is used to convey a list of digest values. This type is returned by TPM2_Event() and
TPM2_SequenceComplete() and is an input for TPM2_PCR_Extend().

NOTE 1 This construct limits the number of hashes in the list to the number of digests implemented in the TPM
rather than the number of PCR banks. This allows extra values to appear in a call to
TPM2_PCR_Extend().

NOTE 2 The digest for an unimplemented hash algorithm may not be in a list because the TPM may not recognize
the algorithm as being a hash and it may not know the digest size.

Table 100 — Definition of TPML_DIGEST_VALUES Structure

Parameter Type Description

count UINT32 number of digests in the list

digests[count]{:HASH_COUNT} TPMT_HA a list of tagged digests

#TPM_RC_SIZE response code when count is greater than the possible
number of banks

10.9.7 TPM2B_DIGEST_VALUES

Digest list in a sized buffer. This list is returned by TPM2_PCR_SequenceComplete().

Table 101 — Definition of TPM2B_DIGEST_VALUES Structure

Parameter Type Description
size UINT16 size of the operand buffer
buffer [size] {:sizeof(TPML_DIGEST_VALUES)} |BYTE the operand

10.9.8 TPML_PCR_SELECTION

This list is used to indicate the PCR that are included in a selection when more than one PCR value may
be selected.

This structure is an input parameter to TPM2_PolicyPCR() to indicate the PCR that will be included in the
digest of PCR for the authorization. The structure is used in TPM2_PCR_Read() command to indicate the
PCR values to be returned and in the response to indicate which PCR are included in the list of returned
digests. The structure is an output parameter from TPM2_Create() and indicates the PCR used in the
digest of the PCR state when the object was created. The structure is also contained in the attestation
structure of TPM2_Quote().

When this structure is used to select PCR to be included in a digest, the selected PCR are concatenated
to create a “message” containing all of the PCR, and then the message is hashed using the context-
specific hash algorithm.

Table 102 — Definition of TPML_PCR_SELECTION Structure

Parameter Type Description

count UINT32 number of selection structures
A value of zero is allowed.

pcrSelections[count]{:HASH_COUNT} TPMS_PCR_SELECTION |list of selections
#TPM_RC_SIZE response code when count is greater
Family “2.0” TCG Published Page 101

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

| than the possible number of banks

10.9.9 TPML_ALG_PROPERTY

This list is used to report on a list of algorithm attributes. It is returned in a TPM2_GetCapability().

Table 103 — Definition of TPML_ALG_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of algorithm properties structures
A value of zero is allowed.

algProperties[count]{:MAX_CAP_ALGS} TPMS_ALG_PROPERTY |list of properties

10.9.10 TPML_TAGGED_TPM_PROPERTY

This list is used to report on a list of properties that are TPMS_TAGGED_PROPERTY values. It is
returned by a TPM2_GetCapability().

Table 104 — Definition of TPML_TAGGED_TPM_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties
A value of zero is allowed.

tpmProperty[count]{:MAX_TPM_PROPERTIES} | TPMS_TAGGED_PROPERTY an array of tagged properties

10.9.11 TPML_TAGGED_PCR_PROPERTY

This list is used to report on a list of properties that are TPMS_PCR_SELECT values. It is returned by a
TPM2_GetCapability().

Table 105 — Definition of TPML_TAGGED_PCR_PROPERTY Structure <OUT>

Parameter Type Description

count UINT32 number of properties
A value of zero is allowed.

pcrProperty[count]{:MAX_PCR_PROPERTIES} |TPMS_TAGGED_PCR_SELECT [atagged PCR selection

10.9.12 TPML_ECC_CURVE

This list is used to report the ECC curve ID values supported by the TPM. It is returned by a
TPM2_GetCapability().

Table 106 — Definition of {ECC} TPML_ECC_CURVE Structure <OUT>

Parameter Type Description

count UINT32 number of curves
A value of zero is allowed.

eccCurves[count]{:MAX_ECC_CURVES} TPM_ECC_CURVE array of ECC curve identifiers

Page 102 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.10 Capabilities Structures

10.10.1 TPMU_CAPABILITIES

Table 107 — Definition of TPMU_CAPABILITIES Union <OUT>

Parameter Type Selector Description
algorithms TPML_ALG_PROPERTY TPM_CAP_ALGS

handles TPML_HANDLE TPM_CAP_HANDLES

command TPML_CCA TPM_CAP_COMMANDS

ppCommands TPML_CC TPM_CAP_PP_COMMANDS

auditCommands |TPML_CC TPM_CAP_AUDIT_COMMANDS

assignedPCR TPML_PCR_SELECTION TPM_CAP_PCRS

tpmProperties TPML_TAGGED_TPM_PROPERTY TPM_CAP_TPM_PROPERTIES

pcrProperties TPML_TAGGED_PCR_PROPERTY |TPM_CAP_PCR_PROPERTIES

eccCurves TPML_ECC_CURVE TPM_CAP_ECC_CURVES TPM_ALG_ECC

10.10.2 TPMS_CAPABILITY_DATA

This data area is returned in response to a TPM2_GetCapability().

Table 108 — Definition of TPMS_CAPABILITY_DATA Structure <OUT>

Parameter Type Description

capability TPM_CAP the capability

[capability]data TPMU_CAPABILITIES [the capability data

Family “2.0” TCG Published Page 103

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures
10.11 Clock/Counter Structures

10.11.1 TPMS_CLOCK_INFO

This structure is used in each of the attestation commands.

Table 109 — Definition of TPMS_CLOCK _INFO Structure

Parameter Type Description

clock UINT64 time in milliseconds during which the TPM has been powered
This structure element is used to report on the TPM's Clock value.

The value of Clock shall be recorded in non-volatile memory no
less often than once per 2?2 milliseconds (~69.9 minutes) of TPM
operation. The reference for the millisecond timer is the TPM
oscillator.

This value is reset to zero when the Storage Primary Seed is
changed (TPM2_Clear()).

This value may be advanced by TPM2_AdvanceClock().

resetCount UINT32 number of occurrences of TPM Reset since the last TPM2_Clear()

restartCount UINT32 number of times that TPM2_Shutdown() or _TPM_Hash_Start have
occurred since the last TPM Reset or TPM2_Clear().

safe TPMI_YES_NO no value of Clock greater than the current value of Clock has been
previously reported by the TPM. Set to YES on TPM2_Clear().

Page 104 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.11.2 Clock

Clock is a monotonically increasing counter that advances whenever power is applied to the TPM. The
value of Clock may be set forward with TPM2_ClockSet() if Owner Authorization or Platform Authorization
is provided. The value of Clock is incremented each millisecond.

TPM2_Clear() will set Clock to zero.

Clock will be non-volatile but may have a volatile component that is updated every millisecond with the
non-volatile component updated at a lower rate. If the implementation uses a volatile component, the non-
volatile component shall be updated no less frequently than every 2% milliseconds (~69.9 minutes). The
update rate of the non-volatile portion of Clock shall be reported by a TPM2_GetCapability() with
capability = TPM_CAP_TPM_PROPERTIES and property = TPM_PT_CLOCK_UPDATE.

10.11.3 ResetCount

This counter shall increment on each TPM Reset. This counter shall be reset to zero by TPM2_Clear().

10.11.4 RestartCount

This counter shall increment by one for each TPM Restart or TPM Resume. The restartCount shall be
reset to zero on a TPM Reset or TPM2_Clear().

10.11.5 Safe

This parameter is set to YES when the value reported in Clock is guaranteed to be unique for the current
Owner. It is set to NO when the value of Clock may have been reported in a previous attestation or
access.

This parameter will be YES if a TPM2_Startup() was preceded by TPM2_Shutdown() with no intervening
commands. It will also be YES after an update of the non-volatile bits of Clock have been updated at the
end of an update interval.

If a TPM implementation does not implement Clock, Safe shall always be NO and
TPMS_CLOCK_INFO.clock shall always be zero.

This parameter will be set to YES by TPM2_Clear().

10.11.6 TPMS_TIME_INFO

This structure is used in the TPM2_TICK attestation.

The Time value reported in this structure is reset whenever the TPM is reset. An implementation may
reset the value of Time any time after _TPM_Init and before the TPM returns after TPM2_Startup(). The
value of Time shall increment continuously while power is applied to the TPM.

Table 110 — Definition of TPMS_TIME_INFO Structure

Parameter Type Description

time UINT64 time in milliseconds since the last _TPM_lInit() or TPM2_Startup()
This structure element is used to report on the TPM's Time value.

clockinfo TPMS_CLOCK_INFO a structure containing the clock information

Family “2.0” TCG Published Page 105

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures
10.12 TPM Attestation Structures

10.12.1 Introduction

This clause describes the structures that are used when a TPM creates a structure to be signed. The
signing structures follow a standard format TPM2B_ATTEST with case-specific information embedded.

10.12.2 TPMS_TIME_ATTEST_INFO

This structure is used when the TPM performs TPM2_GetClock.

Table 111 — Definition of TPMS_TIME_ATTEST_INFO Structure <OUT>

Parameter Type Description

time TPMS_TIME_INFO the Time, Clock, resetCount, restartCount, and Safe indicator

firmwareVersion UINT64 a TPM vendor-specific value indicating the version number of the
firmware

10.12.3 TPMS_CERTIFY_INFO

This is the attested data for TPM2_Certify().

Table 112 — Definition of TPMS_CERTIFY_INFO Structure <OUT>

Parameter Type Description
name TPM2B_NAME Name of the certified object
qualifiedName TPM2B_NAME Qualified Name of the certified object

10.12.1 TPMS_QUOTE_INFO

This is the attested data for TPM2_Quote().

Table 113 — Definition of TPMS_QUOTE_INFO Structure <OQUT>

Parameter Type Description

pcrSelect TPML_PCR_SELECTION |information on algID, PCR selected and digest

pcrDigest TPM2B_DIGEST digest of the selected PCR using the hash of the signing key
Page 106 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

10.12.2 TPMS_COMMAND_AUDIT_INFO

This is the attested data for TPM2_GetCommandAuditDigest().

Table 114 — Definition of TPMS_COMMAND_AUDIT_INFO Structure <OUT>

Parameter Type Description

auditCounter UINT64 the monotonic audit counter

digestAlg TPM_ALG_ID hash algorithm used for the command audit

auditDigest TPM2B_DIGEST the current value of the audit digest

commandDigest TPM2B_DIGEST digest of the command codes being audited using digestAlg

10.12.3 TPMS_SESSION_AUDIT_INFO

This is the attested data for TPM2_GetSessionAuditDigest().

Table 115 — Definition of TPMS_SESSION_AUDIT_INFO Structure <OUT>

Parameter Type Description

exclusiveSession TPMI_YES_NO current exclusive status of the session

TRUE if all of the commands recorded in the sessionDigest were
executed without any intervening TPM command that did not use
this audit session

sessionDigest TPM2B_DIGEST the current value of the session audit digest

10.12.4 TPMS_CREATION_INFO

This is the attested data for TPM2_CertifyCreation().

Table 116 — Definition of TPMS_CREATION_INFO Structure <OUT>

Parameter Type Description
objectName TPM2B_NAME Name of the object
creationHash TPM2B_DIGEST creationHash

10.12.5 TPMS_NV_CERTIFY_INFO

This structure contains the Name and contents of the selected NV Index that is certified by
TPM2_NV_Certify().

Table 117 — Definition of TPMS_NV_CERTIFY_INFO Structure <OUT>

Parameter Type Description

indexName TPM2B_NAME Name of the NV Index

offset UINT16 the offset parameter of TPM2_NV_Certify()

nvContents TPM2B_MAX_NV_BUFFER |contents of the NV Index

Family “2.0” TCG Published Page 107

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures
10.12.6 TPMI_ST_ATTEST

Table 118 — Definition of (TPM_ST) TPMI_ST_ATTEST Type <OUT>

Value Description

TPM_ST_ATTEST_CERTIFY generated by TPM2_Certify()
TPM_ST_ATTEST_QUOTE generated by TPM2_Quote()
TPM_ST_ATTEST_SESSION_AUDIT generated by TPM2_GetSessionAuditDigest()
TPM_ST_ATTEST_COMMAND_AUDIT generated by TPM2_GetCommandAuditDigest()
TPM_ST_ATTEST_TIME generated by TPM2_GetTime()
TPM_ST_ATTEST_CREATION generated by TPM2_CertifyCreation()
TPM_ST_ATTEST_NV generated by TPM2_NV_Certify()

10.12.7 TPMU_ATTEST

Table 119 — Definition of TPMU_ATTEST Union <OUT>

Parameter Type Selector

certify TPMS_CERTIFY_INFO TPM_ST_ATTEST_CERTIFY

creation TPMS_CREATION_INFO TPM_ST_ATTEST_CREATION

quote TPMS_QUOTE_INFO TPM_ST_ATTEST_QUOTE

commandAudit TPMS_COMMAND_AUDIT_INFO | TPM_ST_ATTEST_COMMAND_AUDIT

sessionAudit TPMS_SESSION_AUDIT_INFO |TPM_ST_ATTEST_SESSION_AUDIT

time TPMS_TIME_ATTEST_INFO TPM_ST _ATTEST_TIME

nv TPMS_NV_CERTIFY_INFO TPM_ST _ATTEST NV
Page 108 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

10.12.8 TPMS_ATTEST

Trusted Platform Module Library

This structure is used on each TPM-generated signed structure. The signature is over this structure.

When the structure is signed by a key in the Storage hierarchy, the values of clockinfo.resetCount,
clockinfo.restartCount, and firmwareVersion are obfuscated with a per-key obfuscation value.

Table 120 — Definition of TPMS_ATTEST Structure <OUT>

Parameter Type Description
magic TPM_GENERATED the indication that this structure was created by a TPM (always
TPM_GENERATED_VALUE)
type TPMI_ST_ATTEST type of the attestation structure
qualifiedSigner TPM2B_NAME Qualified Name of the signing key
extraData TPM2B_DATA external information supplied by caller
NOTE A TPM2B_DATA structure provides room for a digest and a
method indicator to indicate the components of the digest.
The definition of this method indicator is outside the scope
of this specification.
clockinfo TPMS_CLOCK_INFO Clock, resetCount, restartCount, and Safe

firmwareVersion

UINT64

TPM-vendor-specific value identifying the version number of the
firmware

[type]attested

TPMU_ATTEST

the type-specific attestation information

Family “2.0”

Level 00 Revision 01.16

TCG Published Page 109
Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

10.12.9 TPM2B_ATTEST

This sized buffer to contain the signed structure. The attestationData is the signed portion of the structure.
The size parameter is not signed.

Table 121 — Definition of TPM2B_ATTEST Structure <OUT>

Parameter Type Description
size UINT16 size of the attestationData structure
attestationData[size]{:sizeof(TPMS_ATTEST)} |[BYTE the signed structure

10.13 Authorization Structures

The structures in this clause are used for all authorizations. One or more of these structures will be
present in a command or response that has a tag of TPM_ST_SESSIONS.

10.13.1 TPMS_AUTH_COMMAND

This is the format used for each of the authorizations in the session area of a command.

Table 122 — Definition of TPMS_AUTH_COMMAND Structure <IN>

Parameter Type Description

sessionHandle TPMI_SH_AUTH_SESSION+ |the session handle

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer
sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

10.13.2 TPMS_AUTH_RESPONSE

This is the format for each of the authorizations in the session area of the response. If the TPM returns
TPM_RC_SUCCESS, then the session area of the response contains the same number of authorizations
as the command and the authorizations are in the same order.

Table 123 — Definition of TPMS_AUTH_RESPONSE Structure <OUT>

Parameter Type Description

nonce TPM2B_NONCE the session nonce, may be the Empty Buffer
sessionAttributes TPMA_SESSION the session attributes

hmac TPM2B_AUTH either an HMAC, a password, or an EmptyAuth

Page 110 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

11 Algorithm Parameters and Structures
11.1 Symmetric

11.1.1 Introduction

This clause defines the parameters and structures for describing symmetric algorithms.

11.1.2 TPMI_!'ALG.S_KEY_BITS

This interface type defines the supported key sizes for a symmetric algorithm. This type is used to allow
the unmarshaling routine to generate the proper validation code for the supported key sizes. An
implementation that supports different key sizes would have a different set of selections.

Each implemented algorithm would have a value for the implemented key sizes for that implemented
algorithm. That value would have a name in the form !ALG_KEY_SIZES BITS where “ALG” would
represent the characteristic name of the algorithm (such as “AES).

NOTE 1 Key size is expressed in bits.

Table 124 — Definition of {IALG.S} (TPM_KEY_BITS) TPMI_!ALG.S_KEY_BITS Type

Parameter Description

$!ALG.S_KEY_SIZES BITS number of bits in the key

#TPM_RC_VALUE error when key size is not supported

11.1.3 TPMU_SYM_KEY_BITS

This union is used to collect the symmetric encryption key sizes.

The xor entry is a hash algorithms selector and not a key size in bits. This overload is used in order to
avoid an additional level of indirection with another union and another set of selectors.

The xor entry is only selected in a TPMT_SYM_DEF, which is used to select the parameter encryption
value.

Table 125 — Definition of TPMU_SYM_KEY_BITS Union

Parameter Type Selector Description

IALG.S TPMI_!ALG.S_KEY_BITS TPM_ALG_!ALG.S all symmetric algorithms

sym TPM_KEY_BITS when selector may be any of the
symmetric block ciphers

xor TPMI_ALG_HASH TPM_ALG_XOR overload for using xor
NOTE TPM_ALG_NULL is not

allowed
null TPM_ALG_NULL
Family “2.0” TCG Published Page 111

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

11.1.4 TPMU_SYM_MODE

Part 2: Structures

This union allows the mode value in a TPMT_SYM_DEF or TPMT_SYM_DEF_OBJECT to be empty.

Table 126 — Definition of TPMU_SYM_MODE Union

Parameter Type Selector Description

IALG.S TPMI_ALG_SYM_MODE TPM_ALG_!ALG.S

sym TPMI_ALG_SYM_MODE when selector may be any of the
symmetric block ciphers

xor TPM_ALG_XOR no mode selector

null TPM_ALG_NULL no mode selector

11.1.5 TPMU_SYM_DETAILS

This union allows additional parameters to be added for a symmetric cipher. Currently, no additional
parameters are required for any of the symmetric algorithms.

NOTE The “x” character in the table title will suppress generation of this type as the parser is not, at this time,
able to generate the proper values (a union of all empty data types). When an algorithm is added that
requires additional parameterization, the Type column will contain a value and the “x” may be removed.

Table 127 —xDefinition of TPMU_SYM_DETAILS Union
Parameter Type Selector Description
IALG.S TPM_ALG_!ALG

sym when selector may be any of the

symmetric block ciphers

xor TPM_ALG_XOR

null TPM_ALG_NULL

11.1.6 TPMT_SYM_DEF

The TPMT_SYM_DEF structure is used to select an algorithm to be used for parameter encryption in
those cases when different symmetric algorithms may be selected.

Table 128 — Definition of TPMT_SYM_DEF Structure

Parameter Type Description
algorithm +TPMI_ALG_SYM indicates a symmetric algorithm
[algorithm]keyBits TPMU_SYM_KEY_BITS a supported key size

[algorithm]mode

TPMU_SYM_MODE

the mode for the key

/[[algorithm]details

TPMU_SYM_DETAILS

contains additional algorithm details

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if none of the
selectors produces any data.

Page 112
October 30, 2014

TCG Published
Copyright © TCG 2006-2014

Family “2.0”
Level 00 Revision 01.16

Part 2: Structures

11.1.7 TPMT_SYM_DEF_OBJECT

Trusted Platform Module Library

This structure is used when different symmetric block cipher (not XOR) algorithms may be selected.

Table 129 — Definition of TPMT_SYM_DEF_OBJECT Structure

Parameter

Type

Description

algorithm

+TPMI_ALG_SYM_OBJECT

selects a symmetric block cipher

[algorithm]keyBits

TPMU_SYM_KEY_BITS

the key size

[algorithm]mode

TPMU_SYM_MODE

default mode

/[[algorithm]details

TPMU_SYM_DETAILS

contains the additional algorithm details, if any

NOTE This is commented out at this time as the parser
may not produce the proper code for a union if none of the
selectors produces any data.

11.1.8 TPM2B_SYM_KEY

This structure is used to hold a symmetric key in the sensitive area of an asymmetric object.

The number of bits in the key is in keyBits in the public area. When keyBits is not an even multiple of 8
bits, the unused bits of buffer will be the most significant bits of buffer[0] and size will be rounded up to
the number of octets required to hold all bits of the key.

Table 130 — Definition of TPM2B_SYM_KEY Structure

Parameter

Type

Description

size

UINT16

size, in octets, of the buffer containing the key; may be
zero

buffer [size] {MAX_SYM_KEY_BYTES} |BYTE

the key

11.1.9 TPMS_SYMCIPHER_PARMS

This structure contains the parameters for a symmetric block cipher object.

Table 131 — Definition of TPMS_SYMCIPHER_PARMS Structure

Parameter Type Description
sym TPMT_SYM_DEF_OBJECT a symmetric block cipher
Family “2.0” TCG Published Page 113

Level 00 Revision 01.16

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

11.1.10 TPM2B_SENSITIVE_DATA

This buffer holds the secret data of a data object. It can hold as much as 128 octets of data.
MAX_SYM_DATA shall be 128.

NOTE A named value rather than a numeric is used to make coding clearer. A numeric value does not indicate
the reason that it has the specific value that is has.

Table 132 — Definition of TPM2B_SENSITIVE_DATA Structure

Parameter Type Description
size UINT16
buffer[size]{: MAX_SYM_DATA} BYTE the keyed hash private data structure

11.1.11 TPMS_SENSITIVE_CREATE

This structure defines the values to be placed in the sensitive area of a created object. This structure is
only used within a TPM2B_SENSITIVE_CREATE structure.

NOTE When sent to the TPM or unsealed, data is usually encrypted using parameter encryption.

If data.size is not zero, and the object is not a keyedHash, data.size must match the size indicated in the
keySize of public.parameters. If the object is a keyedHash, data.size may be any value up to the
maximum allowed in a TPM2B_SENSITIVE_DATA.

For an asymmetric object, data shall be an Empty Buffer and sensitiveDataOrigin shall be SET.

Table 133 — Definition of TPMS_SENSITIVE_CREATE Structure <IN>

Parameter Type Description
userAuth TPM2B_AUTH the USER auth secret value
data TPM2B_SENSITIVE_DATA data to be sealed

11.1.12 TPM2B_SENSITIVE_CREATE
This structure contains the sensitive creation data in a sized buffer. This structure is defined so that both

the userAuth and data values of the TPMS_SENSITIVE_CREATE may be passed as a single parameter
for parameter encryption purposes.

Table 134 — Definition of TPM2B_SENSITIVE_CREATE Structure <IN, S>

Parameter Type Description
size= UINT16 size of sensitive in octets (may not be zero)
NOTE The userAuth and data parameters in this buffer

may both be zero length but the minimum size of
this parameter will be the sum of the size fields of
the two parameters of the
TPMS_SENSITIVE_CREATE.

sensitive TPMS_SENSITIVE_CREATE data to be sealed or a symmetric key value.

Page 114 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

11.1.13 TPMS_SCHEME_HASH

Trusted Platform Module Library

This structure is the scheme data for schemes that only require a hash to complete their definition.

Table 135 — Definition of TPMS_SCHEME_HASH Structure

Parameter

Type

Description

hashAlg

TPMI_ALG_HASH

the hash algorithm used to digest the message

11.1.14 TPMS_SCHEME_ECDAA

This definition is for split signing schemes that require a commit count.

Table 136 — Definition of {ECC} TPMS_SCHEME_ECDAA Structure

Parameter Type Description

hashAlg TPMI_ALG_HASH |the hash algorithm used to digest the message

count UINT16 the counter value that is used between TPM2_Commit() and the sign
operation

11.1.15 TPMI_ALG_HASH_SCHEME

This is the list of values that may appear in a keyedHash as the scheme parameter.

Table 137 — Definition of (TPM_ALG_ID) TPMI_ALG_KEYEDHASH_SCHEME Type

Values

Comments

TPM_ALG_HMAC

the "signing’

'scheme

TPM_ALG_XOR

the "obfuscation" scheme

+TPM_ALG_NULL

#TPM_RC_VALUE

11.1.16 HMAC_SIG_SCHEME

Table 138 — Definition of Types for HMAC_SIG_SCHEME

Type

Name

Description

TPMS_SCHEME_HASH

TPMS_SCHEME_HMAC

11.1.17 TPMS_SCHEME_XOR

This structure is for the XOR encryption scheme.

Table 139 — Definition of TPMS_SCHEME_XOR Structure

Parameter Type Description

hashAlg +TPMI_ALG_HASH the hash algorithm used to digest the message

kdf TPMI_ALG_KDF the key derivation function

Family “2.0” TCG Published Page 115

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Trusted Platform Module Library

11.1.18 TPMU_SCHEME_HMAC

Part 2: Structures

Table 140 — Definition of TPMU_SCHEME_KEYEDHASH Union <IN/OUT, S>

Parameter |Type Selector Description
hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the "signing" scheme
xor TPMS_SCHEME_XOR TPM_ALG_XOR the "obfuscation" scheme

null

TPM_ALG_NULL

11.1.19 TPMT_KEYEDHASH_SCHEME

This structure is used for a hash signing object.

Table 141 — Definition of TPMT_KEYEDHASH_SCHEME Structure

Parameter Type Description

scheme +TPMI_ALG_KEYEDHASH_SCHEME |selects the scheme

[scheme]details TPMU_SCHEME_KEYEDHASH the scheme parameters

Page 116 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

11.2 Asymmetric

11.2.1 Signing Schemes

11.2.1.1 Introduction

These structures are used to define the method in which the signature is to be created. These schemes
would appear in an object’s public area and in commands where the signing scheme is variable.

Every scheme is required to indicate a hash that is used in digesting the message.

11.2.1.2 RSA Signature Schemes

These are the RSA schemes that only need a hash algorithm as a scheme parameter.

For the TPM_ALG_RSAPSS signing scheme, the same hash algorithm is used for digesting TPM-
generated data (an attestation structure) and in the KDF used for the masking operation. The salt size is
always the largest salt value that will fit into the available space.

Table 142 — Definition of {RSA} Types for RSA Signature Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SIG_SCHEME_!ALG.AX

11.2.1.3 ECC Signature Schemes
Most of the ECC signagure schemes only require a hash algorithm to complete the definition and can be

typed as TPMS_SCHEME_HASH. Anonymous algorithms also require a count value so they are typed to
be TPMS_SCHEME_ECDAA.

Table 143 — Definition of {ECC} Types for ECC Signature Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SIG_SCHEME_!'ALG.AX all asymmetric signing schemes
TPMS_SCHEME_ECDAA TPMS_SIG_SCHEME_!ALG.AXN schemes that need a hash and a count

Family “2.0” TCG Published Page 117
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

11.2.1.4 TPMU_SIG_SCHEME

The union of all of the signature schemes.

NOTE The TPMS_SIG_SCHEME_!ALG is determined by Table 142 or Table 143 and will be either a
TPMS_SCHEME_HASH or a TPMS_SCHEME_ECDAA.

Table 144 — Definition of TPMU_SIG_SCHEME Union <IN/OUT, S>

Parameter |Type Selector Description

IALG.ax TPMS_SIG_SCHEME_!ALG TPM_ALG_!ALG all singing schemes including
anonymous schemes

hmac TPMS_SCHEME_HMAC TPM_ALG_HMAC the HMAC scheme

any TPMS_SCHEME_HASH selector that allows access to

digest for any signing scheme

null TPM_ALG_NULL no scheme or default

11.2.1.5 TPMT_SIG_SCHEME

Table 145 — Definition of TPMT_SIG_SCHEME Structure

Parameter Type Description
scheme +TPMI_ALG_SIG_SCHEME scheme selector
[scheme]details |TPMU_SIG_SCHEME scheme parameters

11.2.2 Encryption Schemes

11.2.2.1 Introduction

These structures are used to indicate the algorithm used for the encrypting process. These schemes
would appear in an object’s public area.

NOTE With ECC, the only encryption is with a key exchange of a symmetric key or seed.

11.2.2.2 RSA Encryption Schemes

These are the RSA encryption schemes that only need a hash algorithm as a controlling parameter.

Table 146 — Definition of Types for {RSA} Encryption Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_ENC_SCHEME_!ALG.AEH schemes that only need a hash

TPMS_EMPTY TPMS ENC_SCHEME_!ALG.AE schemes that need nothing

Page 118 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

11.2.2.3 ECC Key Exchange Schemes

These are the ECC schemes that only need a hash algorithm as a controlling parameter.

NOTE: The lower case ‘am’ will include any algorithm that has both of these attributes or any other attributes.

Table 147 — Definition of Types for {ECC} ECC Key Exchange

Type Name Description

TPMS_SCHEME_HASH TPMS_KEY_SCHEME_!ALG.AM schemes that need a hash

11.2.3 Key Derivation Schemes

11.2.3.1 Introduction
These structures are used to define the key derivation for symmetric secret sharing using asymmetric
methods. A secret sharing scheme is required in any asymmetric key with the decrypt attribute SET.

These schemes would appear in an object’s public area and in commands where the secret sharing
scheme is variable.

Each scheme includes a symmetric algorithm and a KDF selection.

The qualifying value for each of the kdf schemes is the hash algorithm

Table 148 — Definition of Types for KDF Schemes

Type Name Description

TPMS_SCHEME_HASH TPMS_SCHEME_!ALG.HM hash-based key- or mask-generation functions

11.2.3.2 TPMU_KDF_SCHEME

Table 149 — Definition of TPMU_KDF_SCHEME Union <IN/OUT, S>

Parameter Type Selector Description
IALG.HM TPMS_SCHEME_!ALG.HM TPM_ALG_'ALG.HM
null TPM_ALG_NULL

11.2.3.3 TPMT_KDF_SCHEME

Table 150 — Definition of TPMT_KDF_SCHEME Structure

Parameter Type Description
scheme +TPMI_ALG_KDF scheme selector
[scheme]details | TPMU_KDF_SCHEME scheme parameters

11.2.3.4 TPMI_ALG_ASYM_SCHEME

List of all of the scheme types for any asymmetric algorithm.

NOTE 1 This is the selector value used to define TPMT_ASYM_SCHEME.

Family “2.0” TCG Published Page 119
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

NOTE 2 Most tokens are exclusive in order to filter out SM2 and other multi-protocol algorithm identifiers. The
inclusive token “ax” will include those algorithms.

Table 151 — Definition of (TPM_ALG_ID) TPMI_ALG_ASYM_SCHEME Type <>

Values Comments
TPM_ALG_!ALG.am key exchange methods
TPM_ALG_!'ALG.ax all signing including anonymous
TPM_ALG_!ALG.ae encrypting schemes

+TPM_ALG_NULL
#TPM_RC_VALUE

11.2.3.5 TPMU_ASYM_SCHEME

This union of all asymmetric schemes is used in each of the asymmetric scheme structures. The actual
scheme structure is defined by the interface type used for the selector (TPMI_ALG_ASYM_SCHEME).

EXAMPLE The TPMT_RSA_SCHEME structure uses the TPMU_ASYM_SCHEME union but the selector type is
TPMI_ALG_RSA_SCHEME. This means that the only elements of the union that can be selected for the
TPMT_RSA_SCHEME are those that are in TPMI_RSA_SCHEME.

NOTE SM2 is a family of algorithms. It is not singularly a signing or key exchange. To keep it from appearing
multiple times in the table, the signing schemes are defined with upper case selections (AX and AXN) to
that SM2 is excluded from both of those groups

Table 152 — Definition of TPMU_ASYM_SCHEME Union

Parameter |Type Selector Description
IALG.am TPMS_KEY_SCHEME_IALG TPM_ALG_!ALG
IALG.ax TPMS_SIG_SCHEME_!ALG TPM_ALG_!ALG signing and anonymous signing
IALG.ae TPMS_ENC_SCHEME_!ALG TPM_ALG_!ALG schemes with no hash
anySig TPMS_SCHEME_HASH
null TPM_ALG_NULL no scheme or default
This selects the NULL Signature.

11.2.3.6 TPMT_ASYM_SCHEME

This structure is defined to allow overlay of all of the schemes for any asymmetric object. This structure is
not sent on the interface. It is defined so that common functions may operate on any similar scheme

structure.

EXAMPLE Since many schemes have a hash algorithm as their defining parameter, a common function can use the
digest selector to select the hash of the scheme without a need to cast or use a large switch statement.

Table 153 — Definition of TPMT_ASYM_SCHEME Structure <>

Parameter Type Description

scheme +TPMI_ALG_ASYM_SCHEME scheme selector

[scheme]details TPMU_ASYM_SCHEME scheme parameters

Page 120 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

11.2.4 RSA

11.2.4.1 TPMI_ALG_RSA_SCHEME

Trusted Platform Module Library

The list of values that may appear in the scheme parameter of a TPMS_RSA_PARMS structure.

Table 154 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_SCHEME Type

Values

Comments

TPM_ALG_!ALG.ae.ax

encrypting and signing algorithms

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.2 TPMT_RSA_SCHEME

Table 155 — Definition of {RSA} TPMT_RSA_SCHEME Structure

Parameter

Type

Description

scheme

+TPMI_ALG_RSA_SCHEME

scheme selector

[scheme]details

TPMU_ASYM_SCHEME

scheme parameters

11.2.4.3 TPMI_ALG_RSA_DECRYPT

The list of values that are allowed in a decryption scheme selection as used in TPM2_RSA_Encrypt() and

TPM2_RSA_Decrypt().

Table 156 — Definition of (TPM_ALG_ID) {RSA} TPMI_ALG_RSA_DECRYPT Type

Values

Comments

TPM_ALG_!ALG.ae

all RSA encryption algoithms

+TPM_ALG_NULL

#TPM_RC_VALUE

11.2.4.4 TPMT_RSA_DECRYPT

Table 157 — Definition of {RSA} TPMT_RSA_DECRYPT Structure

Parameter

Type

Description

scheme

+TPMI_ALG_RSA_DECRYPT

scheme selector

[scheme]details

TPMU_ASYM_SCHEME

scheme parameters

Family “2.0”
Level 00 Revision 01.16

TCG Published

Copyright © TCG 2006-2014

Page 121
October 30, 2014

Trusted Platform Module Library

11.2.4.5 TPM2B_PUBLIC_KEY_RSA

Part 2: Structures

This sized buffer holds the largest RSA public key supported by the TPM.

NOTE The reference implementation only supports key sizes of 1,024 and 2,048 bits.

Table 158 — Definition of {RSA} TPM2B_PUBLIC_KEY_RSA Structure

Parameter Type Description
size UINT16 size of the buffer

The value of zero is only valid for create.
buffer[size] {: MAX_RSA_KEY_BYTES} BYTE Value

11.2.4.6 TPMI_RSA_KEY_BITS

This holds the value that is the maximum size allowed for an RSA key.

NOTE 1 An implementation is allowed to provide limited support for smaller RSA key sizes. That is, a TPM may be
able to accept a smaller RSA key size in TPM2_LoadExternal() when only the public area is loaded but
not accept that smaller key size in any command that loads both the public and private portions of an RSA
key. This would allow the TPM to validate signatures using the smaller key but would prevent the TPM
from using the smaller key size for any other purpose.

NOTE 2 The definition for RSA_KEY_SIZES_BITS used in the reference implementation is found in TPM 2.0 Part

4, Implementation.h

Table 159 — Definition of {RSA} (TPM_KEY_BITS) TPMI_RSA_KEY_BITS Type

Parameter Description
$RSA_KEY_SIZES_BITS the number of bits in the supported key
#TPM_RC_VALUE error when key size is not supported

11.2.4.7 TPM2B_PRIVATE_KEY_RSA

This sized buffer holds the largest RSA prime number supported by the TPM.

NOTE All primes are required to have exactly half the number of significant bits as the public modulus, and the
square of each prime is required to have the same number of significant bits as the public modulus.

Table 160 — Definition of {RSA} TPM2B_PRIVATE_KEY_RSA Structure

Parameter Type Description

size UINT16

buffer[size]{:MAX_RSA_KEY_BYTES/2} |BYTE

Page 122 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

11.2.5 ECC

11.2.5.1 TPM2B_ECC_PARAMETER

This sized buffer holds the largest ECC parameter (coordinate) supported by the TPM.

Table 161 — Definition of {ECC} TPM2B_ECC_PARAMETER Structure

Parameter Type Description

UINT16 size of buffer

size
buffer[size] {MAX_ECC_KEY_BYTES} [BYTE

the parameter data

11.2.5.2 TPMS_ECC_POINT

This structure holds two ECC coordinates that, together, make up an ECC point.

Table 162 — Definition of {ECC} TPMS_ECC_POINT Structure

Parameter Type Description
X TPM2B_ECC_PARAMETER X coordinate
y TPM2B_ECC_PARAMETER Y coordinate

11.2.5.3 TPM2B_ECC_POINT

This structure is defined to allow a point to be a single sized parameter so that it may be encrypted.

NOTE If the point is to be omitted, the X and Y coordinates need to be individually set to Empty Buffers. The
minimum value for size will be four. It is checked indirectly by unmarshaling of the TPMS_ECC_POINT. If
the type of point were BYTE, then size could have been zero. However, this would complicate the process

of marshaling the structure.

Table 163 — Definition of {ECC} TPM2B_ECC_POINT Structure

Parameter Type Description
size= UINT16 size of the remainder of this structure
point TPMS_ECC_POINT coordinates

error returned if the unmarshaled size of point is
not exactly equal to size

#TPM_RC_SIZE

TCG Published Page 123

Family “2.0”
Copyright © TCG 2006-2014 October 30, 2014

Level 00 Revision 01.16

Trusted Platform Module Library Part 2: Structures

11.2.5.4 TPMI_ALG_ECC_SCHEME

Table 164 — Definition of (TPM_ALG_ID) {ECC} TPMI_ALG_ECC_SCHEME Type

Values Comments
TPM_ALG_!'ALG.ax the ecc signing schemes
TPM_ALG_'ALG.am key exchange methods

+TPM_ALG_NULL
#TPM_RC_SCHEME

11.2.5.5 TPMI_ECC_CURVE

The ECC curves implemented by the TPM.

Table 165 — Definition of {ECC} (TPM_ECC_CURVE) TPMI_ECC_CURVE Type

Parameter Description
$ECC_CURVES the list of implemented curves
#TPM_RC_CURVE error when curve is not supported

11.2.5.6 TPMT_ECC_SCHEME

Table 166 — Definition of (TPMT_SIG_SCHEME) {ECC} TPMT_ECC_SCHEME Structure

Parameter Type Description
scheme +TPMI_ALG_ECC_SCHEME scheme selector
[scheme]details TPMU_ASYM_SCHEME scheme parameters
TCG Published Family “2.0”

Page 124
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

This structure is used to report on the curve parameters of an ECC curve. It is returned by
TPM2_ECC_Parameters().

Table 167 — Definition of {ECC} TPMS_ALGORITHM_DETAIL_ECC Structure <OUT>

Parameter Type Description

curvelD TPM_ECC_CURVE identifier for the curve

keySize UINT16 Size in bits of the key

kdf TPMT_KDF_SCHEME the de_fault KDF and hash algorithm used in secret sharing
operations

sign TPMT_ECC_SCHEME+ If not TPM_ALG_NULL, this is the mandatory signature
scheme that is required to be used with this curve.

p TPM2B_ECC_PARAMETER Fp (the modulus)

a TPM2B_ECC_PARAMETER coefficient of the linear term in the curve equation

b TPM2B_ECC_PARAMETER constant term for curve equation

gX TPM2B_ECC_PARAMETER x coordinate of base point G

gy TPM2B_ECC_PARAMETER y coordinate of base point G

n TPM2B_ECC_PARAMETER order of G

h TPM2B_ECC_PARAMETER cofactor (a size of zero indicates a cofactor of 1)

11.3 Signatures

11.3.1 TPMS_SIGNATURE_RSA

Table 168 — Definition of {RSA} TPMS_SIGNATURE_RSA Structure

Parameter Type Description
hash TPMI_ALG_HASH the hash algorithm used to digest the message
TPM_ALG_NULL is not allowed.
sig TPM2B_PUBLIC_KEY_RSA The signature is the size of a public key.
Table 169 — Definition of Types for {RSA} Sighature
Type Name Description

TPMS_SIGNATURE_RSA

TPMS_SIGNATURE_!ALG.ax

Family “2.0”

Level 00 Revision 01.16

TCG Published
Copyright © TCG 2006-2014

Page 125
October 30, 2014

Trusted Platform Module Library Part 2: Structures
11.3.2 TPMS_SIGNATURE_ECC

Table 170 — Definition of {ECC} TPMS_SIGNATURE_ECC Structure

Parameter Type Description

hash TPMI_ALG_HASH the hash algorithm used in the signature process
TPM_ALG_NULL is not allowed.

signatureR TPM2B_ECC_PARAMETER

signatureS TPM2B_ECC_PARAMETER

Table 171 — Definition of Types for {ECC} TPMS_SIGNATUE_ECC

Type Name Description

TPMS_SIGNATURE_ECC | TPMS_SIGNATURE_!ALG.ax

11.3.3 TPMU_SIGNATURE

A TPMU_SIGNATURE_COMPOSITE is a union of the various signatures that are supported by a
particular TPM implementation. The union allows substitution of any signature algorithm wherever a

signature is required in a structure.

NOTE All TPM are required to support a hash algorithm and the HMAC algorithm.

When a symmetric algorithm is used for signing, the signing algorithm is assumed to be an HMAC based
on the indicated hash algorithm. The HMAC key will either be referenced as part of the usage or will be

implied by context.

Table 172 — Definition of TPMU_SIGNATURE Union <IN/OUT, S>

Parameter |Type Selector Description

IALG.ax TPMS_SIGNATURE_!ALG.ax TPM_ALG_!'ALG.ax all asymmetric signatures

hmac TPMT_HA TPM_ALG_HMAC HMAC signature (required to
be supported)

any TPMS_SCHEME_HASH used to access the hash

null TPM_ALG_NULL the NULL signature

11.3.4 TPMT_SIGNATURE

Table 173 shows the basic algorithm-agile structure when a symmetric or asymmetric signature is
indicated. The sigAlg parameter indicates the algorithm used for the signature. This structure is output
from the attestation commands and is an input to TPM2_VerifySignature(), TPM2_PolicySigned(), and

TPM2_FieldUpgradeStart().

Table 173 — Definition of TPMT_SIGNATURE Structure

Parameter Type Description

sigAlg +TPMI_ALG_SIG_SCHEME selector of the algorithm used to construct the signature
[sigAlg]signature | TPMU_SIGNATURE This shall be the actual signature information.

Page 126 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
11.4 Key/Secret Exchange

11.4.1 Introduction

The structures in this clause are used when a key or secret is being exchanged. The exchange may be in
e TPM2_StartAuthSession() where the secret is injected for salting the session,

e TPM2_Duplicate(), TPM2_Import, or TPM2_Rewrap() where the secret is the symmetric encryption
key for the outer wrapper of a duplication blob, or

e TPM2_Activateldentity() or TPM2_Createldentity() where the secret is the symmetric encryption key
for the credential blob.

Particulars are described in TPM 2.0 Part 1.

11.4.2 TPMU_ENCRYPTED_SECRET

This structure is used to hold either an ephemeral public point for ECDH, an OAEP-encrypted block for
RSA, or a symmetrically encrypted value. This structure is defined for the limited purpose of determining
the size of a TPM2B_ENCRYPTED_SECRET.

The symmetrically encrypted value may use either CFB or XOR encryption.

NOTE Table 174 is illustrative. It would be modified depending on the algorithms supported in the TPM.

Table 174 — Definition of TPMU_ENCRYPTED_SECRET Union <S>

Parameter Type Selector Description

ecc[sizeof(TPMS_ECC_POINT)] BYTE TPM_ALG_ECC

rsa[MAX_RSA_KEY_BYTES] BYTE TPM_ALG_RSA

symmetric[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_SYMCIPHER

keyedHash[sizeof(TPM2B_DIGEST)] BYTE TPM_ALG_KEYEDHASH |Any symmetrically encrypted
secret value will be limited to
be no larger than a digest.

11.4.3 TPM2B_ENCRYPTED_SECRET

Table 175 — Definition of TPM2B_ENCRYPTED_SECRET Structure

Parameter Type Description

size UINT16 size of the secret value
secret[size] {:sizeof(TPMU_ENCRYPTED_SECRET)} [BYTE secret

Family “2.0” TCG Published Page 127

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

12 Key/Object Complex

12.1 Introduction

An object description requires a TPM2B_PUBLIC structure and may require a TPMT_SENSITIVE
structure. When the structure is stored off the TPM, the TPMT_SENSITIVE structure is encrypted within a
TPM2B_PRIVATE structure.

When the object requires two components for its description, those components are loaded as separate
parameters in the TPM2_Load() command. When the TPM creates an object that requires both
components, the TPM will return them as separate parameters from the TPM2_Create() operation.

The TPM may produce multiple different TPM2B_PRIVATE structures for a single TPM2B_PUBLIC
structure. Creation of a modified TPM2B_PRIVATE structure requires that the full structure be loaded with
the TPM2_Load() command, modification of the TPMT_SENSITIVE data, and output of a new
TPM2B_PRIVATE structure.

12.2 Public Area Structures

12.2.1 Description

This clause defines the TPM2B_PUBLIC structure and the higher-level substructure that may be
contained in a TPM2B_PUBLIC. The higher-level structures that are currently defined for inclusion in a
TPM2B_PUBLIC are the

e structures for asymmetric keys,
e structures for symmetric keys, and

e structures for sealed data.
12.2.2 TPMI_ALG_PUBLIC

Table 176 — Definition of (TPM_ALG_ID) TPMI_ALG_PUBLIC Type

Values Comments

TPM_ALG_!ALG.0 All object types

#TPM_RC_TYPE response code when a public type is not supported

Page 128 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
12.2.3 Type-Specific Parameters

12.2.3.1 Description

The public area contains two fields (parameters and unique) that vary by object type. The parameters
field varies according to the type of the object but the contents may be the same across multiple
instances of a particular type. The unique field format also varies according to the type of the object and
will also be unique for each instance.

For a symmetric key (type == TPM_ALG_SYMCIPHER), HMAC key (type == TPM_ALG_KEYEDHASH)
or data object (also, type == TPM_ALG_KEYEDHASH), the contents of unique shall be computed from
components of the sensitive area of the object as follows:

unique = Hpameag(seedValue [[sensitive) (8)
where
Hyamenig() the hash algorithm used to compute the Name of the object
seedValue the digest-sized obfuscation value in the sensitive area of a symmetric
key or symmetric data object found in a
TPMT _SENSITIVE.seedValue.buffer
sensitive the secret key/data of the object in the

TPMT _SENSITIVE.sensitive.any.buffer
12.2.3.2 TPMU_PUBLIC_ID

Table 177 — Definition of TPMU_PUBLIC_ID Union <IN/OUT, S>

Parameter Type Selector Description
keyedHash TPM2B_DIGEST TPM_ALG_KEYEDHASH

sym TPM2B_DIGEST TPM_ALG_SYMCIPHER

rsa TPM2B_PUBLIC_KEY_RSA TPM_ALG_RSA

ecc TPMS_ECC_POINT TPM_ALG_ECC

12.2.3.3 TPMS_KEYEDHASH_PARMS

This structure describes the parameters that would appear in the public area of a KEYEDHASH object.

Note Although the names are the same, the types of the structures are not the same as for asymmetric
parameter lists.

Table 178 — Definition of TPMS_KEYEDHASH_PARMS Structure

Parameter |Type Description

scheme TPMT_KEYEDHASH_SCHEME+ |Indicates the signing method used for a keyedHash signing
object. This field also determines the size of the data field for a
data object created with TPM2_Create(). This field shall not be set
to TPM_ALG_NULL in a template if either sign or encrypt is SET.

Family “2.0” TCG Published Page 129
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library

12.2.3.4 TPMS_ASYM_PARMS

Part 2: Structures

This structure contains the common public area parameters for an asymmetric key. The first two
parameters of the parameter definition structures of an asymmetric key shall have the same two first

components.

NOTE The sign parameter may have a different type in order to allow different schemes to be selected for each
asymmetric type but the first parameter of each scheme definition shall be a TPM_ALG_ID for a valid
signing scheme.

Table 179 — Definition of TPMS_ASYM_PARMS Structure <>

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ [the companion symmetric algorithm for a restricted
decryption key and shall be set to a supported symmetric
algorithm
This field is optional for keys that are not decryption keys
and shall be set to TPM_ALG_NULL if not used.

scheme TPMT_ASYM_SCHEME+ for a key with the sign attribute SET, a valid signing
scheme for the key type
for a key with the decrypt attribute SET, a valid key
exchange protocol
for a key with sign and decrypt attributes, shall be
TPM_ALG_NULL

Page 130 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

12.2.3.5 TPMS_RSA_PARMS

A TPM compatible with this specification and supporting RSA shall support two primes and an exponent
of zero. Support for other values is optional. Use of other exponents in duplicated keys is not
recommended because the resulting keys would not be interoperable with other TPMs.

NOTE 1 Implementations are not required to check that exponent is the default exponent. They may fail to load the
key if exponent is not zero. The reference implementation allows the values listed in the table.

Table 180 — Definition of {RSA} TPMS_RSA_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ (for a restricted decryption key, shall be set to a
supported symmetric algorithm, key size, and mode.

if the key is not a restricted decryption key, this field
shall be set to TPM_ALG_NULL.

scheme TPMT_RSA_SCHEME+ for an unrestricted signing key, shall be either
TPM_ALG_RSAPSS TPM_ALG_RSASSA or
TPM_ALG_NULL

for a restricted signing key, shall be either
TPM_ALG_RSAPSS or TPM_ALG_RSASSA

for an unrestricted decryption key, shall be

TPM_ALG_RSAES, TPM_ALG_OAEP, or
TPM_ALG_NULL unless the object also has the sign
attribute

for a restricted decryption key, this field shall be
TPM_ALG_NULL
NOTE When both sign and decrypt are SET, restricted

shall be CLEAR and scheme shall be
TPM_ALG_NULL.

keyBits TPMI_RSA_KEY_BITS number of bits in the public modulus

exponent UINT32 the public exponent
A prime number greater than 2.

When zero, indicates that the exponent is the default
of 2% +1

12.2.3.6 TPMS_ECC_PARMS

This structure contains the parameters for prime modulus ECC.

Table 181 — Definition of {ECC} TPMS_ECC_PARMS Structure

Parameter Type Description

symmetric TPMT_SYM_DEF_OBJECT+ for a restricted decryption key, shall be set to a supported
symmetric algorithm, key size. and mode.

if the key is not a restricted decryption key, this field shall be
setto TPM_ALG_NULL.

scheme TPMT_ECC_SCHEME+ If the sign attribute of the key is SET, then this shall be a valid
signing scheme.
NOTE If the sign parameter in curvelD indicates a mandatory

scheme, then this field shall have the same value.

If the decrypt attribute of the key is SET, then this shall be a
valid key exchange scheme or TPM_ALG_NULL.

If the key is a Storage Key, then this field shall be

Family “2.0” TCG Published Page 131
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

TPM_ALG_NULL.
curvelD TPMI_ECC_CURVE ECC curve ID

kdf TPMT_KDF_SCHEME+ an optional key derivation scheme for generating a symmetric
key from a Z value

If the kdf parameter associated with curvelD is not
TPM_ALG_NULL then this is required to be NULL.

NOTE There are currently no commands where this parameter
has effect and, in the reference code, this field needs to be set to
TPM_ALG_NULL.

12.2.3.7 TPMU_PUBLIC_PARMS

Table 182 defines the possible parameter definition structures that may be contained in the public portion
of a key.

Table 182 — Definition of TPMU_PUBLIC_PARMS Union <IN/OUT, S>

Parameter Type Selector Description®

keyedHashDetail | TPMS_KEYEDHASH_PARMS TPM_ALG_KEYEDHASH |sign | decrypt | neither

symDetail TPMS_SYMCIPHER_PARMS TPM_ALG_SYMCIPHER a symmetric block cipher

rsaDetalil TPMS_RSA_PARMS TPM_ALG_RSA decrypt + sign®®

eccDetalil TPMS_ECC_PARMS TPM_ALG_ECC decrypt + sign®

asymbDetall TPMS_ASYM_PARMS common scheme structure
for RSA and ECC keys

NOTES
1) Description column indicates which of TPMA_OBJECT.decrypt or TPMA_OBJECT.sign may be set.
2) “+”indicates that both may be set but one shall be set. “|” indicates the optional settings.

12.2.3.8 TPMT_PUBLIC_PARMS

This structure is used in TPM2_TestParms() to validate that a set of algorithm parameters is supported by
the TPM.

Table 183 — Definition of TPMT_PUBLIC_PARMS Structure

Parameter Type Description

type TPMI_ALG_PUBLIC the algorithm to be tested
[type]parameters | TPMU_PUBLIC_PARMS |the algorithm details

Page 132 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

12.2.4 TPMT_PUBLIC

Trusted Platform Module Library

Table 184 defines the public area structure. The Name of the object is nameAlg concatenated with the
digest of this structure using nameAlg.

Table 184 — Definition of TPMT_PUBLIC Structure

Parameter Type Description
type TPMI_ALG_PUBLIC “algorithm” associated with this object
nameAlg +TPMI_ALG_HASH algorithm used for computing the Name of the object
NOTE The "+" indicates that the instance of a TPMT_PUBLIC may have
a "+" to indicate that the nameAlg may be TPM_ALG_NULL.
objectAttributes | TPMA_OBJECT attributes that, along with type, determine the manipulations of this
object
authPolicy TPM2B_DIGEST optional policy for using this key
The policy is computed using the nameAlg of the object.
NOTE Shall be the Empty Buffer if no authorization policy is present.
[type]parameters | TPMU_PUBLIC_PARMS |the algorithm or structure details
[type]unique TPMU_PUBLIC_ID the unique identifier of the structure
For an asymmetric key, this would be the public key.

12.2.5 TPM2B_PUBLIC

This sized buffer is used to embed a TPMT_PUBLIC in a command.

Table 185 — Definition of TPM2B_PUBLIC Structure

Parameter

Type

Description

size=

UINT16

size of publicArea

NOTE The “=" will force the TPM to try to unmarshal a
TPMT_PUBLIC and check that the unmarshaled size
matches the value of size. If all the required fields of
a TPMT_PUBLIC are not present, the TPM will return
an error (generally TPM_RC_SIZE) when attempting
to unmarshal the TPMT_PUBLIC.

publicArea

+TPMT_PUBLIC |the public area

NOTE The “+” indicates that the caller may specify that use
of TPM_ALG_NULL is allowed for nameAlg.

Family “2.0”

Level 00 Revision 01.16

TCG Published Page 133

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures
12.3 Private Area Structures

12.3.1 Introduction
The structures in 12.3 define the contents and construction of the private portion of a TPM object. A
TPM2B_PRIVATE along with a TPM2B_PUBLIC are needed to describe a TPM object.

A TPM2B_PRIVATE area may be encrypted by different symmetric algorithms or, in some cases, not
encrypted at all.

12.3.2 Sensitive Data Structures

12.3.2.1 Introduction

The structures in 12.3.2 define the presumptive internal representations of the sensitive areas of the
various entities. A TPM may store the sensitive information in any desired format but when constructing a
TPM_PRIVATE, the formats in this clause shall be used.

12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC

This structure is defined for coding purposes. For 10 to the TPM, the sensitive portion of the key will be in
a canonical form. For an RSA key, this will be one of the prime factors of the public modulus. After
loading, it is typical that other values will be computed so that computations using the private key will not
need to start with just one prime factor. This structure can be used to store the results of such vendor-
specific calculations.

The value for RSA_VENDOR_SPECIFIC is determined by the vendor.

Table 186 — Definition of TPM2B_PRIVATE_VENDOR_SPECIFIC Structure<>

Parameter Type Description

size UINT16
buffer[size]{:PRIVATE_VENDOR_SPECIFIC_BYTES} |BYTE

12.3.2.3 TPMU_SENSITIVE_COMPOSITE

Table 187 — Definition of TPMU_SENSITIVE_COMPOSITE Union <IN/OUT, S>

Parameter |Type Selector Description

rsa TPM2B_PRIVATE_KEY_RSA TPM_ALG_RSA a prime factor of the public
key

ecc TPM2B_ECC_PARAMETER TPM_ALG_ECC the integer private key

bits TPM2B_SENSITIVE_DATA TPM_ALG_KEYEDHASH |the private data

sym TPM2B_SYM_KEY TPM_ALG_SYMCIPHER |the symmetric key

any TPM2B_PRIVATE_VENDOR_SPECIFIC vendor-specific size for key
storage

Page 134 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

12.3.2.4 TPMT_SENSITIVE

Trusted Platform Module Library

Table 188 — Definition of TPMT_SENSITIVE Structure

Parameter

Type

Description

sensitiveType

TPMI_ALG_PUBLIC

identifier for the sensitive area

This shall be the same as the type parameter of the
associated public area.

authValue TPM2B_AUTH user authorization data
The authValue may be a zero-length string.
This value shall not be larger than the size of the
digest produced by the nameAlg of the object.
seedValue TPM2B_DIGEST for asymmetric key object, the optional protection

seed; for other objects, the obfuscation value

This value shall not be larger than the size of the
digest produced by nameAlg of the object.

[sensitiveType]sensitive | TPMU_SENSITIVE_COMPOSITE

the type-specific private data

12.3.3 TPM2B_SENSITIVE

The TPM2B_SENSITIVE structure is used as a parameter in TPM2_LoadExternal(). It is an unencrypted
sensitive area but it may be encrypted using parameter encryption.

NOTE 1 When this structure is unmarshaled, the sensitiveType determines what type of value is unmarshaled.
Each value of sensitiveType is associated with a TPM2B. It is the maximum size for each of the TPM2B
values that will determine if the unmarshal operation is successful. Since there is no selector for the any
or vendor options for the union, the maximum input and output sizes for a TPM2B_SENSITIVE are not
affected by the sizes of those parameters.

NOTE 2 The unmarshaling function validates that size equals the size of the value that is unmarshaled.

Table 189 — Definition of TPM2B_SENSITIVE Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the private structure

sensitiveArea

TPMT_SENSITIVE

an unencrypted sensitive area

Family “2.0”

Level 00 Revision 01.16

TCG Published Page 135

Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

12.3.4 Encryption
A TPMS_SENSITIVE is the input to the encryption process. All TPMS_ENCRYPT structures are CFB-
encrypted using a key and Initialization Vector (V) that are derived from a seed value.

The method of generating the key and IV is described in “Protected Storage” subclause “Symmetric
Encryption.” in TPM 2.0 Part 1.

12.3.5 Integrity
The integrity computation is used to ensure that a protected object is not modified when stored in memory
outside of the TPM.

The method of protecting the integrity of the sensitive area is described in “Protected Storage” subclause
“Integrity” in TPM 2.0 Part 1.

12.3.6 _PRIVATE
This structure is defined to size the contents of a TPM2B_PRIVATE. This structure is not directly
marshaled or unmarshaled.

For TPM2_Duplicate() and TPM2_Import(), the TPM2B_PRIVATE may contain multiply encrypted data
and two integrity values. In some cases, the sensitive data is not encrypted and the integrity value is not
present.

For TPM2_Load() and TPM2_Create(), integritylnner is always present.
If integritylnner is present, it and sensitive are encrypted as a single block.

When an integrity value is not needed, it is not present and it is not represented by an Empty Buffer.

Table 190 — Definition of _PRIVATE Structure <>

Parameter Type Description

integrityOuter TPM2B_DIGEST

integritylnner TPM2B_DIGEST could also be a TPM2B_IV
sensitive TPMT_SENSITIVE the sensitive area

12.3.7 TPM2B_PRIVATE

The TPM2B_PRIVATE structure is used as a parameter in multiple commands that create, load, and
modify the sensitive area of an object.

Table 191 — Definition of TPM2B_PRIVATE Structure <IN/OUT, S>

Parameter Type Description

size UINT16 size of the private structure

buffer[size] {:sizeof(_PRIVATE)} BYTE an encrypted private area

Page 136 TCG Published Family “2.0”

October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library
12.4 Identity Object

12.4.1 Description
An identity object is used to convey credential protection value (CV) to a TPM that can load the object

associated with the object. The CV is encrypted to a storage key on the target TPM, and if the credential
integrity checks and the proper object is loaded in the TPM, then the TPM will return the CV.

12.4.2 _ID_OBJECT

This structure is used for sizing the TPM2_ID_OBJECT.

Table 192 — Definition of _ID_OBJECT Structure <>

Parameter Type Description

integrityHMAC TPM2B_DIGEST HMAC using the nameAlg of the storage key on the target
TPM

encldentity TPM2B_DIGEST credential protector information returned if name matches the

referenced object
All of the encldentity is encrypted, including the size field.

NOTE The TPM is not required to check that the size is not larger
than the digest of the nameAlg. However, if the size is larger, the ID
object may not be usable on a TPM that has no digest larger than
produced by nameAlg.

12.4.3 TPM2B_ID_OBJECT

This structure is an output from TPM2_MakeCredential() and is an input to TPM2_ ActivateCredential().

Table 193 — Definition of TPM2B_ID_OBJECT Structure <IN/OUT>

Parameter Type Description

size UINT16 size of the credential structure
credential[size]{:sizeof(_ID_OBJECT)} BYTE an encrypted credential area

Family “2.0” TCG Published Page 137

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

13 NV Storage Structures

13.1 TPM_NV_INDEX

A TPM_NV_INDEX is used to reference a defined location in NV memory. The format of the Index is
changed from TPM 1.2 in order to include the Index in the reserved handle space. Handles in this range
use the digest of the public area of the Index as the Name of the entity in authorization computations

The 32-bit TPM 1.2 NV Index format is shown in Figure 4. In order to allow the Index to fit into the 24 bits
available in the reserved handle space, the Index value format is changed as shown in Figure 5.

33222‘2‘2‘22 1|1 0
1/0/9/8|7]|6/5]4]3 6|5 0
T|P|U[D| reserved Purview Index

Figure 4 — TPM 1.2 TPM_NV_INDEX

3 2 |2 0
1 4 13 0
TPM_HT_NV_INDEX Index

Figure 5 — TPM 2.0 TPM_NV_INDEX

NOTE This TPM_NV_INDEX format does not retain the Purview field and the D bit is not a part of an Index
handle as in TPM 1.2. The TPMA_NV_PLATFORMCREATE attribute is a property of an Index that
provides functionality similar to the D bit.

A valid Index handle will have an MSO of TPM_HT_NV_INDEX.

NOTE This structure is not used. It is defined here to indicate how the fields of the handle are assigned. The
exemplary unmarshaling code unmarshals a TPM_HANDLE and validates that it is in the range for a
TPM_NV_INDEX.

Table 194 — Definition of (UINT32) TPM_NV_INDEX Bits <>

Bit |Name Definition
23:00 | index The Index of the NV location
31:24 |RH_NV constant value of TPM_HT_NV_INDEX indicating the NV Index range
#TPM_RC_VALUE response code returned if unmarshaling of this type fails because the handle
value is incorrect

Page 138 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

Some prior versions of this specification contained a table here (Options for space Field of
TPM_NV_INDEX) that assigned subsets of the index field to different entities. Since this assignment was
a convention and not an architectural element of the TPM, the table was removed and the information is
now contained in a registry document that is maintained by the TCG.

13.2 TPMA_NV (NV Index Attributes)

This structure allows the TPM to keep track of the data and permissions to manipulate an NV Index.

The platform controls (TPMA_NV_PPWRITE and TPMA_NV_PPREAD) and owner controls
(TPMA_NV_OWNERWRITE and TPMA_NV_OWNERREAD) give the platform and owner access to NV
Indexes using Platform Authorization or Owner Authorization rather than the authValue or authPolicy of
the Index.

If access to an NV Index is to be restricted based on PCR, then an appropriate authPolicy shall be
provided.

NOTE platformAuth or ownerAuth can be provided in any type of authorization session or as a password.

If TPMA_NV_AUTHREAD is SET, then the Index may be read if the Index authValue is provided. If
TPMA_NV_POLICYREAD is SET, then the Index may be read if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or
TPMA_NV_POLICYREAD shall be SET.

If TPMA_NV_AUTHWRITE is SET, then the Index may be written if the Index authValue is provided. If
TPMA_NV_POLICYWRITE is SET, then the Index may be written if the Index authPolicy is satisfied.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE TPMA_NV_AUTHWRITE, or
TPMA_NV_POLICYWRITE shall be SET.

If TPMA_NV_WRITELOCKED is SET, then the Index may not be written. If TPMA_NV_WRITEDEFINE is
SET, TPMA_NV_WRITELOCKED may not be CLEAR except by deleting and redefining the Index. If
TPMA_NV_WRITEDEFINE is CLEAR, then TPMA NV_WRITELOCKED will be CLEAR on the next
TPM2_Startup(TPM_SU_CLEAR).

NOTE If TPMA_NV_WRITELOCKED is SET, but TPMA_NV_WRITTEN is CLEAR, then
TPMA_NV_WRITELOCKED is CLEAR by TPM Reset or TPM Restart. This action occurs even if the
TPMA_NV_WRITEDEFINE attribute is SET. This action prevents an NV Index from being defined that
can never be written, and permits a use case where an Index is defined, but the user wants to prohibit
writes until after a reboot.

Family “2.0” TCG Published Page 139
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

If TPMA_NV_READLOCKED is SET, then the Index may not be read. TPMA_NV_READLOCKED will be
CLEAR on the next TPM2_Startup(TPM_SU_CLEAR).

NOTE The TPM is expected to maintain indicators to indicate that the Index is temporarily locked. The state of
these indicators is reported in the TPMA_NV_READLOCKED and TPMA_NV_WRITELOCKED attributes.

If TPMA_NV_EXTEND is SET, then writes to the Index will cause an update of the Index using the extend
operation with the nameAlg used to create the digest.
Only one of TPMA_NV_EXTEND, TPMA_NV_COUNTER, or TPMA_NV_BITS may be set.

When the Index is created (TPM2_NV_DefineSpace()), TPMA_NV_WRITELOCKED,
TPMA_NV_READLOCKED, TPMA NV_WRITTEN shall all be CLEAR in the parameter that defines the
attributes of the created Index.

Table 195 — Definition of (UINT32) TPMA_NV Bits

Bit | Name Description
0 | TPMA_NV_PPWRITE SET (1): The Index data can be written if Platform Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Platform Authorization.

1 [TPMA_NV_OWNERWRITE SET (1): The Index data can be written if Owner Authorization is
provided.

CLEAR (0): Writing of the Index data cannot be authorized with
Owner Authorization.

2 | TPMA_NV_AUTHWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with an HMAC session or password.
CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with an HMAC session or password.

3 | TPMA_NV_POLICYWRITE SET (1): Authorizations to change the Index contents that require
USER role may be provided with a policy session.

CLEAR (0): Authorizations to change the Index contents that require
USER role may not be provided with a policy session.

NOTE TPM2_NV_ChangeAuth() always requires that authorization be
provided in a policy session.

4 | TPMA_NV_COUNTER SET (1): Index contains an 8-octet value that is to be used as a
counter and can only be modified with TPM2_NV_Incrementy().

CLEAR (0): The Index is not a counter.

5 | TPMA_NV_BITS SET (1): Index contains an 8-octet value to be used as a bit field and
can only be modified with TPM2_NV_SetBits().

CLEAR (0): The Index is not a bit field.

6 | TPMA_NV_EXTEND SET (1): Index contains a digest-sized value used like a PCR. The
Index may only be modified using TPM2_NV_Extend. The extend will
use the nameAlg of the Index.

CLEAR (0): Index is not a PCR.

9:7 | Reserved shall be zero
reserved for use in defining additional write controls

10 | TPMA_NV_POLICY_DELETE SET (1): Index may not be deleted unless the authPolicy is satisfied
using TPM2_NV_UndefineSpaceSpecial().

CLEAR (0): Index may be deleted with proper platform or owner
authorization using TPM2_NV_UndefineSpace().

11 | TPMA_NV_WRITELOCKED SET (1): Index cannot be written.
CLEAR (0): Index can be written.

Page 140 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures

Trusted Platform Module Library

Bit | Name Description
12 | TPMA_NV_WRITEALL SET (1): A partial write of the Index data is not allowed. The write
size shall match the defined space size.
CLEAR (0): Partial writes are allowed. This setting is required if
TPMA_NV_BITS is SET.
13 | TPMA_NV_WRITEDEFINE SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location.
CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITE_STCLEAR is also CLEAR.
14 | TPMA_NV_WRITE_STCLEAR SET (1): TPM2_NV_WriteLock() may be used to prevent further
writes to this location until the next TPM Reset or TPM Restart.
CLEAR (0): TPM2_NV_WriteLock() does not block subsequent
writes if TPMA_NV_WRITEDEFINE is also CLEAR.
15 | TPMA_NV_GLOBALLOCK SET (1): If TPM2_NV_GlobalWriteLock() is successful, then further
writes to this location are not permitted until the next TPM Reset or
TPM Restart.
CLEAR (0): TPM2_NV_GlobalWriteLock() has no effect on the
writing of the data at this Index.
16 | TPMA_NV_PPREAD SET (1): The Index data can be read if Platform Authorization is
provided.
CLEAR (0): Reading of the Index data cannot be authorized with
Platform Authorization.
17 | TPMA_NV_OWNERREAD SET (1): The Index data can be read if Owner Authorization is
provided.
CLEAR (0): Reading of the Index data cannot be authorized with
Owner Authorization.
18 | TPMA_NV_AUTHREAD SET (1): The Index data may be read if the authValue is provided.
CLEAR (0): Reading of the Index data cannot be authorized with the
Index authValue.
19 | TPMA_NV_POLICYREAD SET (1): The Index data may be read if the authPolicy is satisfied.
CLEAR (0): Reading of the Index data cannot be authorized with the
Index authPolicy.
24:2 | Reserved shall be zero
0 reserved for use in defining additional read controls
25 | TPMA_NV_NO_DA SET (1): Authorization failures of the Index do not affect the DA logic
and authorization of the Index is not blocked when the TPM is in
Lockout mode.
CLEAR (0): Authorization failures of the Index will increment the
authorization failure counter and authorizations of this Index are not
allowed when the TPM is in Lockout mode.
26 | TPMA_NV_ORDERLY SET (1): NV Index state is only required to be saved when the TPM
performs an orderly shutdown (TPM2_Shutdown()).
CLEAR (0): NV Index state is required to be persistent after the
command to update the Index completes successfully (that is, the NV
update is synchronous with the update command).
27 | TPMA_NV_CLEAR_STCLEAR SET (1): TPMA_NV_WRITTEN for the Index is CLEAR by TPM
Reset or TPM Restart.
CLEAR (0): TPMA_NV_WRITTEN is not changed by TPM Restart.
NOTE This attribute may only be SET if TPMA_NV_COUNTER is not
SET.
NOTE If the TPMA_NV_ORDERLY is SET, TPMA_NV_WRITTEN will
be CLEAR by TPM Reset.
Family “2.0” TCG Published Page 141

Level 00 Revision 01.16

Copyright © TCG 2006-2014

October 30, 2014

Trusted Platform Module Library

Part 2: Structures

Bit | Name Description

28 | TPMA_NV_READLOCKED SET (1): Reads of the Index are blocked until the next TPM Reset or
TPM Restart.
CLEAR (0): Reads of the Index are allowed if proper authorization is
provided.

29 | TPMA_NV_WRITTEN SET (1): Index has been written.
CLEAR (0): Index has not been written.

30 | TPMA_NV_PLATFORMCREATE | SET (1): This Index may be undefined with Platform Authorization but
not with Owner Authorization.
CLEAR (0): This Index may be undefined using Owner Authorization
but not with Platform Authorization.
The TPM will validate that this attribute is SET when the Index is
defined using Platform Authorization and will validate that this
attribute is CLEAR when the Index is defined using Owner
Authorization.

31 | TPMA_NV_READ_STCLEAR SET (1): TPM2_NV_ReadlLock() may be wused to SET
TPMA_NV_READLOCKED for this Index.
CLEAR (0): TPM2_NV_ReadLock() has no effect on this Index.

13.3 TPMS_NV_PUBLIC

This structure describes an NV Index.

Table 196 — Definition of TPMS_NV_PUBLIC Structure

Name Type Description

nvindex TPMI_RH_NV_INDEX the handle of the data area

nameAlg TPMI_ALG_HASH hash algorithm used to compute the name of the
Index and used for the authPolicy

attributes TPMA_NV the Index attributes

authPolicy TPM2B_DIGEST the access policy for the Index

dataSize{:MAX_NV_INDEX_SIZE}

UINT16

the size of the data area
The maximum size is implementation-

dependent. The minimum maximum size is
platform-specific.

#TPM_RC_SIZE

response code returned when the requested size
is too large for the implementation

13.4 TPM2B_NV_PUBLIC

This structure is used when a TPMS_NV_PUBLIC is sent on the TPM interface.

Table 197 — Definition of TPM2B_NV_PUBLIC Structure

Name Type Description

size= UINT16 size of nvPublic

nvPublic TPMS_NV_PUBLIC the public area

Page 142 TCG Published Family “2.0”

October 30, 2014

Copyright © TCG 2006-2014

Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

14 Context Data

14.1 Introduction

This clause defines the contents of the TPM2_ ContextSave() response parameters and
TPM2_ContextLoad() command parameters.

If the parameters provided by the caller in TPM2_ContextLoad() do not match the values returned by the
TPM when the context was saved, the integrity check of the TPM2B_CONTEXT will fail and the object or
session will not be loaded.

14.2 TPM2B_CONTEXT_SENSITIVE

This structure holds the object or session context data. When saved, the full structure is encrypted.

Table 198 — Definition of TPM2B_CONTEXT_SENSITIVE Structure <IN/OUT>

Parameter Type Description
size UINT16
buffer[size]{:MAX_CONTEXT_SIZE} |BYTE the sensitive data

14.3 TPMS_CONTEXT_DATA

This structure holds the integrity value and the encrypted data for a context.

Table 199 — Definition of TPMS_CONTEXT_DATA Structure <IN/OUT, S>

Parameter Type Description
integrity TPM2B_DIGEST the integrity value
encrypted TPM2B_CONTEXT_SENSITIVE |the sensitive area

14.4 TPM2B_CONTEXT_DATA

This structure is used in a TPMS_CONTEXT.

Table 200 — Definition of TPM2B_CONTEXT_DATA Structure <IN/OUT>

Parameter Type Description

size UINT16

buffer[size] {:sizeof(TPMS_CONTEXT_DATA)} | BYTE

Family “2.0” TCG Published Page 143
Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

14.5 TPMS_CONTEXT

This structure is used in TPM2_ContextLoad() and TPM2_ContextSave(). If the values of the
TPMS_CONTEXT structure in TPM2_ContextLoad() are not the same as the values when the context
was saved (TPM2_ContextSave()), then the TPM shall not load the context.

Saved object contexts shall not be loaded as long as the associated hierarchy is disabled.

Saved object contexts are invalidated when the Primary Seed of their hierarchy changes. Objects in the
Endorsement hierarchy are invalidated when either the EPS or SPS is changed.

When an object has the stClear attribute, it shall not be possible to reload the context or any descendant
object after a TPM Reset or TPM Restart.

NOTE 1 The reference implementation prevents reloads after TPM Restart by including the current value of a
clearCount in the saved object context. When an object is loaded, this value is compared with the current
value of the clearCount if the object has the stClear attribute. If the values are not the same, then the
object cannot be loaded.

A sequence value is contained within contextBlob, the integrity-protected part of the saved context. The
sequence value is repeated in the sequence parameter of the TPMS_CONTEXT structure. The sequence
parameter, along with other values, is used in the generation the protection values of the context.

NOTE 2 The reference implementation prepends the sequence value to the contextBlob before, for example, the
SESSION structure for sessions or the OBJECT structure for transient objects.

If the integrity value of the context is valid, but the sequence value of the decrypted context does not
match the value in the sequence parameter, then TPM shall enter the failure mode because this is
indicative of a specific type of attack on the context values.

NOTE 3 If the integrity value is correct, but the decryption fails and produces the wrong value for sequence, this
implies that either the TPM is faulty or an external entity is able to forge an integrity value for the context
but they have insufficient information to know the encryption key of the context. Since the TPM generated
the valid context, then there is no reason for the sequence value in the context to be decrypted incorrectly
other than the TPM is faulty or the TPM is under attack. In either case, it is appropriate for the TPM to
enter failure more.

Table 201 — Definition of TPMS_CONTEXT Structure

Name Type Description
sequence UINT64 the sequence number of the context
NOTE Transient object contexts and session

contexts used different counters.

savedHandle TPMI_DH_CONTEXT the handle of the session, object or sequence
hierarchy TPMI_RH_HIERARCHY+ the hierarchy of the context
contextBlob TPM2B_CONTEXT_DATA the context data and integrity HMAC

14.6 Parameters of TPMS_CONTEXT

14.6.1 sequence

The sequence parameter is used to differentiate the contexts and to allow the TPM to create a different
encryption key for each context. Objects and sessions use different sequence counters. The sequence
counter for objects (transient and sequence) is incremented when an object context is saved, and the

Page 144 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

sequence counter for sessions increments when a session is created or when it is loaded
(TPM2_ContextLoad()). The session sequence number is the contextID counter.

For a session, the sequence number also allows the TRM to find the “older” contexts so that they may be
refreshed if the contextID are too widely separated.

If an input value for sequence is larger than the value used in any saved context, the TPM shall return an
error (TPM_RC_VALUE) and do no additional processing of the context.

If the context is a session context and the input value for sequence is less than the current value of
contextID minus the maximum range for sessions, the TPM shall return an error (TPM_RC_VALUE) and
do no additional processing of the context.

14.6.2 savedHandle
For a session, this is the handle that was assigned to the session when it was created. For a transient
object, the handle will have one of the values shown in Table 202.

If the handle type for savedHandle is TPM_HT_TRANSIENT, then the low order bits are used to
differentiate static objects from sequence objects.

If an input value for handle is outside of the range of values used by the TPM, the TPM shall return an
error (TPM_RC_VALUE) and do no additional processing of the context.

Table 202 — Context Handle Values

Value Description
O0X02XXXXXX an HMAC session context
0X03XXXXXX a policy session context
0x80000000 an ordinary transient object
0x80000001 a sequence object
0x80000002 a transient object with the stClear attribute SET
Family “2.0” TCG Published Page 145

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

Trusted Platform Module Library Part 2: Structures

14.6.3 hierarchy

This is the hierarchy (TPMI_RH_HIERARCHY) for the saved context and determines the proof value used
in the construction of the encryption and integrity values for the context. For session and sequence
contexts, the hierarchy is TPM_RC_NULL. The hierarchy for a transient object may be TPM_RH_NULL
but it is not required.

14.7 Context Protection

14.7.1 Context Integrity
The integrity of the context blob is protected by an HMAC. The integrity value is constructed such that
changes to the component values will invalidate the context and prevent it from being loaded.

Previously saved contexts for objects in the Platform hierarchy shall not be loadable after the PPS is
changed.

Previously saved contexts for objects in the Storage hierarchy shall not be loadable after the SPS is
changed.

Previously saved contexts for objects in the Endorsement hierarchy shall not be loadable after either the
EPS or SPS is changed.

Previously saved sessions shall not be loadable after the SPS changes.

Previously saved contexts for objects that have their stClear attribute SET shall not be loadable after a
TPM Restart. If a Storage Key has its stClear attribute SET, the descendants of this key shall not be
loadable after TPM Restart.

Previously saved contexts for a session and objects shall not be loadable after a TPM Reset.

A saved context shall not be loaded if its HMAC is not valid. The equation for computing the HMAC for a
context is found in “Context Integrity Protection” in TPM 2.0 Part 1.

14.7.2 Context Confidentiality

The context data of sessions and objects shall be protected by symmetric encryption using CFB. The
method for computing the IV and encryption key is found in “Context Confidentiality Protection” in TPM
2.0 Part 1.

Page 146 TCG Published Family “2.0”
October 30, 2014 Copyright © TCG 2006-2014 Level 00 Revision 01.16

Part 2: Structures Trusted Platform Module Library

15 Creation Data

15.1 TPMS_CREATION_DATA

This structure provides information relating to the creation environment for the object. The creation data
includes the parent Name, parent Qualified Name, and the digest of selected PCR. These values
represent the environment in which the object was created. Creation data allows a relying party to
determine if an object was created when some appropriate protections were present.

When the object is created, the structure shown in Table 203 is generated and a ticket is computed over
this data.

If the parent is a permanent handle (TPM_RH OWNER, TPM_RH_PLATFORM,
TPM_RH_ENDORSEMENT, or TPM_RH_NULL), then parentName and parentQualifiedName will be set
to the parent handle value and parentNameAlg will be TPM_ALG_NULL.

Table 203 — Definition of TPMS_CREATION_DATA Structure <OUT>

Parameter Type Description
pcrSelect TPML_PCR_SELECTION |list indicating the PCR included in pcrDigest
pcrDigest TPM2B_DIGEST digest of the selected PCR using nameAlg of the object for

which this structure is being created
pcrDigest.size shall be zero if the pcrSelect list is empty.

locality TPMA_LOCALITY the locality at which the object was created
parentNameAlg TPM_ALG_ID nameAlg of the parent
parentName TPM2B_NAME Name of the parent at time of creation

The size will match digest size associated with parentNameAlg
unless it is TPM_ALG_NULL, in which case the size will be 4
and parentName will be the hierarchy handle.

parentQualifiedName | TPM2B_NAME Qualified Name of the parent at the time of creation
Size is the same as parentName.

outsidelnfo TPM2B_DATA association with additional information added by the key
creator

This will be the contents of the outsidelnfo parameter in
TPM2_Create() or TPM2_CreatePrimary().

15.2 TPM2B_CREATION_DATA

This structure is created by TPM2_Create() and TPM2_CreatePrimary(). It is never entered into the TPM
and never has a size of zero.

Table 204 — Definition of TPM2B_CREATION_DATA Structure <OUT>

Parameter Type Description

size= UINT16 size of the creation data

creationData TPMS_CREATION_DATA

Family “2.0” TCG Published Page 147

Level 00 Revision 01.16 Copyright © TCG 2006-2014 October 30, 2014

	1 Scope
	2 Terms and definitions
	3 Symbols and abbreviated terms
	4 Notation
	4.1 Introduction
	4.2 Named Constants
	4.3 Data Type Aliases (typedefs)
	4.4 Enumerations
	4.5 Interface Type
	4.6 Arrays
	4.7 Structure Definitions
	4.8 Conditional Types
	4.9 Unions
	4.9.1 Introduction
	4.9.2 Union Definition
	4.9.3 Union Instance
	4.9.4 Union Selector Definition

	4.10 Bit Field Definitions
	4.11 Parameter Limits
	4.12 Algorithm Macros
	4.12.1 Introduction
	4.12.2 Algorithm Token Semantics
	4.12.3 Algorithm Tokens in Unions
	4.12.4 Algorithm Tokens in Interface Types
	4.12.5 Algorithm Tokens for Table Replication

	4.13 Size Checking
	4.14 Data Direction
	4.15 Structure Validations
	4.16 Name Prefix Convention
	4.17 Data Alignment
	4.18 Parameter Unmarshaling Errors

	5 Base Types
	5.1 Primitive Types
	5.2 Specification Logic Value Constants
	5.3 Miscellaneous Types

	6 Constants
	6.1 TPM_SPEC (Specification Version Values)
	6.2 TPM_GENERATED
	6.3 TPM_ALG_ID
	6.4 TPM_ECC_CURVE
	6.5 TPM_CC (Command Codes)
	6.5.1 Format
	6.5.2 Description
	6.5.3 TPM_CC Listing

	6.6 TPM_RC (Response Codes)
	6.6.1 Description
	6.6.2 Response Code Formats
	6.6.3 TPM_RC Values

	6.7 TPM_CLOCK_ADJUST
	6.8 TPM_EO (EA Arithmetic Operands)
	6.9 TPM_ST (Structure Tags)
	6.10 TPM_SU (Startup Type)
	6.11 TPM_SE (Session Type)
	6.12 TPM_CAP (Capabilities)
	6.13 TPM_PT (Property Tag)
	6.14 TPM_PT_PCR (PCR Property Tag)
	6.15 TPM_PS (Platform Specific)

	7 Handles
	7.1 Introduction
	7.2 TPM_HT (Handle Types)
	7.3 Persistent Handle Sub-ranges
	7.4 TPM_RH (Permanent Handles)
	7.5 TPM_HC (Handle Value Constants)

	8 Attribute Structures
	8.1 Description
	8.2 TPMA_ALGORITHM
	8.3 TPMA_OBJECT (Object Attributes)
	8.3.1 Introduction
	8.3.2 Structure Definition
	8.3.3 Attribute Descriptions
	8.3.3.1 Introduction
	8.3.3.2 Bit[1] – fixedTPM
	8.3.3.3 Bit[2] – stClear
	8.3.3.4 Bit[4] – fixedParent
	8.3.3.5 Bit[5] – sensitiveDataOrigin
	8.3.3.6 Bit[6] – userWithAuth
	8.3.3.7 Bit[7] – adminWithPolicy
	8.3.3.8 Bit[10] – noDA
	8.3.3.9 Bit[11] – encryptedDuplication
	8.3.3.10 Bit[16] – restricted
	8.3.3.11 Bit[17] – decrypt
	8.3.3.12 Bit[18] – sign

	8.4 TPMA_SESSION (Session Attributes)
	8.5 TPMA_LOCALITY (Locality Attribute)
	8.6 TPMA_PERMANENT
	8.7 TPMA_STARTUP_CLEAR
	8.8 TPMA_MEMORY
	8.9 TPMA_CC (Command Code Attributes)
	8.9.1 Introduction
	8.9.2 Structure Definition
	8.9.3 Field Descriptions
	8.9.3.1 Bits[15:0] – commandIndex
	8.9.3.2 Bit[22] – nv
	8.9.3.3 Bit[23] – extensive
	8.9.3.4 Bit[24] – flushed
	8.9.3.5 Bits[27:25] – cHandles
	8.9.3.6 Bit[28] – rHandle
	8.9.3.7 Bit[29] – V
	8.9.3.8 Bits[31:30] – Res

	9 Interface Types
	9.1 Introduction
	9.2 TPMI_YES_NO
	9.3 TPMI_DH_OBJECT
	9.4 TPMI_DH_PERSISTENT
	9.5 TPMI_DH_ENTITY
	9.6 TPMI_DH_PCR
	9.7 TPMI_SH_AUTH_SESSION
	9.8 TPMI_SH_HMAC
	9.9 TPMI_SH_POLICY
	9.10 TPMI_DH_CONTEXT
	9.11 TPMI_RH_HIERARCHY
	9.12 TPMI_RH_ENABLES
	9.13 TPMI_RH_HIERARCHY_AUTH
	9.14 TPMI_RH_PLATFORM
	9.15 TPMI_RH_OWNER
	9.16 TPMI_RH_ENDORSEMENT
	9.17 TPMI_RH_PROVISION
	9.18 TPMI_RH_CLEAR
	9.19 TPMI_RH_NV_AUTH
	9.20 TPMI_RH_LOCKOUT
	9.21 TPMI_RH_NV_INDEX
	9.22 TPMI_ALG_HASH
	9.23 TPMI_ALG_ASYM (Asymmetric Algorithms)
	9.24 TPMI_ALG_SYM (Symmetric Algorithms)
	9.25 TPMI_ALG_SYM_OBJECT
	9.26 TPMI_ALG_SYM_MODE
	9.27 TPMI_ALG_KDF (Key and Mask Generation Functions)
	9.28 TPMI_ALG_SIG_SCHEME
	9.29 TPMI_ECC_KEY_EXCHANGE
	9.30 TPMI_ST_COMMAND_TAG

	10 Structure Definitions
	10.1 TPMS_EMPTY
	10.2 TPMS_ALGORITHM_DESCRIPTION
	10.3 Hash/Digest Structures
	10.3.1 TPMU_HA (Hash)
	10.3.2 TPMT_HA

	10.4 Sized Buffers
	10.4.1 Introduction
	10.4.2 TPM2B_DIGEST
	10.4.3 TPM2B_DATA
	10.4.4 TPM2B_NONCE
	10.4.5 TPM2B_AUTH
	10.4.6 TPM2B_OPERAND
	10.4.7 TPM2B_EVENT
	10.4.8 TPM2B_MAX_BUFFER
	10.4.9 TPM2B_MAX_NV_BUFFER
	10.4.10 TPM2B_TIMEOUT
	10.4.11 TPM2B_IV

	10.5 Names
	10.5.1 Introduction
	10.5.2 TPMU_NAME
	10.5.3 TPM2B_NAME

	10.6 PCR Structures
	10.6.1 TPMS_PCR_SELECT
	10.6.2 TPMS_PCR_SELECTION

	10.7 Tickets
	10.7.1 Introduction
	10.7.2 A NULL Ticket
	10.7.3 TPMT_TK_CREATION
	10.7.4 TPMT_TK_VERIFIED
	10.7.5 TPMT_TK_AUTH
	10.7.6 TPMT_TK_HASHCHECK

	10.8 Property Structures
	10.8.1 TPMS_ALG_PROPERTY
	10.8.2 TPMS_TAGGED_PROPERTY
	10.8.3 TPMS_TAGGED_PCR_SELECT

	10.9 Lists
	10.9.1 TPML_CC
	10.9.2 TPML_CCA
	10.9.3 TPML_ALG
	10.9.4 TPML_HANDLE
	10.9.5 TPML_DIGEST
	10.9.6 TPML_DIGEST_VALUES
	10.9.7 TPM2B_DIGEST_VALUES
	10.9.8 TPML_PCR_SELECTION
	10.9.9 TPML_ALG_PROPERTY
	10.9.10 TPML_TAGGED_TPM_PROPERTY
	10.9.11 TPML_TAGGED_PCR_PROPERTY
	10.9.12 TPML_ECC_CURVE

	10.10 Capabilities Structures
	10.10.1 TPMU_CAPABILITIES
	10.10.2 TPMS_CAPABILITY_DATA

	10.11 Clock/Counter Structures
	10.11.1 TPMS_CLOCK_INFO
	10.11.2 Clock
	10.11.3 ResetCount
	10.11.4 RestartCount
	10.11.5 Safe
	10.11.6 TPMS_TIME_INFO

	10.12 TPM Attestation Structures
	10.12.1 Introduction
	10.12.2 TPMS_TIME_ATTEST_INFO
	10.12.3 TPMS_CERTIFY_INFO
	10.12.1 TPMS_QUOTE_INFO
	10.12.2 TPMS_COMMAND_AUDIT_INFO
	10.12.3 TPMS_SESSION_AUDIT_INFO
	10.12.4 TPMS_CREATION_INFO
	10.12.5 TPMS_NV_CERTIFY_INFO
	10.12.6 TPMI_ST_ATTEST
	10.12.7 TPMU_ATTEST
	10.12.8 TPMS_ATTEST
	10.12.9 TPM2B_ATTEST

	10.13 Authorization Structures
	10.13.1 TPMS_AUTH_COMMAND
	10.13.2 TPMS_AUTH_RESPONSE

	11 Algorithm Parameters and Structures
	11.1 Symmetric
	11.1.1 Introduction
	11.1.2 TPMI_!ALG.S_KEY_BITS
	11.1.3 TPMU_SYM_KEY_BITS
	11.1.4 TPMU_SYM_MODE
	11.1.5 TPMU_SYM_DETAILS
	11.1.6 TPMT_SYM_DEF
	11.1.7 TPMT_SYM_DEF_OBJECT
	11.1.8 TPM2B_SYM_KEY
	11.1.9 TPMS_SYMCIPHER_PARMS
	11.1.10 TPM2B_SENSITIVE_DATA
	11.1.11 TPMS_SENSITIVE_CREATE
	11.1.12 TPM2B_SENSITIVE_CREATE
	11.1.13 TPMS_SCHEME_HASH
	11.1.14 TPMS_SCHEME_ECDAA
	11.1.15 TPMI_ALG_HASH_SCHEME
	11.1.16 HMAC_SIG_SCHEME
	11.1.17 TPMS_SCHEME_XOR
	11.1.18 TPMU_SCHEME_HMAC
	11.1.19 TPMT_KEYEDHASH_SCHEME

	11.2 Asymmetric
	11.2.1 Signing Schemes
	11.2.1.1 Introduction
	11.2.1.2 RSA Signature Schemes
	11.2.1.3 ECC Signature Schemes
	11.2.1.4 TPMU_SIG_SCHEME
	11.2.1.5 TPMT_SIG_SCHEME

	11.2.2 Encryption Schemes
	11.2.2.1 Introduction
	11.2.2.2 RSA Encryption Schemes
	11.2.2.3 ECC Key Exchange Schemes

	11.2.3 Key Derivation Schemes
	11.2.3.1 Introduction
	11.2.3.2 TPMU_KDF_SCHEME
	11.2.3.3 TPMT_KDF_SCHEME
	11.2.3.4 TPMI_ALG_ASYM_SCHEME
	11.2.3.5 TPMU_ASYM_SCHEME
	11.2.3.6 TPMT_ASYM_SCHEME

	11.2.4 RSA
	11.2.4.1 TPMI_ALG_RSA_SCHEME
	11.2.4.2 TPMT_RSA_SCHEME
	11.2.4.3 TPMI_ALG_RSA_DECRYPT
	11.2.4.4 TPMT_RSA_DECRYPT
	11.2.4.5 TPM2B_PUBLIC_KEY_RSA
	11.2.4.6 TPMI_RSA_KEY_BITS
	11.2.4.7 TPM2B_PRIVATE_KEY_RSA

	11.2.5 ECC
	11.2.5.1 TPM2B_ECC_PARAMETER
	11.2.5.2 TPMS_ECC_POINT
	11.2.5.3 TPM2B_ECC_POINT
	11.2.5.4 TPMI_ALG_ECC_SCHEME
	11.2.5.5 TPMI_ECC_CURVE
	11.2.5.6 TPMT_ECC_SCHEME
	11.2.5.7 TPMS_ALGORITHM_DETAIL_ECC

	11.3 Signatures
	11.3.1 TPMS_SIGNATURE_RSA
	11.3.2 TPMS_SIGNATURE_ECC
	11.3.3 TPMU_SIGNATURE
	11.3.4 TPMT_SIGNATURE

	11.4 Key/Secret Exchange
	11.4.1 Introduction
	11.4.2 TPMU_ENCRYPTED_SECRET
	11.4.3 TPM2B_ENCRYPTED_SECRET

	12 Key/Object Complex
	12.1 Introduction
	12.2 Public Area Structures
	12.2.1 Description
	12.2.2 TPMI_ALG_PUBLIC
	12.2.3 Type-Specific Parameters
	12.2.3.1 Description
	12.2.3.2 TPMU_PUBLIC_ID
	12.2.3.3 TPMS_KEYEDHASH_PARMS
	12.2.3.4 TPMS_ASYM_PARMS
	12.2.3.5 TPMS_RSA_PARMS
	12.2.3.6 TPMS_ECC_PARMS
	12.2.3.7 TPMU_PUBLIC_PARMS
	12.2.3.8 TPMT_PUBLIC_PARMS

	12.2.4 TPMT_PUBLIC
	12.2.5 TPM2B_PUBLIC

	12.3 Private Area Structures
	12.3.1 Introduction
	12.3.2 Sensitive Data Structures
	12.3.2.1 Introduction
	12.3.2.2 TPM2B_PRIVATE_VENDOR_SPECIFIC
	12.3.2.3 TPMU_SENSITIVE_COMPOSITE
	12.3.2.4 TPMT_SENSITIVE

	12.3.3 TPM2B_SENSITIVE
	12.3.4 Encryption
	12.3.5 Integrity
	12.3.6 _PRIVATE
	12.3.7 TPM2B_PRIVATE

	12.4 Identity Object
	12.4.1 Description
	12.4.2 _ID_OBJECT
	12.4.3 TPM2B_ID_OBJECT

	13 NV Storage Structures
	13.1 TPM_NV_INDEX
	13.2 TPMA_NV (NV Index Attributes)
	13.3 TPMS_NV_PUBLIC
	13.4 TPM2B_NV_PUBLIC

	14 Context Data
	14.1 Introduction
	14.2 TPM2B_CONTEXT_SENSITIVE
	14.3 TPMS_CONTEXT_DATA
	14.4 TPM2B_CONTEXT_DATA
	14.5 TPMS_CONTEXT
	14.6 Parameters of TPMS_CONTEXT
	14.6.1 sequence
	14.6.2 savedHandle
	14.6.3 hierarchy

	14.7 Context Protection
	14.7.1 Context Integrity
	14.7.2 Context Confidentiality

	15 Creation Data
	15.1 TPMS_CREATION_DATA
	15.2 TPM2B_CREATION_DATA

