

TCG

Trusted Platform Module Library

Part 3: Commands

Family “2.0”

Level 00 Revision 00.96

March 15, 2013

Contact: admin@trustedcomputinggroup.org

Published

Copyright © TCG 2006-2013

Part 3: Commands Trusted Platform Module Library

Page ii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Licenses and Notices

1. Copyright Licenses:

 Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

 The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

2. Source Code Distribution Conditions:

 Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

 Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

3. Disclaimers:

 THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

 THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

 Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page iii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

CONTENTS

1 Scope .. 1
2 Terms and Definitions ... 1
3 Symbols and abbreviated terms .. 1
4 Notation ... 1

4.1 Introduction ... 1
4.2 Table Decorations ... 1
4.3 Handle and Parameter Demarcation .. 3
4.4 AuthorizationSize and ParameterSize .. 3

5 Normative References ... 4
6 Symbols and Abbreviated Terms .. 4
7 Command Processing ... 4

7.1 Introduction ... 4
7.2 Command Header Validation .. 4
7.3 Mode Checks .. 4
7.4 Handle Area Validation ... 5
7.5 Session Area Validation .. 6
7.6 Authorization Checks .. 7
7.7 Parameter Decryption ... 8
7.8 Parameter Unmarshaling .. 8
7.9 Command Post Processing .. 10

8 Response Values .. 12

8.1 Tag .. 12
8.2 Response Codes .. 12

9 Implementation Dependent ... 15
10 Detailed Actions Assumptions ... 16

10.1 Introduction ... 16
10.2 Pre-processing .. 16
10.3 Post Processing .. 16

11 Start-up .. 17

11.1 Introduction ... 17
11.2 _TPM_Init .. 17
11.3 TPM2_Startup ... 19
11.4 TPM2_Shutdown .. 24

12 Testing ... 28

12.1 Introduction ... 28
12.2 TPM2_SelfTest ... 29
12.3 TPM2_IncrementalSelfTest .. 32
12.4 TPM2_GetTestResult ... 35

13 Session Commands .. 38

13.1 TPM2_StartAuthSession .. 38
13.2 TPM2_PolicyRestart ... 43

14 Object Commands ... 46

Part 3: Commands Trusted Platform Module Library

Page iv Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.1 TPM2_Create.. 46
14.2 TPM2_Load .. 51
14.3 TPM2_LoadExternal ... 55
14.4 TPM2_ReadPublic .. 60
14.5 TPM2_ActivateCredential ... 63
14.6 TPM2_MakeCredential ... 67
14.7 TPM2_Unseal ... 70
14.8 TPM2_ObjectChangeAuth .. 73

15 Duplication Commands ... 77

15.1 TPM2_Duplicate ... 77
15.2 TPM2_Rewrap .. 81
15.3 TPM2_Import .. 86

16 Asymmetric Primitives ... 91

16.1 Introduction ... 91
16.2 TPM2_RSA_Encrypt ... 91
16.3 TPM2_RSA_Decrypt .. 96
16.4 TPM2_ECDH_KeyGen ... 100
16.5 TPM2_ECDH_ZGen ... 103
16.6 TPM2_ECC_Parameters .. 106
16.1 TPM2_ZGen_2Phase ... 108

17 Symmetric Primitives ... 112

17.1 Introduction ... 112
17.2 TPM2_EncryptDecrypt .. 114
17.3 TPM2_Hash .. 118
17.4 TPM2_HMAC .. 121

18 Random Number Generator .. 125

18.1 TPM2_GetRandom ... 125
18.2 TPM2_StirRandom ... 128

19 Hash/HMAC/Event Sequences ... 131

19.1 Introduction ... 131
19.2 TPM2_HMAC_Start .. 131
19.3 TPM2_HashSequenceStart .. 135
19.4 TPM2_SequenceUpdate .. 138
19.5 TPM2_SequenceComplete ... 142
19.6 TPM2_EventSequenceComplete ... 146

20 Attestation Commands .. 150

20.1 Introduction ... 150
20.2 TPM2_Certify .. 152
20.3 TPM2_CertifyCreation .. 156
20.4 TPM2_Quote... 160
20.5 TPM2_GetSessionAuditDigest ... 164
20.6 TPM2_GetCommandAuditDigest ... 168
20.7 TPM2_GetTime... 172

21 Ephemeral EC Keys .. 176

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page v

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

21.1 Introduction ... 176
21.2 TPM2_Commit .. 177
21.3 TPM2_EC_Ephemeral .. 183

22 Signing and Signature Verification .. 186

22.1 TPM2_VerifySignature .. 186
22.2 TPM2_Sign ... 190

23 Command Audit ... 194

23.1 Introduction ... 194
23.2 TPM2_SetCommandCodeAuditStatus ... 195

24 Integrity Collection (PCR) .. 199

24.1 Introduction ... 199
24.2 TPM2_PCR_Extend ... 200
24.3 TPM2_PCR_Event ... 203
24.4 TPM2_PCR_Read .. 206
24.5 TPM2_PCR_Allocate .. 209
24.6 TPM2_PCR_SetAuthPolicy .. 212
24.7 TPM2_PCR_SetAuthValue ... 215
24.8 TPM2_PCR_Reset ... 218
24.9 _TPM_Hash_Start .. 221
24.10 _TPM_Hash_Data .. 223
24.11 _TPM_Hash_End ... 225

25 Enhanced Authorization (EA) Commands .. 228

25.1 Introduction ... 228
25.2 Signed Authorization Actions .. 229
25.3 TPM2_PolicySigned ... 233
25.4 TPM2_PolicySecret .. 239
25.5 TPM2_PolicyTicket ... 243
25.6 TPM2_PolicyOR ... 247
25.7 TPM2_PolicyPCR ... 250
25.8 TPM2_PolicyLocality .. 254
25.9 TPM2_PolicyNV .. 258
25.10 TPM2_PolicyCounterTimer ... 263
25.11 TPM2_PolicyCommandCode ... 268
25.12 TPM2_PolicyPhysicalPresence .. 271
25.13 TPM2_PolicyCpHash .. 274
25.14 TPM2_PolicyNameHash ... 278
25.15 TPM2_PolicyDuplicationSelect ... 281
25.16 TPM2_PolicyAuthorize ... 285
25.17 TPM2_PolicyAuthValue .. 289
25.18 TPM2_PolicyPassword ... 292
25.19 TPM2_PolicyGetDigest ... 295

26 Hierarchy Commands .. 298

26.1 TPM2_CreatePrimary ... 298
26.2 TPM2_HierarchyControl ... 302
26.3 TPM2_SetPrimaryPolicy ... 306
26.4 TPM2_ChangePPS .. 309

Part 3: Commands Trusted Platform Module Library

Page vi Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.5 TPM2_ChangeEPS .. 312
26.6 TPM2_Clear .. 315
26.7 TPM2_ClearControl .. 319
26.8 TPM2_HierarchyChangeAuth ... 322

27 Dictionary Attack Functions ... 325

27.1 Introduction ... 325
27.2 TPM2_DictionaryAttackLockReset ... 325
27.3 TPM2_DictionaryAttackParameters.. 328

28 Miscellaneous Management Functions ... 331

28.1 Introduction ... 331
28.2 TPM2_PP_Commands ... 331
28.3 TPM2_SetAlgorithmSet .. 334

29 Field Upgrade .. 337

29.1 Introduction ... 337
29.2 TPM2_FieldUpgradeStart ... 339
29.3 TPM2_FieldUpgradeData ... 342
29.4 TPM2_FirmwareRead ... 345

30 Context Management .. 348

30.1 Introduction ... 348
30.2 TPM2_ContextSave .. 348
30.3 TPM2_ContextLoad .. 353
30.4 TPM2_FlushContext ... 358
30.5 TPM2_EvictControl ... 361

31 Clocks and Timers ... 366

31.1 TPM2_ReadClock ... 366
31.2 TPM2_ClockSet .. 369
31.3 TPM2_ClockRateAdjust .. 372

32 Capability Commands ... 375

32.1 Introduction ... 375
32.2 TPM2_GetCapability ... 375
32.3 TPM2_TestParms ... 383

33 Non-volatile Storage .. 386

33.1 Introduction ... 386
33.2 NV Counters ... 387
33.3 TPM2_NV_DefineSpace ... 388
33.4 TPM2_NV_UndefineSpace ... 394
33.5 TPM2_NV_UndefineSpaceSpecial ... 397
33.6 TPM2_NV_ReadPublic ... 400
33.7 TPM2_NV_Write ... 403
33.8 TPM2_NV_Increment ... 407
33.9 TPM2_NV_Extend .. 411
33.10 TPM2_NV_SetBits .. 415
33.11 TPM2_NV_WriteLock ... 419
33.12 TPM2_NV_GlobalWriteLock ... 423

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page vii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.13 TPM2_NV_Read ... 426
33.14 TPM2_NV_ReadLock ... 429
33.15 TPM2_NV_ChangeAuth ... 432
33.16 TPM2_NV_Certify ... 435

Part 3: Commands Trusted Platform Module Library

Page viii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Tables

Table 1 — Command Modifiers and Decoration ... 2

Table 2 — Separators ... 3

Table 3 — Unmarshaling Errors ... 10

Table 4 — Command-Independent Response Codes .. 13

Table 5 — TPM2_Startup Command .. 21

Table 6 — TPM2_Startup Response .. 21

Table 7 — TPM2_Shutdown Command ... 25

Table 8 — TPM2_Shutdown Response .. 25

Table 9 — TPM2_SelfTest Command .. 30

Table 10 — TPM2_SelfTest Response .. 30

Table 11 — TPM2_IncrementalSelfTest Command ... 33

Table 12 — TPM2_IncrementalSelfTest Response ... 33

Table 13 — TPM2_GetTestResult Command .. 36

Table 14 — TPM2_GetTestResult Response... 36

Table 15 — TPM2_StartAuthSession Command ... 40

Table 16 — TPM2_StartAuthSession Response .. 40

Table 17 — TPM2_PolicyRestart Command .. 44

Table 18 — TPM2_PolicyRestart Response .. 44

Table 19 — TPM2_Create Command .. 48

Table 20 — TPM2_Create Response ... 48

Table 21 — TPM2_Load Command ... 52

Table 22 — TPM2_Load Response .. 52

Table 23 — TPM2_LoadExternal Command .. 57

Table 24 — TPM2_LoadExternal Response .. 57

Table 25 — TPM2_ReadPublic Command ... 61

Table 26 — TPM2_ReadPublic Response ... 61

Table 27 — TPM2_ActivateCredential Command .. 64

Table 28 — TPM2_ActivateCredential Response .. 64

Table 29 — TPM2_MakeCredential Command .. 68

Table 30 — TPM2_MakeCredential Response .. 68

Table 31 — TPM2_Unseal Command .. 71

Table 32 — TPM2_Unseal Response .. 71

Table 33 — TPM2_ObjectChangeAuth Command ... 74

Table 34 — TPM2_ObjectChangeAuth Response ... 74

Table 35 — TPM2_Duplicate Command .. 78

Table 36 — TPM2_Duplicate Response ... 78

Table 37 — TPM2_Rewrap Command ... 82

Table 38 — TPM2_Rewrap Response ... 82

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page ix

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 39 — TPM2_Import Command ... 87

Table 40 — TPM2_Import Response ... 87

Table 41 — Padding Scheme Selection ... 91

Table 42 — Message Size Limits Based on Padding ... 92

Table 43 — TPM2_RSA_Encrypt Command.. 93

Table 44 — TPM2_RSA_Encrypt Response .. 93

Table 45 — TPM2_RSA_Decrypt Command ... 97

Table 46 — TPM2_RSA_Decrypt Response .. 97

Table 47 — TPM2_ECDH_KeyGen Command .. 101

Table 48 — TPM2_ECDH_KeyGen Response .. 101

Table 49 — TPM2_ECDH_ZGen Command .. 104

Table 50 — TPM2_ECDH_ZGen Response .. 104

Table 51 — TPM2_ECC_Parameters Command ... 106

Table 52 — TPM2_ECC_Parameters Response ... 106

Table 53 — TPM2_ZGen_2Phase Command .. 109

Table 54 — TPM2_ZGen_2Phase Response .. 109

Table 55 — Symmetric Chaining Process .. 113

Table 56 — TPM2_EncryptDecrypt Command... 115

Table 57 — TPM2_EncryptDecrypt Response ... 115

Table 58 — TPM2_Hash Command ... 119

Table 59 — TPM2_Hash Response ... 119

Table 60 — TPM2_HMAC Command ... 122

Table 61 — TPM2_HMAC Response ... 122

Table 62 — TPM2_GetRandom Command .. 126

Table 63 — TPM2_GetRandom Response .. 126

Table 64 — TPM2_StirRandom Command .. 129

Table 65 — TPM2_StirRandom Response ... 129

Table 66 — Hash Selection Matrix ... 131

Table 67 — TPM2_HMAC_Start Command ... 132

Table 68 — TPM2_HMAC_Start Response ... 132

Table 69 — TPM2_HashSequenceStart Command ... 136

Table 70 — TPM2_HashSequenceStart Response ... 136

Table 71 — TPM2_SequenceUpdate Command ... 139

Table 72 — TPM2_SequenceUpdate Response .. 139

Table 73 — TPM2_SequenceComplete Command ... 143

Table 74 — TPM2_SequenceComplete Response .. 143

Table 75 — TPM2_EventSequenceComplete Command .. 147

Table 76 — TPM2_EventSequenceComplete Response ... 147

Table 77 — TPM2_Certify Command ... 153

Part 3: Commands Trusted Platform Module Library

Page x Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 78 — TPM2_Certify Response ... 153

Table 79 — TPM2_CertifyCreation Command ... 157

Table 80 — TPM2_CertifyCreation Response .. 157

Table 81 — TPM2_Quote Command ... 161

Table 82 — TPM2_Quote Response .. 161

Table 83 — TPM2_GetSessionAuditDigest Command .. 165

Table 84 — TPM2_GetSessionAuditDigest Response .. 165

Table 85 — TPM2_GetCommandAuditDigest Command .. 169

Table 86 — TPM2_GetCommandAuditDigest Response ... 169

Table 87 — TPM2_GetTime Command ... 173

Table 88 — TPM2_GetTime Response .. 173

Table 89 — TPM2_Commit Command ... 179

Table 90 — TPM2_Commit Response ... 179

Table 91 — TPM2_EC_Ephemeral Command ... 184

Table 92 — TPM2_EC_Ephemeral Response ... 184

Table 93 — TPM2_VerifySignature Command... 187

Table 94 — TPM2_VerifySignature Response ... 187

Table 95 — TPM2_Sign Command .. 191

Table 96 — TPM2_Sign Response .. 191

Table 97 — TPM2_SetCommandCodeAuditStatus Command .. 196

Table 98 — TPM2_SetCommandCodeAuditStatus Response .. 196

Table 99 — TPM2_PCR_Extend Command .. 201

Table 100 — TPM2_PCR_Extend Response ... 201

Table 101 — TPM2_PCR_Event Command .. 204

Table 102 — TPM2_PCR_Event Response ... 204

Table 103 — TPM2_PCR_Read Command ... 207

Table 104 — TPM2_PCR_Read Response ... 207

Table 105 — TPM2_PCR_Allocate Command ... 210

Table 106 — TPM2_PCR_Allocate Response ... 210

Table 107 — TPM2_PCR_SetAuthPolicy Command ... 213

Table 108 — TPM2_PCR_SetAuthPolicy Response ... 213

Table 109 — TPM2_PCR_SetAuthValue Command ... 216

Table 110 — TPM2_PCR_SetAuthValue Response .. 216

Table 111 — TPM2_PCR_Reset Command .. 219

Table 112 — TPM2_PCR_Reset Response ... 219

Table 113 — TPM2_PolicySigned Command .. 235

Table 114 — TPM2_PolicySigned Response ... 235

Table 115 — TPM2_PolicySecret Command ... 240

Table 116 — TPM2_PolicySecret Response .. 240

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page xi

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 117 — TPM2_PolicyTicket Command .. 244

Table 118 — TPM2_PolicyTicket Response .. 244

Table 119 — TPM2_PolicyOR Command .. 248

Table 120 — TPM2_PolicyOR Response ... 248

Table 121 — TPM2_PolicyPCR Command .. 251

Table 122 — TPM2_PolicyPCR Response .. 251

Table 123 — TPM2_PolicyLocality Command ... 255

Table 124 — TPM2_PolicyLocality Response .. 255

Table 125 — TPM2_PolicyNV Command ... 259

Table 126 — TPM2_PolicyNV Response ... 259

Table 127 — TPM2_PolicyCounterTimer Command ... 264

Table 128 — TPM2_PolicyCounterTimer Response .. 264

Table 129 — TPM2_PolicyCommandCode Command .. 269

Table 130 — TPM2_PolicyCommandCode Response ... 269

Table 131 — TPM2_PolicyPhysicalPresence Command ... 272

Table 132 — TPM2_PolicyPhysicalPresence Response ... 272

Table 133 — TPM2_PolicyCpHash Command... 275

Table 134 — TPM2_PolicyCpHash Response ... 275

Table 135 — TPM2_PolicyNameHash Command.. 279

Table 136 — TPM2_PolicyNameHash Response .. 279

Table 137 — TPM2_PolicyDuplicationSelect Command .. 282

Table 138 — TPM2_PolicyDuplicationSelect Response .. 282

Table 139 — TPM2_PolicyAuthorize Command .. 286

Table 140 — TPM2_PolicyAuthorize Response ... 286

Table 141 — TPM2_PolicyAuthValue Command ... 290

Table 142 — TPM2_PolicyAuthValue Response ... 290

Table 143 — TPM2_PolicyPassword Command .. 293

Table 144 — TPM2_PolicyPassword Response .. 293

Table 145 — TPM2_PolicyGetDigest Command.. 296

Table 146 — TPM2_PolicyGetDigest Response .. 296

Table 147 — TPM2_CreatePrimary Command .. 299

Table 148 — TPM2_CreatePrimary Response .. 299

Table 149 — TPM2_HierarchyControl Command .. 303

Table 150 — TPM2_HierarchyControl Response .. 303

Table 151 — TPM2_SetPrimaryPolicy Command .. 307

Table 152 — TPM2_SetPrimaryPolicy Response .. 307

Table 153 — TPM2_ChangePPS Command ... 310

Table 154 — TPM2_ChangePPS Response .. 310

Table 155 — TPM2_ChangeEPS Command ... 313

Part 3: Commands Trusted Platform Module Library

Page xii Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 156 — TPM2_ChangeEPS Response .. 313

Table 157 — TPM2_Clear Command ... 316

Table 158 — TPM2_Clear Response ... 316

Table 159 — TPM2_ClearControl Command ... 320

Table 160 — TPM2_ClearControl Response ... 320

Table 161 — TPM2_HierarchyChangeAuth Command .. 323

Table 162 — TPM2_HierarchyChangeAuth Response .. 323

Table 163 — TPM2_DictionaryAttackLockReset Command .. 326

Table 164 — TPM2_DictionaryAttackLockReset Response .. 326

Table 165 — TPM2_DictionaryAttackParameters Command .. 329

Table 166 — TPM2_DictionaryAttackParameters Response ... 329

Table 167 — TPM2_PP_Commands Command .. 332

Table 168 — TPM2_PP_Commands Response .. 332

Table 169 — TPM2_SetAlgorithmSet Command ... 335

Table 170 — TPM2_SetAlgorithmSet Response.. 335

Table 171 — TPM2_FieldUpgradeStart Command .. 340

Table 172 — TPM2_FieldUpgradeStart Response .. 340

Table 173 — TPM2_FieldUpgradeData Command .. 343

Table 174 — TPM2_FieldUpgradeData Response .. 343

Table 175 — TPM2_FirmwareRead Command.. 346

Table 176 — TPM2_FirmwareRead Response .. 346

Table 177 — TPM2_ContextSave Command ... 349

Table 178 — TPM2_ContextSave Response ... 349

Table 179 — TPM2_ContextLoad Command ... 354

Table 180 — TPM2_ContextLoad Response ... 354

Table 181 — TPM2_FlushContext Command .. 359

Table 182 — TPM2_FlushContext Response .. 359

Table 183 — TPM2_EvictControl Command .. 363

Table 184 — TPM2_EvictControl Response .. 363

Table 185 — TPM2_ReadClock Command .. 367

Table 186 — TPM2_ReadClock Response .. 367

Table 187 — TPM2_ClockSet Command ... 370

Table 188 — TPM2_ClockSet Response ... 370

Table 189 — TPM2_ClockRateAdjust Command... 373

Table 190 — TPM2_ClockRateAdjust Response ... 373

Table 191 — TPM2_GetCapability Command.. 379

Table 192 — TPM2_GetCapability Response .. 379

Table 193 — TPM2_TestParms Command .. 384

Table 194 — TPM2_TestParms Response .. 384

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page xiii

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 195 — TPM2_NV_DefineSpace Command ... 390

Table 196 — TPM2_NV_DefineSpace Response .. 390

Table 197 — TPM2_NV_UndefineSpace Command ... 395

Table 198 — TPM2_NV_UndefineSpace Response .. 395

Table 199 — TPM2_NV_UndefineSpaceSpecial Command .. 398

Table 200 — TPM2_NV_UndefineSpaceSpecial Response .. 398

Table 201 — TPM2_NV_ReadPublic Command .. 401

Table 202 — TPM2_NV_ReadPublic Response .. 401

Table 203 — TPM2_NV_Write Command .. 404

Table 204 — TPM2_NV_Write Response .. 404

Table 205 — TPM2_NV_Increment Command .. 408

Table 206 — TPM2_NV_Increment Response... 408

Table 207 — TPM2_NV_Extend Command ... 412

Table 208 — TPM2_NV_Extend Response ... 412

Table 209 — TPM2_NV_SetBits Command ... 416

Table 210 — TPM2_NV_SetBits Response ... 416

Table 211 — TPM2_NV_WriteLock Command .. 420

Table 212 — TPM2_NV_WriteLock Response... 420

Table 213 — TPM2_NV_GlobalWriteLock Command .. 424

Table 214 — TPM2_NV_GlobalWriteLock Response .. 424

Table 215 — TPM2_NV_Read Command .. 427

Table 216 — TPM2_NV_Read Response .. 427

Table 217 — TPM2_NV_ReadLock Command .. 430

Table 218 — TPM2_NV_ReadLock Response .. 430

Table 219 — TPM2_NV_ChangeAuth Command .. 433

Table 220 — TPM2_NV_ChangeAuth Response .. 433

Table 221 — TPM2_NV_Certify Command .. 436

Table 222 — TPM2_NV_Certify Response .. 436

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 1

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Trusted Platform Module Library
Part 3: Commands

1 Scope

This part 3 of the Trusted Module Library specification contains the definitions of the TPM commands.

These commands make use of the constants, flags, structure, and union definitions defined in part 2:

Structures.

The detailed description of the operation of the commands is written in the C language with extensive

comments. The behavior of the C code in this part 3 is normative but does not fully describe the behavior

of a TPM. The combination of this part 3 and part 4: Supporting Routines is sufficient to fully describe the

required behavior of a TPM.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in part

3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and Definitions

For the purposes of this document, the terms and definitions given in part 1 of this specification apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in part 1 apply.

4 Notation

4.1 Introduction

In addition to the notation in this clause, the “Notations” clause in Part 1 of this specification is applicable

to this Part 3.

Command and response tables used various decorations to indicate the fields of the command and the

allowed types. These decorations are described in this clause.

4.2 Table Decorations

The symbols and terms in the Notation column of Table 1 are used in the tables for the command

schematics. These values indicate various qualifiers for the parameters or descriptions with which they

are associated.

Part 3: Commands Trusted Platform Module Library

Page 2 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 1 — Command Modifiers and Decoration

Notation Meaning

+ A Type decoration – When appended to a value in the Type column of a command, this symbol
indicates that the parameter is allowed to use the “null” value of the data type (see "Conditional
Types" in Part 2). The null value is usually TPM_RH_NULL for a handle or TPM_ALG_NULL for
an algorithm selector.

@ A Name decoration – When this symbol precedes a handle parameter in the “Name” column, it
indicates that an authorization session is required for use of the entity associated with the handle.
If a handle does not have this symbol, then an authorization session is not allowed.

+PP A Description modifier – This modifier may follow TPM_RH_PLATFORM in the “Description”
column to indicate that Physical Presence is required when platformAuth/platformPolicy is
provided.

+{PP} A Description modifier – This modifier may follow TPM_RH_PLATFORM to indicate that Physical
Presence may be required when platformAuth/platformPolicy is provided. The commands with this
notation may be in the setList or clearList of TPM2_PP_Commands().

{NV} A Description modifier – This modifier may follow the commandCode in the “Description” column
to indicate that the command may result in an update of NV memory and be subject to rate
throttling by the TPM. If the command code does not have this notation, then the command will,
under normal circumstance, not cause a write to NV memory.

{F} A Description modifier – This modifier indicates that the “flushed” attribute will be SET in the
TPMA_CC for the command. The modifier may follow the commandCode in the “Description”
column to indicate that any transient handle context used by the command will be flushed from the
TPM when the command completes. This may be combined with the {NV} modifier but not with the
{E} modifier.

EXAMPLE 1 {NV F}

EXAMPLE 2 TPM2_SequenceComplete() will flush the context associated with the sequenceHandle.

{E} A Description modifier – This modifier indicates that the “extensive” attribute will be SET in the
TPMA_CC for the command. This modifier may follow the commandCode in the “Description”

column to indicate that the command may flush many objects and re-enumeration of the loaded
context likely will be required. This may be combined with the {NV} modifier but not with the {F}
modifier.

EXAMPLE 1 {NV E}

EXAMPLE 2 TPM2_Clear() will flush all contexts associated with the Storage hierarchy and the
Endorsement hierarchy.

Auth Index: A Description modifier – When a handle has a “@” decoration, the “Description” column will
contain an “Auth Index:” entry for the handle. This entry indicates the number of the authorization
session. The authorization sessions associated with handles will occur in the session area in the
order of the handles with the “@” modifier. Sessions used only for encryption/decryption or only for
audit will follow the handles used for authorization.

Auth Role: A Description modifier – This will be in the “Description” column of a handle with the “@”
decoration. It may have a value of USER, ADMIN or DUP. If the handle has the Auth Role of
USER and the handle is an Object, the type of authorization is determined by the setting of
userWithAuth in the Object's attributes. If the Auth Role is ADMIN and the handle is an Object, the
type of authorization is determined by the setting of adminWithPolicy in the Object's attributes. If
the DUP role is selected, authorization may only be with a policy session (DUP role only applies to
Objects). When either ADMIN or DUP role is selected, a policy command that selects the
command being authorized is required to be part of the policy.

EXAMPLE TPM2_Certify requires the ADMIN role for the first handle (objectHandle). The policy authorization
for objectHandle is required to contain TPM2_PolicyCommandCode(commandCode ==
TPM_CC_Certity). This sets the state of the policy so that it can be used for ADMIN role
authorization in TPM2_Certify().

If the handle references an NV Index, then the allowed authorizations are determined by the
settings of the attributes of the NV Index as described in Part 2, "TPMA_NV (NV Index Attributes)."

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 3

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

4.3 Handle and Parameter Demarcation

The demarcations between the header, handle, and parameter parts are indicated by:

Table 2 — Separators

 Separator Meaning

 the values immediately following are in the handle area

 the values immediately following are in the parameter area

4.4 AuthorizationSize and ParameterSize

Authorization sessions are not shown in the command or response schematics. When the tag of a

command or response is TPM_ST_SESSIONS, then a 32-bit value will be present in the

command/response buffer to indicate the size of the authorization field or the parameter field. This value

shall immediately follow the handle area (which may contain no handles). For a command, this value

(authorizationSize) indicates the size of the Authorization Area and shall have a value of 9 or more. For a

response, this value (parameterSize) indicates the size of the parameter area and may have a value of

zero.

If the authorizationSize field is present in the command, parameterSize will be present in the response,

but only if the responseCode is TPM_RC_SUCCESS.

When the command tag is TPM_ST_NO_SESSIONS, no authorizations are present and no

authorizationSize field is required and shall not be present.

Part 3: Commands Trusted Platform Module Library

Page 4 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

5 Normative References

The “Normative References” clause in Part 1 of this specification is applicable to this Part 3.

6 Symbols and Abbreviated Terms

The “Symbols and Abbreviated Terms” clause in Part 1 of this specification is applicable to this Part 3.

7 Command Processing

7.1 Introduction

This clause defines the command validations that are required of any implementation and the response

code returned if the indicated check fails. Unless stated otherwise, the order of the checks is not

normative and different TPM may give different responses when a command has multiple errors.

In the description below, some statements that describe a check may be followed by a response code in

parentheses. This is the normative response code should the indicated check fail. A normative response

code may also be included in the statement.

7.2 Command Header Validation

Before a TPM may begin the actions associated with a command, a set of command format and

consistency checks shall be performed. These checks are listed below and should be performed in the

indicated order.

 The TPM shall successfully unmarshal a TPMI_ST_COMMAND_TAG and verify that it is either a)

TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS (TPM_RC_BAD_TAG).

 The TPM shall successfully unmarshal a UINT32 as the commandSize. If the TPM has an interface b)

buffer that is loaded by some hardware process, the number of octets in the input buffer reported by

the hardware process shall exactly match the value in commandSize (TPM_RC_COMMAND_SIZE).

NOTE A TPM may have direct access to system memory and unmarshal directly f rom that memory.

 The TPM shall successfully unmarshal a TPM_CC and verify that the command is implemented c)

(TPM_RC_COMMAND_CODE).

7.3 Mode Checks

The following mode checks shall be performed in the order listed:

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 5

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

 If the TPM is in Failure mode, then the commandCode is TPM_CC_GetTestResult or a)

TPM_CC_GetCapability (TPM_RC_FAILURE) and the command tag is TPM_ST_NO_SESSIONS

(TPM_RC_FAILURE).

NOTE 1 In Failure mode, the TPM has no cryptographic capability and processing of sessions is not
supported.

 The TPM is in Field Upgrade mode (FUM), the commandCode is TPM_CC_FieldUpgradeData b)

(TPM_RC_UPGRADE).

 If the TPM has not been initialized (TPM2_Startup()), then the commandCode is TPM_CC_Startup c)

(TPM_RC_INITIALIZE).

NOTE 2 The TPM may enter Failure mode during _TPM_Init processing. If so, the TPM may process
TPM2_GetTestResult() or TPM2_GetCapability() before TPM2_Startup(). Since the platform
firmware cannot know that the TPM is in Failure mode without accessing it, and since the first
command is required to be TPM2_Startup(), the expected sequence will be that platform
firmware (the CRTM) will issue TPM2_Startup() and receive TPM_RC_FAILURE indicating that
the TPM is in Failure mode.

The mode checks may be performed before or after the command header validation.

7.4 Handle Area Validation

After successfully unmarshaling and validating the command header, the TPM shall perform the following

checks on the handles and sessions. These checks may be performed in any order.

 The TPM shall successfully unmarshal the number of handles required by the command and validate a)

that the value of the handle is consistent with the command syntax. If not, the TPM shall return

TPM_RC_VALUE.

NOTE 1 The TPM may unmarshal a handle and validate that it references an entity on the TPM before
unmarshaling a subsequent handle.

NOTE 2 If the submitted command contains fewer handles than required by the syntax of the command,
the TPM may continue to read into the next area and attempt to interpret the data as a handle.

 For all handles in the handle area of the command, the TPM will validate that the referenced entity is b)

present in the TPM.

1) If the handle references a transient object, the handle shall reference a loaded object

(TPM_RC_REFERENCE_H0 + N where N is the number of the NV Index of the handle in the

command).

NOTE 3 If the hierarchy for a transient object is disabled, then the transient objects will be flushed so this
check will fail.

2) If the handle references a persistent object, then

i) the handle shall reference a persistent object that is currently in TPM non-volatile memory

(TPM_RC_HANDLE);

ii) the hierarchy associated with the object is not disabled (TPM_RC_HIERARCHY); and

iii) if the TPM implementation moves a persistent object to RAM for command processing then

sufficient RAM space is available (TPM_RC_OBJECT_MEMORY).

3) If the handle references an NV Index, then

i) an Index exists that corresponds to the handle (TPM_RC_HANDLE); and

ii) the hierarchy associated with the NV Index is not disabled (TPM_RC_HIERARCHY).

Part 3: Commands Trusted Platform Module Library

Page 6 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

4) If the handle references a session, then the session context shall be present in TPM memory

(TPM_RC_HANDLE).

5) If the handle references a primary seed for a hierarchy (TPM_RH_ENDORSEMENT,

TPM_RH_OWNER, or TPM_RH_PLATFORM) then the enable for the hierarchy is SET

(TPM_RC_HIERARCHY).

6) If the handle references a PCR, then the value is within the range of PCR supported by the TPM

(TPM_RC_VALUE)

NOTE 4 In the reference implementation, this TPM_RC_VALUE is returned by the unmarshaling code for
a TPMI_DH_PCR.

7.5 Session Area Validation

 If the tag is TPM_ST_SESSIONS and the command is a context management command a)

(TPM2_ContextSave(), TPM2_ContextLoad(), or TPM2_FlushContext()) the TPM will return

TPM_RC_AUTH_CONTEXT.

 If the tag is TPM_ST_SESSIONS, the TPM will attempt to unmarshal an authorizationSize and return b)

TPM_RC_AUTHSIZE if the value is not within an acceptable range.

1) The minimum value is (sizeof(TPM_HANDLE) + sizeof(UINT16) + sizeof(TPMA_SESSION) +

sizeof(UINT16)).

2) The maximum value of authorizationSize is equal to commandSize – (sizeof(TPM_ST) +

sizeof(UINT32) + sizeof(TPM_CC) + (N * sizeof(TPM_HANDLE)) + sizeof(UINT32)) where N is

the number of handles associated with the commandCode and may be zero.

NOTE 1 (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_CC)) is the size of a command header. The
last UINT32 contains the authorizationSize octets, which are not counted as being in the
authorization session area.

 The TPM will unmarshal the authorization sessions and perform the following validations: c)

1) If the session handle is not a handle for an HMAC session, a handle for a policy session, or,

TPM_RS_PW then the TPM shall return TPM_RC_HANDLE.

2) If the session is not loaded, the TPM will return the warning TPM_RC_REFERENCE_S0 + N

where N is the number of the session (starting at 1).

NOTE 2 If the HMAC and policy session contexts use the same memory, the type of the context must
match the type of the handle.

3) If the maximum allowed number of sessions have been unmarshaled and fewer octets than

indicated in authorizationSize were unmarshaled (that is, authorizationSize is too large), the TPM

shall return TPM_RC_AUTHSIZE.

4) The consistency of the authorization session attributes is checked.

i) An authorization session is present for each of the handles with the “@” decoration

(TPM_RC_AUTH_MISSING).

ii) Only one session is allowed for:

(a) session auditing (TPM_RC_ATTRIBUTES) – this session may be used for encrypt or

decrypt but may not be a session that is also used for authorization;

(b) decrypting a command parameter (TPM_RC_ATTRIBUTES) – this may any of the

authorization sessions, or the audit session or a session may be added for the single

purpose of decrypting a command parameter as long as the total number of sessions

does not exceed three; and

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 7

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

(c) encrypting a response parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions or the audit session if present and a session may be added for the

single purpose of encrypting a response parameter as long as the total number of

sessions does not exceed three.

NOTE 3 A session used for decrypting a command parameter may also be used for
encrypting a response parameter.

7.6 Authorization Checks

After unmarshaling and validating the handles and the consistency of the authorization sessions, the

authorizations shall be checked. Authorization checks only apply to handles if the handle in the command

schematic has the “@” decoration.

 The public and sensitive portions of the object shall be present on the TPM a)

(TPM_RC_AUTH_UNAVAILABLE).

 If the associated handle is TPM_RH_PLATFORM, and the command requires confirmation with b)

physical presence, then physical presence is asserted (TPM_RC_PP).

 If the object or NV Index is subject to DA protection, and the authorization is with an HMAC or c)

password, then the TPM is not in lockout (TPM_RC_LOCKOUT).

NOTE 1 An object is subject to DA protection if its noDA attribute is CLEAR. An NV Index is subject to
DA protection if its TPMA_NV_NO_DA attribute is CLEAR.

NOTE 2 An HMAC or password is required in a policy session when the policy contains
TPM2_PolicyAuthValue() or TPM2_PolicyPassword().

 If the command requires a handle to have DUP role authorization, then the associated authorization d)

session is a policy session (TPM_RC_POLICY_FAIL).

 If the command requires a handle to have ADMIN role authorization: e)

1) If the entity being authorized is an object and its adminWithPolicy attribute is SET, then the

authorization session is a policy session (TPM_RC_POLICY_FAIL).

NOTE 3 If adminWithPolicy is CLEAR, then any type of authorization session is allowed.

2) If the entity being authorized is an NV Index, then the associated authorization session is a policy

session.

NOTE 4 The only commands that are currently defined that required use of ADMIN role authorization are
commands that operate on objects and NV Indices.

 If the command requires a handle to have USER role authorization: f)

1) If the entity being authorized is an object and its userWithAuth attribute is CLEAR, then the

associated authorization session is a policy session (TPM_RC_POLICY_FAIL).

2) If the entity being authorized is an NV Index;

i) if the authorization session is a policy session;

(a) the TPMA_NV_POLICYWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_POLICYREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE);

ii) if the authorization is an HMAC session or a password;

Part 3: Commands Trusted Platform Module Library

Page 8 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

(a) the TPMA_NV_AUTHWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_AUTHREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE).

 If the authorization is provided by a policy session, then: g)

1) if policySession→timeOut has been set, the session shall not have expired

(TPM_RC_EXPIRED);

2) if policySession→cpHash has been set, it shall match the cpHash of the command

(TPM_RC_POLICY_FAIL);

3) if policySession→commandCode has been set, then commandCode of the command shall match

(TPM_RC_POLICY_CC);

4) policySession→policyDigest shall match the authPolicy associated with the handle

(TPM_RC_POLICY_FAIL);

5) if policySession→pcrUpdateCounter has been set, then it shall match the value of

pcrUpdateCounter (TPM_RC_PCR_CHANGED); and

6) if the authorization uses an HMAC, then the HMAC is properly constructed using the authValue

associated with the handle and/or the session secret (TPM_RC_AUTH_FAIL or

TPM_RC_BAD_AUTH).

NOTE 5 For a bound session, if the handle references the object used to initiate the session, then the
authValue will not be required but proof of knowledge of the session secret is necessary.

NOTE 6 A policy session may require proof of knowledge of the authValue of the object being authorized.

If the TPM returns an error other than TPM_RC_AUTH_FAIL then the TPM shall not alter any TPM state.

If the TPM return TPM_RC_AUTH_FAIL, then the TPM shall not alter any TPM start other than

lockoutCount.

NOTE 7 The TPM may decrease failedTries regardless of any other processing performed by the TPM. That
is, the TPM may exit Lockout mode, regardless of the return code.

7.7 Parameter Decryption

If an authorization session has the TPMA_SESSION.decrypt attribute SET, and the command does not

allow a command parameter to be encrypted, then the TPM will return TPM_RC_ATTRIBUTES.

Otherwise, the TPM will decrypt the parameter using the values associated with the session before

parsing parameters.

7.8 Parameter Unmarshaling

7.8.1 Introduction

The detailed actions for each command assume that the input parameters of the command have been

unmarshaled into a command-specific structure with the structure defined by the command schematic.

Additionally, a response-specific output structure is assumed which will receive the values produced by

the detailed actions.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 9

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

NOTE An implementation is not required to process parameters in this manner or to sepa rate the
parameter parsing from the command actions. This method was chosen for the specification so that
the normative behavior described by the detailed actions would be clear and unencumbered.

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in Part 2 of this specification.

7.8.2 Unmarshaling Errors

When an error is encountered while unmarshaling a command parameter, an error responde code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

NOTE In the reference implementation, a parameter number is added to the response code so that the
offending parameter can be isolated.

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 3.

Part 3: Commands Trusted Platform Module Library

Page 10 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Table 3 — Unmarshaling Errors

Response Code Meaning

TPM_RC_ASYMMETRIC a parameter that should be an asymmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_BAD_TAG a parameter that should be a command tag selection has a value that is not
supported by the TPM

TPM_RC_COMMAND_CODE a parameter that should be a command code does not have a value that is
supported by the TPM

TPM_RC_HASH a parameter that should be a hash algorithm selection does not have a value that
is supported by the TPM

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_KDF a parameter that should be a key derivation scheme (KDF) selection does not
have a value that is supported by the TPM

TPM_RC_KEY_SIZE a parameter that is a key size has a value that is not supported by the TPM

TPM_RC_MODE a parameter that should be a symmetric encryption mode selection does not have
a value that is supported by the TPM

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SCHEME a parameter that should be signing or encryption scheme selection does not have
a value that is supported by the TPM

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_SYMMETRIC a parameter that should be a symmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_TAG a parameter that should be a structure tag has a value that is not supported by
the TPM

TPM_RC_TYPE The type parameter of a TPMT_PUBLIC or TPMT_SENSITIVE has a value that is
not supported by the TPM

TPM_RC_VALUE a parameter does not have one of its allowed values

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the Part 2 definition of the parameter type even if that parameter is not used in the command actions.

7.9 Command Post Processing

When the code that implements the detailed actions of the command completes, it returns a response

code. If that code is not TPM_RC_SUCCESS, the post processing code will not update any session or

audit data and will return a 10-octet response packet.

If the command completes successfully, the tag of the command determines if any authorization sessions

will be in the response. If so, the TPM will encrypt the first parameter of the response if indicated by the

authorization attributes. The TPM will then generate a new nonce value for each session and, if

appropriate, generate an HMAC.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 11

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

NOTE 1 The authorization attributes were validated during the session area validation to ensure that only
one session was used for parameter encryption of the response and that the command allowed
encryption in the response.

NOTE 2 No session nonce value is used for a password authorization but the session data is present.

Additionally, if the command is being audited by Command Audit, the audit digest is updated with the

cpHash of the command and rpHash of the response.

Part 3: Commands Trusted Platform Module Library

Page 12 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

8 Response Values

8.1 Tag

When a command completes successfully, the tag parameter in the response shall have the same value

as the tag parameter in the command (TPM_ST_SESSIONS or TPM_RC_NO_SESSIONS). When a

command fails (the responseCode is not TPM_RC_SUCCESS), then the tag parameter in the response

shall be TPM_ST_NO_SESSIONS.

A special case exists when the command tag parameter is not an allowed value (TPM_ST_SESSIONS or

TPM_ST_NO_SESSIONS). For this case, it is assumed that the system software is attempting to send a

command formatted for a TPM 1.2 but the TPM is not capable of executing TPM 1.2 commands. So that

the TPM 1.2 compatible software will have a recognizable response, the TPM sets tag to

TPM_ST_RSP_COMMAND, responseSize to 00 00 00 0A16 and responseCode to TPM_RC_BAD_TAG.

This is the same response as the TPM 1.2 fatal error for TPM_BADTAG.

8.2 Response Codes

The normal response for any command is TPM_RC_SUCCESS. Any other value indicates that the

command did not complete and the state of the TPM is unchanged. An exception to this general rule is

that the logic associated with dictionary attack protection is allowed to be modified when an authorization

failure occurs.

Commands have response codes that are specific to that command and those response codes are

enumerated in the detailed actions of each command. The codes associated with the unmarshaling of

parameters are documented Table 3. Another set of response code value are not command specific and

indicate a problem that is not specific to the command. That is, if the indicated problem is remedied, the

same commnd could be resubmitted and may complete normally.

The commands that are not command specific are listed and described in Table 4.

The reference code for the command actions may have code that generates specific response codes

associated with a specific check but the listing of responses may not have that response code listed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 13

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 4 — Command-Independent Response Codes

Response Code Meaning

TPM_RC_CANCELLED

This response code may be returned by a TPM that supports command cancel.
When the TPM receives an indication that the current command should be
cancelled, the TPM may complete the command or return this code. If this code
is returned, then the TPM state is not changed and the same command may be
retried.

TPM_RC_CONTEXT_GAP

This response code can be returned for commands that manage session
contexts. It indicates that the gap between the lowest numbered active session
and the highest numbered session is at the limits of the session tracking logic.
The remedy is to load the session context with the lowest number so that its
tracking number can be updated.

TPM_RC_LOCKOUT
This resposne indicates that authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in DA lockout mode. The remedy
is to wait or to exeucte TPM2_DictionaryAttackLockoutReset().

TPM_RC_MEMORY

A TPM may use a common pool of memory for objects, sessions, and other
purposes. When the TPM does not have enough memory available to perform
the actions of the command, it may return TPM_RC_MEMORY. This indicates
that the TPM resource manager may flush either sessions or objects in order to
make memory available for the command execution. A TPM may choose to
return TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY if it
needs contexts of a particular type to be flused.

TPM_RC_NV_RATE

This response code indicates that the TPM is rate-limiting writes to the NV
memory in order to prevent wearout. This response is possible for any command
that explicity writes to NV or commands that incidentally use NV such as a
command that uses authorization session that may need to update the dictionary
attack logic.

TPM_RC_NV_UNAVAILABLE

This response code is similar to TPM_RC_NV_RATE but indicates that access to
NV memory is currently not available and the command is not allowed to proceed
until it is. This would occur in a system where the NV memory used by the TPM
is not exclusive to the TPM and is a shared system resource.

TPM_RC_OBJECT_HANDLES

This response code indicates that the TPM has exhausted its handle space and
no new objects can be loaded unless the TPM is rebooted. This does not occur in
the reference implementation because of the way that object handles are
allocated. However, other implementations are allowed to assign each object a
unique handle each time the object is loaded. A TPM using this implementation
would be able to load 2

24
 objects before the object space is exhausted.

TPM_RC_OBJECT_MEMORY

This response code can be returned by any command that causes the TPM to
need an object 'slot'. The most common case where this might be returned is
when an object is loaded (TPM2_Load, TPM2_CreatePrimary(), or
TPM2_ContextLoad()). However, the TPM implementation is allowed to use
object slots for other reasons. In the reference implementation, the TPM copies a
referenced persistent object into RAM for the duration of the commannd. If all the
slots are previously occupied, the TPM may return this value. A TPM is allowed
to use object slots for other purposes and return this value. The remedy when
this response is returned is for the TPM resource manager to flush a transient
object.

TPM_RC_REFERENCE_Hx

This resposne code indicates that a handle in the handle area of the command is
not associated with a loaded object. The value of 'x' is in the range 0 to 6 with a
value of 0 indicating the 1

st
 handle and 6 representing the 7

th
. The TPM resource

manager needs to find the correct object and load it. It may then adjust the
handle and retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a corrupted
database.

Part 3: Commands Trusted Platform Module Library

Page 14 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

Response Code Meaning

TPM_RC_REFERENCE_Sx

This resposne code indicates that a handle in the session area of the command
is not associated with a loaded session. The value of 'x' is in the range 0 to 6 with
a value of 0 indicating the 1

st
 session handle and 6 representing the 7

th
. The

TPM resource manager needs to find the correct session and load it. It may then
retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

TPM_RC_RETRY the TPM was not able to start the command

TPM_RC_SESSION_HANDLES

This response code indicates that the TPM does not have a handle to assign to a
new session. This respose is only returned by TPM2_StartAuthSession(). It is
listed here because the command is not in error and the TPM resource manager
can remedy the situation by flushing a session (TPM2_FlushContext().

TPM_RC_SESSION_MEMORY

This response code can be returned by any command that causses the TPM to
need a session 'slot'. The most common case where this might be returned is
when a session is loaded (TPM2_StartAuthSession() or TPM2_ContextLoad()).
However, the TPM implementation is allowed to use object slots for other
purposes. The remedy when this response is returned is for the TPM resource
manager to flush a transient object.

TPM_RC_SUCCESS

Normal completion for any command. If the responseCode is
TPM_RC_SESSIONS, then the rest of the response has the format indicated in
the response schematic. Otherwise, the response is a 10 octect value indicating
an error.

TPM_RC_TESTING
This response code indicates that the TPM is performing tests and cannot
respond to the request at this time. The command may be retried.

TPM_RC_YIELDED

the TPM has suspended operation on the command; forward progress was made
and the command may be retried.

See Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference implementation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 15

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

9 Implementation Dependent

The actions code for each command makes assumptions about the behavior of various sub-system.

There are many possible implementations of the subsystems that would achieve an equivalent results.

The actions code is not written to anticipate all possible implementations of the sub-systems. Therefore, it

is the responsibility of the implementer to ensure that the necessary changes are made to the actions

code when the sub-system behavior changes.

Part 3: Commands Trusted Platform Module Library

Page 16 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

10 Detailed Actions Assumptions

10.1 Introduction

The C code in the Detailed Actions for each command is written with a set of assumptions about the

processing performed before the action code is called and the processing that will be done after the

action code completes.

10.2 Pre-processing

Before calling the command actions code, the following actions have occurred.

 Verification that the handles in the handle area reference entities that are resident on the TPM.

NOTE If a handle is in the parameter portion of the command, the associated entity does not have to
be loaded, but the handle is required to be the correct type.

 If use of a handle requires authorization, the Password, HMAC, or Policy session associated with the
handle has been verified.

 If a command parameter was encrypted using parameter encryption, it was decrypted before being
unmarshaled.

 If the command uses handles or parameters, the calling stack contains a pointer to a data structure
(in) that holds the unmarshaled values for the handles and commands. If the response has handles

or parameters, the calling stack contains a pointer to a data structure (out) to hold the handles and

parameters generated by the command.

 All parameters of the in structure have been validated and meet the requirements of the parameter

type as defined in Part 2.

 Space set aside for the out structure is sufficient to hold the largest out structure that could be

produced by the command

10.3 Post Processing

When the function implementing the command actions completes,

 response parameters that require parameter encryption will be encrypted after the command actions
complete;

 audit and session contexts will be updated if the command response is TPM_RC_SUCCESS; and

 the command header and command response parameters will be marshaled to the response buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 17

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11 Start-up

11.1 Introduction

This clause contains the commands used to manage the startup and restart state of a TPM.

11.2 _TPM_Init

11.2.1 General Description

_TPM_Init initializes a TPM.

Initialization actions include testing code required to execute the next expected command. If the TPM is in

FUM, the next expected command is TPM2_FieldUpgradeData(); otherwise, the next expected command

is TPM2_Startup().

NOTE 1 If the TPM performs self-tests after receiving _TPM_Init() and the TPM enters Failure mode before
receiving TPM2_Startup() or TPM2_FieldUpgradeData(), then the TPM may be able to accept
TPM2_GetTestResult() or TPM2_GetCapability().

The means of signaling _TPM_Init shall be defined in the platform-specific specifications that define the

physical interface to the TPM. The platform shall send this indication whenever the platform starts its boot

process and only when the platform starts its boot process.

There shall be no software method of generating this indication that does not also reset the platform and

begin execution of the CRTM.

NOTE 2 In the reference implementation, this signal causes an internal flag (s_initialized) to be CLEAR.
While this flag is CLEAR, the TPM will only accept the next expected command described above.

Part 3: Commands Trusted Platform Module Library

Page 18 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.2.2 Detailed Actions

1 #include "InternalRoutines.h"

This function is used to process a _TPM_Init() indication.

2 void _TPM_Init(void)

3 {

4 // Initialize crypto engine

5 CryptInitUnits();

6

7 // Initialize NV environment

8 NvPowerOn();

9

10 // Start clock

11 TimePowerOn();

12

13 // Set initialization state

14 TPMInit();

15

16 // Set g_DRTMHandle as unassigned

17 g_DRTMHandle = TPM_RH_UNASSIGNED;

18

19 // No H-CRTM, yet.

20 g_DrtmPreStartup = FALSE;

21

22

23 return;

24 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 19

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.3 TPM2_Startup

11.3.1 General Description

TPM2_Startup() is always preceded by _TPM_Init, which is the physical indication that TPM initialization

is necessary because of a system-wide reset. TPM2_Startup() is only valid after _TPM_Init Additional

TPM2_Startup() commands are not allowed after it has completed successfully. If a TPM requires

TPM2_Startup() and another command is received, or if the TPM receives TPM2_Startup() when it is not

required, the TPM shall return TPM_RC_INITIALIZE.

NOTE 1 See 11.2.1 for other command options for a TPM supporting field upgrade mode.

NOTE 2 _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are not commands and a platform -
specific specification may allow these indications between _TPM_Init and TPM2_Startup().

If in Failure mode the TPM shaIl accept TPM2_GetTestResult() and TPM2_GetCapability() even if

TPM2_Startup() is not completed successfully or processed at all.

A Shutdown/Startup sequence determines the way in which the TPM will operate in response to

TPM2_Startup(). The three sequences are:

1) TPM Reset – This is a Startup(CLEAR) preceded by either Shutdown(CLEAR) or no
TPM2_Shutdown(). On TPM Reset, all variables go back to their default initialization state.

NOTE 3 Only those values that are specified as having a default initialization state are changed by TPM
Reset. Persistent values that have no default initialization state are not changed by this
command. Values such as seeds have no default initialization state and only change due to
specific commands.

2) TPM Restart – This is a Startup(CLEAR) preceded by Shutdown(STATE). This preserves much of the
previous state of the TPM except that PCR and the controls associated with the Platform hierarchy
are all returned to their default initialization state;

3) TPM Resume – This is a Startup(STATE) preceded by Shutdown(STATE). This preserves the
previous state of the TPM including the static Root of Trust for Measurement (S-RTM) PCR and the
platform controls other than the phEnable.

If a TPM receives Startup(STATE) and that was not preceded by Shutdown(STATE), the TPM shall return

TPM_RC_VALUE.

If, during TPM Restart or TPM Resume, the TPM fails to restore the state saved at the last

Shutdown(STATE), the TPM shall enter Failure Mode and return TPM_RC_FAILURE.

On any TPM2_Startup(),

 phEnable shall be SET;

 all transient contexts (objects, sessions, and sequences) shall be flushed from TPM memory;

 TPMS_TIME_INFO.time shall be reset to zero; and

 use of lockoutAuth shall be enabled if lockoutRecovery is zero.

Additional actions are performed based on the Shutdown/Startup sequence.

On TPM Reset

Part 3: Commands Trusted Platform Module Library

Page 20 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 platformAuth and platformPolicy shall be set to the Empty Buffer,

 tracking data for saved session contexts shall be set to its initial value,

 the object context sequence number is reset to zero,

 a new context encryption key shall be generated,

 TPMS_CLOCK_INFO.restartCount shall be reset to zero,

 TPMS_CLOCK_INFO.resetCount shall be incremented,

 the PCR Update Counter shall be clear to zero,

 shEnable and ehEnable shall be SET, and

 PCR in all banks are reset to their default initial conditions as determined by the relevant platform-
specific specification.

NOTE 4 PCR may be initialized any time between _TPM_Init and the end of TPM2_Startup(). PCR that
are preserved by TPM Resume will need to be restored during TPM2_Startup().

NOTE 5 See "InitializingPCR" in Part 1 of this specification for a description of the default initial
conditions for a PCR.

On TPM Restart

 TPMS_CLOCK_INFO.restartCount shall be incremented,

 shEnable and ehEnable shall be SET,

 platformAuth and platformPolicy shall be set to the Empty Buffer, and

 PCR in all banks are reset to their default initial conditions.

 If a CRTM Event sequence is active, extend the PCR designated by the platform-specific
specification.

On TPM Resume

 the H-CRTM startup method is the same for this TPM2_Startup() as for the previous TPM2_Startup();
(TPM_RC_LOCALITY)

 TPMS_CLOCK_INFO.restartCount shall be incremented; and

 PCR that are specified in a platform-specific specification to be preserved on TPM Resume are
restored to their saved state and other PCR are set to their initial value as determined by a platform-
specific specification.

Other TPM state may change as required to meet the needs of the implementation.

If the startupType is TPM_SU_STATE and the TPM requires TPM_SU_CLEAR, then the TPM shall return

TPM_RC_VALUE.

NOTE 6 The TPM will require TPM_SU_CLEAR when no shutdown was performed or after
Shutdown(STATE).

NOTE 7 If startupType is neither TPM_SU_STATE nor TPM_SU_CLEAR, then the unmarshaling code returns
TPM_RC_VALUE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 21

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.3.2 Command and Response

Table 5 — TPM2_Startup Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Startup {NV}

TPM_SU startupType TPM_SU_CLEAR or TPM_SU_STATE

Table 6 — TPM2_Startup Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 22 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Startup_fp.h"

Error Returns Meaning

TPM_RC_VALUE start up type is not compatible with previous shutdown sequence

3 TPM_RC

4 TPM2_Startup(

5 Startup_In *in // IN: input parameter list

6)

7 {

8 STARTUP_TYPE startup;

9 TPM_RC result;

10 BOOL prevDrtmPreStartup;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 result = NvIsAvailable();

16 if(result != TPM_RC_SUCCESS)

17 return result;

18

19 // Input Validation

20

21 // Read orderly shutdown states from previous power cycle

22 NvReadReserved(NV_ORDERLY, &g_prevOrderlyState);

23

24 // HACK to extract the DRTM startup type associated with the previous shutdown

25 prevDrtmPreStartup = (g_prevOrderlyState == (TPM_SU_STATE + 0x8000));

26 if(prevDrtmPreStartup)

27 g_prevOrderlyState = TPM_SU_STATE;

28

29

30 // if the previous power cycle was shut down with no StateSave command, or

31 // with StateSave command for CLEAR, this cycle can not startup up with

32 // STATE

33 if((g_prevOrderlyState == SHUTDOWN_NONE

34 || g_prevOrderlyState == TPM_SU_CLEAR

35)

36 && in->startupType == TPM_SU_STATE

37)

38 return TPM_RC_VALUE + RC_Startup_startupType;

39

40 // Internal Date Update

41

42 // Translate the TPM2_ShutDown and TPM2_Startup sequence into the startup

43 // types.

44 if(in->startupType == TPM_SU_CLEAR && g_prevOrderlyState == TPM_SU_STATE)

45 {

46 startup = SU_RESTART;

47 // Read state reset data

48 NvReadReserved(NV_STATE_RESET, &gr);

49 }

50 else if(in->startupType == TPM_SU_STATE && g_prevOrderlyState == TPM_SU_STATE)

51 {

52 // For a resume, the H-CRTM startup method must be the same

53 if(g_DrtmPreStartup != prevDrtmPreStartup)

54 return TPM_RC_LOCALITY;

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 23

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

55

56 // Read state clear and state reset data

57 NvReadReserved(NV_STATE_CLEAR, &gc);

58 NvReadReserved(NV_STATE_RESET, &gr);

59 startup = SU_RESUME;

60 }

61 else

62 {

63 startup = SU_RESET;

64 }

65

66 // Read persistent data from NV

67 NvReadPersistent();

68

69 // Start up subsystems

70 // Start counters and timers

71 TimeStartup(startup);

72

73 // Start dictionary attack subsystem

74 DAStartup(startup);

75

76 // Enable hierarchies

77 HierarchyStartup(startup);

78

79 // Crypto Startup

80 CryptUtilStartup(startup);

81

82 // Restore/Initialize PCR

83 PCRStartup(startup);

84

85 // Restore/Initialize command audit information

86 CommandAuditStartup(startup);

87

88 // Object context variables

89 if(startup == SU_RESET)

90 {

91 // Reset object context ID to 0

92 gr.objectContextID = 0;

93 // Reset clearCount to 0

94 gr.clearCount= 0;

95 }

96

97 // Initialize object table

98 ObjectStartup();

99

100 // Initialize session table

101 SessionStartup(startup);

102

103 // Initialize index/evict data. This function clear read/write locks

104 // in NV index

105 NvEntityStartup(startup);

106

107 // Initialize the orderly shut down flag for this cycle to SHUTDOWN_NONE.

108 gp.orderlyState = SHUTDOWN_NONE;

109 NvWriteReserved(NV_ORDERLY, &gp.orderlyState);

110

111 // Update TPM internal states if command succeeded.

112 // Record a TPM2_Startup command has been received.

113 TPMRegisterStartup();

114

115 return TPM_RC_SUCCESS;

116

117 }

Part 3: Commands Trusted Platform Module Library

Page 24 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.4 TPM2_Shutdown

11.4.1 General Description

This command is used to prepare the TPM for a power cycle. The shutdownType parameter indicates

how the subsequent TPM2_Startup() will be processed.

For a shutdownType of any type, the volatile portion of Clock is saved to NV memory and the orderly

shutdown indication is SET. NV with the TPMA_NV_ORDERY attribute will be updated.

For a shutdownType of TPM_SU_STATE, the following additional items are saved:

 tracking information for saved session contexts;

 the session context counter;

 PCR that are designated as being preserved by TPM2_Shutdown(TPM_SU_STATE);

 the PCR Update Counter;

 flags associated with supporting the TPMA_NV_WRITESTCLEAR and TPMA_NV_READSTCLEAR
attributes; and

 the command audit digest and count.

The following items shall not be saved and will not be in TPM memory after the next TPM2_Startup:

 TPM-memory-resident session contexts;

 TPM-memory-resident transient objects; or

 TPM-memory-resident hash contexts created by TPM2_HashSequenceStart().

Some values may be either derived from other values or saved to NV memory.

This command saves TPM state but does not change the state other than the internal indication that the

context has been saved. The TPM shall continue to accept commands. If a subsequent command

changes TPM state saved by this command, then the effect of this command is nullified. That is, after

state is modified and if no TPM2_Shutdown() occurs before the next TPM2_Startup(), then the next

TPM2_Startup() shall be TPM2_Startup(CLEAR).

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 25

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

11.4.2 Command and Response

Table 7 — TPM2_Shutdown Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Shutdown {NV}

TPM_SU shutdownType TPM_SU_CLEAR or TPM_SU_STATE

Table 8 — TPM2_Shutdown Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 26 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

11.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Shutdown_fp.h"

Error Returns Meaning

TPM_RC_TYPE if PCR bank has been re-configured, a CLEAR StateSave () is required

3 TPM_RC

4 TPM2_Shutdown(

5 Shutdown_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Input Validation

17

18 // If PCR bank has been reconfigured, a CLEAR state save is required

19 if(g_pcrReConfig && in->shutdownType == TPM_SU_STATE)

20 return TPM_RC_TYPE + RC_Shutdown_shutdownType;

21

22 // Internal Data Update

23

24 // PCR private date state save

25 PCRStateSave(in->shutdownType);

26

27 // Save clock

28 NvWriteReserved(NV_CLOCK, &go.clock);

29

30 // Save RAM backed NV index data

31 NvStateSave();

32

33 if(in->shutdownType == TPM_SU_STATE)

34 {

35 // Save STATE_RESET and STATE_CLEAR data

36 NvWriteReserved(NV_STATE_CLEAR, &gc);

37 NvWriteReserved(NV_STATE_RESET, &gr);

38 }

39 else if(in->shutdownType == TPM_SU_CLEAR)

40 {

41 // Save STATE_RESET data

42 NvWriteReserved(NV_STATE_RESET, &gr);

43 }

44

45 // Write orderly shut down state

46 if(in->shutdownType == TPM_SU_CLEAR)

47 gp.orderlyState = TPM_SU_CLEAR;

48 else if(in->shutdownType == TPM_SU_STATE)

49 // This is a complete hack to preserve the state of the H-DRTM across

50 // TPM Resume. If we are doing an orderly shutdown, we will set the MSb of

51 // gp.orderlyState and write it to NV. On the next Startup, we will check

52 // that the state of g_DrtmPreStartup matches the saved value and fail if

53 // not. BTW, after a check of the code, it seems that the only check that

54 // is made of gp.orderlyState is to see if it is SHUTDOWN_NONE. There is no

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 27

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

55 // check to see if it it TPM_SU_STATE or TPM_SU_CLEAR. This is because what

56 // matters to Startup, is in g_prevOrderlyState.

57 gp.orderlyState = g_DrtmPreStartup ? TPM_SU_STATE + 0x8000 : TPM_SU_STATE;

58 else

59 pAssert(FALSE);

60

61 NvWriteReserved(NV_ORDERLY, &gp.orderlyState);

62

63 return TPM_RC_SUCCESS;

64 }

Part 3: Commands Trusted Platform Module Library

Page 28 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12 Testing

12.1 Introduction

Compliance to standards for hardware security modules may require that the TPM test its functions

before the results that depend on those functions may be returned. The TPM may perform operations

using testable functions before those functions have been tested as long as the TPM returns no value

that depends on the correctness of the testable function.

EXAMPLE TPM2_PCR_Event() may be executed before the hash algorithms have been tested. However, until
the hash algorithms have been tested, the contents of a PCR may not be used in any c ommand if
that command may result in a value being returned to the TPM user. This means that
TPM2_PCR_Read() or TPM2_PolicyPCR()could not complete until the hashes have been checked
but other TPM2_PCR_Event() commands may be executed even though the operat ion uses previous
PCR values.

If a command is received that requires return of a value that depends on untested functions, the TPM

shall test the required functions before completing the command.

Once the TPM has received TPM2_SelfTest() and before completion of all tests, the TPM is required to

return TPM_RC_TESTING for any command that uses a function that requires a test.

If a self-test fails at any time, the TPM will enter Failure mode. While in Failure mode, the TPM will return

TPM_RC_FAILURE for any command other than TPM2_GetTestResult() and TPM2_GetCapability(). The

TPM will remain in Failure mode until the next _TPM_Init.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 29

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.2 TPM2_SelfTest

12.2.1 General Description

This command causes the TPM to perform a test of its capabilities. If the fullTest is YES, the TPM will test

all functions. If fullTest = NO, the TPM will only test those functions that have not previously been tested.

If any tests are required, the TPM shall either

 return TPM_RC_TESTING and begin self-test of the required functions, or a)

NOTE 1 If fullTest is NO, and all functions have been tested, the TPM shall return TPM_RC_SUCCESS.

 perform the tests and return the test result when complete. b)

If the TPM uses option a), the TPM shall return TPM_RC_TESTING for any command that requires use

of a testable function, even if the functions required for completion of the command have already been

tested.

NOTE 2 This command may cause the TPM to continue processing after it has returned the response. So
that software can be notified of the completion of the testing, the interface should include controls
that would allow the TPM to generate an interrupt when the “background” processing is complete.
This would be in addition to the interrupt that is expected to be available for signaling normal
command completion. It is not necessary that there be two interrupts, but the interface should
provide a way to indicate the nature of the interrupt (normal command or deferred command).

Part 3: Commands Trusted Platform Module Library

Page 30 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.2.2 Command and Response

Table 9 — TPM2_SelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SelfTest {NV}

TPMI_YES_NO fullTest
YES if full test to be performed

NO if only test of untested functions required

Table 10 — TPM2_SelfTest Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 31

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SelfTest_fp.h"

Error Returns Meaning

TPM_RC_TESTING self test in process

3 TPM_RC

4 TPM2_SelfTest(

5 SelfTest_In *in // IN: input parameter list

6)

7 {

8 // Command Output

9

10 // Call self test function in crypt module

11 return CryptSelfTest(in->fullTest);

12 }

Part 3: Commands Trusted Platform Module Library

Page 32 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.3 TPM2_IncrementalSelfTest

12.3.1 General Description

This command causes the TPM to perform a test of the selected algorithms.

NOTE 1 The toTest list indicates the algorithms that software would like the TPM to test in anticipation of
future use. This allows tests to be done so that a future commands will not be delayed due to
testing.

If toTest contains an algorithm that has already been tested, it will not be tested again.

NOTE 2 The only way to force retesting of an algorithm is with TPM2_SelfTest(fullTest = YES).

The TPM will return in toDoList a list of algorithms that are yet to be tested. This list is not the list of

algorithms that are scheduled to be tested but the algorithms/functions that have not been tested. Only

the algorithms on the toTest list are scheduled to be tested by this command.

Making toTest an empty list allows the determination of the algorithms that remain untested without

triggering any testing.

If toTest is not an empty list, the TPM shall return TPM_RC_SUCCESS for this command and then return

TPM_RC_TESTING for any subsequent command (including TPM2_IncrementalSelfTest()) until the

requested testing is complete.

NOTE 3 If toDoList is empty, then no additional tests are required and TPM_RC_TESTING will not be
returned in subsequent commands and no additional delay will occur in a command due to testing.

NOTE 4 If none of the algorithms listed in toTest is in the toDoList, then no tests will be performed.

If all the parameters in this command are valid, the TPM returns TPM_RC_SUCCESS and the toDoList

(which may be empty).

NOTE 5 An implementation may perform all requested tests before returning TPM_RC_SUCCESS, or it may
return TPM_RC_SUCCESS for this command and then return TPM_RC_TESTING for all
subsequence commands (including TPM2_IncrementatSelfTest()) until the requested tests are
complete.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 33

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.3.2 Command and Response

Table 11 — TPM2_IncrementalSelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_IncrementalSelfTest {NV}

TPML_ALG toTest list of algorithms that should be tested

Table 12 — TPM2_IncrementalSelfTest Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPML_ALG toDoList list of algorithms that need testing

Part 3: Commands Trusted Platform Module Library

Page 34 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "IncrementalSelfTest_fp.h"

3 TPM_RC

4 TPM2_IncrementalSelfTest(

5 IncrementalSelfTest_In *in, // IN: input parameter list

6 IncrementalSelfTest_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // Call incremental self test function in crypt module

12 return CryptIncrementalSelfTest(&in->toTest, &out->toDoList);

13 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 35

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.4 TPM2_GetTestResult

12.4.1 General Description

This command returns manufacturer-specific information regarding the results of a self-test and an

indication of the test status.

If TPM2_SelfTest() has not been executed and a testable function has not been tested, testResult will be

TPM_RC_NEEDS_TEST. If TPM2_SelfTest() has been received and the tests are not complete,

testResult will be TPM_RC_TESTING. If testing of all functions is complete without functional failures,

testResult will be TPM_RC_SUCCESS. If any test failed, testResult will be TPM_RC_FAILURE. If the

TPM is in Failure mode because of an invalid startupType in TPM2_Startup(), testResult will be

TPM_RC_INITIALIZE.

This command will operate when the TPM is in Failure mode so that software can determine the test

status of the TPM and so that diagnostic information can be obtained for use in failure analysis. If the

TPM is in Failure mode, then tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

Part 3: Commands Trusted Platform Module Library

Page 36 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

12.4.2 Command and Response

Table 13 — TPM2_GetTestResult Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTestResult

Table 14 — TPM2_GetTestResult Response

Type Name Description

TPMI_ST_COMMAND_TAG tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData
test result data

contains manufacturer-specific information

TPM_RC testResult

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 37

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

12.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "GetTestResult_fp.h"

3 TPM_RC

4 TPM2_GetTestResult(

5 GetTestResult_Out *out // OUT: output parameter list

6)

7 {

8 // Command Output

9

10 // Call incremental self test function in crypt module

11 out->testResult = CryptGetTestResult(&out->outData);

12

13 return TPM_RC_SUCCESS;

14 }

Part 3: Commands Trusted Platform Module Library

Page 38 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

13 Session Commands

13.1 TPM2_StartAuthSession

13.1.1 General Description

This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

This command allows injection of a secret into the TPM using either asymmetric or symmetric encryption.

The type of tpmKey determines how the value in encryptedSalt is encrypted. The decrypted secret value

is used to compute the sessionKey.

NOTE 1 If tpmKey Is TPM_RH_NULL, then encryptedSalt is required to be an Empty Buffer.

The label value of “SECRET” (see “Terms and Definitions” in Part 1 of this specification) is used in the

recovery of the secret value.

The TPM generates the sessionKey from the recovered secret value.

No authorization is required for tpmKey or bind.

NOTE 2 The justification for using tpmKey without providing authorization is that the result of using the key is
not available to the caller, except indirectly through the sessionKey. This does not represent a point
of attack on the value of the key. If the caller attempts to use the session without knowing the
sessionKey value, it is an authorization failure that will trigger the dictionary attack logic.

The entity referenced with the handle parameter contributes an authorization value to the sessionKey

generation process.

If both tpmKey and handle are TPM_ALG_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is

not TPM_ALG_NULL, then encryptedSecret is used in the computation of sessionKey. If handle is not

TPM_ALG_NULL, the authValue of handle is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in

the parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial

nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall return

TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextID values, then the TPM shall return

TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See

“Context Management” in Part 1).

If tpmKey is not TPM_ALG_NULL then salt shall be a TPM2B_ENCRYPTED_SECRET of the proper type

for tpmKey. The TPM shall return TPM_RC_VALUE if:

 tpmKey references an RSA key and salt a)

1) does not contain a value that is the size of the public modulus of tpmKey,

2) has a value that is greater than the public modulus of tpmKey,

3) is not a properly encode OAEP value, or

4) the encode value is larger than the size of the digest produced by the nameAlg of tpmKey; or

 tpmKey references an ECC key and encryptedSalt b)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 39

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tpmKey;

NOTE 3 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

 tpmKey references a symmetric block cipher or a keyedHash object and encryptedSalt contains a c)

value that is larger than the size of the digest produced by the nameAlg of tpmKey.

For all session types, this command will cause initialization of the sessionKey and may establish binding

between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or

TPM_SE_TRIAL, the additional session initialization is:

 set policySession→policyDigest to a Zero Digest (the digest size for policySession→policyDigest is
the size of the digest produced by authHash);

 authorization may be given at any locality;

 authorization may apply to any command code;

 authorization may apply to any command parameters or handles;

 the authorization has no time limit;

 an authValue is not needed when the authorization is used;

 the session is not bound;

 the session is not an audit session; and

 the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be

used to compute the authPolicy for an object.

NOTE 4 Although this command changes the session al location information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re-
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of

the digest produced by authHash.

Part 3: Commands Trusted Platform Module Library

Page 40 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

13.1.2 Command and Response

Table 15 — TPM2_StartAuthSession Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey

handle of a loaded decrypt key used to encrypt salt

may be TPM_RH_NULL

Auth Index: None

TPMI_DH_ENTITY+ bind

entity providing the authValue

may be TPM_RH_NULL

Auth Index: None

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonce size for the session

shall be at least 16 octets

TPM2B_ENCRYPTED_SECRET encryptedSalt

value encrypted according to the type of tpmKey

If tpmKey is TPM_RH_NULL, this shall be the Empty

Buffer.

TPM_SE sessionType
indicates the type of the session; simple HMAC or policy
(including a trial policy)

TPMT_SYM_DEF+ symmetric
the algorithm and key size for parameter encryption

may select TPM_ALG_NULL

TPMI_ALG_HASH authHash

hash algorithm to use for the session

Shall be a hash algorithm supported by the TPM and
not TPM_ALG_NULL

Table 16 — TPM2_StartAuthSession Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_SH_AUTH_SESSION sessionHandle handle for the newly created session

TPM2B_NONCE nonceTPM
the initial nonce from the TPM, used in the computation
of the sessionKey

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 41

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

13.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "StartAuthSession_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES tpmKey does not reference a decrypt key

TPM_RC_CONTEXT_GAP the difference between the most recently created active context and
the oldest active context is at the limits of the TPM

TPM_RC_HANDLE input decrypt key handle only has public portion loaded, or input bind
point is not a null handle but session to be created is policy session.

TPM_RC_MODE symmetric specifies a block cipher but the mode is not
TPM_ALG_CFB.

TPM_RC_SESSION_HANDLES no session handle is available

TPM_RC_SESSION_MEMORY no more slots for loading a session

TPM_RC_SIZE nonce less than 16 octets or greater than the size of the digest
produced by authHash

TPM_RC_VALUE secret size does not match decrypt key type; or the recovered secret
is larget than the digest size of the nameAlg of tpmKey; or, for an RSA
decrypt key, if encryptedSecret is greater than the public exponent of
tpmKey.

3 TPM_RC

4 TPM2_StartAuthSession(

5 StartAuthSession_In *in, // IN: input parameter buffer

6 StartAuthSession_Out *out // OUT: output parameter buffer

7)

8 {

9 TPM_RC result = TPM_RC_SUCCESS;

10 OBJECT *tpmKey; // TPM key for decrypt salt

11 SESSION *session; // session internal data

12 TPM2B_DATA salt;

13

14 // Input Validation

15

16 // Check input nonce size. IT should be at least 16 bytes but not larger

17 // than the digest size of session hash.

18 if(in->nonceCaller.t.size < 16

19 || in->nonceCaller.t.size > CryptGetHashDigestSize(in->authHash))

20 return TPM_RC_SIZE + RC_StartAuthSession_nonceCaller;

21

22 // If an decrypt key is passed in, check its validation

23 if(in->tpmKey != TPM_RH_NULL)

24 {

25 // secret size can not be 0

26 if(in->encryptedSalt.t.size == 0)

27 return TPM_RC_VALUE + RC_StartAuthSession_encryptedSalt;

28

29 // Get pointer to loaded decrypt key

30 tpmKey = ObjectGet(in->tpmKey);

31

32 // Decrypting salt requires accessing the private portion of a key.

33 // Therefore, tmpKey can not be a key with only public portion loaded

34 if(tpmKey->attributes.publicOnly)

35 return TPM_RC_HANDLE + RC_StartAuthSession_tpmKey;

Part 3: Commands Trusted Platform Module Library

Page 42 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

36

37 // HMAC session input handle check.

38 // tpmKey should be a decryption key

39 if(tpmKey->publicArea.objectAttributes.decrypt != SET)

40 return TPM_RC_ATTRIBUTES + RC_StartAuthSession_tpmKey;

41

42

43 // Secret Decryption. A TPM_RC_VALUE, TPM_RC_KEY or Unmarshal errors

44 // may be returned at this point

45 result = CryptSecretDecrypt(in->tpmKey, &in->nonceCaller, "SECRET",

46 &in->encryptedSalt, &salt);

47 if(result != TPM_RC_SUCCESS)

48 return TPM_RC_VALUE + RC_StartAuthSession_encryptedSalt;

49

50

51 }

52 else

53 {

54 // secret size must be 0

55 if(in->encryptedSalt.t.size != 0)

56 return TPM_RC_VALUE + RC_StartAuthSession_encryptedSalt;

57 salt.t.size = 0;

58 }

59 // If 'symmetric' is a symmetric block cipher (not TPM_ALG_NULL or TPM_ALG_XOR)

60 // then the mode must be CFB.

61 if(in->symmetric.algorithm != TPM_ALG_NULL

62 && in->symmetric.algorithm != TPM_ALG_XOR

63 && in->symmetric.mode.sym != TPM_ALG_CFB)

64 return TPM_RC_MODE + RC_StartAuthSession_symmetric;

65

66 // Internal Data Update

67

68 // Create internal session structure. TPM_RC_CONTEXT_GAP, TPM_RC_NO_HANDLES

69 // or TPM_RC_SESSION_MEMORY errors may be returned returned at this point.

70 //

71 // The detailed actions for creating the session context are not shown here

72 // as the details are implementation dependent

73 // SessionCreate sets the output handle

74 result = SessionCreate(in->sessionType, in->authHash,

75 &in->nonceCaller, &in->symmetric,

76 in->bind, &salt, &out->sessionHandle);

77

78 if(result != TPM_RC_SUCCESS)

79 return result;

80

81 // Command Output

82

83 // Get session pointer

84 session = SessionGet(out->sessionHandle);

85

86 // Copy nonceTPM

87 out->nonceTPM = session->nonceTPM;

88

89 return TPM_RC_SUCCESS;

90 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 43

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

13.2 TPM2_PolicyRestart

13.2.1 General Description

This command allows a policy authorization session to be returned to its initial state. This command is

used after the TPM returns TPM_RC_PCR_CHANGED. That response code indicates that a policy will

fail because the PCR have changed after TPM2_PolicyPCR() was executed. Restarting the session

allows the authorizations to be replayed, and if the PCR are valid for the policy, the policy may then

succeed.

This command does not reset the policy ID or the policy start time.

Part 3: Commands Trusted Platform Module Library

Page 44 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

13.2.2 Command and Response

Table 17 — TPM2_PolicyRestart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyRestart

TPMI_SH_POLICY sessionHandle the handle for the policy session

Table 18 — TPM2_PolicyRestart Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 45

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

13.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyRestart_fp.h"

3 TPM_RC

4 TPM2_PolicyRestart(

5 PolicyRestart_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 BOOL wasTrialSession;

10

11 // Internal Data Update

12

13 session = SessionGet(in->sessionHandle);

14 wasTrialSession = session->attributes.isTrialPolicy == SET;

15

16 // Initialize policy session

17 SessionResetPolicyData(session);

18

19 session->attributes.isTrialPolicy = wasTrialSession;

20

21 return TPM_RC_SUCCESS;

22 }

Part 3: Commands Trusted Platform Module Library

Page 46 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14 Object Commands

14.1 TPM2_Create

14.1.1 General Description

This command is used to create an object that can be loaded into a TPM using TPM2_Load(). If the

command completes successfully, the TPM will create the new object and return the object’s creation

data (creationData), its public area (outPublic), and its encrypted sensitive area (outPrivate). Preservation

of the returned data is the responsibility of the caller. The object will need to be loaded (TPM2_Load())

before it may be used.

TPM2B_PUBLIC template (inPublic) contains all of the fields necessary to define the properties of the

new object. The setting for these fields is defined in “Public Area Template” in Part 1 and

“TPMA_OBJECT” in Part 2.

The parentHandle parameter shall reference a loaded decryption key that has both the public and

sensitive area loaded.

When defining the object, the caller provides a template structure for the object in a TPM2B_PUBLIC

structure (inPublic), an initial value for the object’s authValue (inSensitive.authValue), and, if the object is

a symmetric object, an optional initial data value (inSensitive.data). The TPM shall validate the

consistency of inPublic.attributes according to the Creation rules in “TPMA_OBJECT” in Part 2.

The methods in this clause are used by both TPM2_Create() and TPM2_CreatePrimary(). When a value

is indicated as being TPM-generated, the value is filled in by bits from the RNG if the command is

TPM2_Create() and with values from KDFa() if the command is TPM2_CreatePrimary(). The parameters

of each creation value are specified in Part 1.

The sensitiveDataOrigin attribute of inPublic shall be SET if inSensitive.data is an Empty Buffer and

CLEAR if inSensitive.data is not an Empty Buffer or the TPM shall return TPM_RC_ATTRIBUTES.

The TPM will create new data for the sensitive area and compute a TPMT_PUBLIC.unique from the

sensitive area based on the object type:

 For a symmetric key: a)

1) If inSensitive.data is the Empty Buffer, a TPM-generated key value is placed in the new object’s

TPMT_SENSITIVE.symKey.buffer. The size of the key will be determined by

inPublic.publicArea.parameters.

2) If inSensitive.data is not the Empty Buffer, the TPM will validate that the size of inSensitive.data is

no larger than the key size indicated in the inPublic template (TPM_RC_SIZE) and copy the

inSensitive.data to TPMT_SENSITIVE.symKey.buffer of the new object.

3) A TPM-generated obfuscation value is placed in TPMT_SENSITIVE.sensitive.any.buffer. The

size of the obfuscation value is the size of the digest produced by the nameAlg in inPublic.

4) The TPMT_PUBLIC.unique.sym.buffer value for the new object is then generated, as shown in

equation (1) below, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the

nameAlg of the object.

 unique ≔ HnameAlg(symKey.buffer || sensitive.any.buffer) (1)

 If the Object is an asymmetric key: b)

1) If sensitive.data is not the Empty Buffer, then the TPM shall return TPM_RC_VALUE.

2) A TPM-generated private key value is created with the size determined by the parameters of

inPublic.publicArea.parameters.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 47

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

3) If the key is a Storage Key, a TPM-generated TPMT_SENSITIVE.symKey value is created;

otherwise, TPMT_SENSITIVE.symKey.size is set to zero.

4) The public unique value is computed from the private key according to the methods of the key

type.

5) If the key is an ECC key and the scheme required by the curveID is not the same as scheme in

the public area of the template, then the TPM shall return TPM_RC_SCHEME.

6) If the key is an ECC key and the KDF required by the curveID is not the same as kdf in the pubic

area of the template, then the TPM shall return TPM_RC_KDF.

NOTE 1 There is currently no command in which the caller may specify the KDF to be used with an
ECC decryption key. Since there is no use for this capability, the reference implementation
requires that the kdf in the template be set to TPM_ALG_NULL or TPM_RC_KDF is
returned.

 If the Object is a keyedHash object: c)

1) If inSensitive.data is an Empty Buffer, and neither sign nor decrypt is SET in inPublic.attributes,

the TPM shall return TPM_RC_ATTRIBUTES.

2) If inSensitive.data is not an Empty Buffer, the TPM will copy the inSensitive.data to

TPMT_SENSITIVE.sensitive of the new object.

NOTE 2 The size of inSensitive.data is limited to be no larger than the largest value of
TPMT_SENSITIVE.sensitive.bits.data by MAX_SYM_DATA.

3) If inSensitive.data is an Empty Buffer, a TPM-generated key value that is the size of the digest

produced by the nameAlg in inPublic is placed in TPMT_SENSITIVE.sensitive.any.buffer.

4) A TPM-generated obfuscation value that is half the size of the digest produced by the nameAlg of

inPublic is placed in TPMT_SENSITIVE.symKey.buffer.

5) The TPMT_PUBLIC.unique.sym.buffer value for the new object is then generated, as shown in

equation (1) above, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the

nameAlg of the object.

For TPM2_Load(), the TPM will apply normal symmetric protections to the created TPMT_SENSITIVE to

create outPublic.

NOTE 3 The encryption key is derived from the symmetric seed in the sens itive area of the parent.

In addition to outPublic and outPrivate, the TPM will build a TPMS_CREATION_DATA structure for the

object. This structure is returned in creationData. Additionally, the digest of this structure is returned in

creationHash, and, finally, a TPMT_TK_CREATION is created so that the association between the

creation data and the object may be validated by TPM2_CertifyCreation().

If the object being created is a Storage Key and inPublic.objectAttributes.fixedParent is SET, then the

algorithms of inPublic are required to match those of the parent. The algorithms that must match are

inPublic.type, inPublic.nameAlg, and inPublic.parameters. If inPublic.type does not match, the TPM shall

return TPM_RC_TYPE. If inPublic.nameAlg does not match, the TPM shall return TPM_RC_HASH. If

inPublic.parameters does not match, the TPM shall return TPM_RC_ASSYMETRIC. The TPM shall not

differentiate between mismatches of the components of inPublic.parameters.

EXAMPLE If the inPublic.parameters.ecc.symmetric.algorithm does not match the parent, the TPM shall return
TPM_RC_ ASYMMETRIC rather than TPM_RC_SYMMETRIC.

The sensitive parameter may be encrypted using parameter encryption.

Part 3: Commands Trusted Platform Module Library

Page 48 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.1.2 Command and Response

Table 19 — TPM2_Create Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Create

TPMI_DH_OBJECT @parentHandle

handle of parent for new object

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 20 — TPM2_Create Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate the private portion of the object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMS_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 49

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Object_spt_fp.h"

3 #include "Create_fp.h"

Error Returns Meaning

TPM_RC_ASYMMETRIC non-duplicable storage key and its parent have different public params

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when 'sensitive. data' is an Empty Buffer,
or is SET when 'sensitive. data' is not empty; fixedTPM, fixedParent, or
encryptedDuplication attributes are inconsistent between themselves or
with those of the parent object; inconsistent restricted, decrypt and sign
attributes; attempt to inject sensitive data for an asymmetric key;
attempt to create a symmetric cipher key that is not a decryption key

TPM_RC_HASH non-duplicable storage key and its parent have different name algorithm

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY invalid key size values in an asymmetric key public area

TPM_RC_KEY_SIZE key size in public area for symmetric key differs from the size in the
sensitive creation area; may also be returned if the TPM does not allow
the key size to be used for a Storage Key

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID; or
hash algorithm is inconsistent with the scheme ID for keyed hash object

TPM_RC_SIZE size of public auth policy or sensitive auth value does not match digest
size of the name algorithm sensitive data size for the keyed hash object
is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage key
with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type; non-duplicable storage key and its parent have
different types; parentHandle does not reference a restricted decryption
key in the storage hierarchy with both public and sensitive portion
loaded

TPM_RC_VALUE exponent is not prime or could not find a prime using the provided
parameters for an RSA key; unsupported name algorithm for an ECC
key

TPM_RC_OBJECT_MEMORY there is no free slot for the object. This implementation does not return
this error.

4 TPM_RC

5 TPM2_Create(

6 Create_In *in, // IN: input parameter list

7 Create_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 TPMT_SENSITIVE sensitive;

12 TPM2B_NAME name;

13

14 // Input Validation

15

16 OBJECT *parentObject;

17

18 parentObject = ObjectGet(in->parentHandle);

Part 3: Commands Trusted Platform Module Library

Page 50 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19

20 // Does parent have the proper attributes?

21 if(!AreAttributesForParent(parentObject))

22 return TPM_RC_TYPE + RC_Create_parentHandle;

23

24 // The sensitiveDataOrigin attribute must be consistent with the setting of

25 // the size of the data object in inSensitive.

26 if((in->inPublic.t.publicArea.objectAttributes.sensitiveDataOrigin == SET)

27 != (in->inSensitive.t.sensitive.data.t.size == 0))

28 // Mismatch between the object attributes and the parameter.

29 return TPM_RC_ATTRIBUTES + RC_Create_inSensitive;

30

31 // Check attributes in input public area. TPM_RC_ASYMMETRIC, TPM_RC_ATTRIBUTES,

32 // TPM_RC_HASH, TPM_RC_KDF, TPM_RC_SCHEME, TPM_RC_SIZE, TPM_RC_SYMMETRIC,

33 // or TPM_RC_TYPE error may be returned at this point.

34 result = PublicAttributesValidation(FALSE, in->parentHandle,

35 &in->inPublic.t.publicArea);

36 if(result != TPM_RC_SUCCESS)

37 return RcSafeAddToResult(result, RC_Create_inPublic);

38

39 // Validate the sensitive area values

40 if(MemoryRemoveTrailingZeros(&in->inSensitive.t.sensitive.userAuth)

41 > CryptGetHashDigestSize(in->inPublic.t.publicArea.nameAlg))

42 return TPM_RC_SIZE + RC_Create_inSensitive;

43

44 // Command Output

45

46 // Create object crypto data

47 result = CryptCreateObject(in->parentHandle, &in->inPublic.t.publicArea,

48 &in->inSensitive.t.sensitive, &sensitive);

49 if(result != TPM_RC_SUCCESS)

50 return result;

51

52 // Fill in creation data

53 FillInCreationData(in->parentHandle, in->inPublic.t.publicArea.nameAlg,

54 &in->creationPCR, &in->outsideInfo,

55 &out->creationData, &out->creationHash);

56

57 // Copy public area from input to output

58 out->outPublic.t.publicArea = in->inPublic.t.publicArea;

59

60 // Compute name from public area

61 ObjectComputeName(&(out->outPublic.t.publicArea), &name);

62

63 // Compute creation ticket

64 TicketComputeCreation(EntityGetHierarchy(in->parentHandle), &name,

65 &out->creationHash, &out->creationTicket);

66

67 // Prepare output private data from sensitive

68 SensitiveToPrivate(&sensitive, &name, in->parentHandle,

69 out->outPublic.t.publicArea.nameAlg,

70 &out->outPrivate);

71

72 return TPM_RC_SUCCESS;

73 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 51

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.2 TPM2_Load

14.2.1 General Description

This command is used to load objects into the TPM. This command is used when both a TPM2B_PUBLIC

and TPM2B_PRIVATE are loaded. If only a TPM2B_PUBLIC is to be loaded, the TPM2_LoadExternal

command is used.

NOTE 1 Loading an object is not the same as restoring a saved object context.

The object’s TPMA_OBJECT will be checked according to the rules defined in “TPMA_OBJECT” in Part 2

of this specification.

Objects loaded using this command will have a Name. The Name is the concatenation of nameAlg and

the digest of the public area using the nameAlg.

NOTE 2 nameAlg is a parameter in the public area of the inPublic structure.

If inPrivate.size is zero, the load will fail.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be

checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the digest of the TPMT_PUBLIC structure in inPublic).

NOTE 4 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithms specified in the nameAlg of the object.

NOTE 5 The returned handle is associated with the object until the object is flushed (TPM2_FlushContext) or
until the next TPM2_Startup.

For all objects, the size of the key in the sensitive area shall be consistent with the key size indicated in

the public area or the TPM shall return TPM_RC_KEY_SIZE.

Before use, a loaded object shall be checked to validate that the public and sensitive portions are

properly linked, cryptographically. Use of an object includes use in any policy command. If the parts of the

object are not properly linked, the TPM shall return TPM_RC_BINDING.

EXAMPLE 1 For a symmetric object, the unique value in the public area shall be the digest of the sensitive key
and the obfuscation value.

EXAMPLE 2 For a two-prime RSA key, the remainder when dividing the public modulus by the private key shall
be zero and it shall be possible to form a private exponent from the two prime factors of the public
modulus.

EXAMPLE 3 For an ECC key, the public point shall be f(x) where x is the private key.

Part 3: Commands Trusted Platform Module Library

Page 52 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.2.2 Command and Response

Table 21 — TPM2_Load Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Load

TPMI_DH_OBJECT @parentHandle

TPM handle of parent key; shall not be a reserved
handle

Auth Index: 1

Auth Role: USER

TPM2B_PRIVATE inPrivate the private portion of the object

TPM2B_PUBLIC inPublic the public portion of the object

Table 22 — TPM2_Load Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle for the loaded object

TPM2B_NAME name Name of the loaded object

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 53

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Load_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ASYMMETRIC storage key with different asymmetric type than parent

TPM_RC_ATTRIBUTES inPulblic attributes are not allowed with selected parent

TPM_RC_BINDING inPrivate and inPublic are not cryptographically bound

TPM_RC_HASH incorrect hash selection for signing key

TPM_RC_INTEGRITY HMAC on inPrivate was not valid

TPM_RC_KDF KDF selection not allowed

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated

size in the object's parameters

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SENSITIVE the inPrivate did not unmarshal correctly

TPM_RC_SIZE inPrivate missing, or authPolicy size for inPublic or is not valid

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE parentHandle is not a storage key, or the object to load is a storage key
but its parameters do not match the parameters of the parent.

TPM_RC_VALUE decryption failure

4 TPM_RC

5 TPM2_Load(

6 Load_In *in, // IN: input parameter list

7 Load_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 TPMT_SENSITIVE sensitive;

12 TPMI_RH_HIERARCHY hierarchy;

13 OBJECT *parentObject = NULL;

14 BOOL skipChecks = FALSE;

15

16 // Input Validation

17 if(in->inPrivate.t.size == 0)

18 return TPM_RC_SIZE + RC_Load_inPrivate;

19

20 parentObject = ObjectGet(in->parentHandle);

21 // Is the object that is being used as the parent actually a parent.

22 if(!AreAttributesForParent(parentObject))

23 return TPM_RC_TYPE + RC_Load_parentHandle;

24

25 // If the parent is fixedTPM, then the attributes of the object

26 // are either "correct by construction" or were validated

27 // when the object was imported. If they pass the integrity

28 // check, then the values are valid

29 if(parentObject->publicArea.objectAttributes.fixedTPM)

30 skipChecks = TRUE;

Part 3: Commands Trusted Platform Module Library

Page 54 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31 else

32 {

33 // If parent doesn't have fixedTPM SET, then this can't have

34 // fixedTPM SET.

35 if(in->inPublic.t.publicArea.objectAttributes.fixedTPM == SET)

36 return TPM_RC_ATTRIBUTES + RC_Load_inPublic;

37

38 // Perform self check on input public area. A TPM_RC_SIZE, TPM_RC_SCHEME,

39 // TPM_RC_VALUE, TPM_RC_SYMMETRIC, TPM_RC_TYPE, TPM_RC_HASH,

40 // TPM_RC_ASYMMETRIC, TPM_RC_ATTRIBUTES or TPM_RC_KDF error may be returned

41 // at this point

42 result = PublicAttributesValidation(TRUE, in->parentHandle,

43 &in->inPublic.t.publicArea);

44 if(result != TPM_RC_SUCCESS)

45 return RcSafeAddToResult(result, RC_Load_inPublic);

46 }

47

48 // Compute the name of object

49 ObjectComputeName(&in->inPublic.t.publicArea, &out->name);

50

51 // Retrieve sensitive data. PrivateToSensitive() may return TPM_RC_INTEGRITY or

52 // TPM_RC_SENSITIVE

53 // errors may be returned at this point

54 result = PrivateToSensitive(&in->inPrivate, &out->name, in->parentHandle,

55 in->inPublic.t.publicArea.nameAlg,

56 &sensitive);

57 if(result != TPM_RC_SUCCESS)

58 return RcSafeAddToResult(result, RC_Load_inPrivate);

59

60 // Internal Data Update

61

62 // Get hierarchy of parent

63 hierarchy = ObjectGetHierarchy(in->parentHandle);

64

65 // Create internal object. A lot of different errors may be returned by this

66 // loading operation as it will do several validations, including the public

67 // binding check

68 result = ObjectLoad(hierarchy, &in->inPublic.t.publicArea, &sensitive,

69 &out->name, in->parentHandle, skipChecks,

70 &out->objectHandle);

71

72 if(result != TPM_RC_SUCCESS)

73 return result;

74

75 return TPM_RC_SUCCESS;

76 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 55

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.3 TPM2_LoadExternal

14.3.1 General Description

This command is used to load an object that is not a Protected Object into the TPM. The command allows

loading of a public area or both a public and sensitive area.

NOTE 1 Typical use for loading a public area is to allow the TPM to validate an asymmetric signature.
Typical use for loading both a public and sensitive area is to allow the TPM to be used as a crypto
accelerator.

Load of a public external object area allows the object be associated with a hierarchy so that the correct

algorithms may be used when creating tickets. The hierarchy parameter provides this association. If the

public and sensitive portions of the object are loaded, hierarchy is required to be TPM_RH_NULL.

NOTE 2 If both the public and private portions of an object are loaded, the object is not allowed to appear to
be part of a hierarchy.

The object’s TPMA_OBJECT will be checked according to the rules defined in “TPMA_OBJECT” in Part

2. In particular, fixedTPM, fixedParent, and restricted shall be CLEAR if inPrivate is not the Empty Buffer.

NOTE 3 The duplication status of a public key needs to be able to be the same as the full key which may be
resident on a different TPM. If both the public and private parts of the key are loaded, then it is not
possible for the key to be either fixedTPM or fixedParent, otherwise, its public area would not be
available to load.

Objects loaded using this command will have a Name. The Name is the nameAlg of the object

contatenated with the digest of the public area using the nameAlg. The Qualified Name for the object will

be the same as its Name. The TPM will validate that the authPolicy is either the size of the digest

produced by nameAlg or the Empty Buffer.

NOTE 4 If nameAlg is TPM_ALG_NULL, then the Name is the Empty Buffer. When the authorization value for
an object with no Name is computed, no Name value is included in the HMAC. To ensure that these
unnamed entities are not substituted, they should have an authValue that is statistically unique.

NOTE 5 The digest size for TPM_ALG_NULL is zero.

If the nameAlg is TPM_ALG_NULL, the TPM shall not verify the cryptographic binding between the public

and sensitive areas, but the TPM will validate that the size of the key in the sensitive area is consistent

with the size indicated in the public area. If it is not, the TPM shall return TPM_RC_KEY_SIZE.

NOTE 6 For an ECC object, the TPM will verify that the public key is on the curve of the key before the public
area is used.

If nameAlg is not TPM_ALG_NULL, then the same consistency checks between inPublic and inPrivate

are made as for TPM2_Load().

NOTE 7 Consistency checks are necessary because an object with a Name needs to have the public and
sensitive portions cryptographically bound so that an attacker cannot mix pubic and sensitive areas.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the TPMT_PUBLIC structure in inPublic).

NOTE 8 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithm specified in the nameAlg of the object.

The hierarchy parameter associates the external object with a hierarchy. External objects are flushed

when their associated hierarchy is disabled.

Part 3: Commands Trusted Platform Module Library

Page 56 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

If hierarchy is TPM_RH_NULL or nameAlg is TPM_ALG_NULL, a ticket produced using the object shall

be a NULL Ticket.

EXAMPLE If a key is loaded with hierarchy set to TPM_RH_NULL, then TPM2_VerifySignature() will produce a
NULL Ticket of the required type.

External objects are Temporary Objects. The saved external object contexts shall be invalidated at the

next TPM Reset.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 57

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.3.2 Command and Response

Table 23 — TPM2_LoadExternal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_LoadExternal

TPM2B_SENSITIVE inPrivate the sensitive portion of the object (optional)

TPM2B_PUBLIC+ inPublic the public portion of the object

TPMI_RH_HIERARCHY+ hierarchy hierarchy with which the object area is associated

Table 24 — TPM2_LoadExternal Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle for the loaded object

TPM2B_NAME name name of the loaded object

Part 3: Commands Trusted Platform Module Library

Page 58 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "LoadExternal_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES 'fixedParent" and fixedTPM must be CLEAR on on an external key if
both public and sensitive portions are loaded

TPM_RC_BINDING the inPublic and inPrivate structures are not cryptographically bound.

TPM_RC_HASH incorrect hash selection for signing key

TPM_RC_HIERARCHY hierarchy is turned off, or only NULL hierarchy is allowed when loading
public and private parts of an object

TPM_RC_KDF incorrect KDF selection for decrypting keyedHash object

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated

size in the object's parameters

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SIZE authPolicy is not zero and is not the size of a digest produced by the
object's nameAlg TPM_RH_NULL hierarchy

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE inPublic and inPrivate are not the same type

4 TPM_RC

5 TPM2_LoadExternal(

6 LoadExternal_In *in, // IN: input parameter list

7 LoadExternal_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMT_SENSITIVE *sensitive;

12 BOOL skipChecks;

13

14 // Input Validation

15

16 // If the target hierarchy is turned off, the object can not be loaded.

17 if(!HierarchyIsEnabled(in->hierarchy))

18 return TPM_RC_HIERARCHY + RC_LoadExternal_hierarchy;

19

20 // the size of authPolicy is either 0 or the digest size of nameAlg

21 if(in->inPublic.t.publicArea.authPolicy.t.size != 0

22 && in->inPublic.t.publicArea.authPolicy.t.size !=

23 CryptGetHashDigestSize(in->inPublic.t.publicArea.nameAlg))

24 return TPM_RC_SIZE + RC_LoadExternal_inPublic;

25

26 // For loading an object with both public and sensitive

27 if(in->inPrivate.t.size != 0)

28 {

29 // An external object can only be loaded at TPM_RH_NULL hierarchy

30 if(in->hierarchy != TPM_RH_NULL)

31 return TPM_RC_HIERARCHY + RC_LoadExternal_hierarchy;

32 // An external object with a sensitive area must have fixedTPM == CLEAR

33 // fixedParent == CLEAR, and must have restrict CLEAR so that it does not

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 59

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

34 // appear to be a key that was created by this TPM.

35 if(in->inPublic.t.publicArea.objectAttributes.fixedTPM != CLEAR

36 || in->inPublic.t.publicArea.objectAttributes.fixedParent != CLEAR

37 || in->inPublic.t.publicArea.objectAttributes.restricted != CLEAR

38)

39 return TPM_RC_ATTRIBUTES + RC_LoadExternal_inPublic;

40 }

41

42 // Validate the scheme parameters

43 result = SchemeChecks(TRUE, TPM_RH_NULL, &in->inPublic.t.publicArea);

44 if(result != TPM_RC_SUCCESS)

45 return RcSafeAddToResult(result, RC_LoadExternal_inPublic);

46

47

48 // Internal Data Update

49 // Need the name to compute the qualified name

50 ObjectComputeName(&in->inPublic.t.publicArea, &out->name);

51 skipChecks = (in->inPublic.t.publicArea.nameAlg == TPM_ALG_NULL);

52

53 // If a sensitive area was provided, load it

54 if(in->inPrivate.t.size != 0)

55 sensitive = &in->inPrivate.t.sensitiveArea;

56 else

57 sensitive = NULL;

58

59 // Create external object. A TPM_RC_BINDING, TPM_RC_KEY, TPM_RC_OBJECT_MEMORY

60 // or TPM_RC_TYPE error may be returned by ObjectLoad()

61 result = ObjectLoad(in->hierarchy, &in->inPublic.t.publicArea,

62 sensitive, &out->name, TPM_RH_NULL, skipChecks,

63 &out->objectHandle);

64 return result;

65 }

Part 3: Commands Trusted Platform Module Library

Page 60 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.4 TPM2_ReadPublic

14.4.1 General Description

This command allows access to the public area of a loaded object.

Use of the objectHandle does not require authorization.

NOTE Since the caller is not likely to know the public area of the object associated with objectHandle, it
would not be possible to include the Name associated with objectHandle in the cpHash computation.

If objectHandle references a sequence, the TPM shall return TPM_RC_SEQUENCE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 61

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.4.2 Command and Response

Table 25 — TPM2_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadPublic

TPMI_DH_OBJECT objectHandle
TPM handle of an object

Auth Index: None

Table 26 — TPM2_ReadPublic Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC outPublic structure containing the public area of an object

TPM2B_NAME name name of the object

TPM2B_NAME qualifiedName the Qualified Name of the object

Part 3: Commands Trusted Platform Module Library

Page 62 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ReadPublic_fp.h"

Error Returns Meaning

TPM_RC_SEQUENCE can not read the public area of a sequence object

3 TPM_RC

4 TPM2_ReadPublic(

5 ReadPublic_In *in, // IN: input parameter list

6 ReadPublic_Out *out // OUT: output parameter list

7)

8 {

9 OBJECT *object;

10

11 // Input Validation

12

13 // Get loaded object pointer

14 object = ObjectGet(in->objectHandle);

15

16 // Can not read public area of a sequence object

17 if(ObjectIsSequence(object))

18 return TPM_RC_SEQUENCE;

19

20

21 // Command Output

22

23 // Compute size of public area in canonical form

24 out->outPublic.t.size = TPMT_PUBLIC_Marshal(&object->publicArea, NULL, NULL);

25

26 // Copy public area to output

27 out->outPublic.t.publicArea = object->publicArea;

28

29 // Copy name to output

30 out->name.t.size = ObjectGetName(in->objectHandle, out->name.t.name);

31

32 // Copy qualified name to output

33 ObjectGetQualifiedName(in->objectHandle, &out->qualifiedName);

34

35 return TPM_RC_SUCCESS;

36 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 63

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.5 TPM2_ActivateCredential

14.5.1 General Description

This command enables the association of a credential with an object in a way that ensures that the TPM

has validated the parameters of the credentialed object.

If both the public and private portions of activateHandle and keyHandle are not loaded, then the TPM

shall return TPM_RC_AUTH_UNAVAILABLE.

If keyHandle is not a Storage Key, then the TPM shall return TPM_RC_TYPE.

Authorization for activateHandle requires the ADMIN role.

The key associated with keyHandle is used to recover a symmetric key and an HMAC key from secret.

The HMAC is used to validate that the credentialBlob is associated with activateHandle and that the data

in credentialBlob has not been modified.

If the integrity checks succeed, credentialBlob is decrypted and returned as certInfo.

Part 3: Commands Trusted Platform Module Library

Page 64 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.5.2 Command and Response

Table 27 — TPM2_ActivateCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ActivateCredential

TPMI_DH_OBJECT @activateHandle

handle of the object associated with certificate in
credentialBlob

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT @keyHandle

loaded key used to decrypt the TPMS_SENSITIVE in
credentialBlob

Auth Index: 2

Auth Role: USER

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
keyHandle algorithm-dependent data that wraps the key
that encrypts credentialBlob

Table 28 — TPM2_ActivateCredential Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST certInfo

the decrypted certificate information

the data should be no larger than the size of the digest
of the nameAlg associated with keyHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 65

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ActivateCredential_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key

TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INTEGRITY credentialBlob fails integrity test

TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)

TPM_RC_SIZE secret size is invalid or the credentialBlob does not unmarshal correctly

TPM_RC_TYPE keyHandle does not reference an asymmetric key.

TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)

4 TPM_RC

5 TPM2_ActivateCredential(

6 ActivateCredential_In *in, // IN: input parameter list

7 ActivateCredential_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *object; // decrypt key

12 OBJECT *activateObject;// key associated with

13 // credential

14 TPM2B_DATA data; // credential data

15

16 // Input Validation

17

18 // Get decrypt key pointer

19 object = ObjectGet(in->keyHandle);

20

21 // Get certificated object pointer

22 activateObject = ObjectGet(in->activateHandle);

23

24

25 // input decrypt key must be an asymmetric, restricted decryption key

26 if(!CryptIsAsymAlgorithm(object->publicArea.type)

27 || object->publicArea.objectAttributes.decrypt == CLEAR

28 || object->publicArea.objectAttributes.restricted == CLEAR)

29 return TPM_RC_TYPE + RC_ActivateCredential_keyHandle;

30

31 // Command output

32

33 // Decrypt input credential data via asymmetric decryption. A

34 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

35 // point

36 result = CryptSecretDecrypt(in->keyHandle, NULL,

37 "IDENTITY", &in->secret, &data);

38 if(result != TPM_RC_SUCCESS)

39 {

40 if(result == TPM_RC_KEY)

41 return TPM_RC_FAILURE;

42 return RcSafeAddToResult(result, RC_ActivateCredential_secret);

Part 3: Commands Trusted Platform Module Library

Page 66 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

43 }

44

45 // Retrieve secret data. A TPM_RC_INTEGRITY error or unmarshal

46 // errors may be returned at this point

47 result = CredentialToSecret(&in->credentialBlob,

48 &activateObject->name,

49 (TPM2B_SEED *) &data,

50 in->keyHandle,

51 &out->certInfo);

52 if(result != TPM_RC_SUCCESS)

53 return RcSafeAddToResult(result,RC_ActivateCredential_credentialBlob);

54

55 return TPM_RC_SUCCESS;

56 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 67

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.6 TPM2_MakeCredential

14.6.1 General Description

This command allows the TPM to perform the actions required of a Certificate Authority (CA) in creating a

TPM2B_ID_OBJECT containing an activation credential.

The TPM will produce a TPM_ID_OBJECT according to the methods in “Credential Protection” in Part 1.

The loaded public area referenced by handle is required to be the publilc area of a Storage key,

otherwise, the credential cannot be properly sealed.

Part 3: Commands Trusted Platform Module Library

Page 68 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.6.2 Command and Response

Table 29 — TPM2_MakeCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_MakeCredential

TPMI_DH_OBJECT handle

loaded public area, used to encrypt the sensitive area
containing the credential key

Auth Index: None

TPM2B_DIGEST credential the credential information

TPM2B_NAME objectName Name of the object to which the credential applies

Table 30 — TPM2_MakeCredential Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
handle algorithm-dependent data that wraps the key
that encrypts credentialBlob

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 69

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "MakeCredential_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_KEY handle referenced an ECC key that has a unique field that is not a point on the curve
of the key

TPM_RC_SIZE credential is larger than the digest size of Name algorithm of handle

TPM_RC_TYPE handle does not reference an asymmetric decryption key

4 TPM_RC

5 TPM2_MakeCredential(

6 MakeCredential_In *in, // IN: input parameter list

7 MakeCredential_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11

12 OBJECT *object;

13 TPM2B_DATA data;

14

15 // Input Validation

16

17 // Get object pointer

18 object = ObjectGet(in->handle);

19

20 // input key must be an asymmetric, restricted decryption key

21 // NOTE: Needs to be restricted to have a symmetric value.

22 if(!CryptIsAsymAlgorithm(object->publicArea.type)

23 || object->publicArea.objectAttributes.decrypt == CLEAR

24 || object->publicArea.objectAttributes.restricted == CLEAR

25)

26 return TPM_RC_TYPE + RC_MakeCredential_handle;

27

28 // The credential information may not be larger than the digest size used for

29 // the Name of the key associated with handle.

30 if(in->credential.t.size > CryptGetHashDigestSize(object->publicArea.nameAlg))

31 return TPM_RC_SIZE + RC_MakeCredential_credential;

32

33 // Command Output

34

35 // Make encrypt key and its associated secret structure.

36 // Even though CrypeSecretEncrypt() may return

37 out->secret.t.size = sizeof(out->secret.t.secret);

38 result = CryptSecretEncrypt(in->handle, "IDENTITY", &data, &out->secret);

39 if(result != TPM_RC_SUCCESS)

40 return result;

41

42 // Prepare output credential data from secret

43 SecretToCredential(&in->credential, &in->objectName, (TPM2B_SEED *) &data,

44 in->handle, &out->credentialBlob);

45

46 return TPM_RC_SUCCESS;

47 }

Part 3: Commands Trusted Platform Module Library

Page 70 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.7 TPM2_Unseal

14.7.1 General Description

This command returns the data in a loaded Sealed Data Object.

NOTE A random, TPM-generated, Sealed Data Object may be created by the TPM with TPM2_Create() or
TPM2_CreatePrimary() using the template for a Sealed Data Object. A Sealed Data Object is more
likely to be created externally and imported (TPM2_Import()) so that the data is not created by the
TPM.

The returned value may be encrypted using authorization session encryption.

If either restricted, decrypt, or sign is SET in the attributes of itemHandle, then the TPM shall return

TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH, then the TPM shall

return TPM_RC_TYPE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 71

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.7.2 Command and Response

Table 31 — TPM2_Unseal Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Unseal

TPMI_DH_OBJECT @itemHandle

handle of a loaded data object

Auth Index: 1

Auth Role: USER

Table 32 — TPM2_Unseal Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_SENSITIVE_DATA outData
unsealed data

Size of outData is limited to be no more than 128 octets.

Part 3: Commands Trusted Platform Module Library

Page 72 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Unseal_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES itemHandle has wrong attributes

TPM_RC_TYPE itemHandle is not a KEYEDHASH data object

3 TPM_RC

4 TPM2_Unseal(Unseal_In *in, Unseal_Out *out)

5 {

6 OBJECT *object;

7

8 // Input Validation

9

10 // Get pointer to loaded object

11 object = ObjectGet(in->itemHandle);

12

13 // Input handle must be a data object

14 if(object->publicArea.type != TPM_ALG_KEYEDHASH)

15 return TPM_RC_TYPE + RC_Unseal_itemHandle;

16 if(object->publicArea.objectAttributes.decrypt == SET

17 || object->publicArea.objectAttributes.sign == SET

18 || object->publicArea.objectAttributes.restricted == SET)

19 return TPM_RC_ATTRIBUTES + RC_Unseal_itemHandle;

20

21 // Command Output

22

23 // Copy data

24 MemoryCopy2B(&out->outData.b, &object->sensitive.sensitive.bits.b);

25

26 return TPM_RC_SUCCESS;

27 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 73

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.8 TPM2_ObjectChangeAuth

14.8.1 General Description

This command is used to change the authorization secret for a TPM-resident object.

If successful, the authorization secret (authValue) of the TPM-resident object associated with

objectHandle returns a new private area with the new authorization value. This command does not

change the authorization of the TPM-resident object on which it operates.

NOTE 1 The returned outPrivate will need to be loaded before the new authorization will apply.

NOTE 2 The TPM-resident object may be persistent and changing the authorization value of the persist ent
object could prevent other users from accessing the object. This is why this command does not
change the TPM-resident object.

EXAMPLE If a persistent key is being used as a Storage Root Key and the authorization of the key is a well -
known value so that the key can be used generally, then changing the authorization value in the
persistent key would deny access to other users.

This command may not be used to change the authorization value for an NV Index or a Primary Object.

NOTE 3 If an NV Index is to have a new authorization, it is done with TPM2_NV_ChangeAuth().

NOTE 4 If a Primary Object is to have a new authorization, it needs to be recreated (TPM2_CreatePrimary()).

Part 3: Commands Trusted Platform Module Library

Page 74 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

14.8.2 Command and Response

Table 33 — TPM2_ObjectChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ObjectChangeAuth

TPMI_DH_OBJECT @objectHandle

handle of the object

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT parentHandle
handle of the parent

Auth Index: None

TPM2B_AUTH newAuth new authorization secret

Table 34 — TPM2_ObjectChangeAuth Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate private area containing the new authorization value

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 75

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

14.8.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ObjectChangeAuth_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth is larger than the size of the digest of the Name algorithm of objectHandle

TPM_RC_TYPE the key referenced by parentHandle is not the parent of the object referenced by
objectHandle; or objectHandle is a sequence object.

4 TPM_RC

5 TPM2_ObjectChangeAuth(

6 ObjectChangeAuth_In *in, // IN: input parameter list

7 ObjectChangeAuth_Out *out // OUT: output parameter list

8)

9 {

10 TPMT_SENSITIVE sensitive;

11

12 OBJECT *object;

13 TPM2B_NAME objectQN, QNCompare;

14 TPM2B_NAME parentQN;

15

16 // Input Validation

17

18 // Get object pointer

19 object = ObjectGet(in->objectHandle);

20

21 // Can not change auth on sequence object

22 if(ObjectIsSequence(object))

23 return TPM_RC_TYPE + RC_ObjectChangeAuth_objectHandle;

24

25 // Make sure that the auth value is consistent with the nameAlg

26 if(MemoryRemoveTrailingZeros(&in->newAuth)

27 > CryptGetHashDigestSize(object->publicArea.nameAlg))

28 return TPM_RC_SIZE + RC_ObjectChangeAuth_newAuth;

29

30

31 // Check parent for object

32 // parent handle must be the parent of object handle. In this

33 // implementation we verify this by checking the QN of object. Other

34 // implementation may choose different method to verify this attribute.

35 ObjectGetQualifiedName(in->parentHandle, &parentQN);

36 ObjectComputeQualifiedName(&parentQN, object->publicArea.nameAlg,

37 &object->name, &QNCompare);

38

39 ObjectGetQualifiedName(in->objectHandle, &objectQN);

40 if(!Memory2BEqual(&objectQN.b, &QNCompare.b))

41 return TPM_RC_TYPE + RC_ObjectChangeAuth_parentHandle;

42

43 // Command Output

44

45 // Copy internal sensitive area

46 sensitive = object->sensitive;

47 // Copy authValue

48 sensitive.authValue = in->newAuth;

49

50 // Prepare output private data from sensitive

51 SensitiveToPrivate(&sensitive, &object->name, in->parentHandle,

52 object->publicArea.nameAlg,

Part 3: Commands Trusted Platform Module Library

Page 76 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

53 &out->outPrivate);

54

55 return TPM_RC_SUCCESS;

56 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 77

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15 Duplication Commands

15.1 TPM2_Duplicate

15.1.1 General Description

This command duplicates a loaded object so that it may be used in a different hierarchy. The new parent

key for the duplicate may be on the same or different TPM or TPM_RH_NULL. Only the public area of

newParentHandle is required to be loaded.

NOTE 1 Since the new parent may only be extant on a different TPM, it is likely that the new parent’s
sensitive area could not be loaded in the TPM from which objectHandle is being duplicated.

If encryptedDuplication is SET in the object being duplicated, then the TPM shall return

TPM_RC_SYMMETRIC if symmetricAlg is TPM_RH_NULL or TPM_RC_HIERARCHY if

newParentHandle is TPM_RH_NULL.

The authorization for this command shall be with a policy session.

If fixedParent of objectHandle→attributes is SET, the TPM shall return TPM_RC_ATTRIBUTES. If

objectHandle→nameAlg is TPM_ALG_NULL, the TPM shall return TPM_RC_TYPE.

The policySession→commandCode parameter in the policy session is required to be TPM_CC_Duplicate

to indicate that authorization for duplication has been provided.

If TPM2_PolicyCpHash() has been executed as part of the policy, the policySession→cpHash is

compared to the cpHash of the command. If TPM2_PolicyDuplicationSelect() has been executed as part

of the policy, the policySession→nameHash is compared to

 HpolicyAlg(objectHandle→Name || newParentHandle→Name) (2)

If the compared hashes are not the same, then the TPM shall return TPM_RC_POLICY_FAIL.

NOTE 2 A duplication policy is not required to have either TPM2_PolicyDuplicationSelect() or
TPM2_PolicyCpHash() as part of the policy. If neither is present, then the duplication policy may be
satisfied with a policy that only contains TPM2_PolicyCommaneCode(code = TPM_CC_Duplicate).

The TPM shall follow the process of encryption defined in the “Duplication” subclause of “Protected

Storage Hierarchy” in Part 1 of this specification.

Part 3: Commands Trusted Platform Module Library

Page 78 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

15.1.2 Command and Response

Table 35 — TPM2_Duplicate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Duplicate

TPMI_DH_OBJECT @objectHandle

loaded object to duplicate

Auth Index: 1

Auth Role: DUP

TPMI_DH_OBJECT+ newParentHandle
shall reference the public area of an asymmetric key

Auth Index: None

TPM2B_DATA encryptionKeyIn

optional symmetric encryption key

The size for this key is set to zero when the TPM is to
generate the key. This parameter may be encrypted.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to be used for the
inner wrapper

may be TPM_ALG_NULL if no inner wrapper is applied

Table 36 — TPM2_Duplicate Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DATA encryptionKeyOut

If the caller provided an encryption key or if
symmetricAlg was TPM_ALG_NULL, then this will be

the Empty Buffer; otherwise, it shall contain the TPM-
generated, symmetric encryption key for the inner
wrapper.

TPM2B_PRIVATE duplicate
private area that may be encrypted by encryptionKeyIn;
and may be doubly encrypted

TPM2B_ENCRYPTED_SECRET outSymSeed
seed protected by the asymmetric algorithms of new
parent (NP)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 79

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Duplicate_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key to duplicate has fixedParent SET

TPM_RC_HIERARCHY encryptedDuplication is SET and newParentHandle specifies Null Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the curve)

TPM_RC_SIZE input encryption key size does not match the size specified in symmetric
algorithm

TPM_RC_SYMMETRIC encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE newParentHandle is neither a storage key nor TPM_RH_NULL; or the object
has a NULL nameAlg

4 TPM_RC

5 TPM2_Duplicate(

6 Duplicate_In *in, // IN: input parameter list

7 Duplicate_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 TPMT_SENSITIVE sensitive;

12

13 UINT16 innerKeySize = 0; // encrypt key size for inner wrap

14

15 OBJECT *object;

16 TPM2B_DATA data;

17

18 // Input Validation

19

20 // Get duplicate object pointer

21 object = ObjectGet(in->objectHandle);

22

23 // duplicate key must have fixParent bit CLEAR.

24 if(object->publicArea.objectAttributes.fixedParent == SET)

25 return TPM_RC_ATTRIBUTES + RC_Duplicate_objectHandle;

26

27 // Do not duplicate object with NULL nameAlg

28 if(object->publicArea.nameAlg == TPM_ALG_NULL)

29 return TPM_RC_TYPE + RC_Duplicate_objectHandle;

30

31 // new parent key must be a storage object or TPM_RH_NULL

32 if(in->newParentHandle != TPM_RH_NULL

33 && !ObjectIsStorage(in->newParentHandle))

34 return TPM_RC_TYPE + RC_Duplicate_newParentHandle;

35

36 // If the duplicates object has encryptedDuplication SET, then there must be

37 // an inner wrapper and the new parent may not be TPM_RH_NULL

38 if(object->publicArea.objectAttributes.encryptedDuplication == SET)

39 {

40 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

41 return TPM_RC_SYMMETRIC + RC_Duplicate_symmetricAlg;

42 if(in->newParentHandle == TPM_RH_NULL)

43 return TPM_RC_HIERARCHY + RC_Duplicate_newParentHandle;

44 }

Part 3: Commands Trusted Platform Module Library

Page 80 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

45

46 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

47 {

48 // if algorithm is TPM_ALG_NULL, input key size must be 0

49 if(in->encryptionKeyIn.t.size != 0)

50 return TPM_RC_SIZE + RC_Duplicate_encryptionKeyIn;

51 }

52 else

53 {

54 // Get inner wrap key size

55 innerKeySize = in->symmetricAlg.keyBits.sym;

56

57 // If provided the input symmetric key must match the size of the algorithm

58 if(in->encryptionKeyIn.t.size != 0

59 && in->encryptionKeyIn.t.size != (innerKeySize + 7) / 8)

60 return TPM_RC_SIZE + RC_Duplicate_encryptionKeyIn;

61 }

62

63 // Command Output

64

65 if(in->newParentHandle != TPM_RH_NULL)

66 {

67

68 // Make encrypt key and its associated secret structure. A TPM_RC_KEY

69 // error may be returned at this point

70 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

71 result = CryptSecretEncrypt(in->newParentHandle,

72 "DUPLICATE", &data, &out->outSymSeed);

73 pAssert(result != TPM_RC_VALUE);

74 if(result != TPM_RC_SUCCESS)

75 return result;

76 }

77 else

78 {

79 // Do not apply outer wrapper

80 data.t.size = 0;

81 out->outSymSeed.t.size = 0;

82 }

83

84 // Copy sensitive area

85 sensitive = object->sensitive;

86

87 // Prepare output private data from sensitive

88 SensitiveToDuplicate(&sensitive, &object->name, in->newParentHandle,

89 object->publicArea.nameAlg, (TPM2B_SEED *) &data,

90 &in->symmetricAlg, &in->encryptionKeyIn,

91 &out->duplicate);

92

93 out->encryptionKeyOut = in->encryptionKeyIn;

94

95 return TPM_RC_SUCCESS;

96 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 81

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15.2 TPM2_Rewrap

15.2.1 General Description

This command allows the TPM to serve in the role as an Duplication Authority. If proper authorization for

use of the oldParent is provided, then a symmetric key is recovered from inSymKey and used to integrity

check and decrypt inDuplicate. A new protection seed value is generated according to the methods

appropriate for newParent and the blob is re-encrypted and a new integrity value is computed. The re-

encrypted blob is returned in outDuplicate and the symmetric key returned in outSymKey.

In the rewrap process, L is “DUPLICATE” (see “Terms and Definitions” in Part 1).

If inSymSeed has a zero length, then oldParent is required to be TPM_RH_NULL and no decryption of

inDuplicate takes place.

If newParent is TPM_RH_NULL, then no encryption is performed on outDuplicate and outSymSeed will

have a zero length.

Part 3: Commands Trusted Platform Module Library

Page 82 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

15.2.2 Command and Response

Table 37 — TPM2_Rewrap Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Rewrap

TPMI_DH_OBJECT+ @oldParent

parent of object

Auth Index: 1

Auth Role: User

TPMI_DH_OBJECT+ newParent
new parent of the object

Auth Index: None

TPM2B_PRIVATE inDuplicate
an object encrypted using symmetric key derived from
inSymSeed

TPM2B_NAME name the Name of the object being rewrapped

TPM2B_ENCRYPTED_SECRET inSymSeed

seed for symmetric key

needs oldParent private key to recover the seed and
generate the symmetric key

Table 38 — TPM2_Rewrap Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outDuplicate
an object encrypted using symmetric key derived from
outSymSeed

TPM2B_ENCRYPTED_SECRET outSymSeed
seed for a symmetric key protected by newParent
asymmetric key

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 83

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Rewrap_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES newParent is not a decryption key

TPM_RC_HANDLE oldParent does not consistent with inSymSeed

TPM_RC_INTEGRITY the integrity check of inDuplicate failed

TPM_RC_KEY for an ECC key, the public key is not on the curve of the curve ID

TPM_RC_KEY_SIZE the decrypted input symmetric key size does not matches the symmetric
algorithm key size of oldParent

TPM_RC_TYPE oldParent is not a storage key, or 'newParent is not a storage key

TPM_RC_VALUE for an 'oldParent; RSA key, the data to be decrypted is greater than the public
exponent

Unmarshal errors errors during unmarshaling the input encrypted buffer to a ECC public key, or
unmarshal the private buffer to sensitive

4 TPM_RC

5 TPM2_Rewrap(

6 Rewrap_In *in, // IN: input parameter list

7 Rewrap_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *oldParent;

12 TPM2B_DATA data; // symmetric key

13 UINT16 hashSize = 0;

14 TPM2B_PRIVATE privateBlob; // A temporary private blob

15 // to transit between old

16 // and new wrappers

17

18 // Input Validation

19

20 if((in->inSymSeed.t.size == 0 && in->oldParent != TPM_RH_NULL)

21 || (in->inSymSeed.t.size != 0 && in->oldParent == TPM_RH_NULL))

22 return TPM_RC_HANDLE + RC_Rewrap_oldParent;

23

24 if(in->oldParent != TPM_RH_NULL)

25 {

26 // Get old parent pointer

27 oldParent = ObjectGet(in->oldParent);

28

29 // old parent key must be a storage object

30 if(!ObjectIsStorage(in->oldParent))

31 return TPM_RC_TYPE + RC_Rewrap_oldParent;

32

33 // Decrypt input secret data via asymmetric decryption. A

34 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

35 // point

36 result = CryptSecretDecrypt(in->oldParent, NULL,

37 "DUPLICATE", &in->inSymSeed, &data);

38 if(result != TPM_RC_SUCCESS)

39 return TPM_RC_VALUE + RC_Rewrap_inSymSeed;

Part 3: Commands Trusted Platform Module Library

Page 84 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

40

41 // Unwrap Outer

42 result = UnwrapOuter(in->oldParent, &in->name,

43 oldParent->publicArea.nameAlg, (TPM2B_SEED *) &data,

44 FALSE,

45 in->inDuplicate.t.size, in->inDuplicate.t.buffer);

46 if(result != TPM_RC_SUCCESS)

47 return RcSafeAddToResult(result, RC_Rewrap_inDuplicate);

48

49 // Copy unwrapped data to temporary variable, remove the integrity field

50 hashSize = sizeof(UINT16) +

51 CryptGetHashDigestSize(oldParent->publicArea.nameAlg);

52 privateBlob.t.size = in->inDuplicate.t.size - hashSize;

53 MemoryCopy(privateBlob.t.buffer, in->inDuplicate.t.buffer + hashSize,

54 privateBlob.t.size);

55 }

56 else

57 {

58 // No outer wrap from input blob. Direct copy.

59 privateBlob = in->inDuplicate;

60 }

61

62 if(in->newParent != TPM_RH_NULL)

63 {

64 OBJECT *newParent;

65 newParent = ObjectGet(in->newParent);

66

67 // New parent must be a storage object

68 if(!ObjectIsStorage(in->newParent))

69 return TPM_RC_TYPE + RC_Rewrap_newParent;

70

71 // Make new encrypt key and its associated secret structure. A

72 // TPM_RC_VALUE error may be returned at this point if RSA algorithm is

73 // enabled in TPM

74 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

75 result = CryptSecretEncrypt(in->newParent,

76 "DUPLICATE", &data, &out->outSymSeed);

77 if(result != TPM_RC_SUCCESS) return result;

78

79 // Command output

80 // Copy temporary variable to output, reserve the space for integrity

81 hashSize = sizeof(UINT16) +

82 CryptGetHashDigestSize(newParent->publicArea.nameAlg);

83 out->outDuplicate.t.size = privateBlob.t.size;

84 MemoryCopy(out->outDuplicate.t.buffer + hashSize, privateBlob.t.buffer,

85 privateBlob.t.size);

86

87 // Produce outer wrapper for output

88 out->outDuplicate.t.size = ProduceOuterWrap(in->newParent, &in->name,

89 newParent->publicArea.nameAlg,

90 (TPM2B_SEED *) &data,

91 FALSE,

92 out->outDuplicate.t.size,

93 out->outDuplicate.t.buffer);

94

95 }

96 else // New parent is a null key so there is no seed

97 {

98 out->outSymSeed.t.size = 0;

99

100 // Copy privateBlob directly

101 out->outDuplicate = privateBlob;

102 }

103

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 85

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

104 return TPM_RC_SUCCESS;

105 }

Part 3: Commands Trusted Platform Module Library

Page 86 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

15.3 TPM2_Import

15.3.1 General Description

This command allows an object to be encrypted using the symmetric encryption values of a Storage Key.

After encryption, the object may be loaded and used in the new hierarchy. The imported object (duplicate)

may be singly encrypted, multiply encrypted, or unencrypted.

If fixedTPM or fixedParent is SET in objectPublic, the TPM shall return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in the object referenced by parentHandle, then encryptedDuplication shall

be set in objectPublic (TPM_RC_ATTRUBUTES).

Recovery of the sensitive data of the object occurs in the TPM in a three-step process in the following

order:

 If present, the outer layer of symmetric encryption is removed. If inSymSeed has a non-zero size, the
asymmetric parameters and private key of parentHandle are used to recover the seed used in the
creation of the HMAC key and encryption keys used to protect the duplication blob. When recovering
the seed, L is “DUPLICATE”.

NOTE 1 If the encryptedDuplication attribute of the object is SET, the TPM shall return
TPM_RC_ATTRIBUTES if inSymSeed is an empty buffer.

 If present, the inner layer of symmetric encryption is removed. If encryptionKey and symmetricAlg are
provided, they are used to decrypt duplication.

 If present, the integrity value of the blob is checked. The presence of the integrity value is indicated
by a non-zero value for duplicate.data.integrity.size. The integrity of the private area is validated using
the Name of objectPublic in the integrity HMAC computation. If either the outer layer or inner layer of
encryption is performed, then the integrity value shall be present.

If the inner or outer wrapper is present, then a valid integrity value shall be present or the TPM shall

return TPM_RC_INTEGRITY.

NOTE 2 It is not necessary to validate that the sensitive area data is cryptographically bound to the public
area other than that the Name of the public area is included in the HMAC. However, if the binding is
not validated by this command, the binding must be checked each time the object is loaded. For an
object that is imported under a parent with fixedTPM SET, binding need only be checked at import. If
the parent has fixedTPM CLEAR, then the binding needs to be checked each time the object is
loaded, or before the TPM performs an operation for which the binding affects the outcome of the
operation (for example, TPM2_PolicySigned() or TPM2_Certify()).

After decryption and integrity checks, the TPM will create a new symmetrically encrypted private area

using the encryption key of the parent.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be

checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

NOTE 4 The symmetric re-encryption is the normal integrity generation and symmetric encryption applied to
a child object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 87

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

15.3.2 Command and Response

Table 39 — TPM2_Import Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Import

TPMI_DH_OBJECT @parentHandle

the handle of the new parent for the object

Auth Index: 1

Auth Role: USER

TPM2B_DATA encryptionKey

the optional symmetric encryption key used as the inner
wrapper for duplicate

If symmetricAlg is TPM_ALG_NULL, then this
parameter shall be the Empty Buffer.

TPM2B_PUBLIC objectPublic

the public area of the object to be imported

This is provided so that the integrity value for duplicate
and the object attributes can be checked.

NOTE Even if the integrity value of the object is not
checked on input, the object Name is required to
create the integrity value for the imported object.

TPM2B_PRIVATE duplicate
the symmetrically encrypted duplicate object that may
contain an inner symmetric wrapper

TPM2B_ENCRYPTED_SECRET inSymSeed

symmetric key used to encrypt duplicate

inSymSeed is encrypted/encoded using the algorithms
of newParent.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to use for the inner
wrapper

If this algorithm is TPM_ALG_NULL, no inner wrapper is
present and encryptionKey shall be the Empty Buffer.

Table 40 — TPM2_Import Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate
the sensitive area encrypted with the symmetric key of
parentHandle

Part 3: Commands Trusted Platform Module Library

Page 88 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

15.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Import_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ASYMMETRIC non-duplicable storage key represented by objectPublic and its parent
referenced by parentHandle have different public params

TPM_RC_ATTRIBUTES attributes FixedTPM and fixedParent of objectPublic are not both
CLEAR; or inSymSeed is nonempty and parentHandle does not
reference a decryption key; or objectPublic and parentHandle have
incompatible or inconsistent attributes

TPM_RC_BINDING duplicate and objectPublic are not cryptographically bound

TPM_RC_ECC_POINT inSymSeed is nonempty and ECC point in inSymSeed is not on the
curve

TPM_RC_HASH non-duplicable storage key represented by objectPublic and its parent
referenced by parentHandle have different name algorithm

TPM_RC_INSUFFICIENT inSymSeed is nonempty and failed to retrieve ECC point from the
secret; or unmarshaling sensitive value from duplicate failed the result
of inSymSeed decryption

TPM_RC_INTEGRITY duplicate integrity is broken

TPM_RC_KDF objectPublic representing decrypting keyed hash object specifies invalid
KDF

TPM_RC_KEY inconsistent parameters of objectPublic; or inSymSeed is nonempty and
parentHandle does not reference a key of supported type; or invalid key
size in objectPublic representing an asymmetric key

TPM_RC_NO_RESULT inSymSeed is nonempty and multiplication resulted in ECC point at
infinity

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID in
objectPublic; or hash algorithm is inconsistent with the scheme ID for

keyed hash object

TPM_RC_SIZE authPolicy size does not match digest size of the name algorithm in
objectPublic; or symmetricAlg and encryptionKey have different sizes;
or inSymSeed is nonempty and it is not of the same size as RSA key
referenced by parentHandle; or unmarshaling sensitive value from
duplicate failed

TPM_RC_SYMMETRIC objectPublic is either a storage key with no symmetric algorithm or a
non-storage key with symmetric algorithm different from
TPM_ALG_NULL

TPM_RC_TYPE unsupported type of objectPublic; or non-duplicable storage key
represented by objectPublic and its parent referenced by parentHandle
are of different types; or parentHandle is not a storage key; or only the
public portion of parentHandle is loaded; or objectPublic and duplicate
are of different types

TPM_RC_VALUE nonempty inSymSeed and its numeric value is greater than the modulus
of the key referenced by parentHandle or inSymSeed is larger than the
size of the digest produced by the name algorithm of the symmetric key
referenced by parentHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 89

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

4 TPM_RC

5 TPM2_Import(

6 Import_In *in, // IN: input parameter list

7 Import_Out *out // OUT: output parameter list

8)

9 {

10

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *parentObject;

13 TPM2B_DATA data; // symmetric key

14 TPMT_SENSITIVE sensitive;

15 TPM2B_NAME name;

16

17 UINT16 innerKeySize = 0; // encrypt key size for inner

18 // wrapper

19

20 // Input Validation

21

22 // FixedTPM and fixedParent must be CLEAR

23 if(in->objectPublic.t.publicArea.objectAttributes.fixedTPM == SET

24 || in->objectPublic.t.publicArea.objectAttributes.fixedParent == SET)

25 return TPM_RC_ATTRIBUTES + RC_Import_objectPublic;

26

27 // Get parent pointer

28 parentObject = ObjectGet(in->parentHandle);

29

30 if(!AreAttributesForParent(parentObject))

31 return TPM_RC_TYPE + RC_Import_parentHandle;

32

33 if(in->symmetricAlg.algorithm != TPM_ALG_NULL)

34 {

35 // Get inner wrap key size

36 innerKeySize = in->symmetricAlg.keyBits.sym;

37 // Input symmetric key must match the size of algorithm.

38 if(in->encryptionKey.t.size != (innerKeySize + 7) / 8)

39 return TPM_RC_SIZE + RC_Import_encryptionKey;

40 }

41 else

42 {

43 // If input symmetric algorithm is NULL, input symmetric key size must

44 // be 0 as well

45 if(in->encryptionKey.t.size != 0)

46 return TPM_RC_SIZE + RC_Import_encryptionKey;

47 }

48

49 // See if there is an outer wrapper

50 if(in->inSymSeed.t.size != 0)

51 {

52 // Decrypt input secret data via asymmetric decryption. TPM_RC_ATTRIBUTES,

53 // TPM_RC_ECC_POINT, TPM_RC_INSUFFICIENT, TPM_RC_KEY, TPM_RC_NO_RESULT,

54 // TPM_RC_SIZE, TPM_RC_VALUE may be returned at this point

55 result = CryptSecretDecrypt(in->parentHandle, NULL, "DUPLICATE",

56 &in->inSymSeed, &data);

57 pAssert(result != TPM_RC_BINDING);

58 if(result != TPM_RC_SUCCESS)

59 return TPM_RC_VALUE + RC_Import_inSymSeed;

60 }

61 else

62 {

63 data.t.size = 0;

64 }

65

66 // Compute name of object

67 ObjectComputeName(&(in->objectPublic.t.publicArea), &name);

Part 3: Commands Trusted Platform Module Library

Page 90 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

68

69 // Retrieve sensitive from private.

70 // TPM_RC_INSUFFICIENT, TPM_RC_INTEGRITY, TPM_RC_SIZE may be returned here.

71 result = DuplicateToSensitive(&in->duplicate, &name, in->parentHandle,

72 in->objectPublic.t.publicArea.nameAlg,

73 (TPM2B_SEED *) &data, &in->symmetricAlg,

74 &in->encryptionKey, &sensitive);

75 if(result != TPM_RC_SUCCESS)

76 return RcSafeAddToResult(result, RC_Import_duplicate);

77

78 // If the parent of this object has fixedTPM SET, then fully validate this

79 // object so that validation can be skipped when it is loaded

80 if(parentObject->publicArea.objectAttributes.fixedTPM == SET)

81 {

82 TPM_HANDLE objectHandle;

83

84 // Perform self check on input public area. A TPM_RC_SIZE, TPM_RC_SCHEME,

85 // TPM_RC_VALUE, TPM_RC_SYMMETRIC, TPM_RC_TYPE, TPM_RC_HASH,

86 // TPM_RC_ASYMMETRIC, TPM_RC_ATTRIBUTES or TPM_RC_KDF error may be returned

87 // at this point

88 result = PublicAttributesValidation(TRUE, in->parentHandle,

89 &in->objectPublic.t.publicArea);

90 if(result != TPM_RC_SUCCESS)

91 return RcSafeAddToResult(result, RC_Import_objectPublic);

92

93 // Create internal object. A TPM_RC_KEY_SIZE, TPM_RC_KEY or

94 // TPM_RC_OBJECT_MEMORY error may be returned at this point

95 result = ObjectLoad(TPM_RH_NULL, &in->objectPublic.t.publicArea,

96 &sensitive, NULL, in->parentHandle, FALSE,

97 &objectHandle);

98 if(result != TPM_RC_SUCCESS)

99 return result;

100

101 // Don't need the object, just needed the checks to be performed so

102 // flush the object

103 ObjectFlush(objectHandle);

104 }

105

106 // Command output

107

108 // Prepare output private data from sensitive

109 SensitiveToPrivate(&sensitive, &name, in->parentHandle,

110 in->objectPublic.t.publicArea.nameAlg,

111 &out->outPrivate);

112

113 return TPM_RC_SUCCESS;

114 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 91

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16 Asymmetric Primitives

16.1 Introduction

The commands in this clause provide low-level primitives for access to the asymmetric algorithms

implemented in the TPM. Many of these commands are only allowed if the asymmetric key is an

unrestricted key.

16.2 TPM2_RSA_Encrypt

16.2.1 General Description

This command performs RSA encryption using the indicated padding scheme according to PKCS#1v2.1

(PKCS#1). If the scheme of keyHandle is TPM_ALG_NULL, then the caller may use inScheme to specify

the padding scheme. If scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be

TPM_ALG_NULL or be the same as scheme (TPM_RC_SCHEME).

The key referenced by keyHandle is required to be an RSA key (TPM_RC_KEY) with the decrypt attribute

SET (TPM_RC_ATTRIBUTES).

NOTE Requiring that the decrypt attribute be set allows the TPM to ensure that the scheme selection is
done with the presumption that the scheme of the key is a decryption scheme selection. It is
understood that this command will operate on a key with only the public part loaded so the caller
may modify any key in any desired way. So, this constraint only serves to simplify the TPM logic.

The three types of allowed padding are:

1) TPM_ALG_OAEP – Data is OAEP padded as described in 7.1 of PKCS#1v2.1. The only

supported mask generation is MGF1.

2) TPM_ALG_RSAES – Data is padded as described in 7.2 of PKCS#1v2.1.

3) TPM_ALG_NULL – Data is not padded by the TPM and the TPM will treat message as an

unsigned integer and perform a modular exponentiation of message using the public

exponent of the key referenced by keyHandle. This scheme is only used if both the scheme

in the key referenced by keyHandle is TPM_ALG_NULL, and the inScheme parameter of the

command is TPM_ALG_NULL. The input value cannot be larger than the public modulus of

the key referenced by keyHandle.

Table 41 — Padding Scheme Selection

keyHandle→scheme inScheme padding scheme used

TPM_ALG_NULL

TPM_ALG_NULL none

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP OAEP

TPM_ALG_RSAES

TPM_ALG_NULL RSAES

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP error (TPM_RC_SCHEME)

TPM_ALG_OAEP

TPM_ALG_NULL OAEP

TPM_ALG_RSAES error (TPM_RC_SCHEME)

TPM_AGL_OAEP OAEP

Part 3: Commands Trusted Platform Module Library

Page 92 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

After padding, the data is RSAEP encrypted according to 5.1.1 of PKCS#1v2.1.

NOTE 1 It is required that decrypt be SET so that the commands that load a key can validate that the
scheme is consistent rather than have that deferred until the key is used.

NOTE 2 If it is desired to use a key that had restricted SET, the caller may CLEAR restricted and load the
public part of the key and use that unrestricted version of the key for encryption.

If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

NOTE 3 Because only the public portion of the key needs to be loaded for this command, the caller can
manipulate the attributes of the key in any way desired. As a result , the TPM shall not check the
consistency of the attributes. The only property checking is that the key is an RSA key and that the
padding scheme is supported.

The message parameter is limited in size by the padding scheme according to the following table:

Table 42 — Message Size Limits Based on Padding

Scheme
Maximum Message Length
(mLen) in Octets Comments

TPM_ALG_OAEP mLen  k – 2hLen – 2

TPM_ALG_RSAES mLen  k – 11

TPM_ALG_NULL mLen  k The numeric value of the message must be
less than the numeric value of the public

modulus (n).

NOTES

1) k ≔ the number of byes in the public modulus

2) hLen ≔ the number of octets in the digest produced by the hash algorithm used in the process

The label parameter is optional. If provided (label.size != 0) then the TPM shall return TPM_RC_VALUE if

the last octet in label is not zero. If a zero octet occurs before label.buffer[label.size-1], the TPM shall

truncate the label at that point. The terminating octet of zero is included in the label used in the padding

scheme.

NOTE 4 If the scheme does not use a label, the TPM will still verify that label is properly formatted if label is
present.

The function returns padded and encrypted value outData.

The message parameter in the command may be encrypted using parameter encryption.

NOTE 5 Only the public area of keyHandle is required to be loaded. A public key may be loaded with any
desired scheme. If the scheme is to be changed, a different public area must be loaded.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 93

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.2.2 Command and Response

Table 43 — TPM2_RSA_Encrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Encrypt

TPMI_DH_OBJECT keyHandle

reference to public portion of RSA key to use for
encryption

Auth Index: None

TPM2B_PUBLIC_KEY_RSA message

message to be encrypted

NOTE 1 The data type was chosen because it limits the
overall size of the input to no greater than the size
of the largest RSA public key. This may be larger
than allowed for keyHandle.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label

optional label L to be associated with the message

Size of the buffer is zero if no label is present

NOTE 2 See description of label above.

Table 44 — TPM2_RSA_Encrypt Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA outData encrypted output

Part 3: Commands Trusted Platform Module Library

Page 94 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "RSA_Encrypt_fp.h"

3 #ifdef TPM_ALG_RSA

Error Returns Meaning

TPM_RC_ATTRIBUTES decrypt attribute is not SET in key referenced by keyHandle

TPM_RC_KEY keyHandle does not reference an RSA key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA decrypt
scheme

TPM_RC_VALUE the numeric value of message is greater than the public modulus of the key
referenced by keyHandle, or label is not a null-terminated string

4 TPM_RC

5 TPM2_RSA_Encrypt(

6 RSA_Encrypt_In *in, // IN: input parameter list

7 RSA_Encrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13 char *label = NULL;

14

15 // Input Validation

16

17 rsaKey = ObjectGet(in->keyHandle);

18

19 // selected key must be an RSA key

20 if(rsaKey->publicArea.type != TPM_ALG_RSA)

21 return TPM_RC_KEY + RC_RSA_Encrypt_keyHandle;

22

23 // selected key must have the decryption attribute

24 if(rsaKey->publicArea.objectAttributes.decrypt != SET)

25 return TPM_RC_ATTRIBUTES + RC_RSA_Encrypt_keyHandle;

26

27 // Is there a label?

28 if(in->label.t.size > 0)

29 {

30 // label is present, so make sure that is it NULL-terminated

31 if(in->label.t.buffer[in->label.t.size - 1] != 0)

32 return TPM_RC_VALUE + RC_RSA_Encrypt_label;

33 label = (char *)in->label.t.buffer;

34 }

35

36 // Command Output

37

38 // Select a scheme for encryption

39 scheme = CryptSelectRSAScheme(in->keyHandle, &in->inScheme);

40 if(scheme == NULL)

41 return TPM_RC_SCHEME + RC_RSA_Encrypt_inScheme;

42

43 // Encryption. TPM_RC_VALUE, or TPM_RC_SCHEME errors my be returned buy

44 // CryptEncyptRSA. Note: It can also return TPM_RC_ATTRIBUTES if the key does

45 // not have the decrypt attribute but that was checked above.

46 out->outData.t.size = sizeof(out->outData.t.buffer);

47 result = CryptEncryptRSA(&out->outData.t.size, out->outData.t.buffer, rsaKey,

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 95

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

48 scheme, in->message.t.size, in->message.t.buffer,

49 label);

50 return result;

51 }

52 #endif

Part 3: Commands Trusted Platform Module Library

Page 96 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.3 TPM2_RSA_Decrypt

16.3.1 General Description

This command performs RSA decryption using the indicated padding scheme according to PKCS#1v2.1

(PKCS#1).

The scheme selection for this command is the same as for TPM2_RSA_Encrypt() and is shown in Table

41.

The key referenced by keyHandle shall be an RSA key (TPM_RC_KEY) with restricted CLEAR and

decrypt SET (TPM_RC_ATTRIBUTES).

This command uses the private key of keyHandle for this operation and authorization is required.

The TPM will perform a modular exponentiation of ciphertext using the private exponent associated with

keyHandle (this is described in PKCS#1v2.1, clause 5.1.2). It will then validate the padding according to

the selected scheme. If the padding checks fail, TPM_RC_VALUE is returned. Otherwise, the data is

returned with the padding removed. If no padding is used, the returned value is an unsigned integer value

that is the result of the modular exponentiation of cipherText using the private exponent of keyHandle.

The returned value may include leading octets zeros so that it is the same size as the public modulus. For

the other padding schemes, the returned value will be smaller than the public modulus but will contain all

the data remaining after padding is removed and this may include leading zeros if the original encrypted

value contained leading zeros..

If a label is used in the padding process of the scheme, the label parameter is required to be present in

the decryption process and label is required to be the same in both cases. The TPM shall verify that the

label is consistent and if not it shall return TPM_RC_VALUE. If label is present (label.size != 0), it

shall be a NULL-terminated string or the TPM will return TPM_RC_VALUE.

NOTE 1 The size of label includes the terminating null.

The message parameter in the response may be encrypted using parameter encryption.

If the decryption scheme does not require a hash function, the hash parameter of inScheme may be set

to any valid hash function or TPM_ALG_NULL.

If the description scheme does not require a label, the value in label is not used but the size of the label

field is checked for consistency with the indicated data type (TPM2B_DATA). That is, the field may not be

larger than allowed for a TPM2B_DATA.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 97

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.3.2 Command and Response

Table 45 — TPM2_RSA_Decrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Decrypt

TPMI_DH_OBJECT @keyHandle

RSA key to use for decryption

Auth Index: 1

Auth Role: USER

TPM2B_PUBLIC_KEY_RSA cipherText

cipher text to be decrypted

NOTE An encrypted RSA data block is the size of the
public modulus.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label
label whose association with the message is to be
verified

Table 46 — TPM2_RSA_Decrypt Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA message decrypted output

Part 3: Commands Trusted Platform Module Library

Page 98 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "RSA_Decrypt_fp.h"

3 #ifdef TPM_ALG_RSA

Error Returns Meaning

TPM_RC_KEY keyHandle does not reference an unrestricted decrypt key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA decrypt scheme

TPM_RC_SIZE cipherText is not the size of the modulus of key referenced by keyHandle

TPM_RC_VALUE label is not a null terminated string or the value of cipherText is greater that the
modulus of keyHandle

4 TPM_RC

5 TPM2_RSA_Decrypt(

6 RSA_Decrypt_In *in, // IN: input parameter list

7 RSA_Decrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13 char *label = NULL;

14

15 // Input Validation

16

17 rsaKey = ObjectGet(in->keyHandle);

18

19 // The selected key must be an RSA key

20 if(rsaKey->publicArea.type != TPM_ALG_RSA)

21 return TPM_RC_KEY + RC_RSA_Decrypt_keyHandle;

22

23 // The selected key must be an unrestricted decryption key

24 if(rsaKey->publicArea.objectAttributes.restricted == SET

25 || rsaKey->publicArea.objectAttributes.decrypt == CLEAR)

26 return TPM_RC_ATTRIBUTES + RC_RSA_Decrypt_keyHandle;

27

28 // NOTE: Proper operation of this command requires that the sensitive area

29 // of the key is loaded. This is assured because authorization is required

30 // to use the sensitive area of the key. In order to check the authorization,

31 // the sensitive area has to be loaded, even if authorization is with policy.

32

33 // If label is present, make sure that it is a NULL-terminated string

34 if(in->label.t.size > 0)

35 {

36 // Present, so make sure that it is NULL-terminated

37 if(in->label.t.buffer[in->label.t.size - 1] != 0)

38 return TPM_RC_VALUE + RC_RSA_Decrypt_label;

39 label = (char *)in->label.t.buffer;

40 }

41

42 // Command Output

43

44 // Select a scheme for decrypt.

45 scheme = CryptSelectRSAScheme(in->keyHandle, &in->inScheme);

46 if(scheme == NULL)

47 return TPM_RC_SCHEME + RC_RSA_Decrypt_inScheme;

48

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 99

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

49 // Decryption. TPM_RC_VALUE, TPM_RC_SIZE, and TPM_RC_KEY error may be

50 // returned by CryptDecryptRSA.

51 // NOTE: CryptDecryptRSA can also return TPM_RC_ATTRIBUTES or TPM_RC_BINDING

52 // when the key is not a decryption key but that was checked above.

53 out->message.t.size = sizeof(out->message.t.buffer);

54 result = CryptDecryptRSA(&out->message.t.size, out->message.t.buffer, rsaKey,

55 scheme, in->cipherText.t.size,

56 in->cipherText.t.buffer,

57 label);

58

59 return result;

60 }

61 #endif

Part 3: Commands Trusted Platform Module Library

Page 100 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.4 TPM2_ECDH_KeyGen

16.4.1 General Description

This command uses the TPM to generate an ephemeral key pair (de, Qe where Qe ≔ [de]G). It uses the private

ephemeral key and a loaded public key (QS) to compute the shared secret value (P ≔ [hde]QS).

KeyHandle shall refer to a loaded ECC key. The sensitive portion of this key need not be loaded.

The curve parameters of the loaded ECC key are used to generate the ephemeral key.

NOTE 1 This function is the equivalent of encrypting data to another object’s public key. The seed value is
used in a KDF to generate a symmetric key and that key is used to encrypt the data. Once the data
is encrypted and the symmetric key discarded, only the object with the private portion of the
keyHandle will be able to decrypt it.

The zPoint in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 101

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.4.2 Command and Response

Table 47 — TPM2_ECDH_KeyGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_KeyGen

TPMI_DH_OBJECT keyHandle
Handle of a loaded ECC key public area.

Auth Index: None

Table 48 — TPM2_ECDH_KeyGen Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT zPoint results of P ≔ h[de]Qs

TPM2B_ECC_POINT pubPoint generated ephemeral public point (Qe)

Part 3: Commands Trusted Platform Module Library

Page 102 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ECDH_KeyGen_fp.h"

3 #ifdef TPM_ALG_ECC

Error Returns Meaning

TPM_RC_KEY keyHandle does not reference a non-restricted decryption ECC key

4 TPM_RC

5 TPM2_ECDH_KeyGen(

6 ECDH_KeyGen_In *in, // IN: input parameter list

7 ECDH_KeyGen_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *eccKey;

11 TPM2B_ECC_PARAMETER sensitive;

12 TPM_RC result;

13

14 // Input Validation

15

16 eccKey = ObjectGet(in->keyHandle);

17

18 // Input key must be a non-restricted, decrypt ECC key

19 if(eccKey->publicArea.type != TPM_ALG_ECC

20 || eccKey->publicArea.objectAttributes.restricted == SET

21 || eccKey->publicArea.objectAttributes.decrypt != SET

22)

23 return TPM_RC_KEY + RC_ECDH_KeyGen_keyHandle;

24

25 // Command Output

26 do

27 {

28 // Create ephemeral ECC key

29 CryptNewEccKey(eccKey->publicArea.parameters.eccDetail.curveID,

30 &out->pubPoint.t.point, &sensitive);

31

32 out->pubPoint.t.size = TPMS_ECC_POINT_Marshal(&out->pubPoint.t.point,

33 NULL, NULL);

34

35 // Compute Z

36 result = CryptEccPointMultiply(&out->zPoint.t.point,

37 eccKey->publicArea.parameters.eccDetail.curveID,

38 &sensitive, &eccKey->publicArea.unique.ecc);

39 // The point in the key is not on the curve. Indicate that the key is bad.

40 if(result == TPM_RC_ECC_POINT)

41 return TPM_RC_KEY + RC_ECDH_KeyGen_keyHandle;

42 // The other possible error is TPM_RC_NO_RESULT indicating that the

43 // multiplication resulted in the point at infinity, so get a new

44 // random key and start over (hardly ever happens).

45 }

46 while(result != TPM_RC_SUCCESS);

47

48 // Marshal the values to generate the point.

49 out->zPoint.t.size = TPMS_ECC_POINT_Marshal(&out->zPoint.t.point, NULL, NULL);

50

51 return TPM_RC_SUCCESS;

52 }

53 #endif

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 103

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.5 TPM2_ECDH_ZGen

16.5.1 General Description

This command uses the TPM to recover the Z value from a public point (QB) and a private key (ds). It will

perform the multiplication of the provided inPoint (QB) with the private key (ds) and return the coordinates

of the resultant point (Z = (xZ , yZ) ≔ [hds]QB; where h is the cofactor of the curve).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY) with the restricted attribute CLEAR and the

decrypt attribute SET (TPM_RC_ATTRIBUTES).

The scheme of the key referenced by keyHandle is required to be either TPM_ALG_ECDH or

TPM_ALG_NULL (TPM_RC_SCHEME).

inPoint is required to be on the curve of the key referenced by keyHandle (TPM_RC_ECC_POINT).

The parameters of the key referenced by keyHandle are used to perform the point multiplication.

Part 3: Commands Trusted Platform Module Library

Page 104 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.5.2 Command and Response

Table 49 — TPM2_ECDH_ZGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_ZGen

TPMI_DH_OBJECT @keyHandle

handle of a loaded ECC key

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inPoint a public key

Table 50 — TPM2_ECDH_ZGen Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outPoint
X and Y coordinates of the product of the multiplication

Z = (xZ , yZ) ≔ [hdS]QB

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 105

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ECDH_ZGen_fp.h"

3 #ifdef TPM_ALG_ECC

Error Returns Meaning

TPM_RC_KEY keyHandle does not reference a non-restricted decryption ECC key

TPM_RC_ECC_POINT invalid argument

TPM_RC_NO_RESULT multiplying inPoint resulted in a point at infinity

4 TPM_RC

5 TPM2_ECDH_ZGen(

6 ECDH_ZGen_In *in, // IN: input parameter list

7 ECDH_ZGen_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12

13 // Input Validation

14

15 eccKey = ObjectGet(in->keyHandle);

16

17 // Input key must be a non-restricted, decrypt ECC key

18 if(eccKey->publicArea.type != TPM_ALG_ECC

19 || eccKey->publicArea.objectAttributes.restricted == SET

20 || eccKey->publicArea.objectAttributes.decrypt != SET

21)

22 return TPM_RC_KEY + RC_ECDH_ZGen_keyHandle;

23

24 // Command Output

25

26 // Compute Z. TPM_RC_ECC_POINT or TPM_RC_NO_RESULT may be returned here.

27 result = CryptEccPointMultiply(&out->outPoint.t.point,

28 eccKey->publicArea.parameters.eccDetail.curveID,

29 &eccKey->sensitive.sensitive.ecc,

30 &in->inPoint.t.point);

31 if(result != TPM_RC_SUCCESS)

32 return RcSafeAddToResult(result, RC_ECDH_ZGen_inPoint);

33

34 out->outPoint.t.size = TPMS_ECC_POINT_Marshal(&out->outPoint.t.point,

35 NULL, NULL);

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif

Part 3: Commands Trusted Platform Module Library

Page 106 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.6 TPM2_ECC_Parameters

16.6.1 General Description

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID.

16.6.2 Command and Response

Table 51 — TPM2_ECC_Parameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECC_Parameters

TPMI_ECC_CURVE curveID parameter set selector

Table 52 — TPM2_ECC_Parameters Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMS_ALGORITHM_DETAIL_ECC parameters ECC parameters for the selected curve

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 107

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ECC_Parameters_fp.h"

3 #ifdef TPM_ALG_ECC

Error Returns Meaning

TPM_RC_VALUE Unsupported ECC curve ID

4 TPM_RC

5 TPM2_ECC_Parameters(

6 ECC_Parameters_In *in, // IN: input parameter list

7 ECC_Parameters_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // Get ECC curve parameters

13 if(CryptEccGetParameters(in->curveID, &out->parameters))

14 return TPM_RC_SUCCESS;

15 else

16 return TPM_RC_VALUE + RC_ECC_Parameters_curveID;

17 }

18 #endif

Part 3: Commands Trusted Platform Module Library

Page 108 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.1 TPM2_ZGen_2Phase

16.1.1 General Description

This command supports two-phase key exchange protocols. The command is used in combination with

TPM2_EC_Ephemeral(). TPM2_EC_Ephemeral() generates an ephemeral key and returns the public

point of that ephemeral key along with a numeric value that allows the TPM to regenerate the associated

private key.

The input parameters for this command are a static public key (inQsU), an ephemeral key (inQeU) from

party B, and the commitCounter returned by TPM2_EC_Ephemeral(). The TPM uses the counter value to

regenerate the ephemeral private key (de,V) and the associated public key (Qe,V). keyA provides the static

ephemeral elements ds,V and Qs,V. This provides the two pairs of ephemeral and static keys that are

required for the schemes supported by this command.

The TPM will compute Z or Zs and Ze according to the selected scheme. If the scheme is not a two-phase

key exchange scheme or if the scheme is not supported, the TPM will return TPM_RC_SCHEME.

It is an error if inQsB or inQeB are not on the curve of keyA (TPM_RC_ECC_POINT).

The two-phase key schemes that were assigned an algorithm ID as of the time of the publication of this

specification are TPM_ALG_ECDH, TPM_ALG_ECMQV, and TPM_ALG_SM2.

If this command is supported, then support for TPM_ALG_ECDH is required. Support for

TPM_ALG_ECMQV or TPM_ALG_SM2 is optional.

NOTE 1 If SM2 is supported and this command is supported, then the implementation is required to support
the key exchange protocol of SM2, part 3.

For TPM_ALG_ECDH outZ1 will be Zs and outZ2 will Ze as defined in 6.1.1.2 of SP800-56A.

NOTE 2 A non-restricted decryption key using ECDH may be used in either TPM2_ECDH_ZGen() or
TPM2_ZGen_2Phase as the comutaion done with the private part of keyA is the same in both cases.

For TPM_ALG_ECMQV or TPM_ALG_SM2 outZ1 will be Z and outZ2 will be an Empty Point.

NOTE 3 An Empty Point has two Empty Buffers as coordinates meaning the minimum size value for outZ2
will be four.

If the input scheme is TPM_ALG_ECDH, then outZ1 will be Zs and outZ2 will be Ze. For schemes like

MQV (including SM2), outZ1 will contain the computed value and outZ2 will be an Empty Point.

NOTE The Z values returned by the TPM are a full point and not just an x-coordinate.

If a computation of either Z produces the point at infinity, then the corresponding Z value will be an Empty

Point.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 109

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

16.1.2 Command and Response

Table 53 — TPM2_ZGen_2Phase Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ ZGen_2Phase

TPMI_DH_OBJECT @keyA

handle of an unrestricted decryption key ECC

The private key referenced by this handle is used as dS,A

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inQsB other party’s static public key (Qs,B = (Xs,B, Ys,B))

TPM2B_ECC_POINT inQeB other party's ephemeral public key (Qe,B = (Xe,B, Ye,B))

TPMI_ECC_KEY_EXCHANGE inScheme the key exchange scheme

UINT16 counter value returned by TPM2_EC_Ephemeral()

Table 54 — TPM2_ZGen_2Phase Response

Type Name Description

TPM_ST tag

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outZ1
X and Y coordinates of the computed value (scheme
dependent)

TPM2B_ECC_POINT outZ2
X and Y coordinates of the second computed value
(scheme dependent)

Part 3: Commands Trusted Platform Module Library

Page 110 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

16.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ZGen_2Phase_fp.h"

3 #if defined TPM_ALG_ECC && (CC_ZGen_2Phase == YES)

This command uses the TPM to recover one or two Z values in a two phase key exchange protocol

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_ECC_POINT inQsB or inQeB is not on the curve of the key reference by keyA

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH, TPM_ALG_ECMQV or TPM_ALG_SM2

4 TPM_RC

5 TPM2_ZGen_2Phase(

6 ZGen_2Phase_In *in, // IN: input parameter list

7 ZGen_2Phase_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12 TPM2B_ECC_PARAMETER r;

13 TPM_ALG_ID scheme;

14

15 // Input Validation

16

17 eccKey = ObjectGet(in->keyA);

18

19 // keyA must be an ECC key

20 if(eccKey->publicArea.type != TPM_ALG_ECC)

21 return TPM_RC_KEY + RC_ZGen_2Phase_keyA;

22

23 // keyA must not be restricted and must be a decrypt key

24 if(eccKey->publicArea.objectAttributes.restricted == SET

25 || eccKey->publicArea.objectAttributes.decrypt != SET

26)

27 return TPM_RC_ATTRIBUTES + RC_ZGen_2Phase_keyA;

28

29 // if the scheme of keyA is TPM_ALG_NULL, then use the input scheme; otherwise

30 // the input scheme must be the same as the scheme of keyA

31 scheme = eccKey->publicArea.parameters.asymDetail.scheme.scheme;

32 if(scheme != TPM_ALG_NULL)

33 {

34 if(scheme != in->inScheme)

35 return TPM_RC_SCHEME + RC_ZGen_2Phase_inScheme;

36 }

37 else

38 scheme = in->inScheme;

39 if(scheme == TPM_ALG_NULL)

40 return TPM_RC_SCHEME + RC_ZGen_2Phase_inScheme;

41

42 // Input points must be on the curve of keyA

43 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

44 &in->inQsB.t.point))

45 return TPM_RC_ECC_POINT + RC_ZGen_2Phase_inQsB;

46

47 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 111

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

48 &in->inQeB.t.point))

49 return TPM_RC_ECC_POINT + RC_ZGen_2Phase_inQeB;

50

51 if(!CryptGenerateR(&r, &in->counter,

52 eccKey->publicArea.parameters.eccDetail.curveID,

53 NULL))

54 return TPM_RC_VALUE + RC_ZGen_2Phase_counter;

55

56 // Command Output

57

58 result = CryptEcc2PhaseKeyExchange(&out->outZ1.t.point,

59 &out->outZ2.t.point,

60 eccKey->publicArea.parameters.eccDetail.curveID,

61 scheme,

62 &eccKey->sensitive.sensitive.ecc,

63 &r,

64 &in->inQsB.t.point,

65 &in->inQeB.t.point);

66 if(result != TPM_RC_SUCCESS)

67 return result;

68

69 CryptEndCommit(in->counter);

70

71 return TPM_RC_SUCCESS;

72 }

73 #endif

Part 3: Commands Trusted Platform Module Library

Page 112 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17 Symmetric Primitives

17.1 Introduction

The commands in this clause provide low-level primitives for access to the symmetric algorithms

implemented in the TPM that operate on blocks of data. These include symmetric encryption and

decryption as well as hash and HMAC. All of the commands in this group are stateless. That is, they have

no persistent state that is retained in the TPM when the command is complete.

For hashing, HMAC, and Events that require large blocks of data with retained state, the sequence

commands are provided (see clause 1).

Some of the symmetric encryption/decryption modes use an IV. When an IV is used, it may be an

initiation value or a chained value from a previous stage. The chaining for each mode is:

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 113

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

Table 55 — Symmetric Chaining Process

Mode Chaining process

TPM_ALG_CTR The TPM will increment the low-order 32 bits of the IV provided by the caller. The last
encrypted value will be returned to the caller as IvOut. This can be the input value to the

next encrypted buffer.

IvIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

EXAMPLE 1 AES requires that IvIn be 128 bits (16 octets).

IvOut will be the size of a cipher block and not the size of the last encrypted block.

NOTE IvOut will be the value of the counter after the last block is encrypted.

EXAMPLE 2 If IvIn were 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0016 and four data blocks
 were encrypted, IvOut will have a value of
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0416.

All the bits of the IV are incremented as if it were an unsigned integer.

TPM_ALG_OFB In Output Feedback (OFB), the output of the pseudo-random function (the block encryption
algorithm) is XORed with a plaintext block to produce a ciphertext block. IvOut will be the
value that was XORed with the last plaintext block. That value can be used as the IvIn for a
next buffer.

IvIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of IvIn is not correct, the TPM shall return TPM_RC_SIZE.

IvOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_CBC For Cipher Block Chaining (CBC), a block of ciphertext is XORed with the next plaintext
block and that block is encrypted. The encrypted block is then input to the encryption of the
next block. The last ciphertext block then is used as an IV for the next buffer.

Even though the last ciphertext block is evident in the encrypted data, it is also returned in
IvOut.

IvIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of IvIn is not correct, the TPM shall return TPM_RC_SIZE.

InData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

TPM_ALG_CFB Similar to CBC in that the last ciphertext block is an input to the encryption of the next block.
IvOut will be the value that was XORed with the last plaintext block. That value can be used
as the IvIn for a next buffer.

IvIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of IvIn is not correct, the TPM shall return TPM_RC_SIZE.

IvOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_ECB Electronic Codebook (ECB) has no chaining. Each block of plaintext is encrypted using the
key. ECB does not support chaining and IvIn shall be the Empty Buffer. IvOut will be the
Empty Buffer.

InData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 114 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17.2 TPM2_EncryptDecrypt

17.2.1 General Description

This command performs symmetric encryption or decryption encryption.

Keyhandle shall reference a symmetric cipher object (TPM_RC_KEY).

For a restricted key, mode shall be either the same as the mode of the key, or TPM_ALG_NULL

(TPM_RC_VALUE). For an unrestricted key, mode may be the same or different from the mode of the key

but both shall not be TPM_ALG_NULL (TPM_RC_VALUE).

If the TPM allows this command to be canceled before completion, then the TPM may produce

incremental results and return TPM_RC_SUCCESS rather than TPM_RC_CANCEL. In such case,

outData may be less than inData.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 115

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

17.2.2 Command and Response

Table 56 — TPM2_EncryptDecrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_SYM_MODE+ mode

symmetric mode

For a restricted key, this field shall match the default
mode of the key or be TPM_ALG_NULL.

TPM2B_IV IvIn an initial value as required by the algorithm

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

Table 57 — TPM2_EncryptDecrypt Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted output

TPM2B_IV IvOut chaining value to use for IV in next round

Part 3: Commands Trusted Platform Module Library

Page 116 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "EncryptDecrypt_fp.h"

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is not an even
multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the key's mode

3 TPM_RC

4 TPM2_EncryptDecrypt(

5 EncryptDecrypt_In *in, // IN: input parameter list

6 EncryptDecrypt_Out *out // OUT: output parameter list

7)

8 {

9 OBJECT *symKey;

10 UINT16 keySize;

11 UINT16 blockSize;

12 BYTE *key;

13 TPM_ALG_ID alg;

14

15 // Input Validation

16 symKey = ObjectGet(in->keyHandle);

17

18 // The input key should be a symmetric decrypt key.

19 if(symKey->publicArea.type != TPM_ALG_SYMCIPHER

20 || symKey->attributes.publicOnly == SET)

21 return TPM_RC_KEY + RC_EncryptDecrypt_keyHandle;

22

23 // If the input mode is TPM_ALG_NULL, use the key's mode

24 if(in->mode == TPM_ALG_NULL)

25 in->mode = symKey->publicArea.parameters.symDetail.mode.sym;

26

27 // If the key is restricted, the input sym mode should match the key's sym

28 // mode

29 if(symKey->publicArea.objectAttributes.restricted == SET

30 && symKey->publicArea.parameters.symDetail.mode.sym != in->mode)

31 return TPM_RC_VALUE + RC_EncryptDecrypt_mode;

32

33 // If the mode is null, then we have a problem.

34 // Note: Construction of a TPMT_SYM_DEF does not allow the 'mode' to be

35 // TPM_ALG_NULL so setting in->mode to the mode of the key should have

36 // produced a valid mode. However, this is suspenders.

37 if(in->mode == TPM_ALG_NULL)

38 return TPM_RC_VALUE + RC_EncryptDecrypt_mode;

39

40 // The input iv for ECB mode should be null. All the other modes should

41 // have an iv size same as encryption block size

42

43 keySize = symKey->publicArea.parameters.symDetail.keyBits.sym;

44 alg = symKey->publicArea.parameters.symDetail.algorithm;

45 blockSize = CryptGetSymmetricBlockSize(alg, keySize);

46 if((in->mode == TPM_ALG_ECB && in->IvIn.t.size != 0)

47 || (in->mode != TPM_ALG_ECB && in->IvIn.t.size != blockSize))

48 return TPM_RC_SIZE + RC_EncryptDecrypt_IvIn;

49

50 // The input data size of CBC mode or ECB mode must be an even multiple of

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 117

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

51 // the symmetric algorithm's block size

52 if((in->mode == TPM_ALG_CBC || in->mode == TPM_ALG_ECB)

53 && (in->inData.t.size % blockSize) != 0)

54 return TPM_RC_SIZE + RC_EncryptDecrypt_inData;

55

56 // Command Output

57

58 key = symKey->sensitive.sensitive.sym.t.buffer;

59 // For symmetric encryption, the cipher data size is the same as plain data

60 // size.

61 out->outData.t.size = in->inData.t.size;

62 if(in->decrypt == YES)

63 {

64 // Decrypt data to output

65 CryptSymmetricDecrypt(out->outData.t.buffer, alg, keySize, in->mode, key,

66 &(in->IvIn), in->inData.t.size, in->inData.t.buffer);

67 }

68 else

69 {

70 // Encrypt data to output

71 CryptSymmetricEncrypt(out->outData.t.buffer, alg, keySize, in->mode, key,

72 &(in->IvIn), in->inData.t.size, in->inData.t.buffer);

73 }

74 // Copy IV

75 out->IvOut = in->IvIn;

76

77 return TPM_RC_SUCCESS;

78 }

Part 3: Commands Trusted Platform Module Library

Page 118 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17.3 TPM2_Hash

17.3.1 General Description

This command performs a hash operation on a data buffer and returns the results.

NOTE If the data buffer to be hashed is larger than will fit into the TPM’s input buffer, then the sequence
hash commands will need to be used.

If the results of the hash will be used in a signing operation that uses a restricted signing key, then the

ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then the TPM will return a TPMT_TK_HASHCHECK with the hierarchy set

to TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 119

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

17.3.2 Command and Response

Table 58 — TPM2_Hash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag Shall have at least one session

UINT32 commandSize

TPM_CC commandCode TPM_CC_Hash

TPM2B_MAX_BUFFER data data to be hashed

TPMI_ALG_HASH hashAlg
algorithm for the hash being computed – shall not be
TPM_ALG_NULL

TPMI_RH_HIERARCHY+ hierarchy hierarchy to use for the ticket (TPM_RH_NULL allowed)

Table 59 — TPM2_Hash Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHash results

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

will be a NULL ticket if the digest may not be signed
with a restricted key

Part 3: Commands Trusted Platform Module Library

Page 120 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Hash_fp.h"

3 TPM_RC

4 TPM2_Hash(

5 Hash_In *in, // IN: input parameter list

6 Hash_Out *out // OUT: output parameter list

7)

8 {

9 HASH_STATE hashState;

10

11 // Command Output

12

13 // Output hash

14 // Start hash stack

15 out->outHash.t.size = CryptStartHash(in->hashAlg, &hashState);

16 // Adding hash data

17 CryptUpdateDigest2B(&hashState, &in->data.b);

18 // Complete hash

19 CryptCompleteHash2B(&hashState, &out->outHash.b);

20

21 // Output ticket

22 out->validation.tag = TPM_ST_HASHCHECK;

23 out->validation.hierarchy = in->hierarchy;

24

25 if(in->hierarchy == TPM_RH_NULL)

26 {

27 // Ticket is not required

28 out->validation.hierarchy = TPM_RH_NULL;

29 out->validation.digest.t.size = 0;

30 }

31 else if(in->data.t.size >= sizeof(TPM_GENERATED)

32 && !TicketIsSafe(&in->data.b))

33 {

34 // Ticket is not safe

35 out->validation.hierarchy = TPM_RH_NULL;

36 out->validation.digest.t.size = 0;

37 }

38 else

39 {

40 // Compute ticket

41 TicketComputeHashCheck(in->hierarchy, &out->outHash, &out->validation);

42 }

43

44 return TPM_RC_SUCCESS;

45 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 121

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

17.4 TPM2_HMAC

17.4.1 General Description

This command performs an HMAC on the supplied data using the indicated hash algorithm.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return

TPM_RC_ATTRIBUTES. If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return

TPM_RC_TYPE.

If handle references a restricted key, then the hash algorithm specified in the key's scheme is used as the

hash algorithm for the HMAC and the TPM shall return TPM_RC_VALUE if hashAlg is not

TPM_ALG_NULL or the same algorithm as selected in the key's scheme.

NOTE 1 A restricted key may only have one of sign or decrypt SET and the default scheme may not

be TPM_ALG_NULL. These restrictions are enforced by TPM2_Create() and TPM2_CreatePrimary(),

If the key referenced by handle is not restricted, then the TPM will use hashAlg for the HMAC. However, if

hashAlg is TPM_ALG_NULL the TPM will use the default scheme of the key.

If both hashAlg and the key default are TPM_ALG_NULL, the TPM shall return TPM_RC_VALUE.

NOTE A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and the hash algorithm must be specified .

Part 3: Commands Trusted Platform Module Library

Page 122 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

17.4.2 Command and Response

Table 60 — TPM2_HMAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the
HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer HMAC data

TPMI_ALG_HASH+ hashAlg algorithm to use for HMAC

Table 61 — TPM2_HMAC Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHMAC the returned HMAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 123

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

17.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "HMAC_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg specified when the key is restricted is neither TPM_ALG_NULL not
equal to that of the key scheme; or both hashAlg and the key scheme's

algorithm are TPM_ALG_NULL

3 TPM_RC

4 TPM2_HMAC(

5 HMAC_In *in, // IN: input parameter list

6 HMAC_Out *out // OUT: output parameter list

7)

8 {

9 HMAC_STATE hmacState;

10 OBJECT *hmacObject;

11 TPMI_ALG_HASH hashAlg;

12 TPMT_PUBLIC *publicArea;

13

14 // Input Validation

15

16 // Get HMAC key object and public area pointers

17 hmacObject = ObjectGet(in->handle);

18 publicArea = &hmacObject->publicArea;

19

20 // Make sure that the key is an HMAC signing key

21 if(publicArea->type != TPM_ALG_KEYEDHASH)

22 return TPM_RC_TYPE + RC_HMAC_handle;

23 if(publicArea->objectAttributes.sign != SET)

24 return TPM_RC_ATTRIBUTES + RC_HMAC_handle;

25

26

27 // Assume that the key default scheme is used

28 hashAlg = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

29

30 // if the key is restricted, then need to use the scheme of the key and the

31 // input algorithm must be TPM_ALG_NULL or the same as the key scheme

32 if(publicArea->objectAttributes.restricted == SET)

33 {

34 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

35 hashAlg = TPM_ALG_NULL;

36 }

37 else

38 {

39 // for a non-restricted key, use hashAlg if it is provided;

40 if(in->hashAlg != TPM_ALG_NULL)

41 hashAlg = in->hashAlg;

42 }

43 // if the hashAlg is TPM_ALG_NULL, then the input hashAlg is not compatible

44 // with the key scheme or type

45 if(hashAlg == TPM_ALG_NULL)

46 return TPM_RC_VALUE + RC_HMAC_hashAlg;

47

48 // Command Output

49

Part 3: Commands Trusted Platform Module Library

Page 124 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

50 // Start HMAC stack

51 out->outHMAC.t.size = CryptStartHMAC2B(hashAlg,

52 &hmacObject->sensitive.sensitive.bits.b,

53 &hmacState);

54 // Adding HMAC data

55 CryptUpdateDigest2B(&hmacState, &in->buffer.b);

56

57 // Complete HMAC

58 CryptCompleteHMAC2B(&hmacState, &out->outHMAC.b);

59

60 return TPM_RC_SUCCESS;

61 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 125

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

18 Random Number Generator

18.1 TPM2_GetRandom

18.1.1 General Description

This command returns the next bytesRequested octets from the random number generator (RNG).

NOTE 1 It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG
octets such that the frequency of bytesRequested being more than the number of octets available is
an infrequent occurrence.

If bytesRequested is more than will fit into a TPM2B_DIGEST on the TPM, no error is returned but the

TPM will only return as much data as will fit into a TPM2B_DIGEST buffer for the TPM.

NOTE 2 TPM2B_DIGEST is large enough to hold the largest digest that may be produced by the TPM.
Because that digest size changes according to the implemented hashes, the maximum amount of
data returned by this command is TPM implementation-dependent.

Part 3: Commands Trusted Platform Module Library

Page 126 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

18.1.2 Command and Response

Table 62 — TPM2_GetRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetRandom

UINT16 bytesRequested number of octets to return

Table 63 — TPM2_GetRandom Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST randomBytes the random octets

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 127

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

18.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "GetRandom_fp.h"

3 TPM_RC

4 TPM2_GetRandom(

5 GetRandom_In *in, // IN: input parameter list

6 GetRandom_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // if the requested bytes exceed the output buffer size, generates the

12 // maximum bytes that the output buffer allows

13 if(in->bytesRequested > sizeof(TPMU_HA))

14 out->randomBytes.t.size = sizeof(TPMU_HA);

15 else

16 out->randomBytes.t.size = in->bytesRequested;

17

18 CryptGenerateRandom(out->randomBytes.t.size, out->randomBytes.t.buffer);

19

20 return TPM_RC_SUCCESS;

21 }

Part 3: Commands Trusted Platform Module Library

Page 128 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

18.2 TPM2_StirRandom

18.2.1 General Description

This command is used to add "additional information" to the RNG state.

NOTE The "additional information" is as defined in SP800-90A.

The inData parameter may not be larger than 128 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 129

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

18.2.2 Command and Response

Table 64 — TPM2_StirRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_StirRandom {NV}

TPM2B_SENSITIVE_DATA inData additional information

Table 65 — TPM2_StirRandom Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 130 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

18.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "StirRandom_fp.h"

3 TPM_RC

4 TPM2_StirRandom(

5 StirRandom_In *in // IN: input parameter list

6)

7 {

8 // Internal Data Update

9 CryptStirRandom(in->inData.t.size, in->inData.t.buffer);

10

11 return TPM_RC_SUCCESS;

12 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 131

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19 Hash/HMAC/Event Sequences

19.1 Introduction

All of the commands in this group are to support sequences for which an intermediate state must be

maintained. For a description of sequences, see “Hash, HMAC, and Event Sequences” in Part 1.

19.2 TPM2_HMAC_Start

19.2.1 General Description

This command starts an HMAC sequence. The TPM will create and initialize an HMAC sequence

structure, assign a handle to the sequence, and set the authValue of the sequence object to the value in

auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return

TPM_RC_ATTRIBUTES. If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return

TPM_RC_TYPE.

If handle references a restricted key, then the hash algorithm specified in the key's scheme is used as the

hash algorithm for the HMAC and the TPM shall return TPM_RC_VALUE if hashAlg is not

TPM_ALG_NULL or the same algorithm in the key's scheme.

If the key referenced by handle is not restricted, then the TPM will use hashAlg for the HMAC; unless

hashAlg is TPM_ALG_NULL in which case it will use the default scheme of the key.

Table 66 — Hash Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(hash algorithm
from key's scheme) hashAlg hash used

CLEAR (unrestricted) TPM_ALG_NULL
(1)

 TPM_ALG_NULL error
(2)

 (TPM_RC_SCHEME)

CLEAR don’t care valid hash hashAlg

CLEAR valid hash TPM_ALG_NULL handle→scheme

SET (restricted) valid hash
(3)

 TPM_ALG_NULL handle→scheme

SET valid hash
(3)

 same as handle→scheme handle→scheme

SET valid hash
(3)

 not same as
handle→scheme

error
(4)

 (TPM_RC_SCHEME)

NOTES:

1) The scheme for the handle may only be TPM_ALG_NULL if both sign and decrypt are SET.

2) A hash algorithm is required for the HMAC.

3) A restricted key is required to have a scheme with a valid hash algorithm. A restricted key may not have both sign and
decrypt SET.

4) The scheme for a restricted key cannot be overridden.

Part 3: Commands Trusted Platform Module Library

Page 132 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.2.2 Command and Response

Table 67 — TPM2_HMAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC_Start

TPMI_DH_OBJECT+ @handle

handle of an HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg the hash algorithm to use for the HMAC

Table 68 — TPM2_HMAC_Start Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 133

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "HMAC_Start_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg specified when the key is restricted is neither TPM_ALG_NULL
not equal to that of the key scheme; or both hashAlg and the key
scheme's algorithm are TPM_ALG_NULL

3 TPM_RC

4 TPM2_HMAC_Start(

5 HMAC_Start_In *in, // IN: input parameter list

6 HMAC_Start_Out *out // OUT: output parameter list

7)

8 {

9 OBJECT *hmacObject;

10 TPMT_PUBLIC *publicArea;

11 TPM_ALG_ID hashAlg;

12

13 // Input Validation

14

15 // Get HMAC key object and public area pointers

16 hmacObject = ObjectGet(in->handle);

17 publicArea = &hmacObject->publicArea;

18

19 // Make sure that the key is an HMAC signing key

20 if(publicArea->type != TPM_ALG_KEYEDHASH)

21 return TPM_RC_TYPE + RC_HMAC_Start_handle;

22 if(publicArea->objectAttributes.sign != SET)

23 return TPM_RC_ATTRIBUTES + RC_HMAC_Start_handle;

24

25 // Assume that the key default scheme is used

26 hashAlg = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

27

28 // if the key is restricted, then need to use the scheme of the key and the

29 // input algorithm must be TPM_ALG_NULL or the same as the key scheme

30 if(publicArea->objectAttributes.restricted == SET)

31 {

32 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

33 hashAlg = TPM_ALG_NULL;

34 }

35 else

36 {

37 // for a non-restricted key, use hashAlg if it is provided;

38 if(in->hashAlg != TPM_ALG_NULL)

39 hashAlg = in->hashAlg;

40 }

41 // if the algorithm selection ended up with TPM_ALG_NULL, then either the

42 // schemes are not compatible or no hash was provided and both conditions

43 // are errors.

44 if(hashAlg == TPM_ALG_NULL)

45 return TPM_RC_VALUE + RC_HMAC_Start_hashAlg;

46

47 // Internal Data Update

Part 3: Commands Trusted Platform Module Library

Page 134 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

48

49 // Create a HMAC sequence object. A TPM_RC_OBJECT_MEMORY error may be

50 // returned at this point

51 return ObjectCreateHMACSequence(hashAlg,

52 in->handle,

53 &in->auth,

54 &out->sequenceHandle);

55 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 135

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.3 TPM2_HashSequenceStart

19.3.1 General Description

This command starts a hash or an Event sequence. If hashAlg is an implemented hash, then a hash

sequence is started. If hashAlg is TPM_ALG_NULL, then an Event sequence is started. If hashAlg is

neither an implemented algorithm nor TPM_ALG_NULL, then the TPM shall return TPM_RC_HASH.

Depending on hashAlg, the TPM will create and initialize a hash sequence structure or an Event

sequence structure. Additionally, it will assign a handle to the sequence and set the authValue of the

sequence to the value in auth. A sequence structure for an Event (hashAlg = TPM_ALG_NULL) contains

a hash context for each of the PCR banks implemented on the TPM.

Part 3: Commands Trusted Platform Module Library

Page 136 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.3.2 Command and Response

Table 69 — TPM2_HashSequenceStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_HashSequenceStart

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg
the hash algorithm to use for the hash sequence

An Event sequence starts if this is TPM_ALG_NULL.

Table 70 — TPM2_HashSequenceStart Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 137

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "HashSequenceStart_fp.h"

Error Returns Meaning

TPM_RC_OBJECT_MEMORY no space to create an internal object

3 TPM_RC

4 TPM2_HashSequenceStart(

5 HashSequenceStart_In *in, // IN: input parameter list

6 HashSequenceStart_Out *out // OUT: output parameter list

7)

8 {

9 // Internal Data Update

10

11 if(in->hashAlg == TPM_ALG_NULL)

12 // Start a event sequence. A TPM_RC_OBJECT_MEMORY error may be

13 // returned at this point

14 return ObjectCreateEventSequence(&in->auth, &out->sequenceHandle);

15

16 // Start a hash sequence. A TPM_RC_OBJECT_MEMORY error may be

17 // returned at this point

18 return ObjectCreateHashSequence(in->hashAlg, &in->auth, &out->sequenceHandle);

19 }

Part 3: Commands Trusted Platform Module Library

Page 138 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.4 TPM2_SequenceUpdate

19.4.1 General Description

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer may be

any size up to the limits of the TPM.

NOTE In all TPM, a buffer size of 1,024 octets is allowed.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If the command does not return TPM_RC_SUCCESS, the state of the sequence is unmodified.

If the sequence is intended to produce a digest that will be signed by a restricted signing key, then the

first block of data shall contain sizeof(TPM_GENERATED) octets and the first octets shall not be

TPM_GENERATED_VALUE.

NOTE This requirement allows the TPM to validate that the first block is safe to sign without having to
accumulate octets over multiple calls.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 139

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.4.2 Command and Response

Table 71 — TPM2_SequenceUpdate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceUpdate

TPMI_DH_OBJECT @sequenceHandle

handle for the sequence object

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to hash

Table 72 — TPM2_SequenceUpdate Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 140 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SequenceUpdate_fp.h"

Error Returns Meaning

TPM_RC_MODE sequenceHandle does not reference a hash or HMAC sequence object

3 TPM_RC

4 TPM2_SequenceUpdate(

5 SequenceUpdate_In *in // IN: input parameter list

6)

7 {

8 OBJECT *object;

9

10 // Input Validation

11

12 // Get sequence object pointer

13 object = ObjectGet(in->sequenceHandle);

14

15 // Check that referenced object is a sequence object.

16 if(!ObjectIsSequence(object))

17 return TPM_RC_MODE + RC_SequenceUpdate_sequenceHandle;

18

19 // Internal Data Update

20

21 if(object->attributes.eventSeq == SET)

22 {

23 // Update event sequence object

24 UINT32 i;

25 HASH_OBJECT *hashObject = (HASH_OBJECT *)object;

26 for(i = 0; i < HASH_COUNT; i++)

27 {

28 // Update sequence object

29 CryptUpdateDigest2B(&hashObject->state.hashState[i], &in->buffer.b);

30 }

31 }

32 else

33 {

34 HASH_OBJECT *hashObject = (HASH_OBJECT *)object;

35

36 // Update hash/HMAC sequence object

37 if(hashObject->attributes.hashSeq == SET)

38 {

39 // Is this the first block of the sequence

40 if(hashObject->attributes.firstBlock == CLEAR)

41 {

42 // If so, indicate that first block was received

43 hashObject->attributes.firstBlock = SET;

44

45 // Check the first block to see if the first block can contain

46 // the TPM_GENERATED_VALUE. If it does, it is not safe for

47 // a ticket.

48 if(TicketIsSafe(&in->buffer.b))

49 hashObject->attributes.ticketSafe = SET;

50 }

51 // Update sequence object hash/HMAC stack

52 CryptUpdateDigest2B(&hashObject->state.hashState[0], &in->buffer.b);

53

54 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 141

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

55 else if(object->attributes.hmacSeq == SET)

56 {

57 HASH_OBJECT *hashObject = (HASH_OBJECT *)object;

58

59 // Update sequence object hash/HMAC stack

60 CryptUpdateDigest2B(&hashObject->state.hmacState, &in->buffer.b);

61 }

62 }

63

64 return TPM_RC_SUCCESS;

65 }

Part 3: Commands Trusted Platform Module Library

Page 142 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.5 TPM2_SequenceComplete

19.5.1 General Description

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result.

NOTE 1 This command is not used to complete an Event sequence. TPM2_EventSequenceComplete() is
used for that purpose.

If for a hash sequence, the results of the hash will be used in a signing operation that uses a restricted

signing key, then the ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then validation will be a TPMT_TK_HASHCHECK with the hierarchy set to

TPM_RH_NULL and digest set to the Empty Buffer.

NOTE 2 Regardless of the contents of the first octets of the hashed message, if the first buffer sent to the
TPM had fewer than sizeof(TPM_GENERATED) octets, then the TPM will operate as if digest is not
safe to sign.

If sequenceHandle references an Event sequence, then the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 143

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.5.2 Command and Response

Table 73 — TPM2_SequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceComplete {F}

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the hash/HMAC

TPMI_RH_HIERARCHY+ hierarchy hierarchy of the ticket for a hash

Table 74 — TPM2_SequenceComplete Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST result the returned HMAC or digest in a sized buffer

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

This is a NULL Ticket when the session is HMAC.

Part 3: Commands Trusted Platform Module Library

Page 144 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SequenceComplete_fp.h"

3 #include <Platform.h>

Error Returns Meaning

TPM_RC_TYPE sequenceHandle does not reference a hash or HMAC sequence object

4 TPM_RC

5 TPM2_SequenceComplete(

6 SequenceComplete_In *in, // IN: input parameter list

7 SequenceComplete_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *object;

11

12 // Input validation

13

14 // Get hash object pointer

15 object = ObjectGet(in->sequenceHandle);

16

17 // input handle must be a hash or HMAC sequence object.

18 if(object->attributes.hashSeq == CLEAR

19 && object->attributes.hmacSeq == CLEAR)

20 return TPM_RC_MODE + RC_SequenceComplete_sequenceHandle;

21

22 // Command Output

23

24 if(object->attributes.hashSeq == SET) // sequence object for hash

25 {

26 // Update last piece of data

27 HASH_OBJECT *hashObject = (HASH_OBJECT *)object;

28 CryptUpdateDigest2B(&hashObject->state.hashState[0], &in->buffer.b);

29

30 // Complete hash

31 out->result.t.size

32 = CryptGetHashDigestSize(

33 CryptGetContextAlg(&hashObject->state.hashState[0]));

34

35 CryptCompleteHash2B(&hashObject->state.hashState[0], &out->result.b);

36

37 // Check if the first block of the sequence has been received

38 if(hashObject->attributes.firstBlock == CLEAR)

39 {

40 // If not, then this is the first block so see if it is 'safe'

41 // to sign.

42 if(TicketIsSafe(&in->buffer.b))

43 hashObject->attributes.ticketSafe = SET;

44 }

45

46 // Output ticket

47 out->validation.tag = TPM_ST_HASHCHECK;

48 out->validation.hierarchy = in->hierarchy;

49

50 if(in->hierarchy == TPM_RH_NULL)

51 {

52 // Ticket is not required

53 out->validation.digest.t.size = 0;

54 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 145

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

55 else if(object->attributes.ticketSafe == CLEAR)

56 {

57 // Ticket is not safe to generate

58 out->validation.hierarchy = TPM_RH_NULL;

59 out->validation.digest.t.size = 0;

60 }

61 else

62 {

63 // Compute ticket

64 TicketComputeHashCheck(out->validation.hierarchy,

65 &out->result, &out->validation);

66 }

67 }

68 else

69 {

70 HASH_OBJECT *hashObject = (HASH_OBJECT *)object;

71

72 // Update last piece of data

73 CryptUpdateDigest2B(&hashObject->state.hmacState, &in->buffer.b);

74 // Complete hash/HMAC

75 out->result.t.size =

76 CryptGetHashDigestSize(

77 CryptGetContextAlg(&hashObject->state.hmacState.hashState));

78 CryptCompleteHMAC2B(&(hashObject->state.hmacState), &out->result.b);

79

80 // No ticket is generated for HMAC sequence

81 out->validation.tag = TPM_ST_HASHCHECK;

82 out->validation.hierarchy = TPM_RH_NULL;

83 out->validation.digest.t.size = 0;

84 }

85

86 // Internal Data Update

87

88 // mark sequence object as evict so it will be flushed on the way out

89 object->attributes.evict = SET;

90

91 return TPM_RC_SUCCESS;

92 }

Part 3: Commands Trusted Platform Module Library

Page 146 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.6 TPM2_EventSequenceComplete

19.6.1 General Description

This command adds the last part of data, if any, to an Event sequence and returns the result in a digest

list. If pcrHandle references a PCR and not TPM_RH_NULL, then the returned digest list is processed in

the same manner as the digest list input parameter to TPM2_PCR_Extend() with the pcrHandle in each

bank extended with the associated digest value.

If sequenceHandle references a hash or HMAC sequence, the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 147

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

19.6.2 Command and Response

Table 75 — TPM2_EventSequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_EventSequenceComplete {NV F}

TPMI_DH_PCR+ @ pcrHandle

PCR to be extended with the Event data

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 2

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the Event

Table 76 — TPM2_EventSequenceComplete Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPML_DIGEST_VALUES results list of digests computed for the PCR

Part 3: Commands Trusted Platform Module Library

Page 148 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

19.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "EventSequenceComplete_fp.h"

Error Returns Meaning

TPM_RC_LOCALITY PCR extension is not allowed at the current locality

TPM_RC_MODE input handle is not a valid event sequence object

3 TPM_RC

4 TPM2_EventSequenceComplete(

5 EventSequenceComplete_In *in, // IN: input parameter list

6 EventSequenceComplete_Out *out // OUT: output parameter list

7)

8 {

9 TPM_RC result;

10 HASH_OBJECT *hashObject;

11 UINT32 i;

12 TPM_ALG_ID hashAlg;

13

14 // Input validation

15

16 // get the event sequence object pointer

17 hashObject = (HASH_OBJECT *)ObjectGet(in->sequenceHandle);

18

19 // input handle must reference an event sequence object

20 if(hashObject->attributes.eventSeq != SET)

21 return TPM_RC_MODE + RC_EventSequenceComplete_sequenceHandle;

22

23 // see if a PCR extend is requested in call

24 if(in->pcrHandle != TPM_RH_NULL)

25 {

26 // see if extend of the PCR is allowed at the locality of the command,

27 if(!PCRIsExtendAllowed(in->pcrHandle))

28 return TPM_RC_LOCALITY;

29 // if an extend is going to take place, then check to see if there has

30 // been an orderly shutdown. If so, and the selected PCR is one of the

31 // state saved PCR, then the orderly state has to change. The orderly state

32 // does not change for PCR that are not preserved.

33 // NOTE: This doesn't just check for Shutdown(STATE) because the orderly

34 // state will have to change if this is a state-saved PCR regardless

35 // of the current state. This is because a subsequent Shutdown(STATE) will

36 // check to see if there was an orderly shutdown and not do anything if

37 // there was. So, this must indicate that a future Shutdown(STATE) has

38 // something to do.

39 if(gp.orderlyState != SHUTDOWN_NONE && PCRIsStateSaved(in->pcrHandle))

40 {

41 result = NvIsAvailable();

42 if(result != TPM_RC_SUCCESS) return result;

43 g_clearOrderly = TRUE;

44 }

45 }

46

47 // Command Output

48

49 out->results.count = 0;

50

51 for(i = 0; i < HASH_COUNT; i++)

52 {

53 hashAlg = CryptGetHashAlgByIndex(i);

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 149

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

54 // Update last piece of data

55 CryptUpdateDigest2B(&hashObject->state.hashState[i], &in->buffer.b);

56 // Complete hash

57 out->results.digests[out->results.count].hashAlg = hashAlg;

58 CryptCompleteHash(&hashObject->state.hashState[i],

59 CryptGetHashDigestSize(hashAlg),

60 (BYTE *) &out->results.digests[out->results.count].digest);

61

62 // Extend PCR

63 if(in->pcrHandle != TPM_RH_NULL)

64 PCRExtend(in->pcrHandle, hashAlg,

65 CryptGetHashDigestSize(hashAlg),

66 (BYTE *) &out->results.digests[out->results.count].digest);

67 out->results.count++;

68 }

69

70 // Internal Data Update

71

72 // mark sequence object as evict so it will be flushed on the way out

73 hashObject->attributes.evict = SET;

74

75 return TPM_RC_SUCCESS;

76 }

Part 3: Commands Trusted Platform Module Library

Page 150 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20 Attestation Commands

20.1 Introduction

The attestation commands cause the TPM to sign an internally generated data structure. The contents of

the data structure vary according to the command.

For all signing commands, provisions are made for the caller to provide a scheme to be used for the

signing operation. This scheme will be applied only if the scheme of the key is TPM_ALG_NULL. If the

scheme for signHandle is not TPM_ALG_NULL, then inScheme.scheme shall be TPM_ALG_NULL or the

same as scheme in the public area of the key. If the scheme for signHandle is TPM_ALG_NULL, then

inScheme will be used for the signing operation and may not be TPM_ALG_NULL. The TPM shall return

TPM_RC_SCHEME to indicate that the scheme is not appropriate.

For a signing key that is not restricted, the caller may specify the scheme to be used as long as the

scheme is compatible with the family of the key (for example, TPM_ALG_RSAPSS cannot be selected for

an ECC key). If the caller sets scheme to TPM_ALG_NULL, then the default scheme of the key is used.

If the handle for the signing key (signHandle) is TPM_RH_NULL, then all of the actions of the command

are performed and the attestation block is “signed” with the NULL Signature.

NOTE 1 This mechanism is provided so that additional commands are not required to access the data that
might be in an attestation structure.

NOTE 2 When signHandle is TPM_RH_NULL, scheme is still required to be a valid signing scheme (may be
TPM_ALG_NULL), but the scheme will have no effect on the format of the signature. It will always
be the NULL Signature.

TPM2_NV_Certify() is an attestation command that is documented in 1. The remaining attestation

commands are collected in the remainder of this clause.

Each of the attestation structures contains a TPMS_CLOCK_INFO structure and a firmware version

number. These values may be considered privacy-sensitive, because they would aid in the correlation of

attestations by different keys. To provide improved privacy, the resetCount, restartCount, and

firmwareVersion numbers are obfuscated when the signing key is not in the Endorsement or Platform

hierarchies.

The obfuscation value is computed by:

 obfuscation ≔ KDFa(signHandle→nameAlg, shProof, “OBFUSCATE”, signHandle→QN, 0, 128) (3)

Of the returned 128 bits, 64 bits are added to the versionNumber field of the attestation structure; 32 bits

are added to the clockInfo.resetCount and 32 bits are added to the clockInfo.restartCount. The order in

which the bits are added is implementation-dependent.

NOTE 3 The obfuscation value for each signing key will be unique to that key in a specific location. That is,
each version of a duplicated signing key will have a different obfuscation value.

When the signing key is TPM_RH_NULL, the data structure is produced but not signed; and the values in

the signed data structure are obfuscated. When computing the obfuscation value for TPM_RH_NULL, the

hash used for context integrity is used.

NOTE 4 The QN for TPM_RH_NULL is TPM_RH_NULL.

If the signing scheme of signHandle is an anonymous scheme, then the attestation blocks will not contain

the Qualified Name of the signHandle.

Each of the attestation structures allows the caller to provide some qualifying data (qualifyingData). For

most signing schemes, this value will be placed in the TPMS_ATTEST.extraData parameter that is then

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 151

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

hashed and signed. However, for some schemes such as ECDAA, the qualifyingData is used in a

different manner (for details, see “ECDAA” in Part 1).

Part 3: Commands Trusted Platform Module Library

Page 152 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.2 TPM2_Certify

20.2.1 General Description

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. By

certifying that the object is loaded, the TPM warrants that a public area with a given Name is self-

consistent and associated with a valid sensitive area. If a relying party has a public area that has the

same Name as a Name certified with this command, then the values in that public area are correct.

NOTE 1 See 20.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_Certify.

The object may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary(). An object that

only has its public area loaded cannot be certified.

NOTE 2 The restriction occurs because the Name is used to identify the object being certified. If the TPM
has not validated that the public area is associated with a matched sensitive area, then the public
area may not represent a valid object and cannot be certified.

The certification includes the Name and Qualified Name of the certified object as well as the Name and

the Qualified Name of the certifying object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 153

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.2.2 Command and Response

Table 77 — TPM2_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Certify

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData user provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 78 — TPM2_Certify Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Part 3: Commands Trusted Platform Module Library

Page 154 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "Certify_fp.h"

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the modulus of
signHandle, or the buffer for the result in signature is too small (for an RSA key);

invalid commit status (for an ECC key with a split scheme).

4 TPM_RC

5 TPM2_Certify(

6 Certify_In *in, // IN: input parameter list

7 Certify_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMS_ATTEST certifyInfo;

12

13

14 // Command Output

15

16 // Filling in attest information

17 // Common fields

18 result = FillInAttestInfo(in->signHandle,

19 &in->inScheme,

20 &in->qualifyingData,

21 &certifyInfo);

22 if(result != TPM_RC_SUCCESS)

23 {

24 if(result == TPM_RC_KEY)

25 return TPM_RC_KEY + RC_Certify_signHandle;

26 else

27 return RcSafeAddToResult(result, RC_Certify_inScheme);

28 }

29 // Certify specific fields

30 // Attestation type

31 certifyInfo.type = TPM_ST_ATTEST_CERTIFY;

32 // Certified object name

33 certifyInfo.attested.certify.name.t.size =

34 ObjectGetName(in->objectHandle,

35 certifyInfo.attested.certify.name.t.name);

36 // Certified object qualified name

37 ObjectGetQualifiedName(in->objectHandle,

38 &certifyInfo.attested.certify.qualifiedName);

39

40 // Sign attestation structure. A NULL signature will be returned if

41 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

42 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned

43 // by SignAttestInfo()

44 result = SignAttestInfo(in->signHandle,

45 &in->inScheme,

46 &certifyInfo,

47 &in->qualifyingData,

48 &out->certifyInfo,

49 &out->signature);

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 155

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

50

51 // TPM_RC_ATTRIBUTES cannot be returned here as FillInAttestInfo would already

52 // have returned TPM_RC_KEY

53 pAssert(result != TPM_RC_ATTRIBUTES);

54

55 if(result != TPM_RC_SUCCESS)

56 return result;

57

58 // orderly state should be cleared because of the reporting of clock info

59 // if signing happens

60 if(in->signHandle != TPM_RH_NULL)

61 g_clearOrderly = TRUE;

62

63 return TPM_RC_SUCCESS;

64 }

Part 3: Commands Trusted Platform Module Library

Page 156 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.3 TPM2_CertifyCreation

20.3.1 General Description

This command is used to prove the association between an object and its creation data. The TPM will

validate that the ticket was produced by the TPM and that the ticket validates the association between a

loaded public area and the provided hash of the creation data (creationHash).

NOTE 1 See 20.1 for description of how the signing scheme is selected.

The TPM will create a test ticket using the Name associated with objectHandle and creationHash as:

 HMAC(proof, (TPM_ST_CREATION || objectHandle→Name || creationHash)) (4)

This ticket is then compared to creation ticket. If the tickets are not the same, the TPM shall return

TPM_RC_TICKET.

If the ticket is valid, then the TPM will create a TPMS_ATTEST structure and place creationHash of the

command in the creationHash field of the structure. The Name associated with objectHandle will be

included in the attestation data that is then signed using the key associated with signHandle.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

ObjectHandle may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary().

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 157

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.3.2 Command and Response

Table 79 — TPM2_CertifyCreation Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyCreation

TPMI_DH_OBJECT+ @signHandle

handle of the key that will sign the attestation block

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the object associated with the creation data

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPM2B_DIGEST creationHash
hash of the creation data produced by TPM2_Create()
or TPM2_CreatePrimary()

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is

TPM_ALG_NULL

TPMT_TK_CREATION creationTicket
ticket produced by TPM2_Create() or
TPM2_CreatePrimary()

Table 80 — TPM2_CertifyCreation Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature the signature over certifyInfo

Part 3: Commands Trusted Platform Module Library

Page 158 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "CertifyCreation_fp.h"

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_TICKET creationTicket does not match objectHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the modulus of
signHandle, or the buffer for the result in signature is too small (for an RSA key);
invalid commit status (for an ECC key with a split scheme).

4 TPM_RC

5 TPM2_CertifyCreation(

6 CertifyCreation_In *in, // IN: input parameter list

7 CertifyCreation_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPM2B_NAME name;

12 TPMT_TK_CREATION ticket;

13 TPMS_ATTEST certifyInfo;

14

15 // Input Validation

16

17 // CertifyCreation specific input validation

18 // Get certified object name

19 name.t.size = ObjectGetName(in->objectHandle, name.t.name);

20 // Re-compute ticket

21 TicketComputeCreation(in->creationTicket.hierarchy, &name,

22 &in->creationHash, &ticket);

23 // Compare ticket

24 if(!Memory2BEqual(&ticket.digest.b, &in->creationTicket.digest.b))

25 return TPM_RC_TICKET + RC_CertifyCreation_creationTicket;

26

27 // Command Output

28 // Common fields

29 result = FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

30 &certifyInfo);

31 if(result != TPM_RC_SUCCESS)

32 {

33 if(result == TPM_RC_KEY)

34 return TPM_RC_KEY + RC_CertifyCreation_signHandle;

35 else

36 return RcSafeAddToResult(result, RC_CertifyCreation_inScheme);

37 }

38

39 // CertifyCreation specific fields

40 // Attestation type

41 certifyInfo.type = TPM_ST_ATTEST_CREATION;

42 certifyInfo.attested.creation.objectName = name;

43

44 // Copy the creationHash

45 certifyInfo.attested.creation.creationHash = in->creationHash;

46

47 // Sign attestation structure. A NULL signature will be returned if

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 159

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

48 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

49 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

50 // this point

51 result = SignAttestInfo(in->signHandle,

52 &in->inScheme,

53 &certifyInfo,

54 &in->qualifyingData,

55 &out->certifyInfo,

56 &out->signature);

57

58 // TPM_RC_ATTRIBUTES cannot be returned here as FillInAttestInfo would already

59 // have returned TPM_RC_KEY

60 pAssert(result != TPM_RC_ATTRIBUTES);

61

62 if(result != TPM_RC_SUCCESS)

63 return result;

64

65 // orderly state should be cleared because of the reporting of clock info

66 // if signing happens

67 if(in->signHandle != TPM_RH_NULL)

68 g_clearOrderly = TRUE;

69

70 return TPM_RC_SUCCESS;

71 }

Part 3: Commands Trusted Platform Module Library

Page 160 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.4 TPM2_Quote

20.4.1 General Description

This command is used to quote PCR values.

NOTE See 20.1 for description of how the signing scheme is selected.

The TPM will hash the list of PCR selected by PCRselect using the hash algorithm associated with

signHandle (this is the hash algorithm of the signing scheme, not the nameAlg of signHandle).

The digest is computed as the hash of the concatenation of all of the digest values of the selected PCR.

The concatenation of PCR is described in Part 1, Selecting Multiple PCR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 161

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.4.2 Command and Response

Table 81 — TPM2_Quote Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Quote

TPMI_DH_OBJECT @signHandle

handle of key that will perform signature

Auth Index: 1

Auth Role: USER

TPM2B_DATA qualifyingData data supplied by the caller

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPML_PCR_SELECTION PCRselect PCR set to quote

Table 82 — TPM2_Quote Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST quoted the quoted information

TPMT_SIGNATURE signature the signature over quoted

Part 3: Commands Trusted Platform Module Library

Page 162 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "Quote_fp.h"

Error Returns Meaning

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is not compatible
with default scheme, or the chosen scheme is not a valid sign scheme

4 TPM_RC

5 TPM2_Quote(

6 Quote_In *in, // IN: input parameter list

7 Quote_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMI_ALG_HASH hashAlg;

12 TPMS_ATTEST quoted;

13

14 // Command Output

15

16 // Filling in attest information

17 // Common fields

18 // FillInAttestInfo will return TPM_RC_SCHEME or TPM_RC_KEY

19 result = FillInAttestInfo(in->signHandle,

20 &in->inScheme,

21 &in->qualifyingData,

22 "ed);

23 if(result != TPM_RC_SUCCESS)

24 {

25 if(result == TPM_RC_KEY)

26 return TPM_RC_KEY + RC_Quote_signHandle;

27 else

28 return RcSafeAddToResult(result, RC_Quote_inScheme);

29 }

30

31 // Quote specific fields

32 // Attestation type

33 quoted.type = TPM_ST_ATTEST_QUOTE;

34

35 // Get hash algorithm in sign scheme. This hash algorithm is used to

36 // compute PCR digest. If there is no algorithm, then the PCR cannot

37 // be digested and this command returns TPM_RC_SCHEME

38 hashAlg = in->inScheme.details.any.hashAlg;

39

40 if(hashAlg == TPM_ALG_NULL)

41 return TPM_RC_SCHEME + RC_Quote_inScheme;

42

43 // Compute PCR digest

44 PCRComputeCurrentDigest(hashAlg,

45 &in->PCRselect,

46 "ed.attested.quote.pcrDigest);

47

48 // Copy PCR select. "PCRselect" is modified in PCRComputeCurrentDigest

49 // function

50 quoted.attested.quote.pcrSelect = in->PCRselect;

51

52 // Sign attestation structure. A NULL signature will be returned if

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 163

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

53 // signHandle is TPM_RH_NULL. TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES

54 // error may be returned by SignAttestInfo.

55 // NOTE: TPM_RC_ATTRIBUTES means that the key is not a signing key but that

56 // was checked above and TPM_RC_KEY was returned. TPM_RC_VALUE means that the

57 // value to sign is too large but that means that the digest is too big and

58 // that can't happen.

59 result = SignAttestInfo(in->signHandle,

60 &in->inScheme,

61 "ed,

62 &in->qualifyingData,

63 &out->quoted,

64 &out->signature);

65 if(result != TPM_RC_SUCCESS)

66 return result;

67

68 // orderly state should be cleared because of the reporting of clock info

69 // if signing happens

70 if(in->signHandle != TPM_RH_NULL)

71 g_clearOrderly = TRUE;

72

73 return TPM_RC_SUCCESS;

74 }

Part 3: Commands Trusted Platform Module Library

Page 164 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.5 TPM2_GetSessionAuditDigest

20.5.1 General Description

This command returns a digital signature of the audit session digest.

NOTE 1 See 20.1 for description of how the signing scheme is selected.

If sessionHandle is not an audit session, the TPM shall return TPM_RC_TYPE.

NOTE 2 A session does not become an audit session until the successful completion of the command in
which the session is first used as an audit session.

This command requires authorization from the privacy administrator of the TPM (expressed with

endorsementAuth) as well as authorization to use the key associated with signHandle.

If this command is audited, then the audit digest that is signed will not include the digest of this command

because the audit digest is only updated when the command completes successfully.

This command does not cause the audit session to be closed and does not reset the digest value.

NOTE 3 The audit session digest will be reset if the sessionHandle is used as the audit session for the
command and the auditReset attribute of the session is set; and this command will be the first
command in the audit digest.

NOTE 4 A reason for using 'sessionHahdle' in this command is so that the continueSession attribute may be
CLEAR. This will flush the session at the end of the command.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 165

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.5.2 Command and Response

Table 83 — TPM2_GetSessionAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetSessionAuditDigest

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

handle of the signing key

Auth Index: 2

Auth Role: USER

TPMI_SH_HMAC sessionHandle
handle of the audit session

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data – may be zero-length

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 84 — TPM2_GetSessionAuditDigest Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the audit information that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Part 3: Commands Trusted Platform Module Library

Page 166 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "GetSessionAuditDigest_fp.h"

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and key's default
scheme are empty; or scheme is empty while key's default scheme requires
explicit input scheme (split signing); or non-empty default key scheme differs from
scheme

TPM_RC_TYPE sessionHandle does not reference an audit session

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of signHandle

(for an RSA key); invalid commit status or failed to generate r value (for an ECC
key)

4 TPM_RC

5 TPM2_GetSessionAuditDigest(

6 GetSessionAuditDigest_In *in, // IN: input parameter list

7 GetSessionAuditDigest_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 TPMS_ATTEST auditInfo;

13

14 // Input Validation

15

16 // SessionAuditDigest specific input validation

17 // Get session pointer

18 session = SessionGet(in->sessionHandle);

19

20 // session must be an audit session

21 if(session->attributes.isAudit == CLEAR)

22 return TPM_RC_TYPE + RC_GetSessionAuditDigest_sessionHandle;

23

24 // Command Output

25

26 // Filling in attest information

27 // Common fields

28 result = FillInAttestInfo(in->signHandle,

29 &in->inScheme,

30 &in->qualifyingData,

31 &auditInfo);

32 if(result != TPM_RC_SUCCESS)

33 {

34 if(result == TPM_RC_KEY)

35 return TPM_RC_KEY + RC_GetSessionAuditDigest_signHandle;

36 else

37 return RcSafeAddToResult(result, RC_GetSessionAuditDigest_inScheme);

38 }

39

40 // SessionAuditDigest specific fields

41 // Attestation type

42 auditInfo.type = TPM_ST_ATTEST_SESSION_AUDIT;

43

44 // Copy digest

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 167

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

45 auditInfo.attested.sessionAudit.sessionDigest = session->u2.auditDigest;

46

47 // Exclusive audit session

48 if(g_exclusiveAuditSession == in->sessionHandle)

49 auditInfo.attested.sessionAudit.exclusiveSession = TRUE;

50 else

51 auditInfo.attested.sessionAudit.exclusiveSession = FALSE;

52

53 // Sign attestation structure. A NULL signature will be returned if

54 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

55 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

56 // this point

57 result = SignAttestInfo(in->signHandle,

58 &in->inScheme,

59 &auditInfo,

60 &in->qualifyingData,

61 &out->auditInfo,

62 &out->signature);

63 if(result != TPM_RC_SUCCESS)

64 return result;

65

66 // orderly state should be cleared because of the reporting of clock info

67 // if signing happens

68 if(in->signHandle != TPM_RH_NULL)

69 g_clearOrderly = TRUE;

70

71 return TPM_RC_SUCCESS;

72 }

Part 3: Commands Trusted Platform Module Library

Page 168 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.6 TPM2_GetCommandAuditDigest

20.6.1 General Description

This command returns the current value of the command audit digest, a digest of the commands being

audited, and the audit hash algorithm. These values are placed in an attestation structure and signed with

the key referenced by signHandle.

NOTE 1 See 20.1 for description of how the signing scheme is selected.

When this command completes successfully, and signHandle is not TPM_RH_NULL, the audit digest is

cleared.

NOTE 2 The way that the TPM tracks that the digest is clear is vendor-dependent. The reference
implementation resets the size of the digest to zero.

If this command is being audited, then the signed digest produced by the command will not include the

command. At the end of this command, the audit digest will be extended with cpHash and the rpHash of

the command which would change the command audit digest signed by the next invocation of this

command.

This command requires authorization from the privacy administrator of the TPM (expressed with

endorsementAuth) as well as authorization to use the key associated with signHandle.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 169

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.6.2 Command and Response

Table 85 — TPM2_GetCommandAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCommandAuditDigest {NV}

TPMI_RH_ENDORSEMENT @privacyHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the handle of the signing key

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData other data to associate with this audit digest

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 86 — TPM2_GetCommandAuditDigest Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the auditInfo that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Part 3: Commands Trusted Platform Module Library

Page 170 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "GetCommandAuditDigest_fp.h"

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and key's default
scheme are empty; or scheme is empty while key's default scheme requires
explicit input scheme (split signing); or non-empty default key scheme differs from
scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of signHandle
(for an RSA key); invalid commit status or failed to generate r value (for an ECC
key)

4 TPM_RC

5 TPM2_GetCommandAuditDigest(

6 GetCommandAuditDigest_In *in, // IN: input parameter list

7 GetCommandAuditDigest_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMS_ATTEST auditInfo;

12

13 // Command Output

14

15 // Filling in attest information

16 // Common fields

17 result = FillInAttestInfo(in->signHandle,

18 &in->inScheme,

19 &in->qualifyingData,

20 &auditInfo);

21 if(result != TPM_RC_SUCCESS)

22 {

23 if(result == TPM_RC_KEY)

24 return TPM_RC_KEY + RC_GetCommandAuditDigest_signHandle;

25 else

26 return RcSafeAddToResult(result, RC_GetCommandAuditDigest_inScheme);

27 }

28

29 // CommandAuditDigest specific fields

30 // Attestation type

31 auditInfo.type = TPM_ST_ATTEST_COMMAND_AUDIT;

32

33 // Copy audit hash algorithm

34 auditInfo.attested.commandAudit.digestAlg = gp.auditHashAlg;

35

36 // Copy counter value

37 auditInfo.attested.commandAudit.auditCounter = gp.auditCounter;

38

39 // Copy command audit log

40 auditInfo.attested.commandAudit.auditDigest = gr.commandAuditDigest;

41 CommandAuditGetDigest(&auditInfo.attested.commandAudit.commandDigest);

42

43 // Sign attestation structure. A NULL signature will be returned if

44 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

45 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

46 // this point

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 171

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

47 result = SignAttestInfo(in->signHandle,

48 &in->inScheme,

49 &auditInfo,

50 &in->qualifyingData,

51 &out->auditInfo,

52 &out->signature);

53

54 if(result != TPM_RC_SUCCESS)

55 return result;

56

57 // Internal Data Update

58

59 if(in->signHandle != TPM_RH_NULL)

60 {

61 // Reset log

62 gr.commandAuditDigest.t.size = 0;

63

64 // orderly state should be cleared because of the update in

65 // commandAuditDigest, as well as the reporting of clock info

66 g_clearOrderly = TRUE;

67 }

68

69 return TPM_RC_SUCCESS;

70 }

Part 3: Commands Trusted Platform Module Library

Page 172 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.7 TPM2_GetTime

20.7.1 General Description

This command returns the current values of Time and Clock.

NOTE 1 See 20.1 for description of how the signing scheme is selected.

The values of Clock, resetCount and restartCount appear in two places in timeInfo: once in

TPMS_ATTEST.clockInfo and again in TPMS_ATTEST.attested.time.clockInfo. The firmware version

number also appears in two places (TPMS_ATTEST.firmwareVersion and

TPMS_ATTEST.attested.time.firmwareVersion). If signHandle is in the endorsement or platform

hierarchies, both copies of the data will be the same. However, if signHandle is in the storage hierarchy or

is TPM_RH_NULL, the values in TPMS_ATTEST.clockInfo and TPMS_ATTEST.firmwareVersion are

obfuscated but the values in TPM_ATTEST.attested.time are not.

NOTE 2 The purpose of this duplication is to allow an entity who is trusted by the privacy Administrator to
correlate the obfuscated values with the clear-text values.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 173

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

20.7.2 Command and Response

Table 87 — TPM2_GetTime Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTime

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the keyHandle identifier of a loaded key that can

perform digital signatures

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData data to tick stamp

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 88 — TPM2_GetTime Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST timeInfo standard TPM-generated attestation block

TPMT_SIGNATURE signature the signature over timeInfo

Part 3: Commands Trusted Platform Module Library

Page 174 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

20.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "GetTime_fp.h"

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and key's default
scheme are empty; or scheme is empty while key's default scheme requires
explicit input scheme (split signing); or non-empty default key scheme differs from
scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of signHandle
(for an RSA key); invalid commit status or failed to generate r value (for an ECC
key)

4 TPM_RC

5 TPM2_GetTime(

6 GetTime_In *in, // IN: input parameter list

7 GetTime_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMS_ATTEST timeInfo;

12

13 // Command Output

14

15 // Filling in attest information

16 // Common fields

17 result = FillInAttestInfo(in->signHandle,

18 &in->inScheme,

19 &in->qualifyingData,

20 &timeInfo);

21 if(result != TPM_RC_SUCCESS)

22 {

23 if(result == TPM_RC_KEY)

24 return TPM_RC_KEY + RC_GetTime_signHandle;

25 else

26 return RcSafeAddToResult(result, RC_GetTime_inScheme);

27 }

28

29 // GetClock specific fields

30 // Attestation type

31 timeInfo.type = TPM_ST_ATTEST_TIME;

32

33 // current clock in plain text

34 timeInfo.attested.time.time.time = g_time;

35 TimeFillInfo(&timeInfo.attested.time.time.clockInfo);

36

37 // Firmware version in plain text

38 timeInfo.attested.time.firmwareVersion

39 = ((UINT64) gp.firmwareV1) << 32;

40 timeInfo.attested.time.firmwareVersion += gp.firmwareV2;

41

42 // Sign attestation structure. A NULL signature will be returned if

43 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

44 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

45 // this point

46 result = SignAttestInfo(in->signHandle,

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 175

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

47 &in->inScheme,

48 &timeInfo,

49 &in->qualifyingData,

50 &out->timeInfo,

51 &out->signature);

52 if(result != TPM_RC_SUCCESS)

53 return result;

54

55 // orderly state should be cleared because of the reporting of clock info

56 // if signing happens

57 if(in->signHandle != TPM_RH_NULL)

58 g_clearOrderly = TRUE;

59

60 return TPM_RC_SUCCESS;

61 }

Part 3: Commands Trusted Platform Module Library

Page 176 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

21 Ephemeral EC Keys

21.1 Introduction

The TPM generates keys that have different lifetimes. TPM keys in a hierarchy can be persistent for as

long as the seed of the hierarchy is unchanged and these keys may be used multiple times. Other TPM-

generated keys are only useful for a single operation. Some of these single-use keys are used in the

command in which they are created. Examples of this use are TPM2_Duplicate() where an ephemeral

key is created for a single pass key exchange with another TPM. However, there are other cases, such

as anonymous attestation, where the protocol requires two passes where the public part of the ephemeral

key is used outside of the TPM before the final command "consumes" the ephemeral key.

For these uses, TPM2_Commit() or TPM2_EC_Ephemeral() may be used to have the TPM create an

ephemeral EC key and return the public part of the key for external use. Then in a subsequent command,

the caller provides a reference to the ephemeral key so that the TPM can retrieve or recreate the

associated private key.

When an ephemeral EC key is created, it is assigned a number and that number is returned to the caller

as the identifier for the key. This number is not a handle. A handle is assigned to a key that may be

context saved but these ephemeral EC keys may not be saved and do not have a full key context. When

a subsequent command uses the ephemeral key, the caller provides the number of the ephemeral key.

The TPM uses that number to either look up or recompute the associated private key. After the key is

used, the TPM records the fact that the key has been used so that it cannot be used again.

As mentioned, the TPM can keep each assigned private ephemeral key in memory until it is used.

However, this could consume a large amount of memory. To limit the memory size, the TPM is allowed to

restrict the number of pending private keys – keys that have been allocated but not used.

NOTE The minimum number of ephemeral keys is determined by a platform specific specification

To further reduce the memory requirements for the ephemeral private keys, the TPM is allowed to use

pseudo-random values for the ephemeral keys. Instead of keeping the full value of the key in memory, the

TPM can use a counter as input to a KDF. Incrementing the counter will cause the TPM to generate a

new pseudo-random value.

Using the counter to generate pseudo-random private ephemeral keys greatly simplifies tracking of key

usage. When a counter value is used to create a key, a bit in an array may be set to indicate that the key

use is pending. When the ephemeral key is consumed, the bit is cleared. This prevents the key from

being used more than once.

Since the TPM is allowed to restrict the number of pending ephemeral keys, the array size can be limited.

For example, a 128 bit array would allow 128 keys to be "pending".

The management of the array is described in greater detail in the Split Operations clause in Annex C of

part 1.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 177

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

21.2 TPM2_Commit

21.2.1 General Description

TPM2_Commit() performs the first part of an ECC anonymous signing operation. The TPM will perform

the point multiplications on the provided points and return intermediate signing values. The signHandle

parameter shall refer to an ECC key with the sign attribute (TPM_RC_ATTRIBUTES) using an

anonymous signing scheme (TPM_RC_SCHEME).

For this command, p1, s2 and y2 are optional parameters. If s2 is an Empty Buffer, then the TPM shall

return TPM_RC_SIZE if y2 is not an Empty Buffer. If p1, s2, and y2 are all Empty Buffers, the TPM shall

return TPM_RC_NO_RESULT.

In the algorithm below, the following additional values are used in addition to the command parameters:

HnameAlg hash function using the nameAlg of the key associated with
signHandle

p field modulus of the curve associated with signHandle

n order of the curve associated with signHandle

ds private key associated with signHandle

c counter that increments each time a TPM2_Commit() is

successfully completed

A[i] array of bits used to indicate when a value of c has been used in

a signing operation; values of i are 0 to 2n-1

k nonce that is set to a random value on each TPM Reset; nonce
size is twice the security strength of any ECDAA key supported
by the TPM.

The algorithm is:

 set K, L, and E to be Empty Buffers. a)

 if s2 is not an Empty Buffer, compute x2 ≔ HnameAlg (s2) mod p, else skip to step (e) b)

 if (x2, y2) is not a point on the curve of signHandle, return TPM_RC_ECC_POINT c)

 set K ≔ [ds] (x2, y2) d)

 generate or derive r (see the "Commit Random Value" clause in Part 1) e)

 set r ≔ r mod n f)

NOTE 1 nLen is the number of bits in n

 if p1 is an Empty Buffer, skip to step i) g)

 if (p1) is not a point on the curve of signHandle, return TPM_RC_ECC_POINT h)

 set E ≔ [r] (p1) i)

 if K is not an Empty Buffer, set L ≔ [r] (x2, y2) j)

 if K, L, or E is the point at infinity, return TPM_RC_NO_RESULT k)

 set counter ≔ commitCount l)

 set commitCount ≔ commitCount + 1 m)

Part 3: Commands Trusted Platform Module Library

Page 178 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

NOTE 2 Depending on the method of generating r, it may be necessary to update the tracking array here.

 output K, L, E and counter n)

NOTE 3 Depending on the input parameters K and L may be Empty Buffers or E may be an Empty Buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 179

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

21.2.2 Command and Response

Table 89 — TPM2_Commit Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 paramSize

TPM_CC commandCode TPM_CC_Commit

TPMI_DH_OBJECT @signHandle

handle of the key that will be used in the signing

operation

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT P1 a point (M) on the curve used by signHandle

TPM2B_SENSITIVE_DATA s2 octet array used to derive x-coordinate of a base point

TPM2B_ECC_PARAMETER y2 y coordinate of the point associated with s2

Table 90 — TPM2_Commit Response

Type Name Description

TPM_ST tag see 8

UINT32 paramSize

TPM_RC responseCode

TPM2B_ECC_POINT K ECC point K ≔ [ds](x2, y2)

TPM2B_ECC_POINT L ECC point L ≔ [r](x2, y2)

TPM2B_ECC_POINT E ECC point E ≔ [r]P1

UINT16 counter least-significant 16 bits of commitCount

Part 3: Commands Trusted Platform Module Library

Page 180 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

21.2.3 Detailed Actions

1 /*(Copyright)

2 Microsoft Copyright 2009, 2010, 2011, 2012, 2013

3 Microsoft Confidential Contribution to a TCG Specification or Design Guide

4 under Article 15 of "The Bylaws of the Trusted Computing Group" as Amended

5 through March 20, 2003

6

7 */

8

9 #include "InternalRoutines.h"

10 #include "Commit_fp.h"

11

12 #ifdef TPM_ALG_ECC

13

14 /*(See part 3 specification)

This command performs the point multiply operations for anonymous signing schemes.

15 */

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle references a restricted key that is not a signing key

TPM_RC_ECC_POINT either P1 or the point derived from s2 is not on the curve of keyHandle

TPM_RC_HASH invalid name algorithm in keyHandle

TPM_RC_KEY keyHandle does not reference an ECC key

TPM_RC_SCHEME keyHandle references a restricted signing key that does not use and

anonymous scheme

TPM_RC_NO_RESULT K, L or E was a point at infinity; or failed to generate r value

TPM_RC_SIZE s2 is empty but y2 is not or s2 provided but y2 is not

16 TPM_RC

17 TPM2_Commit(

18 Commit_In *in, // IN: input parameter list

19 Commit_Out *out // OUT: output parameter list

20)

21 {

22 OBJECT *eccKey;

23 TPMS_ECC_POINT P2;

24 TPMS_ECC_POINT *pP2 = NULL;

25 TPMS_ECC_POINT *pP1 = NULL;

26 TPM2B_ECC_PARAMETER r;

27 TPM2B *p;

28 TPM_RC result;

29 UINT16 hashResults;

30

31 // Input Validation

32

33 eccKey = ObjectGet(in->signHandle);

34

35 // Input key must be an ECC key

36 if(eccKey->publicArea.type != TPM_ALG_ECC)

37 return TPM_RC_KEY + RC_Commit_signHandle;

38

39 // if the key is restricted, it must be a signing key using an anonymous scheme

40 if(eccKey->publicArea.objectAttributes.restricted == SET)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 181

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

41 {

42 if(eccKey->publicArea.objectAttributes.sign != SET)

43 return TPM_RC_ATTRIBUTES + RC_Commit_signHandle;

44 if(!CryptIsSchemeAnonymous(

45 eccKey->publicArea.parameters.eccDetail.scheme.scheme))

46 return TPM_RC_SCHEME + RC_Commit_signHandle;

47 }

48 else

49 {

50 // if not restricted, s2, and y2 must be an Empty Buffer

51 if(in->s2.t.size)

52 return TPM_RC_SIZE + RC_Commit_s2;

53 }

54 // Make sure that both parts of P2 are present if either is present

55 if((in->s2.t.size == 0) != (in->y2.t.size == 0))

56 return TPM_RC_SIZE + RC_Commit_y2;

57

58 // Get prime modulus for the curve. This is needed later but getting this now

59 // allows confirmation that the curve exists

60 p = (TPM2B *)CryptEccGetParameter('p', eccKey->publicArea.parameters.eccDetail.curveID);

61

62 // if no p, then the curve ID is bad

63 // NOTE: This should never occur if the input unmarshaling code is working

64 // correctly

65 if(p == NULL)

66 return TPM_RC_KEY + RC_Commit_signHandle;

67

68 // Get the random value that will be used in the point multiplications

69 // Note: this does not commit the count.

70 if(!CryptGenerateR(&r,

71 NULL,

72 eccKey->publicArea.parameters.eccDetail.curveID,

73 &eccKey->name))

74 return TPM_RC_NO_RESULT;

75

76 // Set up P2 if s2 and Y2 are provided

77 if(in->s2.t.size != 0)

78 {

79 pP2 = &P2;

80

81 // copy y2 for P2

82 MemoryCopy2B(&P2.y.b, &in->y2.b);

83 // Compute x2 ≔ HnameAlg(s2) mod p

84

85 // do the hash operation on s2 with the size of curve 'p'

86 hashResults = CryptHashBlock(eccKey->publicArea.nameAlg,

87 in->s2.t.size,

88 in->s2.t.buffer,

89 p->size,

90 P2.x.t.buffer);

91

92 // If there were error returns in the hash routine, indicate a problem

93 // with the hash in

94 if(hashResults == 0)

95 return TPM_RC_HASH + RC_Commit_signHandle;

96

97 // set the size of the X value to the size of the hash

98 P2.x.t.size = hashResults;

99

100 // set p2.x = hash(s2) mod p

101 if(CryptDivide(&P2.x.b, p, NULL, &P2.x.b) != TPM_RC_SUCCESS)

102 return TPM_RC_NO_RESULT;

103

104 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

Part 3: Commands Trusted Platform Module Library

Page 182 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

105 pP2))

106 return TPM_RC_ECC_POINT + RC_Commit_s2;

107

108 if(eccKey->attributes.publicOnly == SET)

109 return TPM_RC_KEY + RC_Commit_signHandle;

110

111 }

112 else

113

114 // If there is a P1, make sure that it is on the curve

115 // NOTE: an "empty" point has two UINT16 values which are the size values

116 // for each of the coordinates.

117 if(in->P1.t.size > 4)

118 {

119 pP1 = &in->P1.t.point;

120 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

121 pP1))

122 return TPM_RC_ECC_POINT + RC_Commit_P1;

123 }

124

125 // Pass the parameters to CryptCommit.

126 // The work is not done inline because it does several point multiplies

127 // with the same curve. There is significant optimization by not

128 // having to reload the curve parameters multiple times.

129 result = CryptCommitCompute(&out->K.t.point,

130 &out->L.t.point,

131 &out->E.t.point,

132 eccKey->publicArea.parameters.eccDetail.curveID,

133 pP1,

134 pP2,

135 &eccKey->sensitive.sensitive.ecc,

136 &r);

137 if(result != TPM_RC_SUCCESS)

138 return result;

139

140 out->K.t.size = TPMS_ECC_POINT_Marshal(&out->K.t.point, NULL, NULL);

141 out->L.t.size = TPMS_ECC_POINT_Marshal(&out->L.t.point, NULL, NULL);

142 out->E.t.size = TPMS_ECC_POINT_Marshal(&out->E.t.point, NULL, NULL);

143

144 // The commit computation was successful so complete the commit by setting

145 // the bit

146 out->counter = CryptCommit();

147

148 return TPM_RC_SUCCESS;

149 }

150 #endif

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 183

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

21.3 TPM2_EC_Ephemeral

21.3.1 General Description

TPM2_EC_Ephemeral() creates an ephemeral key for use in a two-phase key exchange protocol.

The TPM will use the commit mechanism to assign an ephemeral key r and compute a public point Q ≔

[r]G where G is the generator point associated with curveID.

Part 3: Commands Trusted Platform Module Library

Page 184 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

21.3.2 Command and Response

Table 91 — TPM2_EC_Ephemeral Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 paramSize

TPM_CC commandCode TPM_CC_EC_Ephemeral

TPMI_ECC_CURVE curveID The curve for the computed ephemeral point

Table 92 — TPM2_EC_Ephemeral Response

Type Name Description

TPM_ST tag see 8

UINT32 paramSize

TPM_RC responseCode

TPM2B_ECC_POINT Q ephemeral public key Q ≔ [r]G

UINT16 counter least-significant 16 bits of commitCount

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 185

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

21.3.3 Detailed Actions

1 /*(Copyright)

2 Microsoft Copyright 2009, 2010, 2011, 2012, 2013

3 Microsoft Confidential Contribution to a TCG Specification or Design Guide

4 under Article 15 of "The Bylaws of the Trusted Computing Group" as Amended

5 through March 20, 2003

6

7 */

8

9 #include "InternalRoutines.h"

10 #include "EC_Ephemeral_fp.h"

11

12 #ifdef TPM_ALG_ECC

13

14 /*(See part 3 specification)

This command creates an ephemeral key using the commit mechanism

15 */

Error Returns Meaning

16 TPM_RC

17 TPM2_EC_Ephemeral(

18 EC_Ephemeral_In *in, // IN: input parameter list

19 EC_Ephemeral_Out *out // OUT: output parameter list

20)

21 {

22 TPM2B_ECC_PARAMETER r;

23

24 // Get the random value that will be used in the point multiplications

25 // Note: this does not commit the count.

26 if(!CryptGenerateR(&r,

27 NULL,

28 in->curveID,

29 NULL))

30 return TPM_RC_NO_RESULT;

31

32 CryptEccPointMultiply(&out->Q.t.point, in->curveID, &r, NULL);

33

34 // commit the count value

35 out->counter = CryptCommit();

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif

Part 3: Commands Trusted Platform Module Library

Page 186 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

22 Signing and Signature Verification

22.1 TPM2_VerifySignature

22.1.1 General Description

This command uses loaded keys to validate a signature on a message with the message digest passed

to the TPM.

If the signature check succeeds, then the TPM will produce a TPMT_TK_VERIFIED. Otherwise, the TPM

shall return TPM_RC_SIGNATURE.

NOTE 1 A valid ticket may be used in subsequent commands to provide proof to the TPM that the TPM has
validated the signature over the message using the key referenced by keyHandle.

If keyHandle references an asymmetric key, only the public portion of the key needs to be loaded. If

keyHandle references a symmetric key, both the public and private portions need to be loaded.

NOTE 2 The sensitive area of the symmetric object is required to allow verification of the symmetric
signature (the HMAC).

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 187

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

22.1.2 Command and Response

Table 93 — TPM2_VerifySignature Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_VerifySignature

TPMI_DH_OBJECT keyHandle
handle of public key that will be used in the validation

Auth Index: None

TPM2B_DIGEST digest digest of the signed message

TPMT_SIGNATURE signature signature to be tested

Table 94 — TPM2_VerifySignature Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMT_TK_VERIFIED validation

Part 3: Commands Trusted Platform Module Library

Page 188 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

22.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "VerifySignature_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a signing key

TPM_RC_SIGNATURE signature is not genuine

TPM_RC_SCHEME CryptVerifySignature ()

TPM_RC_HANDLE the input handle is not a sign key with private portion loaded

3 TPM_RC

4 TPM2_VerifySignature(

5 VerifySignature_In *in, // IN: input parameter list

6 VerifySignature_Out *out // OUT: output parameter list

7)

8 {

9 TPM_RC result;

10 TPM2B_NAME name;

11 OBJECT *signObject;

12 TPMI_RH_HIERARCHY hierarchy;

13

14 // Input Validation

15

16 // Get sign object pointer

17 signObject = ObjectGet(in->keyHandle);

18

19 // The object to validate the signature must be a signing key.

20 if(signObject->publicArea.objectAttributes.sign != SET)

21 return TPM_RC_ATTRIBUTES + RC_VerifySignature_keyHandle;

22

23 // If it doesn't have a sensitive area loaded

24 // then it can't be a keyed hash signing key

25 if(signObject->attributes.publicOnly == SET

26 && signObject->publicArea.type == TPM_ALG_KEYEDHASH

27)

28 return TPM_RC_HANDLE + RC_VerifySignature_keyHandle;

29

30 // Validate Signature. A TPM_RC_BINDING, TPM_RC_SCHEME or TPM_RC_SIGNATURE

31 // error may be returned by CryptCVerifySignatrue()

32 result = CryptVerifySignature(in->keyHandle, &in->digest, &in->signature);

33 if(result != TPM_RC_SUCCESS)

34 return RcSafeAddToResult(result, RC_VerifySignature_signature);

35

36 // Command Output

37

38 hierarchy = ObjectGetHierarchy(in->keyHandle);

39 if(hierarchy == TPM_RH_NULL

40 || signObject->publicArea.nameAlg == TPM_ALG_NULL)

41 {

42 // produce empty ticket if hierarchy is TPM_RH_NULL or nameAlg is

43 // TPM_ALG_NULL

44 out->validation.tag = TPM_ST_VERIFIED;

45 out->validation.hierarchy = TPM_RH_NULL;

46 out->validation.digest.t.size = 0;

47 }

48 else

49 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 189

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

50 // Get object name that verifies the signature

51 name.t.size = ObjectGetName(in->keyHandle, name.t.name);

52 // Compute ticket

53 TicketComputeVerified(hierarchy, &in->digest, &name, &out->validation);

54 }

55

56 return TPM_RC_SUCCESS;

57 }

Part 3: Commands Trusted Platform Module Library

Page 190 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

22.2 TPM2_Sign

22.2.1 General Description

This command causes the TPM to sign an externally provided hash with the specified asymmetric signing

key.

NOTE 1 Symmetric “signing” is done with an HMAC.

If keyHandle references a restricted signing key, then validation shall be provided indicating that the TPM

performed the hash of the data and validation shall indicate that hashed data did not start with

TPM_GENERATED_VALUE.

NOTE 2 If the hased data did start with TPM_GENERATED_VALUE, then the validation will be a NULL ticket.

If the scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be the same scheme as

keyHandle or TPM_ALG_NULL.

If the scheme of keyHandle is TPM_ALG_NULL, the TPM will sign using inScheme; otherwise, it will sign

using the scheme of keyHandle.

NOTE 3 When the signing scheme requires a hash algorithm, the hash is defined in the qualifying data of the
scheme.

If inScheme is not a valid signing scheme for the type of keyHandle (or TPM_ALG_NULL), then the TPM

shall return TPM_RC_SCHEME.

If the scheme of keyHandle is an anonymous scheme, then inScheme shall have the same scheme

algorithm as keyHandle and inScheme will contain a counter value that will be used in the signing

process.

As long as it is no larger than allowed, the digest parameter is not required to have any specific size but

the signature operation may fail if digest is too large for the selected scheme.

If the validation parameter is not the Empty Buffer, then it will be checked even if the key referenced by

keyHandle is not a restricted signing key.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 191

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

22.2.2 Command and Response

Table 95 — TPM2_Sign Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Sign

TPMI_DH_OBJECT @keyHandle

Handle of key that will perform signing

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST digest digest to be signed

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for keyHandle is
TPM_ALG_NULL

TPMT_TK_HASHCHECK validation

proof that digest was created by the TPM

If keyHandle is not a restricted signing key, then this
may be a NULL Ticket with tag =
TPM_ST_CHECKHASH.

Table 96 — TPM2_Sign Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMT_SIGNATURE signature the signature

Part 3: Commands Trusted Platform Module Library

Page 192 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

22.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Sign_fp.h"

3 #include "Attest_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keHandle is not a signing key

TPM_RC_BINDING The public and private portions of the key are not properly bound.

TPM_RC_KEY the key reverenced by keyHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with keyHandle; both inScheme and key's default
scheme are empty; or inScheme is empty while key's default scheme requires
explicit input scheme (split signing); or non-empty default key scheme differs
from inScheme

TPM_RC_TICKET validation is not a valid ticket

TPM_RC_VALUE the value to sign is larger than allowed for the type of keyHandle

4 TPM_RC

5 TPM2_Sign(

6 Sign_In *in, // IN: input parameter list

7 Sign_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 TPMT_TK_HASHCHECK ticket;

12 OBJECT *signKey;

13

14 // Input Validation

15 // Get sign key pointer

16 signKey = ObjectGet(in->keyHandle);

17

18 // If validation is provided, or the key is restricted, check the ticket

19 if(in->validation.digest.t.size != 0

20 || signKey->publicArea.objectAttributes.restricted == SET)

21 {

22 // Compute and compare ticket

23 TicketComputeHashCheck(in->validation.hierarchy, &in->digest, &ticket);

24

25 if(!Memory2BEqual(&in->validation.digest.b, &ticket.digest.b))

26 return TPM_RC_TICKET + RC_Sign_validation;

27 }

28

29 // Command Output

30

31 // pick a scheme for sign. If the input sign scheme is not compatible with

32 // the default scheme, return an error.

33 result = CryptSelectSignScheme(in->keyHandle, &in->inScheme);

34 if(result != TPM_RC_SUCCESS)

35 {

36 if(result == TPM_RC_KEY)

37 return TPM_RC_KEY + RC_Sign_keyHandle;

38 else

39 return RcSafeAddToResult(result, RC_Sign_inScheme);

40 }

41

42 // Sign the hash. A TPM_RC_VALUE, TPM_RC_SCHEME, or TPM_RC_ATTRIBUTES

43 // error may be returned at this point

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 193

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

44 result = CryptSign(in->keyHandle, &in->inScheme, &in->digest, &out->signature);

45

46 return result;

47 }

Part 3: Commands Trusted Platform Module Library

Page 194 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

23 Command Audit

23.1 Introduction

If a command has been selected for command audit, the command audit status will be updated when that

command completes successfully. The digest is updated as:

 commandAuditDigestnew ≔ HauditAlg(commandAuditDigestold || cpHash || rpHash) (5)

where

HauditAlg hash function using the algorithm of the audit sequence

commandAuditDigest accumulated digest

cpHash the command parameter hash

rpHash the response parameter hash

TPM2_Shutdown() cannot be audited but TPM2_Startup() can be audited. If the cpHash of the

TPM2_Startup() is TPM_SU_STATE, that would indicate that a TPM2_Shutdown() had been successfully

executed.

TPM2_SetCommandCodeAuditStatus() is always audited.

If the TPM is in Failure mode, command audit is not functional.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 195

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

23.2 TPM2_SetCommandCodeAuditStatus

23.2.1 General Description

This command may be used by the Privacy Administrator or platform to change the audit status of a

command or to set the hash algorithm used for the audit digest, but not both at the same time.

If the auditAlg parameter is a supported hash algorithm and not the same as the current algorithm, then

the TPM will check both setList and clearList are empty (zero length). If so, then the algorithm is changed,

and the audit digest is cleared. If auditAlg is TPM_ALG_NULL or the same as the current algorithm, then

the algorithm and audit digest are unchanged and the setList and clearList will be processed.

NOTE 1 Because the audit digest is cleared, the audit counter will increment the next time that an audited
command is executed.

Use of TPM2_SetCommandCodeAuditStatus() to change the list of audited commands is a audited event.

If TPM_CC_SetCommandCodeAuditStatus is in clearList, it is ignored.

NOTE 2 Use of this command to change the audit hash algorithm is not audited and the digest is reset when
the command completes. The change in the audit hash algorithm is the evidence that this command
was used to change the algorithm.

The commands in setList indicate the commands that to be added to the list of audited commands and

the commands in clearList indicate the commands that will no longer be audited. It is not an error if a

command in setList is already audited or is not implemented. It is not an error if a command in clearList is

not currently being audited or is not implemented.

If a command code is in both setList and clearList, then it will not be audited (that is, setList shall be

processed first).

Part 3: Commands Trusted Platform Module Library

Page 196 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

23.2.2 Command and Response

Table 97 — TPM2_SetCommandCodeAuditStatus Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetCommandCodeAuditStatus {NV}

TPMI_RH_PROVISION @auth

TPM_RH_ENDORSEMENT or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_ALG_HASH+ auditAlg
hash algorithm for the audit digest; if
TPM_ALG_NULL, then the hash is not changed

TPML_CC setList
list of commands that will be added to those that will
be audited

TPML_CC clearList list of commands that will no longer be audited

Table 98 — TPM2_SetCommandCodeAuditStatus Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 197

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

23.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SetCommandCodeAuditStatus_fp.h"

3 TPM_RC

4 TPM2_SetCommandCodeAuditStatus(

5 SetCommandCodeAuditStatus_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 UINT32 i;

10 BOOL changed = FALSE;

11

12

13 // The command needs NV update. Check if NV is available.

14 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

15 // this point

16 result = NvIsAvailable();

17 if(result != TPM_RC_SUCCESS)

18 return result;

19

20 // Internal Data Update

21

22 // Update hash algorithm

23 if(in->auditAlg != TPM_ALG_NULL

24 && in->auditAlg != gp.auditHashAlg)

25 {

26 // Can't change the algorithm and command list at the same time

27 if(in->setList.count != 0 || in->clearList.count != 0)

28 return TPM_RC_VALUE + RC_SetCommandCodeAuditStatus_auditAlg;

29

30 // Change the hash algorithm for audit

31 gp.auditHashAlg = in->auditAlg;

32

33 // Set the digest size to a unique value that indicates that the digest

34 // algorithm has been changed. The size will be cleared to zero in the

35 // command audit processing on exit.

36 gr.commandAuditDigest.t.size = 1;

37

38 // Save the change of command audit data (this sets g_updateNV so that NV

39 // will be updagted on exit.)

40 NvWriteReserved(NV_AUDIT_HASH_ALG, &gp.auditHashAlg);

41

42 } else {

43

44 // Process set list

45 for(i = 0; i < in->setList.count; i++)

46

47 // If change is made in CommandAuditSet, set changed flag

48 if(CommandAuditSet(in->setList.commandCodes[i]))

49 changed = TRUE;

50

51 // Process clear list

52 for(i = 0; i < in->clearList.count; i++)

53 // If change is made in CommandAuditClear, set changed flag

54 if(CommandAuditClear(in->clearList.commandCodes[i]))

55 changed = TRUE;

56

57 // if change was made to command list, update NV

58 if(changed)

59 // this sets g_updateNV so that NV will be updagted on exit.

60 NvWriteReserved(NV_AUDIT_COMMANDS, &gp.auditComands);

Part 3: Commands Trusted Platform Module Library

Page 198 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

61 }

62

63 return TPM_RC_SUCCESS;

64 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 199

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24 Integrity Collection (PCR)

24.1 Introduction

In TPM 1.2, an Event was hashed using SHA-1 and then the 20-octet digest was extended to a PCR

using TPM_Extend(). This specification allows the use of multiple PCR at a given Index, each using a

different hash algorithm. Rather than require that the external software generate multiple hashes of the

Event with each being extended to a different PCR, the Event data may be sent to the TPM for hashing.

This ensures that the resulting digests will properly reflect the algorithms chosen for the PCR even if the

calling software is unable to implement the hash algorithm.

NOTE 1 There is continued support for software hashing of events with TPM2_PCR_Extend().

To support recording of an Event that is larger than the TPM input buffer, the caller may use the

command sequence described in clause 1.

Change to a PCR requires authorization. The authorization may be with either an authorization value or

an authorization policy. The platform-specific specifications determine which PCR may be controlled by

policy. All other PCR are controlled by authorization.

If a PCR may be associated with a policy, then the algorithm ID of that policy determines whether the

policy is to be applied. If the algorithm ID is not TPM_ALG_NULL, then the policy digest associated with

the PCR must match the policySession→policyDigest in a policy session. If the algorithm ID is

TPM_ALG_NULL, then no policy is present and the authorization requires an EmptyAuth.

If a platform-specific specification indicates that PCR are grouped, then all the PCR in the group use the

same authorization policy or authorization value.

PcrUpdateCounter counter will be incremented on the successful completion of any command that

modifies (Extends or resets) a PCR unless the platform-specific specification explicitly excludes the PCR

from being counted.

NOTE 2 If a command causes PCR in multiple banks to change, the PCR Update Counter may be
incremented either once or once for each bank.

A platform-specific specification may designate a set of PCR that are under control of the TCB. These

PCR may not be modified without the proper authorization. Updates of these PCR shall not cause the

PCR Update Counter to increment.

EXAMPLE Updates of the TCB PCR will not cause the PCR update counter to inc rement because these PCR
are changed at the whim of the TCB and are not intended to represent the trust state of the platform.

Part 3: Commands Trusted Platform Module Library

Page 200 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.2 TPM2_PCR_Extend

24.2.1 General Description

This command is used to cause an update to the indicated PCR. The digests parameter contains one or

more tagged digest value identified by an algorithm ID. For each digest, the PCR associated with

pcrHandle is Extended into the bank identified by the tag (hashAlg).

EXAMPLE A SHA1 digest would be Extended into the SHA1 bank and a SHA256 digest woul d be Extended into
a SHA256 bank.

For each list entry, the TPM will check to see if pcrNum is implemented for that algorithm. If so, the TPM

shall perform the following operation:

 PCR.digestnew [pcrNum][alg] ≔ Halg(PCR.digestold [pcrNum][alg] || data[alg].buffer)) (6)

where

Halg() hash function using the hash algorithm associated with the PCR

instance

PCR.digest the digest value in a PCR

pcrNum the PCR numeric selector (equal to pcrHandle –

TPM_RH_PCR0)

alg the PCR algorithm selector for the digest

data[alg].buffer the bank-specific data to be extended

If no digest value is specified for a bank, then the PCR in that bank are not modified.

NOTE 1 This allows consistent operation of the digests list for all of the Event recording commands.

If a digest is present and the PCR in that bank is not implemented, the digest value is not used.

NOTE 2 If the caller includes digests for algorithms that are not implemented, then the TPM will fail the call
because the unmarshalling of digests will fail. Each of the entries in the list is a TPMT_HA which is a
hash algorithm followed by a digest. If the algorithm is not implemented, unmarshalling of the
hashAlg will fail and the TPM will return TPM_RC_HASH.

If the TPM unmarshals the hashAlg of a list entry and the unmarshaled value is not a hash algorithm

implemented on the TPM, the TPM shall return TPM_RC_HASH.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. If so, the input parameters are

processed but no action is taken by the TPM.

NOTE 3 This command allows a list of digests so that PCR in all banks may be updated in a single
command. While the semantics of this command allow multiple extends to a single PCR bank, this is
not the preferred use and the limit on the number of entries in the list make this use somewhat
impractical.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 201

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.2.2 Command and Response

Table 99 — TPM2_PCR_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Extend {NV}

TPMI_DH_PCR+ @pcrHandle

handle of the PCR

Auth Handle: 1

Auth Role: USER

TPML_DIGEST_VALUES digests list of tagged digest values to be extended

Table 100 — TPM2_PCR_Extend Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode .

Part 3: Commands Trusted Platform Module Library

Page 202 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_Extend_fp.h"

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR referenced by
pcrHandle

3 TPM_RC

4 TPM2_PCR_Extend(

5 PCR_Extend_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 UINT32 i;

10

11 // Input Validation

12

13 // NOTE: This function assumes that the unmarshaling function for 'digests' will

14 // have validated that all of the indicated hash algorithms are valid. If the

15 // hash algorithms are correct, the unmarshaling code will unmarshal a digest

16 // of the size indicated by the hash algorithm. If the overall size is not

17 // consistent, the unmarshaling code will run out of input data or have input

18 // data left over. In either case, it will cause an unmarshaling error and this

19 // function will not be called.

20

21 // For NULL handle, do nothing and return success

22 if(in->pcrHandle == TPM_RH_NULL)

23 return TPM_RC_SUCCESS;

24

25 // Check if the extend operation is allowed by the current command locality

26 if(!PCRIsExtendAllowed(in->pcrHandle))

27 return TPM_RC_LOCALITY;

28

29 // If PCR is state saved and we need to update orderlyState, check NV

30 // availability

31 if(PCRIsStateSaved(in->pcrHandle) && gp.orderlyState != SHUTDOWN_NONE)

32 {

33 result = NvIsAvailable();

34 if(result != TPM_RC_SUCCESS) return result;

35 g_clearOrderly = TRUE;

36 }

37

38 // Internal Data Update

39

40 // Iterate input digest list to extend

41 for(i = 0; i < in->digests.count; i++)

42 {

43 PCRExtend(in->pcrHandle, in->digests.digests[i].hashAlg,

44 CryptGetHashDigestSize(in->digests.digests[i].hashAlg),

45 (BYTE *) &in->digests.digests[i].digest);

46 }

47

48 return TPM_RC_SUCCESS;

49 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 203

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.3 TPM2_PCR_Event

24.3.1 General Description

This command is used to cause an update to the indicated PCR.

The data in eventData is hashed using the hash algorithm associated with each bank in which the

indicated PCR has been allocated. After the data is hashed, the digests list is returned. If the pcrHandle

references an implemented PCR and not TPM_ALG_NULL, digests list is processed as in

TPM2_PCR_Extend().

A TPM shall support an Event.size of zero through 1,024 inclusive (Event.size is an octet count). An

Event.size of zero indicates that there is no data but the indicated operations will still occur,

EXAMPLE 1 If the command implements PCR[2] in a SHA1 bank and a SHA256 bank, then an extend to PCR[2]
will cause eventData to be hashed twice, once with SHA1 and once with SHA256. The SHA1 hash of
eventData will be Extended to PCR[2] in the SHA1 bank and the SHA256 hash of eventData will be
Extended to PCR[2] of the SHA256 bank.

On successful command completion, digests will contain the list of tagged digests of eventData that was

computed in preparation for extending the data into the PCR. At the option of the TPM, the list may

contain a digest for each bank, or it may only contain a digest for each bank in which pcrHandle is extant.

EXAMPLE 2 Assume a TPM that implements a SHA1 bank and a SHA256 bank and that PCR[22] is only
implemented in the SHA1 bank. If pcrHandle references PCR[22], then digests may contain either a
SHA1 and a SHA256 digest or just a SHA1 digest.

Part 3: Commands Trusted Platform Module Library

Page 204 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.3.2 Command and Response

Table 101 — TPM2_PCR_Event Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Event {NV}

TPMI_DH_PCR+ @pcrHandle

Handle of the PCR

Auth Handle: 1

Auth Role: USER

TPM2B_EVENT eventData Event data in sized buffer

Table 102 — TPM2_PCR_Event Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode .

TPML_DIGEST_VALUES digests

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 205

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_Event_fp.h"

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR referenced by
pcrHandle

3 TPM_RC

4 TPM2_PCR_Event(

5 PCR_Event_In *in, // IN: input parameter list

6 PCR_Event_Out *out // OUT: output parameter list

7)

8 {

9 TPM_RC result;

10 HASH_STATE hashState;

11 UINT32 i;

12 UINT16 size;

13

14 // Input Validation

15

16 // If a PCR extend is required

17 if(in->pcrHandle != TPM_RH_NULL)

18 {

19 // If the PCR is not allow to extend, return error

20 if(!PCRIsExtendAllowed(in->pcrHandle))

21 return TPM_RC_LOCALITY;

22

23 // If PCR is state saved and we need to update orderlyState, check NV

24 // availability

25 if(PCRIsStateSaved(in->pcrHandle) && gp.orderlyState != SHUTDOWN_NONE)

26 {

27 result = NvIsAvailable();

28 if(result != TPM_RC_SUCCESS) return result;

29 g_clearOrderly = TRUE;

30 }

31 }

32

33 // Internal Data Update

34

35 out->digests.count = HASH_COUNT;

36

37 // Iterate supported PCR bank algorithms to extend

38 for(i = 0; i < HASH_COUNT; i++)

39 {

40 TPM_ALG_ID hash = CryptGetHashAlgByIndex(i);

41 out->digests.digests[i].hashAlg = hash;

42 size = CryptStartHash(hash, &hashState);

43 CryptUpdateDigest2B(&hashState, &in->eventData.b);

44 CryptCompleteHash(&hashState, size,

45 (BYTE *) &out->digests.digests[i].digest);

46 if(in->pcrHandle != TPM_RH_NULL)

47 PCRExtend(in->pcrHandle, hash, size,

48 (BYTE *) &out->digests.digests[i].digest);

49 }

50

51 return TPM_RC_SUCCESS;

52 }

Part 3: Commands Trusted Platform Module Library

Page 206 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.4 TPM2_PCR_Read

24.4.1 General Description

This command returns the values of all PCR specified in pcrSelect.

The TPM will process the list of TPMS_PCR_SELECTION in pcrSelectionIn in order. Within each

TPMS_PCR_SELECTION, the TPM will process the bits in the pcrSelect array in ascending PCR order

(see Part 2 for definition of the PCR order). If a bit is SET, and the indicated PCR is present, then the

TPM will add the digest of the PCR to the list of values to be returned in pcrValue.

The TPM will continue processing bits until all have been processed or until pcrValues would be too large

to fit into the output buffer if additional values were added.

The returned pcrSelectionOut will have a bit SET in its pcrSelect structures for each value present in

pcrValues.

The current value of the PCR Update Counter is returned in pcrUpdateCounter.

The returned list may be empty if none of the selected PCR are implemented.

NOTE If no PCR are returned from a bank, the selector for the bank will be present in pcrSelectionOut.

No authorization is required to read a PCR and any implemented PCR may be read from any locality.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 207

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.4.2 Command and Response

Table 103 — TPM2_PCR_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Read

TPML_PCR_SELECTION pcrSelectionIn The selection of PCR to read

Table 104 — TPM2_PCR_Read Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

UINT32 pcrUpdateCounter the current value of the PCR update counter

TPML_PCR_SELECTION pcrSelectionOut the PCR in the returned list

TPML_DIGEST pcrValues
the contents of the PCR indicated in pcrSelect as
tagged digests

Part 3: Commands Trusted Platform Module Library

Page 208 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_Read_fp.h"

3 TPM_RC

4 TPM2_PCR_Read(

5 PCR_Read_In *in, // IN: input parameter list

6 PCR_Read_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // Call PCR read function. input pcrSelectionIn parameter could be changed

12 // to reflect the actual PCR being returned

13 PCRRead(&in->pcrSelectionIn, &out->pcrValues, &out->pcrUpdateCounter);

14

15 out->pcrSelectionOut = in->pcrSelectionIn;

16

17 return TPM_RC_SUCCESS;

18 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 209

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.5 TPM2_PCR_Allocate

24.5.1 General Description

This command is used to set the desired PCR allocation of PCR and algorithms. This command requires

platformAuth.

The TPM will evaluate the request and, if sufficient memory is available for the requested allocation, the

TPM will store the allocation request for use during the next TPM2_Startup(TPM_SU_CLEAR) operation.

The PCR allocation in place when this command is executed will be retained until the next

TPM2_Startup(TPM_SU_CLEAR).

If no allocation is specified for a bank, then no PCR will be allocated to that bank. If a bank is listed more

than once, then the last selection in the pcrAllocation list is the one that the TPM will attempt to allocate.

This command shall not allocate more PCR in any bank than there are PCR attribute definitions. The

PCR attribute definitions indicate how a PCR is to be managed – if it is resettable, the locality for update,

etc. In the response to this command, the TPM returns the maximum number of PCR allowed for any

bank.

If the command is properly authorized, it will return SUCCESS even though the request fails. This is to

allow the TPM to return information about the size needed for the requested allocation and the size

available. If the sizeNeeded parameter in the return is less than or equal to the sizeAvailable parameter,

then the allocationSuccess parameter will be YES.

After this command, TPM2_Shutdown() is only allowed to have a startupType equal to TPM_SU_CLEAR.

NOTE Even if this command does not cause the PCR allocation to change, the TPM cannot have its state
saved. This is done in order to simplify the implementation. There is no need to optimize this
command as it is not expected to be used more than once in the lifetime of the TPM (it can be used
any number of times but there is no justification for optimization).

Part 3: Commands Trusted Platform Module Library

Page 210 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.5.2 Command and Response

Table 105 — TPM2_PCR_Allocate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Allocate {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPML_PCR_SELECTION pcrAllocation the requested allocation

Table 106 — TPM2_PCR_Allocate Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO allocationSuccess YES if the allocation succeeded

UINT32 maxPCR maximum number of PCR that may be in a bank

UINT32 sizeNeeded number of octets required to satisfy the request

UINT32 sizeAvailable
Number of octets available. Computed before the
allocation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 211

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_Allocate_fp.h"

3 TPM_RC

4 TPM2_PCR_Allocate(

5 PCR_Allocate_In *in, // IN: input parameter list

6 PCR_Allocate_Out *out // OUT: output parameter list

7)

8 {

9 TPM_RC result;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point.

14 // Note: These codes are not listed in the return values above because it is

15 // an implementation choice to check in this routine rather than in a common

16 // function that is called before these actions are called. These return values

17 // are described in the Response Code section of Part 3.

18 result = NvIsAvailable();

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 // Command Output

23

24 // Call PCR Allocation function.

25 out->allocationSuccess = PCRAllocate(&in->pcrAllocation, &out->maxPCR,

26 &out->sizeNeeded, &out->sizeAvailable);

27

28 // if re-configuration succeeds, set the flag to indicate PCR configuration is

29 // going to be changed in next boot

30 if(out->allocationSuccess == YES)

31 g_pcrReConfig = TRUE;

32

33 return TPM_RC_SUCCESS;

34 }

Part 3: Commands Trusted Platform Module Library

Page 212 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.6 TPM2_PCR_SetAuthPolicy

24.6.1 General Description

This command is used to associate a policy with a PCR or group of PCR. The policy determines the

conditions under which a PCR may be extended or reset.

A policy may only be associated with a PCR that has been defined by a platform-specific specification as

allowing a policy. If the TPM implementation does not allow a policy for pcrNum, the TPM shall return

TPM_RC_VALUE.

A platform-specific specification may group PCR so that they share a common policy. In such case, a

pcrNum that selects any of the PCR in the group will change the policy for all PCR in the group.

The policy setting is persistent and may only be changed by TPM2_PCR_SetAuthPolicy() or by

TPM2_ChangePPS().

Before this command is first executed on a TPM or after TPM2_ChangePPS(), the access control on the

PCR will be set to the default value defined in the platform-specific specification.

NOTE 1 It is expected that the typical default will be with the policy hash set to TPM_ALG_NULL and an
Empty Buffer for the authPolicy value. This will allow an EmptyAuth to be used as the authorization
value.

If the size of the data buffer in authPolicy is not the size of a digest produced by hashAlg, the TPM shall

return TPM_RC_SIZE.

NOTE 2 If hashAlg is TPM_ALG_NULL, then the size is required to be zero.

This command requires platformAuth/platformPolicy.

NOTE 3 If the PCR is in multiple policy sets, the policy will be changed in only one set. The set that is
changed will be implementation dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 213

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.6.2 Command and Response

Table 107 — TPM2_PCR_SetAuthPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthPolicy {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy the desired authPolicy

TPMI_ALG_HASH+ policyDigest the digest of the policy

TPMI_DH_PCR pcrNum the PCR for which the policy is to be set

Table 108 — TPM2_PCR_SetAuthPolicy Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 214 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_SetAuthPolicy_fp.h"

Error Returns Meaning

TPM_RC_SIZE size of authPolicy is not the size of a digest produced by policyDigest

TPM_RC_VALUE PCR referenced by pcrNum is not a member of a PCR policy group

3 TPM_RC

4 TPM2_PCR_SetAuthPolicy(

5 PCR_SetAuthPolicy_In *in // IN: input parameter list

6)

7 {

8 UINT32 groupIndex;

9

10 TPM_RC result;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 result = NvIsAvailable();

16 if(result != TPM_RC_SUCCESS) return result;

17

18 // Input Validation:

19

20 // Check the authPolicy consistent with hash algorithm

21 if(in->authPolicy.t.size != CryptGetHashDigestSize(in->policyDigest))

22 return TPM_RC_SIZE + RC_PCR_SetAuthPolicy_authPolicy;

23

24 // If PCR does not belong to a policy group, return TPM_RC_VALUE

25 if(!PCRBelongsPolicyGroup(in->pcrNum, &groupIndex))

26 return TPM_RC_VALUE + RC_PCR_SetAuthPolicy_pcrNum;

27

28 // Internal Data Update

29

30 // Set PCR policy

31 gp.pcrPolicies.hashAlg[groupIndex] = in->policyDigest;

32 gp.pcrPolicies.policy[groupIndex] = in->authPolicy;

33

34 // Save new policy to NV

35 NvWriteReserved(NV_PCR_POLICIES, &gp.pcrPolicies);

36

37 return TPM_RC_SUCCESS;

38 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 215

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.7 TPM2_PCR_SetAuthValue

24.7.1 General Description

This command changes the authValue of a PCR or group of PCR.

An authValue may only be associated with a PCR that has been defined by a platform-specific

specification as allowing an authorization value. If the TPM implementation does not allow an

authorization for pcrNum, the TPM shall return TPM_RC_VALUE. A platform-specific specification may

group PCR so that they share a common authorization value. In such case, a pcrNum that selects any of

the PCR in the group will change the authValue value for all PCR in the group.

The authorization setting is set to EmptyAuth on each STARTUP(CLEAR) or by TPM2_Clear(). The

authorization setting is preserved by SHUTDOWN(STATE).

Part 3: Commands Trusted Platform Module Library

Page 216 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.7.2 Command and Response

Table 109 — TPM2_PCR_SetAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthValue

TPMI_DH_PCR @pcrHandle

handle for a PCR that may have an authorization value
set

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST auth the desired authorization value

Table 110 — TPM2_PCR_SetAuthValue Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 217

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_SetAuthValue_fp.h"

Error Returns Meaning

TPM_RC_VALUE PCR referenced by pcrHandle is not a member of a PCR authorization group

3 TPM_RC

4 TPM2_PCR_SetAuthValue(

5 PCR_SetAuthValue_In *in // IN: input parameter list

6)

7 {

8 UINT32 groupIndex;

9 TPM_RC result;

10

11 // Input Validation:

12

13 // If PCR does not belong to an auth group, return TPM_RC_VALUE

14 if(!PCRBelongsAuthGroup(in->pcrHandle, &groupIndex))

15 return TPM_RC_VALUE;

16

17 // The command may cause the orderlyState to be cleared due to the update of

18 // state clear data. If this is the case, Check if NV is available.

19 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

20 // this point

21 if(gp.orderlyState != SHUTDOWN_NONE)

22 {

23 result = NvIsAvailable();

24 if(result != TPM_RC_SUCCESS) return result;

25 g_clearOrderly = TRUE;

26 }

27

28 // Internal Data Update

29

30 // Set PCR authValue

31 gc.pcrAuthValues.auth[groupIndex] = in->auth;

32

33 return TPM_RC_SUCCESS;

34 }

Part 3: Commands Trusted Platform Module Library

Page 218 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.8 TPM2_PCR_Reset

24.8.1 General Description

If the attribute of a PCR allows the PCR to be reset and proper authorization is provided, then this

command may be used to set the PCR to zero. The attributes of the PCR may restrict the locality that can

perform the reset operation.

NOTE 1 The definition of TPMI_DH_PCR in Part 2 indicates that if pcrHandle is out of the allowed range for
PCR, then the appropriate return value is TPM_RC_VALUE.

If pcrHandle references a PCR that cannot be reset, the TPM shall return TPM_RC_LOCALITY.

NOTE 2 TPM_RC_LOCALITY is returned because the reset attributes are defined on a per -locality basis.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 219

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.8.2 Command and Response

Table 111 — TPM2_PCR_Reset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Reset {NV}

TPMI_DH_PCR @pcrHandle

the PCR to reset

Auth Index: 1

Auth Role: USER

Table 112 — TPM2_PCR_Reset Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 220 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.8.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PCR_Reset_fp.h"

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to reset the PCR referenced by
pcrHandle

3 TPM_RC

4 TPM2_PCR_Reset(

5 PCR_Reset_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // Input Validation

11

12 // Check if the reset operation is allowed by the current command locality

13 if(!PCRIsResetAllowed(in->pcrHandle))

14 return TPM_RC_LOCALITY;

15

16 // If PCR is state saved and we need to update orderlyState, check NV

17 // availability

18 if(PCRIsStateSaved(in->pcrHandle) && gp.orderlyState != SHUTDOWN_NONE)

19 {

20 result = NvIsAvailable();

21 if(result != TPM_RC_SUCCESS)

22 return result;

23 g_clearOrderly = TRUE;

24 }

25

26 // Internal Data Update

27

28 // Reset seleccted PCR in all banks to 0

29 PCRSetValue(in->pcrHandle, 0);

30

31 // Indicate that the PCR changed so that pcrCounter will be incremented if

32 // necessary.

33 PCRChanged(in->pcrHandle);

34

35 return TPM_RC_SUCCESS;

36 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 221

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.9 _TPM_Hash_Start

24.9.1 Description

This indication from the TPM interface indicates the start of a dynamic Core Root of Trust for

Measurement (D-CRTM) measurement sequence. On receipt of this indication, the TPM will initialize an

Event sequence context.

If no object memory is available for creation of the sequence context, the TPM will flush the context of an

object so that creation of the Event sequence context will always succeed.

A platform-specific specification may allow this indication before TPM2_Startup().

NOTE If this indication occurs after TPM2_Startup(), i t is the responsibility of software to ensure that an
object context slot is available or to deal with the consequences of having the TPM select an
arbitrary object to be flushed. If this indication occurs before TPM2_Startup() then all context slots
are available.

Part 3: Commands Trusted Platform Module Library

Page 222 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.9.2 Detailed Actions

1 #include "InternalRoutines.h"

This function is called to process a _TPM_Hash_Start() indication.

2 void

3 _TPM_Hash_Start(void)

4 {

5 TPM_RC result;

6 TPMI_DH_OBJECT handle;

7

8 // If a DRTM sequence object exists, terminate it.

9 if(g_DRTMHandle != TPM_RH_UNASSIGNED)

10 ObjectTerminateEvent();

11

12 // Create an event sequence object and store the handle in global

13 // g_DRTMHandle. A TPM_RC_OBJECT_MEMORY error may be returned at this point

14 // The null value for the 'auth' parameter will cause the sequence structure to

15 // be allocated without being set as present. This keeps the sequence from

16 // being left behind if the sequence is terminated early.

17 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

18

19 // If a free slot was not available, then free up a slot.

20 if(result != TPM_RC_SUCCESS)

21 {

22 // An implementation does not need to have a fixed relationship between

23 // slot numbers and handle numbers. To handle the general case, scan for

24 // a handle that is assigned an free it for the DRTM sequence.

25 // In the reference implementation, the relationship between handles and

26 // slots is fixed. So, if the call to ObjectCreateEvenSequence()

27 // failed indicating that all slots are occupied, then the first handle we

28 // are going to check (TRANSIENT_FIRST) will be occupied. It will be freed

29 // so that it can be assigned for use as the DRTM sequence object.

30 for(handle = TRANSIENT_FIRST; handle < TRANSIENT_LAST; handle++)

31 {

32 // try to flush the first object

33 if(ObjectIsPresent(handle))

34 {

35 ObjectFlush(handle);

36 break;

37 }

38 }

39

40 // Try to create an event sequence object again. This time, we must

41 // succeed.

42 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

43 pAssert(result == TPM_RC_SUCCESS);

44 }

45

46 return;

47 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 223

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.10 _TPM_Hash_Data

24.10.1 Description

This indication from the TPM interface indicates arrival of one or more octets of data that are to be

included in the Core Root of Trust for Measurement (CRTM) sequence context created by the

_TPM_Hash_Start indication. The context holds data for each hash algorithm for each PCR bank

implemented on the TPM.

If no DRTM Event Sequence context exists, this indication is discarded and no other action is performed.

Part 3: Commands Trusted Platform Module Library

Page 224 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.10.2 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Platform.h"

This function is called to process a _TPM_Hash_Data() indication.

3 void

4 _TPM_Hash_Data(

5 UINT32 dataSize, // IN: size of data to be extend

6 BYTE *data // IN: data buffer

7)

8 {

9 UINT32 i;

10 HASH_OBJECT *hashObject;

11

12 // If there is no DRTM sequence object, then _TPM_Hash_Start

13 // was not called so this function returns without doing

14 // anything.

15 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

16 return;

17

18 hashObject = (HASH_OBJECT *)ObjectGet(g_DRTMHandle);

19 pAssert(hashObject->attributes.eventSeq);

20

21 // For each of the implemented hash algorithms, update the digest with the

22 // data provided. NOTE: the implementation could be done such that the TPM

23 // only computes the hash for the banks that contain the DRTM PCR.

24 for(i = 0; i < HASH_COUNT; i++)

25 {

26 // Update sequence object

27 CryptUpdateDigest(&hashObject->state.hashState[i], dataSize, data);

28 }

29

30 return;

31 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 225

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

24.11 _TPM_Hash_End

24.11.1 Description

This indication from the TPM interface indicates the end of the CRTM measurement. This indication is

discarded and no other action performed if the TPM does not contain a CRTM Event sequence context.

NOTE A CRTM Event Sequence context is created by _TPM_Hash_Start().

If the CRTM Event sequence occurs after TPM2_Startup(), the TPM will set all of the PCR designated in

the platform-specific specifications as resettable by by this event to the value indicated in the platform

specific specification, and increment restartCount. The TPM will then Extend the Event Sequence

digest/digests into the designated, DRTM PCR.

 PCR[DRTM][hashAlg] ≔ HhashAlg (initial_value || HhashAlg (hash_data)) (7)

where

DRTM index for CRTM PCR designated by a platform-specific
specification

hashAlg hash algorithm associated with a bank of PCR

initial_value initialization value specified in the platform-specific specification
(should be 0…0)

hash_data all the octets of data received in _TPM_Hash_Data indications

A _TPM_Hash_End indication that occurs after TPM2_Startup() will increment pcrUpdateCounter unless

a platform-specific specification excludes modifications of PCR[DRTM] from causing an increment.

A platform-specific specification may allow an H-CRTM Event Sequence before TPM2_Startup(). If so,

_TPM_Hash_End will complete the digest, initialize PCR[0] with a digest-size value of 4, and then extend

the H-CRTM Event Sequence data into PCR[0].

 PCR[0][hashAlg] ≔ HhashAlg (0…04 || HhashAlg (hash_data)) (8)

NOTE The entire sequence of _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are required to
complete before TPM2_Startup() or the sequence will have no effect on the TPM.

Part 3: Commands Trusted Platform Module Library

Page 226 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

24.11.2 Detailed Actions

1 #include "InternalRoutines.h"

This function is called to process a _TPM_Hash_End() indication.

2 void

3 _TPM_Hash_End(void)

4 {

5

6 UINT32 i;

7 TPM2B_DIGEST digest;

8 HASH_OBJECT *hashObject;

9 TPMI_DH_PCR pcrHandle;

10

11 // If the DRTM handle is not being used, then either _TPM_Hash_Start has not

12 // been called, _TPM_Hash_End was previously called, or some other command

13 // was executed and the sequence was aborted.

14 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

15 return;

16

17 // Get DRTM sequence object

18 hashObject = (HASH_OBJECT *)ObjectGet(g_DRTMHandle);

19

20

21 // Is this _TPM_Hash_End after Startup or before

22 if(TPMIsStarted())

23 {

24 // After

25

26 // Reset the DRTM PCR

27 PCRResetDynamics();

28

29 // Extend the DRTM_PCR.

30 pcrHandle = PCR_FIRST + DRTM_PCR;

31

32 // DRTM sequence increments restartCount

33 gr.restartCount++;

34 }

35 else

36 {

37 pcrHandle = PCR_FIRST;

38

39 // This is pre-startup so set PCR[0] to 4

40 PCRSetValue(0 + PCR_FIRST, 4);

41 }

42

43

44 // Complete hash and extend PCR

45 for(i = 0; i < HASH_COUNT; i++)

46 {

47 TPMI_ALG_HASH hash = CryptGetHashAlgByIndex(i);

48

49 // Complete hash

50 digest.t.size = CryptGetHashDigestSize(hash);

51 CryptCompleteHash2B(&hashObject->state.hashState[i], &digest.b);

52

53 // Extend PCR

54 PCRExtend(pcrHandle, hash, digest.t.size, digest.t.buffer);

55 }

56

57 // Flush sequence object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 227

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

58 ObjectFlush(g_DRTMHandle);

59

60 g_DRTMHandle = TPM_RH_UNASSIGNED;

61

62 return;

63 }

Part 3: Commands Trusted Platform Module Library

Page 228 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25 Enhanced Authorization (EA) Commands

25.1 Introduction

The commands in this clause 1 are used for policy evaluation. When successful, each command will

update the policySession→policyDigest in a policy session context in order to establish that the

authorizations required to use an object have been provided. Many of the commands will also modify

other parts of a policy context so that the caller may constrain the scope of the authorization that is

provided.

NOTE 1 Many of the terms used in this clause are described in detail in Part 1 and are not redefined in this
clause.

The policySession parameter of the command is the handle of the policy session context to be modified

by the command.

If the policySession parameter indicates a trial policy session, then the policySession→policyDigest will

be updated and the indicated validations are not performed.

NOTE 2 A policy session is a trial policy by TPM2_StartAuthSess ion(sessionType = TPM_SE_TRIAL).

NOTE 3 Unless there is an unmarshaling error in the parameters of the command, these commands will
return TPM_RC_SUCCESS when policySession references a trial session.

NOTE 4 Policy context other than the policySession→policyDigest may be updated for a trial policy but it is
not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 229

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.2 Signed Authorization Actions

25.2.1 Introduction

The TPM2_PolicySigned, TPM_PolicySecret, and TPM2_PolicyTicket commands use many of the same

functions. This clause consolidates those functions to simplify the document and to ensure uniformity of

the operations.

25.2.2 Policy Parameter Checks

These parameter checks will be performed when indicated in the description of each of the commands:

 nonceTPM – If this parameter is not the Empty Buffer, and it does not match a)

policySession→nonceTPM, then the TPM shall return TPM_RC_VALUE.

 expiration – If this parameter is not zero, then it is compared to the time in seconds since the b)

policySession→nonceTPM was generated. If more time has passed than indicted in expiration, the

TPM shall return TPM_RC_EXPIRED.

 timeout – This parameter is compared to the current TPM time. If policySession→timeout is in the c)

past, then the TPM shall return TPM_RC_EXPIRED.

NOTE 1 The expiration parameter is present in the TPM2_PolicySigned and TPM2_PolicySecret
command and timeout is the analogous parameter in the TPM2_PolicyTicket command.

 cpHashA – If this parameter is not an Empty Buffer d)

NOTE 2 CpHashA is the hash of the command to be executed using this policy session in the
authorization. The algorithm used to compute this hash is required to be the algorithm of the
policy session.

1) the TPM shall return TPM_RC_CPHASH if policySession→cpHash does not have its default

value or the contents of policySession→cpHash are not the same as cpHashA; or

NOTE 3 CpHash is the expected cpHash value held in the policy session context.

2) the TPM shall return TPM_RC_SIZE if cpHashA is not the same size as

policySession→policyDigest.

NOTE 4 PolicySession→policyDigest is the size of the digest produced by the hash algorithm used to
compute policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 230 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.2.3 PolicyDigest Update Function (PolicyUpdate())

This is the update process for policySession→policyDigest used by TPM2_PolicySigned(),

TPM2_PolicySecret(), TPM2_PolicyTicket(), and TPM2_PolicyAuthorize(). The function prototype for the

update function is:

 PolicyUpdate(commandCode, arg2, arg3) (9)

where

arg2 a TPM2B_NAME

arg3 a TPM2B

These parameters are used to update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || commandCode || arg2.name) (10)

followed by

 policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew || arg3.buffer) (11)

where

HpolicyAlg() the hash algorithm chosen when the policy session was started

NOTE 1 If arg3 is a TPM2B_NAME, then arg3.buffer will actually be an arg3.name.

NOTE 2 The arg2.size and arg3.size fields are not included in the hashes.

NOTE 3 PolicyUpdate() uses two hashes because arg2 and arg3 are variable-sized and the concatenation of
arg2 and arg3 in a single hash could produce the same digest even though arg2 and arg3 are
different. Processing of the arguments separately in different Extend operation insures that the
digest produced by PolicyUpdate() will be different if arg2 and arg3 are different.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 231

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.2.4 Policy Context Updates

When a policy command modifies some part of the policy session context other than the

policySession→policyDigest, the following rules apply.

 cpHash – this parameter may only be changed if it contains its initialization value (an Empty String).
If cpHash is not the Empty String when a policy command attempts to update it, the TPM will return
an error (TPM_RC_CPHASH) if the current and update values are not the same.

 timeOut – this parameter may only be changed to a smaller value. If a command attempts to update
this value with a larger value (longer into the future), the TPM will discard the update value. This is
not an error condition.

 commandCode – once set by a policy command, this value may not be change except by
TPM2_PolicyRestart(). If a policy command tries to change this to a different value, an error is
returned (TPM_RC_POLICY_CC).

 pcrUpdateCounter – this parameter is updated by TPM2_PolicyPCR(). This value may only be set
once during a policy. Each time TPM2_PolicyPCR() executes, it checks to see if
policySession→pcrUpdateCounter has its default state indicating that this is the first
TPM2_PolicyPCR(). If it has its default value, then policySession→pcrUpdateCounter is set to the
current value of pcrUpdateCounter. If policySession→pcrUpdateCounter does not have its default
value and its value is not the same as pcrUpdateCounter, the TPM shall return
TPM_RC_PCR_CHANGED.

NOTE If this parameter and pcrUpdateCounter are not the same, it indicates that PCR have changed
since checked by the previous TPM2_PolicyPCR(). Since they have changed, the previous PCR
validation is no longer valid.

 commandLocality – this parameter is the logical AND of all enabled localities. All localities are
enabled for a policy when the policy session is created. TPM2_PolicyLocalities() selectively disables
localities. Once use of a policy for a locality has been disabled, it cannot be enabled except by
TPM2_PolicyRestart().

 isPPRequired – once SET, this parameter may only be CLEARed by TPM2_PolicyRestart().

 isAuthValueNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyPassword()
or TPM2_PolicyRestart().

 isPasswordNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyAuthValue()
or TPM2_PolicyRestart(),

NOTE Both TPM2_PolicyAuthValue() and TPM2_PolicyPassword() change policySession→policyDigest in
the same way. The different commands simply indicate to the TPM the format used for the authValue
(HMAC or clear text). Both commands could be in the same policy. The final instance of these
commands determines the format.

Part 3: Commands Trusted Platform Module Library

Page 232 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.2.5 Policy Ticket Creation

If for TPM2_PolicySigned() or TPM2_PolicySecret() the caller specified a non-zero value for expiration,

and the nonceTPM is an Empty Buffer, then the TPM will return a ticket that includes a value to indicate

when the authorization expires. The required computation for the digest in the authorization ticket is:

 HMAC(proof, HpolicyAlg(ticketType || timeout || cpHashA || policyRef || authObject→Name)) (12)

where

proof secret associated with the storage primary seed (SPS) of the

TPM

HpolicyAlg hash function using the hash algorithm associated with the policy
session

ticketType either TPM_ST_AUTH_SECRET or TPM_ST_AUTH_SIGNED,
used to indicate type of the ticket

NOTE 1 If the ticket is produced by TPM2_PolicySecret() then ticketType is
TPM_ST_AUTH_SECRET and if produced by TPM2_PolicySigned() then ticketType is
TPM_ST_AUTH_SIGNED.

timeout implementation-specific representation of the expiration time of

the ticket

NOTE 2 Timeout is not the same as expiration. The expiration value in the aHash is a relative time,
using the creation time of the authorization session (TPM2_StartAuthSession()) as its
reference. The timeout parameter is an absolute time, using TPM Clock as the reference.

cpHashA the command parameter digest for the command being

authorized; computed using the hash algorithm of the policy
session

policyRef the commands that use this function have a policyRef parameter
and the value of that parameter is used here

authObject→Name Name associated with the authObject parameter

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 233

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.3 TPM2_PolicySigned

25.3.1 General Description

This command includes a signed authorization in a policy. The command ties the policy to a signing key

by including the Name of the signing key in the policyDigest

If policySession is a trial session, the TPM will not check the signature and will update

policySession→policyDigest as described in 25.2.3 as if a properly signed authorization was received; but

no ticket will be produced.

If policySession is not a trial session, the TPM will validate auth and only perform the update if it is a valid

signature over the fields of the command.

The authorizing object will sign a digest of the authorization qualifiers: nonceTPM, expiration, cpHashA,

and policyRef. The digest is computed as:

 aHash ≔ HauthAlg(nonceTPM || expiration || cpHashA || policyRef) (13)

where

HauthAlg() the hash associated with the auth parameter of this command

NOTE 1 Each signature and key combination indicates the scheme and each scheme has an
associated hash.

nonceTPM the nonceTPM parameter from the TPM2_StartAuthSession()
response. If the authorization is not limited to this session, the
size of this value is zero.

expiration time limit on authorization set by authorizing object. This 32-bit
value is set to zero if the expiration time is not being set.

cpHashA digest of the command parameters for the command being

approved using the hash algorithm of the policy session. Set to
an EmptyAuth if the authorization is not limited to a specific
command.

NOTE 2 This is not the cpHash of this TPM2_PolicySigned() command.

policyRef an opaque value determined by the authorizing entity. Set to the
Empty Buffer if no value is present.

EXAMPLE The computation for an aHash if there are no restrictions is:

 aHash ≔ HauthAlg(00 00 00 0016)

 which is the hash of an expiration time of zero.

The aHash is signed by the private key associated with key. The signature and signing parameters are

combined to create the auth parameter.

The TPM will perform the parameter checks listed in 25.2.2

If the parameter checks succeed, the TPM will construct a test digest (tHash) over the provided

parameters using the same formulation a shown in equation (13) above.

If tHash does not match the digest of the signed aHash, then the authorization fails and the TPM shall

return TPM_RC_POLICY_FAIL and make no change to policySession→policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 234 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

25.2.3).

 PolicyUpdate(TPM_CC_PolicySigned, authObject→Name, policyRef) (14)

If the cpHashA parameter is not an Empty Buffer, it is copied to policySession→cpHash.

The TPM will optionally produce a ticket as described in 25.2.5.

Authorization to use authObject is not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 235

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.3.2 Command and Response

Table 113 — TPM2_PolicySigned Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySigned

TPMI_DH_OBJECT authObject
handle for a public key that will validate the signature

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM

the policy nonce for the session

If the nonce is not included in the authorization
qualification, this field is the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This is not the cpHash for this command but the cpHash

for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

UINT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is zero, a NULL Ticket is returned.

TPMT_SIGNATURE auth signed authorization (not optional)

Table 114 — TPM2_PolicySigned Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout

implementation-specific time value, used to indicate to
the TPM when the ticket expires

NOTE If policyTicket is a NULL Ticket, then this shall be
the Empty Buffer.

TPMT_TK_AUTH policyTicket

produced if the command succeeds and expiration in

the command was non-zero; this ticket will use the
TPMT_ST_AUTH_SIGNED structure tag

Part 3: Commands Trusted Platform Module Library

Page 236 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Policy_spt_fp.h"

3 #include "PolicySigned_fp.h"

Error Returns Meaning

TPM_RC_CPHASH cpHash was previously set to a different value

TPM_RC_EXPIRED expiration indicates a time in the past

TPM_RC_HANDLE authObject need to have sensitive portion loaded

TPM_RC_KEY authObject is not a signing scheme

TPM_RC_NONCE nonceTPM is not the nonce associated with the policySession

TPM_RC_SCHEME the signing scheme of auth is not supported by the TPM

TPM_RC_SIGNATURE the signature is not genuine

TPM_RC_SIZE input cpHash has wrong size

TPM_RC_VALUE input policyID or expiration does not match the internal data in policy session

4 TPM_RC

5 TPM2_PolicySigned(

6 PolicySigned_In *in, // IN: input parameter list

7 PolicySigned_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 SESSION *session;

12 OBJECT *authObject;

13 TPM2B_NAME entityName;

14 TPM2B_DIGEST authHash;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Set up local pointers

20 session = SessionGet(in->policySession); // the session structure

21 authObject = ObjectGet(in->authObject); // pointer for the object

22 // providing authorization

23 // signature

24

25 //Only do input validation if this is not a trial policy session

26 if(session->attributes.isTrialPolicy == CLEAR)

27 {

28 // The object to validate the signature must be a signing key.

29 if(authObject->publicArea.objectAttributes.sign == CLEAR)

30 return TPM_RC_KEY + RC_PolicySigned_authObject;

31

32 // If it doesn't have a sensitive area loaded

33 // then it can't be a keyed hash signing key

34 if(authObject->publicArea.type == TPM_ALG_KEYEDHASH

35 && authObject->attributes.publicOnly == SET

36)

37 return TPM_RC_HANDLE + RC_PolicySigned_authObject;

38

39 // Validate input 'noncePolicy'.

40 result = ValidatePolicyID(&in->nonceTPM, session);

41 if(result != TPM_RC_SUCCESS)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 237

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

42 return TPM_RC_NONCE + RC_PolicySigned_nonceTPM;

43

44 // Validate input expiration. A TPM_RC_EXPIRED, TPM_RC_NV_UNAVAILABLE, or

45 // TPM_RC_NV_RATE error may be returned at this point

46 result = ValidateExpiration(in->expiration, session);

47 if(result != TPM_RC_SUCCESS)

48 return RcSafeAddToResult(result, RC_PolicySigned_expiration);

49

50 // A new cpHash is given in input parameter, but cpHash in session context

51 // is not empty, or is not the same as the new cpHash

52 if(in->cpHashA.t.size != 0

53 && session->u1.cpHash.t.size != 0

54 && !Memory2BEqual(&in->cpHashA.b, &session->u1.cpHash.b)

55)

56 return TPM_RC_CPHASH;

57

58 // A valid cpHash must have the same size as session hash digest

59 if(in->cpHashA.t.size != 0

60 && in->cpHashA.t.size != CryptGetHashDigestSize(session->authHashAlg)

61)

62 return TPM_RC_SIZE + RC_PolicySigned_cpHashA;

63

64 // Re-compute the digest being signed

65 /*(See part 3 specification)

66 // The digest is computed as:

67 // aHash := hash (nonceTPM | expiration | cpHashA | policyRef)

68 // where:

69 // hash() the hash associated with the signed auth

70 // nonceTPM the nonceTPM value from the TPM2_StartAuthSession .

71 // response If the authorization is not limited to this

72 // session, the size of this value is zero.

73 // expiration time limit on authorization set by authorizing object.

74 // This 32-bit value is set to zero if the expiration

75 // time is not being set.

76 // cpHashA hash of the command parameters for the command being

77 // approved using the hash algorithm of the PSAP session.

78 // Set to NULLauth if the authorization is not limited

79 // to a specific command.

80 // policyRef hash of an opaque value determined by the authorizing

81 // object. Set to the NULLdigest if no hash is present.

82 */

83 // Start hash

84 authHash.t.size = CryptStartHash(CryptGetSignHashAlg(&in->auth),

85 &hashState);

86

87 // add nonceTPM

88 CryptUpdateDigest2B(&hashState, &in->nonceTPM.b);

89

90 // add expiration

91 CryptUpdateDigestInt(&hashState, sizeof(UINT32), (BYTE*) &in->expiration);

92

93 // add cpHashA

94 CryptUpdateDigest2B(&hashState, &in->cpHashA.b);

95

96 // add policyRef

97 CryptUpdateDigest2B(&hashState, &in->policyRef.b);

98

99 // Complete digest

100 CryptCompleteHash2B(&hashState, &authHash.b);

101

102 // Validate Signature. A TPM_RC_SCHEME, TPM_RC_TYPE or TPM_RC_SIGNATURE

103 // error may be returned at this point

104 result = CryptVerifySignature(in->authObject, &authHash, &in->auth);

105 if(result != TPM_RC_SUCCESS)

Part 3: Commands Trusted Platform Module Library

Page 238 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

106 return RcSafeAddToResult(result, RC_PolicySigned_auth);

107

108 // Internal Data Update

109 // Note that these values are not updated if the session is a trial session

110 // Update cpHash in policy session

111 if(in->cpHashA.t.size != 0)

112 session->u1.cpHash = in->cpHashA;

113

114 // Update expiration time in the policy session

115 if(in->expiration != 0)

116 UpdateTimeout((UINT64) in->expiration * 1000 + session->startTime,

117 session);

118 }

119

120 // Update policy with input policyRef and name of auth key

121 // These values are updated even if the session is a trial session

122 entityName.t.size = EntityGetName(in->authObject, entityName.t.name);

123 PolicyUpdate(TPM_CC_PolicySigned, &entityName, &in->policyRef, session);

124

125 // Command Output

126

127 // Create ticket and timeout buffer if in->expiration != 0 and nonceTPM is

128 // null and this is not a trial session

129 if(in->expiration != 0

130 && in->nonceTPM.t.size == 0

131 && session->attributes.isTrialPolicy == CLEAR

132)

133 {

134 UINT64 authTimeOut;

135 // Generate timeout buffer. The format of output timeout buffer is

136 // TPM-specific. In this implementation, we simply copy the value of

137 // timeout to the output buffer

138 authTimeOut = (UINT64) in->expiration * 1000 + session->startTime;

139 out->timeout.t.size = sizeof(UINT64);

140 UINT64_TO_BYTE_ARRAY(authTimeOut, out->timeout.t.buffer);

141

142 // Compute policy ticket

143 TicketComputeAuth(TPM_ST_AUTH_SIGNED, EntityGetHierarchy(in->authObject),

144 authTimeOut, &in->cpHashA, &in->policyRef, &entityName,

145 &out->policyTicket);

146 }

147 else

148 {

149 // Generate a null ticket.

150 // timeout buffer is null

151 out->timeout.t.size = 0;

152

153 // auth ticket is null

154 out->policyTicket.tag = TPM_ST_AUTH_SIGNED;

155 out->policyTicket.hierarchy = TPM_RH_NULL;

156 out->policyTicket.digest.t.size = 0;

157 }

158

159 return TPM_RC_SUCCESS;

160 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 239

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.4 TPM2_PolicySecret

25.4.1 General Description

This command includes a secret-based authorization to a policy. The caller proves knowledge of the

secret value using either a password or an HMAC-based authorization session.

The secret is the authValue of authObject, which may be any TPM entity with a handle and an associated

authValue. This includes the reserved handles (for example, Platform, Storage, and Endorsement), NV

Indexes, and loaded objects.

NOTE 1 The authorization value for a hierarchy cannot be used in this command if the hierarchy is disabled.

If the authorization check fails, then the normal dictionary attack logic is invoked.

If the authorization provided by the authorization session is valid, the command parameters are checked

as described in 25.2.2.

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

25.2.3).

 PolicyUpdate(TPM_CC_PolicySecret, authObject→Name, policyRef) (15)

If the cpHashA command parameter is not an Empty Buffer, it is copied to cpHash in the session context.

The TPM will optionally produce a ticket as described in 25.2.5.

If the session is a trial session, policySession→policyDigest is updated as if the authorization is valid but

no check is performed.

NOTE 2 If an HMAC is used to convey the authorization, a separate session is needed for the authorization.
Because the HMAC in that authorization will include a nonce that prevents replay of the
authorization, the value of the nonceTPM parameter in this command is limited. It is retained mostly
to provide processing consistency with TPM2_PolicySigned().

Part 3: Commands Trusted Platform Module Library

Page 240 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.4.2 Command and Response

Table 115 — TPM2_PolicySecret Command

Type Name Description

TPMI_ST_COMMAND_TAG tag see clause 8

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySecret

TPMI_DH_ENTITY+ @authHandle

handle for an entity providing the authorization

Auth Index: 1

Auth Role: USER

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM

the policy nonce for the session

If the nonce is not included in the authorization
qualification, this field is the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

UINT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is zero, a NULL Ticket is returned.

Table 116 — TPM2_PolicySecret Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout
implementation-specific time value used to indicate to
the TPM when the ticket expires; this ticket will use the
TPMT_ST_AUTH_SECRET structure tag

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 241

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicySecret_fp.h"

3 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH cpHash for policy was previously set to a value that is not the same as cpHashA

TPM_RC_EXPIRED expiration indicates a time in the past

TPM_RC_NONCE nonceTPM does not match the nonce associated with policySession

TPM_RC_SIZE cpHashA is not the size of a digest for the hash associated with policySession

TPM_RC_VALUE input policyID or expiration does not match the internal data in policy session

4 TPM_RC

5 TPM2_PolicySecret(

6 PolicySecret_In *in, // IN: input parameter list

7 PolicySecret_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 TPM2B_NAME entityName;

13

14 // Input Validation

15

16 // Get pointer to the session structure

17 session = SessionGet(in->policySession);

18

19 //Only do input validation if this is not a trial policy session

20 if(session->attributes.isTrialPolicy == CLEAR)

21 {

22

23 // Validate input policyID. A TPM_RC_VALUE error may be returned at

24 result = ValidatePolicyID(&in->nonceTPM, session);

25 if(result != TPM_RC_SUCCESS)

26 return TPM_RC_NONCE + RC_PolicySecret_nonceTPM;

27

28 // Validate input expiration. A TPM_RC_EXPIRED error may be returned at

29 // this point

30 result = ValidateExpiration(in->expiration, session);

31 if(result != TPM_RC_SUCCESS)

32 return TPM_RC_EXPIRED + RC_PolicySecret_expiration;

33

34 // A new cpHash is given in input parameter, but cpHash in session context

35 // is not empty, or is not the same as the new cpHash

36 if(in->cpHashA.t.size != 0

37 && session->u1.cpHash.t.size != 0

38 && !Memory2BEqual(&in->cpHashA.b, &session->u1.cpHash.b))

39 return TPM_RC_CPHASH;

40

41 // A valid cpHash must have the same size as session hash digest

42 if(in->cpHashA.t.size != 0

43 && in->cpHashA.t.size != CryptGetHashDigestSize(session->authHashAlg))

44 return TPM_RC_SIZE + RC_PolicySecret_cpHashA;

45

46 // Internal Data Update

47 // Update cpHashA

Part 3: Commands Trusted Platform Module Library

Page 242 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

48 // Note that these value are updated only if the session is not a

49 // trial session

50 if(in->cpHashA.t.size != 0)

51 {

52 session->u1.cpHash = in->cpHashA;

53 }

54

55 // Update expiration time

56 if(in->expiration != 0)

57 UpdateTimeout((UINT64) in->expiration * 1000 + session->startTime,

58 session);

59 }

60

61 // Update policy with input policyRef and name of auth key

62 // This value is computed even for trial sessions

63 entityName.t.size = EntityGetName(in->authHandle, entityName.t.name);

64 PolicyUpdate(TPM_CC_PolicySecret, &entityName, &in->policyRef, session);

65

66 // Command Output

67

68 // Create ticket and timeout buffer if in->expiration != 0 and nonceTPM is

69 // null and this is not a trial session.

70 if(in->expiration != 0

71 && in->nonceTPM.t.size == 0

72 && session->attributes.isTrialPolicy == CLEAR

73)

74 {

75 UINT64 authTimeOut;

76 // Generate timeout buffer. The format of output timeout buffer is

77 // TPM-specific. In this implementation, we simply copy the value of

78 // timeout to the output buffer

79 authTimeOut = (UINT64) in->expiration * 1000 + session->startTime;

80 out->timeout.t.size = sizeof(UINT64);

81 UINT64_TO_BYTE_ARRAY(authTimeOut, out->timeout.t.buffer);

82

83 // Compute policy ticket

84 TicketComputeAuth(TPM_ST_AUTH_SECRET, EntityGetHierarchy(in->authHandle),

85 authTimeOut, &in->cpHashA, &in->policyRef,

86 &entityName, &out->policyTicket);

87 }

88 else

89 {

90 // timeout buffer is null

91 out->timeout.t.size = 0;

92

93 // auth ticket is null

94 out->policyTicket.tag = TPM_ST_AUTH_SECRET;

95 out->policyTicket.hierarchy = TPM_RH_NULL;

96 out->policyTicket.digest.t.size = 0;

97 }

98

99 return TPM_RC_SUCCESS;

100 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 243

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.5 TPM2_PolicyTicket

25.5.1 General Description

This command is similar to TPM2_PolicySigned() except that it takes a ticket instead of a signed

authorization. The ticket represents a validated authorization that had an expiration time associated with

it.

The parameters of this command are checked as described in 25.2.2.

If the checks succeed, the TPM uses the timeout, cpHashA, policyRef, and keyName to construct a ticket

to compare with the value in ticket. If these tickets match, then the TPM will create a TPM2B_NAME

(objectName) using authName and update the context of policySession by PolicyUpdate() (see 25.2.3).

 PolicyUpdate(commandCode, authName, policyRef) (16)

If the structure tag of ticket is TPM_ST_AUTH_SECRET, then commandCode will be

TPM_CC_PolicySecret. If the structure tag of ticket is TPM_ST_AUTH_SIGNED, then commandCode will

be TPM_CC_PolicySIgned.

If the cpHashA command parameter is not an Empty Buffer, it may be copied to cpHash in the session

context.as described in 25.2.1.

Part 3: Commands Trusted Platform Module Library

Page 244 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.5.2 Command and Response

Table 117 — TPM2_PolicyTicket Command

Type Name Description

TPMI_ST_COMMAND_TAG tag see clause 8

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTicket

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_TIMEOUT timeout

time when authorization will expire

The contents are TPM specific. This shall be the value
returned when ticket was produced.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

If it is not limited, the parameter will be the Empty
Buffer.

TPM2B_NONCE policyRef
reference to a qualifier for the policy – may be the
Empty Buffer

TPM2B_NAME authName name of the object that provided the authorization

TPMT_TK_AUTH ticket
an authorization ticket returned by the TPM in response
to a TPM2_PolicySigned() or TPM2_PolicySecret()

Table 118 — TPM2_PolicyTicket Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 245

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyTicket_fp.h"

3 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH policy's cpHash was previously set to a different value

TPM_RC_EXPIRED timeout value in the ticket is in the past and the ticket has expired

TPM_RC_SIZE timeout or cpHash has invalid size for the

TPM_RC_TICKET ticket is not valid

4 TPM_RC

5 TPM2_PolicyTicket(

6 PolicyTicket_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 SESSION *session;

11 UINT64 timeout;

12 TPMT_TK_AUTH ticketToCompare;

13 TPM_CC commandCode = TPM_CC_PolicySecret;

14

15 // Input Validation

16

17 // Get pointer to the session structure

18 session = SessionGet(in->policySession);

19

20 // NOTE: There is no check for a trial policy session. Tickets are

21 // not created in a trial policy session because no data has been validated

22

23 // A new cpHash is given in input parameter, but cpHash in session context

24 // is not empty, or is not the same as the new cpHash

25 if(in->cpHashA.t.size != 0

26 && session->u1.cpHash.t.size != 0

27 && !Memory2BEqual(&in->cpHashA.b, &session->u1.cpHash.b))

28 return TPM_RC_CPHASH;

29

30 // A valid cpHash must have the same size as session hash digest

31 if(in->cpHashA.t.size != 0

32 && in->cpHashA.t.size != CryptGetHashDigestSize(session->authHashAlg))

33 return TPM_RC_SIZE + RC_PolicyTicket_cpHashA;

34

35 // Restore timeout data. The format of timeout buffer is TPM-specific.

36 // In this implementation, we simply copy the value of timeout to the

37 // buffer.

38 if(in->timeout.t.size != sizeof(UINT64))

39 return TPM_RC_SIZE + RC_PolicyTicket_timeout;

40

41 // Cannot compare time if clock stop advancing. A TPM_RC_NV_UNAVAILABLE

42 // or TPM_RC_NV_RATE error may be returned here.

43 result = NvIsAvailable();

44 if(result != TPM_RC_SUCCESS)

45 return result;

46

47 timeout = BYTE_ARRAY_TO_UINT64(in->timeout.t.buffer);

48 if(timeout < go.clock)

49 return TPM_RC_EXPIRED + RC_PolicyTicket_timeout;

Part 3: Commands Trusted Platform Module Library

Page 246 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

50

51 // Validate Ticket

52 // Re-generate policy ticket by input parameters

53 TicketComputeAuth(in->ticket.tag, in->ticket.hierarchy, timeout, &in->cpHashA,

54 &in->policyRef, &in->authName, &ticketToCompare);

55

56 // Compare generated digest with input ticket digest

57 if(!Memory2BEqual(&in->ticket.digest.b, &ticketToCompare.digest.b))

58 return TPM_RC_TICKET + RC_PolicyTicket_ticket;

59

60 // If the ticket is valid, update session timeout.

61 UpdateTimeout(timeout, session);

62

63 // Internal Data Update

64

65 // Update policy with input policyRef and name of auth key

66 if(in->ticket.tag == TPM_ST_AUTH_SIGNED)

67 commandCode = TPM_CC_PolicySigned;

68 else if(in->ticket.tag == TPM_ST_AUTH_SECRET)

69 commandCode = TPM_CC_PolicySecret;

70 else

71 // There could only be two possible tag values. Any other value should

72 // be caught by the ticket validation process.

73 pAssert(FALSE);

74 PolicyUpdate(commandCode, &in->authName, &in->policyRef, session);

75

76 // if cpHash was specified, update the policy context

77 if(in->cpHashA.t.size != 0)

78 session->u1.cpHash = in->cpHashA;

79

80 return TPM_RC_SUCCESS;

81 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 247

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.6 TPM2_PolicyOR

25.6.1 General Description

This command allows options in authorizations without requiring that the TPM evaluate all of the options.

If a policy may be satisfied by different sets of conditions, the TPM need only evaluate one set that

satisfies the policy. This command will indicate that one of the required sets of conditions has been

satisfied.

PolicySession→policyDigest is compared against the list of provided values. If the current

policySession→policyDigest does not match any value in the list, the TPM shall return TPM_RC_VALUE.

Otherwise, it will replace policySession→policyDigest with the digest of the concatenation of all of the

digests and return TPM_RC_SUCCESS.

If policySession is a trial session, the TPM will assume that policySession→policyDigest matches one of

the list entries and compute the new value of policyDigest.

The algorithm for computing the new value for policyDigest of policySession is:

 Concatenate all the digest values in pHashList: a)

 digests ≔ pHashList.digests[1].buffer || … || pHashList.digests[n].buffer (17)

NOTE 1 The TPM makes no check to see if the size of an entry matches the size of the digest of the
policy.

 Reset policyDigest to a Zero Digest. b)

 Extend the command code and the hashes computed in step a) above: c)

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyOR || digests) (18)

NOTE 2 The computation in b) and c) above is equivalent to:

 policyDigestnew ≔ HpolicyAlg(0…0 || TPM_CC_PolicyOR || digests)

A TPM shall support a list with at least eight tagged digest values.

NOTE 3 If policies are to be portable between TPMs, then they should not use more than eight values.

Part 3: Commands Trusted Platform Module Library

Page 248 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.6.2 Command and Response

Table 119 — TPM2_PolicyOR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyOR.

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPML_DIGEST pHashList the list of hashes to check for a match

Table 120 — TPM2_PolicyOR Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 249

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyOR_fp.h"

3 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_VALUE no digest in pHashList matched the current value of policyDigest for policySession

4 TPM_RC

5 TPM2_PolicyOR(

6 PolicyOR_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 UINT32 i;

11

12 // Input Validation and Update

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 // Compare and Update Internal Session policy if match

18 for(i = 0; i < in->pHashList.count; i++)

19 {

20 if(session->attributes.isTrialPolicy == SET

21 || (Memory2BEqual(&session->u2.policyDigest.b,

22 &in->pHashList.digests[i].b))

23)

24 {

25 // Found a match

26 HASH_STATE hashState;

27 TPM_CC commandCode = TPM_CC_PolicyOR;

28

29 // Start hash

30 session->u2.policyDigest.t.size = CryptStartHash(session->authHashAlg,

31 &hashState);

32 // Set policyDigest to 0 string and add it to hash

33 MemorySet(session->u2.policyDigest.t.buffer, 0,

34 session->u2.policyDigest.t.size);

35 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

36

37 // add command code

38 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

39

40 // Add each of the hashes in the list

41 for(i = 0; i < in->pHashList.count; i++)

42 {

43 // Extend policyDigest

44 CryptUpdateDigest2B(&hashState, &in->pHashList.digests[i].b);

45 }

46 // Complete digest

47 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

48

49 return TPM_RC_SUCCESS;

50 }

51 }

52 // None of the values in the list matched the current policyDigest

53 return TPM_RC_VALUE + RC_PolicyOR_pHashList;

54 }

Part 3: Commands Trusted Platform Module Library

Page 250 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.7 TPM2_PolicyPCR

25.7.1 General Description

This command is used to cause conditional gating of a policy based on PCR. This allows one group of

authorizations to occur when PCR are in one state and a different set of authorizations when the PCR are

in a different state. If this command is used for a trial policySession, policySession→policyDigest will be

updated using the values from the command rather than the values from digest of the TPM PCR.

The TPM will modify the pcrs parameter so that bits that correspond to unimplemented PCR are CLEAR.

If policySession is not a trial policy session, the TPM will use the modified value of pcrs to select PCR

values to hash according to Part 1, Selecting Multiple PCR. The hash algorithm of the policy session is

used to compute a digest (digestTPM) of the selected PCR. If pcrDigest does not have a length of zero,

then it is compared to digestTPM; and if the values do not match, the TPM shall return TPM_RC_VALUE

and make no change to policySession→policyDigest. If the values match, or if the length of pcrDigest is

zero, then policySession→policyDigest is extended by:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || digestTPM) (19)

where

pcrs the pcrs parameter with bits corresponding to unimplemented

PCR set to 0

digestTPM the digest of the selected PCR using the hash algorithm of the

policy session

NOTE 1 If the caller provides the expected PCR value, the intention is that the policy evaluation stop at that
point if the PCR do not match. If the caller does not provide the expected PCR value, then the
validity of the settings will not be determined until an attempt is made to use the policy for
authorization. If the policy is constructed such that the PCR check comes before user authorization
checks, this early termination would allow software to avoid unnecessary prompts for user input to
satisfy a policy that would fail later due to incorrect PCR values.

After this command completes successfully, the TPM shall return TPM_RC_PCR_CHANGED if the policy

session is used for authorization and the PCR are not known to be correct.

The TPM uses a “generation” number (pcrUpdateCounter) that is incremented each time PCR are

updated (unless the PCR being changed is specified not to cause a change to this counter). The value of

this counter is stored in the policy session context (policySession→pcrUpdateCounter) when this

command is executed. When the policy is used for authorization, the current value of the counter is

compared to the value in the policy session context and the authorization will fail if the values are not the

same.

When this command is executed, policySession→pcrUpdateCounter is checked to see if it has been

previously set (in the reference implementation, it has a value of zero if not previously set). If it has been

set, it will be compared with the current value of pcrUpdateCounter to determine if any PCR changes

have occurred. If the values are different, the TPM shall return TPM_RC_PCR_CHANGED. If

policySession→pcrUpdateCounter has not been set, then it is set to the current value of

pcrUpdateCounter.

If policySession is a trial policy session, the TPM will not check any PCR and will compute:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || pcrDigest) (20)

In this computation, pcrs is the input parameter without modification.

NOTE 2 The pcrs parameter is expected to match the configuration of the TPM for which the policy is being
computed which may not be the same as the TPM on which the trial policy is being computed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 251

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.7.2 Command and Response

Table 121 — TPM2_PolicyPCR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPCR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST pcrDigest
expected digest value of the selected PCR using the
hash algorithm of the session; may be zero length

TPML_PCR_SELECTION pcrs the PCR to include in the check digest

Table 122 — TPM2_PolicyPCR Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 252 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyPCR_fp.h"

Error Returns Meaning

TPM_RC_VALUE if provided, pcrDigest does not match the current PCR settings

TPM_RC_PCR_CHANGED a previous TPM2_PolicyPCR() set pcrCounter and it has changed

3 TPM_RC

4 TPM2_PolicyPCR(

5 PolicyPCR_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 TPM2B_DIGEST pcrDigest;

10 BYTE pcrs[sizeof(TPML_PCR_SELECTION)];

11 UINT32 pcrSize;

12 BYTE *buffer;

13 TPM_CC commandCode = TPM_CC_PolicyPCR;

14 HASH_STATE hashState;

15

16 // Input Validation

17

18 // Get pointer to the session structure

19 session = SessionGet(in->policySession);

20

21 // Do validation for non trial session

22 if(session->attributes.isTrialPolicy == CLEAR)

23 {

24 // Make sure that this is not going to invalidate a previous PCR check

25 if(session->pcrCounter != 0 && session->pcrCounter != gr.pcrCounter)

26 return TPM_RC_PCR_CHANGED;

27

28 // Compute current PCR digest

29 PCRComputeCurrentDigest(session->authHashAlg, &in->pcrs, &pcrDigest);

30

31 // If the caller specified the PCR digest and it does not

32 // match the current PCR settings, return an error..

33 if(in->pcrDigest.t.size != 0)

34 {

35 if(!Memory2BEqual(&in->pcrDigest.b, &pcrDigest.b))

36 return TPM_RC_VALUE + RC_PolicyPCR_pcrDigest;

37 }

38 }

39 else

40 {

41 // For trial session, just use the input PCR digest

42 pcrDigest = in->pcrDigest;

43 }

44 // Internal Data Update

45

46 // Update policy hash

47 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPCR

48 // || pcrs || pcrDigest)

49 // Start hash

50 CryptStartHash(session->authHashAlg, &hashState);

51

52 // add old digest, which may be empty

53 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 253

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

54

55 // add commandCode

56 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

57

58 // add PCRS

59 buffer = pcrs;

60 pcrSize = TPML_PCR_SELECTION_Marshal(&in->pcrs, &buffer, NULL);

61 CryptUpdateDigest(&hashState, pcrSize, pcrs);

62

63 // add PCR digest

64 CryptUpdateDigest2B(&hashState, &pcrDigest.b);

65

66 // complete the hash and get the results

67 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

68

69 // update pcrCounter in session context for non trial session

70 if(session->attributes.isTrialPolicy == CLEAR)

71 {

72 session->pcrCounter = gr.pcrCounter;

73 }

74

75 return TPM_RC_SUCCESS;

76 }

Part 3: Commands Trusted Platform Module Library

Page 254 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.8 TPM2_PolicyLocality

25.8.1 General Description

This command indicates that the authorization will be limited to a specific locality.

policySession→commandLocality is a parameter kept in the session context. It is initialized when the

policy session is started to allow the policy to apply to any locality.

If locality has a value greater than 31, then an extended locality is indicated. For an extened locality, the

TPM will validate that policySession→commandLocality is has not previously been set or that the current

value of policySession→commandLocality is the same as locality (TPM_RC_RANGE).

When locality is not an extended locality, the TPM will validate that the policySession→commandLocality

is not set or is not set to an extended locality value (TPM_RC_RANGE). If not the TPM will disable any

locality not SET in the locality parameter. If the result of disabling localities results in no locality being

enabled, the TPM will return TPM_RC_RANGE.

If no error occurred in the validation of locality, policySession→policyDigest is extended with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyLocality || locality) (21)

Then policySession→commandLocality is updated to indicate which localities are still allowed after

execution of TPM2_PolicyLocality().

When the policy session is used to authorize a command, the authorization will fail if the locality used for

the command is not one of the enabled localities in policySession→commandLocality.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 255

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.8.2 Command and Response

Table 123 — TPM2_PolicyLocality Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyLocality

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMA_LOCALITY locality the allowed localities for the policy

Table 124 — TPM2_PolicyLocality Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 256 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.8.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyLocality_fp.h"

Limit a policy to a specific locality

Error Returns Meaning

TPM_RC_RANGE all the locality values selected by locality have been disabled by previous
TPM2_PolicyLocality() calls.

3 TPM_RC

4 TPM2_PolicyLocality(

5 PolicyLocality_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 BYTE marshalBuffer[sizeof(TPMA_LOCALITY)];

10 BYTE prevSetting[sizeof(TPMA_LOCALITY)];

11 UINT32 marshalSize;

12 BYTE *buffer;

13 TPM_CC commandCode = TPM_CC_PolicyLocality;

14 HASH_STATE hashState;

15

16 // Input Validation

17

18 // Get pointer to the session structure

19 session = SessionGet(in->policySession);

20

21 // Get new locality setting in canonical form

22 buffer = marshalBuffer;

23 marshalSize = TPMA_LOCALITY_Marshal(&in->locality, &buffer, NULL);

24

25 // Its an error if the locality parameter is zero

26 if(marshalBuffer[0] == 0)

27 return TPM_RC_RANGE + RC_PolicyLocality_locality;

28

29 // Get existing locality setting in canonical form

30 buffer = prevSetting;

31 TPMA_LOCALITY_Marshal(&session->commandLocality, &buffer, NULL);

32

33 // If the locality has been previously set, then it needs to be the same

34 // tye as the input locality (i.e. both extended or both normal

35 if(prevSetting[0] != 0 && ((prevSetting[0] <= 0) != (marshalBuffer[0] <= 0)))

36 return TPM_RC_RANGE + RC_PolicyLocality_locality;

37

38

39 // See if the input is a regular or extended locality

40 if(marshalBuffer[0] < 32)

41 {

42 // For regular locality

43 // The previous setting must not be an extended locality

44 if(prevSetting[0] > 31)

45 return TPM_RC_RANGE + RC_PolicyLocality_locality;

46

47 // if there was no previous setting, start with all normal localities

48 // enabled

49 if(prevSetting[0] == 0)

50 prevSetting[0] = 0x1F;

51

52 // AND the new setting with the previous setting and store it in prevSetting

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 257

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

53 prevSetting[0] &= marshalBuffer[0];

54

55 // The result setting can not be 0

56 if(prevSetting[0] == 0)

57 return TPM_RC_RANGE + RC_PolicyLocality_locality;

58 }

59 else

60 {

61 // for extended locality

62 // if the locality has already been set, then it must match the

63 if(prevSetting[0] != 0 && prevSetting[0] != marshalBuffer[0])

64 return TPM_RC_RANGE + RC_PolicyLocality_locality;

65

66 // Setting is OK

67 prevSetting[0] = marshalBuffer[0];

68

69 }

70

71 // Internal Data Update

72

73 // Update policy hash

74 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyLocality || locality)

75 // Start hash

76 CryptStartHash(session->authHashAlg, &hashState);

77

78 // add old digest, which may be empty

79 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

80

81 // add commandCode

82 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

83

84 // add input locality

85 CryptUpdateDigest(&hashState, marshalSize, marshalBuffer);

86

87 // complete the digest

88 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

89

90 // update session locality by unmarshal function. The function must succeed

91 // because both input and existing locality setting have been validated.

92 buffer = prevSetting;

93 TPMA_LOCALITY_Unmarshal(&session->commandLocality, &buffer,

94 (INT32 *) &marshalSize);

95

96 return TPM_RC_SUCCESS;

97 }

Part 3: Commands Trusted Platform Module Library

Page 258 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.9 TPM2_PolicyNV

25.9.1 General Description

This command is used to cause conditional gating of a policy based on the contents of an NV Index.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (22) and (23) below and return TPM_RC_SUCCESS. It will not perform any validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

An authorization session providing authorization to read the NV Index shall be provided.

NOTE 1 If read access is controlled by policy, the policy should include a branch that authorizes a
TPM2_PolicyNV().

If TPMA_NV_WRITTEN is not SET in the NV Index, the TPM shall return TPM_RC_NV_UNINITIALIZED.

The TPM will validate that the size of operandB plus offset is not greater than the size of the NV Index. If

it is, the TPM shall return TPM_RC_SIZE.

The TPM will perform the indicated arithmetic check on the indicated portion of the selected NV Index. If

the check fails, the TPM shall return TPM_RC_POLICY and not change policySession→policyDigest. If

the check succeeds, the TPM will hash the arguments:

 args ≔ HpolicyAlg(operand.buffer || offset || operation) (22)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB the value used for the comparison

offset offset from the start of the NV Index data to start the comparison

operation the operation parameter indicating the comparison being
performed

The value of args and the Name of the NV Index are extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNV || args || nvIndex→Name) (23)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (22)

nvIndex→Name the Name of the NV Index

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced NV location and in

operandB contain the most significant octet of the data.

NOTE 2 When an Index is written, it has a different authorization name than an Index that has not been
written. It is possible to use this change in the NV Index to create a write-once Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 259

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.9.2 Command and Response

Table 125 — TPM2_PolicyNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset the offset in the NV Index for the start of operand A

TPM_EO operation the comparison to make

Table 126 — TPM2_PolicyNV Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 260 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.9.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyNV_fp.h"

3 #include "Policy_spt_fp.h"

4 #include "NV_spt_fp.h" // Include NV support routine for read access check

Error Returns Meaning

TPM_RC_AUTH_TYPE NV index authorization type is not correct

TPM_RC_NV_LOCKED NV index read locked

TPM_RC_NV_UNINITIALIZED the NV index has not been initialized

TPM_RC_POLICY the comparison to the NV contents failed

TPM_RC_SIZE the size of nvIndex data starting at offset is less than the size of
operandB

5 TPM_RC

6 TPM2_PolicyNV(

7 PolicyNV_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 NV_INDEX nvIndex;

13 BYTE nvBuffer[sizeof(in->operandB.t.buffer)];

14 TPM2B_NAME nvName;

15 TPM_CC commandCode = TPM_CC_PolicyNV;

16 HASH_STATE hashState;

17 TPM2B_DIGEST argHash;

18

19 // Input Validation

20

21 // Get NV index information

22 NvGetIndexInfo(in->nvIndex, &nvIndex);

23

24 // Get pointer to the session structure

25 session = SessionGet(in->policySession);

26

27 //If this is a trial policy, skip all validations and the operation

28 if(session->attributes.isTrialPolicy == CLEAR)

29 {

30 // NV Read access check. NV index should be allowed for read. A

31 // TPM_RC_AUTH_TYPE or TPM_RC_NV_LOCKED error may be return at this

32 // point

33 result = NvReadAccessChecks(in->authHandle, in->nvIndex);

34 if(result != TPM_RC_SUCCESS) return result;

35

36 // Valid NV data size should not be smaller than input operandB size

37 if((nvIndex.publicArea.dataSize - in->offset) < in->operandB.t.size)

38 return TPM_RC_SIZE + RC_PolicyNV_operandB;

39

40 // Arithmetic Comparison

41

42 // Get NV data. The size of NV data equals the input operand B size

43 NvGetIndexData(in->nvIndex, &nvIndex, in->offset,

44 in->operandB.t.size, nvBuffer);

45

46 switch(in->operation)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 261

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

47 {

48 case TPM_EO_EQ:

49 // compare A = B

50 if(CryptCompare(in->operandB.t.size, nvBuffer,

51 in->operandB.t.size, in->operandB.t.buffer) != 0)

52 return TPM_RC_POLICY;

53 break;

54 case TPM_EO_NEQ:

55 // compare A != B

56 if(CryptCompare(in->operandB.t.size, nvBuffer,

57 in->operandB.t.size, in->operandB.t.buffer) == 0)

58 return TPM_RC_POLICY;

59 break;

60 case TPM_EO_SIGNED_GT:

61 // compare A > B signed

62 if(CryptCompareSigned(in->operandB.t.size, nvBuffer,

63 in->operandB.t.size, in->operandB.t.buffer) <= 0)

64 return TPM_RC_POLICY;

65 break;

66 case TPM_EO_UNSIGNED_GT:

67 // compare A > B unsigned

68 if(CryptCompare(in->operandB.t.size, nvBuffer,

69 in->operandB.t.size, in->operandB.t.buffer) <= 0)

70 return TPM_RC_POLICY;

71 break;

72 case TPM_EO_SIGNED_LT:

73 // compare A < B signed

74 if(CryptCompareSigned(in->operandB.t.size, nvBuffer,

75 in->operandB.t.size, in->operandB.t.buffer) >= 0)

76 return TPM_RC_POLICY;

77 break;

78 case TPM_EO_UNSIGNED_LT:

79 // compare A < B unsigned

80 if(CryptCompare(in->operandB.t.size, nvBuffer,

81 in->operandB.t.size, in->operandB.t.buffer) >= 0)

82 return TPM_RC_POLICY;

83 break;

84 case TPM_EO_SIGNED_GE:

85 // compare A >= B signed

86 if(CryptCompareSigned(in->operandB.t.size, nvBuffer,

87 in->operandB.t.size, in->operandB.t.buffer) < 0)

88 return TPM_RC_POLICY;

89 break;

90 case TPM_EO_UNSIGNED_GE:

91 // compare A >= B unsigned

92 if(CryptCompare(in->operandB.t.size, nvBuffer,

93 in->operandB.t.size, in->operandB.t.buffer) < 0)

94 return TPM_RC_POLICY;

95 break;

96 case TPM_EO_SIGNED_LE:

97 // compare A <= B signed

98 if(CryptCompareSigned(in->operandB.t.size, nvBuffer,

99 in->operandB.t.size, in->operandB.t.buffer) > 0)

100 return TPM_RC_POLICY;

101 break;

102 case TPM_EO_UNSIGNED_LE:

103 // compare A <= B unsigned

104 if(CryptCompare(in->operandB.t.size, nvBuffer,

105 in->operandB.t.size, in->operandB.t.buffer) > 0)

106 return TPM_RC_POLICY;

107 break;

108 case TPM_EO_BITSET:

109 // All bits SET in B are SET in A. ((A&B)=B)

110 {

Part 3: Commands Trusted Platform Module Library

Page 262 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

111 UINT32 i;

112 for (i = 0; i < in->operandB.t.size; i++)

113 if((nvBuffer[i] & in->operandB.t.buffer[i])

114 != in->operandB.t.buffer[i])

115 return TPM_RC_POLICY;

116 }

117 break;

118 case TPM_EO_BITCLEAR:

119 // All bits SET in B are CLEAR in A. ((A&B)=0)

120 {

121 UINT32 i;

122 for (i = 0; i < in->operandB.t.size; i++)

123 if((nvBuffer[i] & in->operandB.t.buffer[i]) != 0)

124 return TPM_RC_POLICY;

125 }

126 break;

127 default:

128 pAssert(FALSE);

129 break;

130 }

131 }

132

133 // Internal Data Update

134

135 // Start argument hash

136 argHash.t.size = CryptStartHash(session->authHashAlg, &hashState);

137

138 // add operandB

139 CryptUpdateDigest2B(&hashState, &in->operandB.b);

140

141 // add offset

142 CryptUpdateDigestInt(&hashState, sizeof(UINT16), &in->offset);

143

144 // add operation

145 CryptUpdateDigestInt(&hashState, sizeof(TPM_EO), &in->operation);

146

147 // complete argument digest

148 CryptCompleteHash2B(&hashState, &argHash.b);

149

150 // Update policyDigest

151 // Start digest

152 CryptStartHash(session->authHashAlg, &hashState);

153

154 // add old digest, which may be empty

155 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

156

157 // add commandCode

158 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

159

160 // add argument digest

161 CryptUpdateDigest2B(&hashState, &argHash.b);

162

163 // Adding nvName

164 nvName.t.size = EntityGetName(in->nvIndex, nvName.t.name);

165 CryptUpdateDigest2B(&hashState, &nvName.b);

166

167 // complete the digest

168 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

169

170 return TPM_RC_SUCCESS;

171 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 263

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.10 TPM2_PolicyCounterTimer

25.10.1 General Description

This command is used to cause conditional gating of a policy based on the contents of the

TPMS_TIME_INFO structure.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (24) and (25) below and return TPM_RC_SUCCESS. It will not perform any validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

The TPM will perform the indicated arithmetic check on the indicated portion of the TPMS_TIME_INFO

structure. If the check fails, the TPM shall return TPM_RC_POLICY and not change

policySession→policyDigest. If the check succeeds, the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (24)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB.buffer the value used for the comparison

offset offset from the start of the TPMS_TIME_INFO structure at which

the comparison starts

operation the operation parameter indicating the comparison being

performed

The value of args is extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCounterTimer || args) (25)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (24)

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced location and in operandB

contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 264 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.10.2 Command and Response

Table 127 — TPM2_PolicyCounterTimer Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCounterTimer

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the offset in TPMS_TIME_INFO structure for the start of
operand A

TPM_EO operation the comparison to make

Table 128 — TPM2_PolicyCounterTimer Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 265

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.10.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyCounterTimer_fp.h"

3 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_POLICY the comparison of the selected portion of the TPMS_TIME_INFO with operandB
failed

TPM_RC_RANGE offset + size exceed size of TPMS_TIME_INFO structure

4 TPM_RC

5 TPM2_PolicyCounterTimer(

6 PolicyCounterTimer_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 SESSION *session;

11 BYTE infoData[sizeof(TPMS_TIME_INFO)]; // data buffer of

12 // TPMS_TIME_INFO

13 TPM_CC commandCode = TPM_CC_PolicyCounterTimer;

14 HASH_STATE hashState;

15 TPM2B_DIGEST argHash;

16

17 // Input Validation

18

19 // If the command is going to use any part of the counter or timer, need

20 // to verify that time is advancing.

21 // The time and clock vales are the first two 64-bit values in the clock

22 if(in->offset < <K>sizeof(UINT64) + sizeof(UINT64))

23 {

24 // Using Clock or Time so see if clock is running. Clock doesn't run while

25 // NV is unavailable.

26 // TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned here.

27 result = NvIsAvailable();

28 if(result != TPM_RC_SUCCESS)

29 return result;

30 }

31 // Get pointer to the session structure

32 session = SessionGet(in->policySession);

33

34 //If this is a trial policy, skip all validations and the operation

35 if(session->attributes.isTrialPolicy == CLEAR)

36 {

37 // Get time data info. The size of time info data equals the input

38 // operand B size. A TPM_RC_RANGE error may be returned at this point

39 result = TimeGetRange(in->offset, in->operandB.t.size, infoData);

40 if(result != TPM_RC_SUCCESS) return result;

41

42 // Arithmetic Comparison

43 switch(in->operation)

44 {

45 case TPM_EO_EQ:

46 // compare A = B

47 if(CryptCompare(in->operandB.t.size, infoData,

48 in->operandB.t.size, in->operandB.t.buffer) != 0)

49 return TPM_RC_POLICY;

50 break;

51 case TPM_EO_NEQ:

52 // compare A != B

Part 3: Commands Trusted Platform Module Library

Page 266 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

53 if(CryptCompare(in->operandB.t.size, infoData,

54 in->operandB.t.size, in->operandB.t.buffer) == 0)

55 return TPM_RC_POLICY;

56 break;

57 case TPM_EO_SIGNED_GT:

58 // compare A > B signed

59 if(CryptCompareSigned(in->operandB.t.size, infoData,

60 in->operandB.t.size, in->operandB.t.buffer) <= 0)

61 return TPM_RC_POLICY;

62 break;

63 case TPM_EO_UNSIGNED_GT:

64 // compare A > B unsigned

65 if(CryptCompare(in->operandB.t.size, infoData,

66 in->operandB.t.size, in->operandB.t.buffer) <= 0)

67 return TPM_RC_POLICY;

68 break;

69 case TPM_EO_SIGNED_LT:

70 // compare A < B signed

71 if(CryptCompareSigned(in->operandB.t.size, infoData,

72 in->operandB.t.size, in->operandB.t.buffer) >= 0)

73 return TPM_RC_POLICY;

74 break;

75 case TPM_EO_UNSIGNED_LT:

76 // compare A < B unsigned

77 if(CryptCompare(in->operandB.t.size, infoData,

78 in->operandB.t.size, in->operandB.t.buffer) >= 0)

79 return TPM_RC_POLICY;

80 break;

81 case TPM_EO_SIGNED_GE:

82 // compare A >= B signed

83 if(CryptCompareSigned(in->operandB.t.size, infoData,

84 in->operandB.t.size, in->operandB.t.buffer) < 0)

85 return TPM_RC_POLICY;

86 break;

87 case TPM_EO_UNSIGNED_GE:

88 // compare A >= B unsigned

89 if(CryptCompare(in->operandB.t.size, infoData,

90 in->operandB.t.size, in->operandB.t.buffer) < 0)

91 return TPM_RC_POLICY;

92 break;

93 case TPM_EO_SIGNED_LE:

94 // compare A <= B signed

95 if(CryptCompareSigned(in->operandB.t.size, infoData,

96 in->operandB.t.size, in->operandB.t.buffer) > 0)

97 return TPM_RC_POLICY;

98 break;

99 case TPM_EO_UNSIGNED_LE:

100 // compare A <= B unsigned

101 if(CryptCompare(in->operandB.t.size, infoData,

102 in->operandB.t.size, in->operandB.t.buffer) > 0)

103 return TPM_RC_POLICY;

104 break;

105 case TPM_EO_BITSET:

106 // All bits SET in B are SET in A. ((A&B)=B)

107 {

108 UINT32 i;

109 for (i = 0; i < in->operandB.t.size; i++)

110 if((infoData[i] & in->operandB.t.buffer[i])

111 != in->operandB.t.buffer[i])

112 return TPM_RC_POLICY;

113 }

114 break;

115 case TPM_EO_BITCLEAR:

116 // All bits SET in B are CLEAR in A. ((A&B)=0)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 267

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

117 {

118 UINT32 i;

119 for (i = 0; i < in->operandB.t.size; i++)

120 if((infoData[i] & in->operandB.t.buffer[i]) != 0)

121 return TPM_RC_POLICY;

122 }

123 break;

124 default:

125 pAssert(FALSE);

126 break;

127 }

128 }

129

130 // Internal Data Update

131

132 // Start argument list hash

133 argHash.t.size = CryptStartHash(session->authHashAlg, &hashState);

134 // add operandB

135 CryptUpdateDigest2B(&hashState, &in->operandB.b);

136 // add offset

137 CryptUpdateDigestInt(&hashState, sizeof(UINT16), &in->offset);

138 // add operation

139 CryptUpdateDigestInt(&hashState, sizeof(TPM_EO), &in->operation);

140 // complete argument hash

141 CryptCompleteHash2B(&hashState, &argHash.b);

142

143 // update policyDigest

144 // start hash

145 CryptStartHash(session->authHashAlg, &hashState);

146

147 // add old digest, which may be empty

148 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

149

150 // add commandCode

151 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

152

153 // add argument digest

154 CryptUpdateDigest2B(&hashState, &argHash.b);

155

156 // complete the digest

157 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

158

159 return TPM_RC_SUCCESS;

160 }

Part 3: Commands Trusted Platform Module Library

Page 268 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.11 TPM2_PolicyCommandCode

25.11.1 General Description

This command indicates that the authorization will be limited to a specific command code.

If policySession→commandCode has its default value, then it will be set to code. If

policySession→commandCode does not have its default value, then the TPM will return

TPM_RC_VALUE if the two values are not the same.

If code is not implemented, the TPM will return TPM_RC_POLICY_CC.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCommandCode || code) (26)

NOTE 1 If a previous TPM2_PolicyCommandCode() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error.

NOTE 2 A TPM2_PolicyOR() would be used to allow an authorization to be used for multiple commands.

When the policy session is used to authorize a command, the TPM will fail the command if the

commandCode of that command does not match policySession→commandCode.

This command, or TPM2_PolicyDuplicationSelect(), is required to enable the policy to be used for ADMIN

role authorization.

EXAMPLE Before TPM2_Certify() can be executed, TPM2_PolicyCommandCode() with code set to
TPM_CC_Certify is required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 269

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.11.2 Command and Response

Table 129 — TPM2_PolicyCommandCode Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCommandCode

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM_CC code the allowed commandCode

Table 130 — TPM2_PolicyCommandCode Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 270 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.11.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyCommandCode_fp.h"

Error Returns Meaning

TPM_RC_VALUE commandCode of policySession previously set to a different value

3 TPM_RC

4 TPM2_PolicyCommandCode(

5 PolicyCommandCode_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 TPM_CC commandCode = TPM_CC_PolicyCommandCode;

10 HASH_STATE hashState;

11

12 // Input validation

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 if(session->commandCode != 0 && session->commandCode != in->code)

18 return TPM_RC_VALUE + RC_PolicyCommandCode_code;

19 if(!CommandIsImplemented(in->code))

20 return TPM_RC_POLICY_CC + RC_PolicyCommandCode_code;

21

22 // Internal Data Update

23 // Update policy hash

24 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCommandCode || code)

25 // Start hash

26 CryptStartHash(session->authHashAlg, &hashState);

27

28 // add old digest, which may be empty

29 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

30

31 // add commandCode

32 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

33

34 // add input commandCode

35 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &in->code);

36

37 // complete the hash and get the results

38 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

39

40 // update commandCode value in session context

41 session->commandCode = in->code;

42

43 return TPM_RC_SUCCESS;

44 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 271

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.12 TPM2_PolicyPhysicalPresence

25.12.1 General Description

This command indicates that physical presence will need to be asserted at the time the authorization is

performed.

If this command is successful, policySession→isPPRequired will be SET to indicate that this check is

required when the policy is used for authorization. Additionally, policySession→policyDigest is extended

with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPhysicalPresence) (27)

Part 3: Commands Trusted Platform Module Library

Page 272 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.12.2 Command and Response

Table 131 — TPM2_PolicyPhysicalPresence Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPhysicalPresence

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 132 — TPM2_PolicyPhysicalPresence Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 273

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.12.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyPhysicalPresence_fp.h"

3 TPM_RC

4 TPM2_PolicyPhysicalPresence(

5 PolicyPhysicalPresence_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 TPM_CC commandCode = TPM_CC_PolicyPhysicalPresence;

10 HASH_STATE hashState;

11

12 // Internal Data Update

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 // Update policy hash

18 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPhysicalPresence)

19 // Start hash

20 CryptStartHash(session->authHashAlg, &hashState);

21

22 // add old digest, which may be empty

23 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

24

25 // add commandCode

26 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

27

28 // complete the digest

29 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

30

31 // update session attribute

32 session->attributes.isPPRequired = SET;

33

34 return TPM_RC_SUCCESS;

35 }

Part 3: Commands Trusted Platform Module Library

Page 274 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.13 TPM2_PolicyCpHash

25.13.1 General Description

This command is used to allow a policy to be bound to a specific command and command parameters.

TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTIcket() are designed to allow an

authorizing entity to execute an arbitrary command as the cpHashA parameter of those commands is not

included in policySession→policyDigest. TPM2_PolicyCommandCode() allows the policy to be bound to a

specific Command Code so that only certain entities may authorize specific command codes. This

command allows the policy to be restricted such that an entity may only authorize a command with a

specific set of parameters.

If policySession→cpHash is already set and not the same as cpHashA, then the TPM shall return

TPM_RC_VALUE. If cpHashA does not have the size of the policySession→policyDigest, the TPM shall

return TPM_RC_SIZE.

If the cpHashA checks succeed, policySession→cpHash is set to cpHashA and

policySession→policyDigest is updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCpHash || cpHashA) (28)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 275

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.13.2 Command and Response

Table 133 — TPM2_PolicyCpHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCpHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST cpHashA the cpHash added to the policy

Table 134 — TPM2_PolicyCpHash Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 276 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.13.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyCpHash_fp.h"

Error Returns Meaning

TPM_RC_CPHASH cpHash of policySession has previously been set to a different value

TPM_RC_SIZE cpHashA is not the size of a digest produced by the hash algorithm associated with
policySession

3 TPM_RC

4 TPM2_PolicyCpHash(

5 PolicyCpHash_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 TPM_CC commandCode = TPM_CC_PolicyCpHash;

10 HASH_STATE hashState;

11

12 // Input Validation

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 // A new cpHash is given in input parameter, but cpHash in session context

18 // is not empty, or is not the same as the new cpHash

19 if(in->cpHashA.t.size != 0

20 && session->u1.cpHash.t.size != 0

21 && !Memory2BEqual(&in->cpHashA.b, &session->u1.cpHash.b)

22)

23 return TPM_RC_CPHASH;

24

25 // A valid cpHash must have the same size as session hash digest

26 if(in->cpHashA.t.size != CryptGetHashDigestSize(session->authHashAlg))

27 return TPM_RC_SIZE + RC_PolicyCpHash_cpHashA;

28

29 // Internal Data Update

30

31 // Update policy hash

32 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCpHash || cpHashA)

33 // Start hash

34 CryptStartHash(session->authHashAlg, &hashState);

35

36 // add old digest, which may be empty

37 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

38

39 // add commandCode

40 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

41

42 // add cpHashA

43 CryptUpdateDigest2B(&hashState, &in->cpHashA.b);

44

45 // complete the digest and get the results

46 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

47

48 // update cpHash in session context

49 session->u1.cpHash = in->cpHashA;

50 session->attributes.iscpHashDefined = SET;

51

52 return TPM_RC_SUCCESS;

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 277

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

53 }

Part 3: Commands Trusted Platform Module Library

Page 278 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.14 TPM2_PolicyNameHash

25.14.1 General Description

This command allows a policy to be bound to a specific set of handles without being bound to the

parameters of the command. This is most useful for commands such as TPM2_Duplicate() and for

TPM2_PCR_Event() when the referenced PCR requires a policy.

The nameHash parameter should contain the digest of the Names associated with the handles to be used

in the authorized command.

EXAMPLE For the TPM2_Duplicate() command, two handles are provided. One is the handle of the object
being duplicated and the other is the handle of the new parent. For that command, nameHash would
contain:

nameHash ≔ HpolicyAlg(objectHandle→Name || newParentHandle→Name)

If policySession→cpHash is already set, the TPM shall return TPM_RC_VALUE. If the size of nameHash

is not the size of policySession→policyDigest, the TPM shall return TPM_RC_SIZE. Otherwise,

policySession→cpHash is set to nameHash.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the Names associated with the handles in the command will be used.

NOTE 1 This allows the space normally used to hold policySession→cpHash to be used for
policySession→nameHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNameHash || nameHash) (29)

NOTE 2 This command will often be used with TPM2_PolicyAuthorize() where the owner of the object being
duplicated provides approval for their object to be migrated to a specific new parent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 279

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.14.2 Command and Response

Table 135 — TPM2_PolicyNameHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNameHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST nameHash the digest to be added to the policy

Table 136 — TPM2_PolicyNameHash Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 280 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.14.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyNameHash_fp.h"

Error Returns Meaning

TPM_RC_CPHASH nameHash has been previously set to a different value

TPM_RC_SIZE nameHash is not the size of the digest produced by the hash algorithm associated
with policySession

3 TPM_RC

4 TPM2_PolicyNameHash(

5 PolicyNameHash_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 TPM_CC commandCode = TPM_CC_PolicyNameHash;

10 HASH_STATE hashState;

11

12 // Input Validation

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 // A new nameHash is given in input parameter, but cpHash in session context

18 // is not empty

19 if(in->nameHash.t.size != 0 && session->u1.cpHash.t.size != 0)

20 return TPM_RC_CPHASH;

21

22 // A valid nameHash must have the same size as session hash digest

23 if(in->nameHash.t.size != CryptGetHashDigestSize(session->authHashAlg))

24 return TPM_RC_SIZE + RC_PolicyNameHash_nameHash;

25

26 // Internal Data Update

27

28 // Update policy hash

29 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyNameHash || nameHash)

30 // Start hash

31 CryptStartHash(session->authHashAlg, &hashState);

32

33 // add old digest, which may be empty

34 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

35

36 // add commandCode

37 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

38

39 // add nameHash

40 CryptUpdateDigest2B(&hashState, &in->nameHash.b);

41

42 // complete the digest

43 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

44

45 // clear iscpHashDefined bit to indicate now this field contains a nameHash

46 session->attributes.iscpHashDefined = CLEAR;

47

48 // update nameHash in session context

49 session->u1.cpHash = in->nameHash;

50

51 return TPM_RC_SUCCESS;

52 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 281

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.15 TPM2_PolicyDuplicationSelect

25.15.1 General Description

This command allows qualification of duplication to allow duplication to a selected new parent.

If this command not used in conjunction with TPM2_PolicyAuthorize(), then only the new parent is

selected.

EXAMPLE When an object is created when the list of allowed duplication targets is known, the policy would be
created with includeObject CLEAR.

NOTE 1 Only the new parent may be selected because, without TPM2_PolicyAuthorize() , the Name of the
Object to be duplicated would need to be known at the time that Object's policy is created. However,
since the Name of the Object includes its policy, the Name is not known.

If used in conjunction with TPM2_PolicyAuthorize(), then the authorizer of the new policy has the option

of selecting just the new parent or of selecting both the new parent and the duplication Object..

NOTE 2 If the authorizing entity for an TPM2_PolicyAuthorize() only specifies the new parent, then that
authorization may be applied to the duplication of any number of other Objects. If the authorizing
entity specifies both a new parent and the duplicated Object, then the authorization only applies to
that pairing of Object and new parent.

If either policySession→cpHash or policySession→nameHash has been previously set, the TPM shall

return TPM_RC_CPHASH. Otherwise, policySession→nameHah will be set to:

 nameHash ≔ HpolicyAlg(objectName || newParentName) (30)

NOTE 3 It is allowed that policySesion→nameHash and policySession→cpHash to share the same memory
space.

The policySession→policyDigest will be updated according to the setting of includeObject. If equal to

YES, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
objectName || newParentName || includeObject) (31)

If includeObject is NO, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
newParentName || includeObject) (32)

NOTE 4 PolicySession→CpHash receives the digest of both Names so that the check performed in
TPM2_Duplicate() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_PolicyDuplicationSelect() is executed, it
is only valid for a specific pair of duplication object and new parent.

If the command succeeds, commandCode in the policy session context is set to TPM_CC_Duplicate.

NOTE 5 The normal use of this command is before a TPM2_PolicyAuthorize(). An authorized entity would
approve a policyDigest that allowed duplication to a specific new parent. The authorizing entity may
want to limit the authorization so that the approval allows only a specif ic object to be duplicated to
the new parent. In that case, the authorizing entity would approve the policyDigest of equation (31).

Part 3: Commands Trusted Platform Module Library

Page 282 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.15.2 Command and Response

Table 137 — TPM2_PolicyDuplicationSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyDuplicationSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the object to be duplicated

TPM2B_NAME newParentName the Name of the new parent

TPMI_YES_NO includeObject
if YES, the objectName will be included in the value in
policySession→policyDigest

Table 138 — TPM2_PolicyDuplicationSelect Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 283

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.15.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyDuplicationSelect_fp.h"

Error Returns Meaning

TPM_RC_COMMAND_CODE commandCode of 'policySession; is not empty

TPM_RC_CPHASH cpHash of policySession is not empty

3 TPM_RC

4 TPM2_PolicyDuplicationSelect(

5 PolicyDuplicationSelect_In *in // IN: input parameter list

6)

7 {

8 SESSION *session;

9 HASH_STATE hashState;

10 TPM_CC commandCode = TPM_CC_PolicyDuplicationSelect;

11

12 // Input Validation

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 // cpHash in session context must be empty

18 if(session->u1.cpHash.t.size != 0)

19 return TPM_RC_CPHASH;

20

21 // commandCode in session context must be empty

22 if(session->commandCode != 0)

23 return TPM_RC_COMMAND_CODE;

24

25 // Internal Data Update

26

27 // Update name hash

28 session->u1.cpHash.t.size = CryptStartHash(session->authHashAlg, &hashState);

29

30 // add objectName

31 CryptUpdateDigest2B(&hashState, &in->objectName.b);

32

33 // add new parent name

34 CryptUpdateDigest2B(&hashState, &in->newParentName.b);

35

36 // complete hash

37 CryptCompleteHash2B(&hashState, &session->u1.cpHash.b);

38

39 // update policy hash

40 // Old policyDigest size should be the same as the new policyDigest size since

41 // they are using the same hash algorithm

42 session->u2.policyDigest.t.size

43 = CryptStartHash(session->authHashAlg, &hashState);

44

45 // add old policy

46 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

47

48 // add command code

49 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

50

51 // add objectName

52 if(in->includeObject == YES)

53 CryptUpdateDigest2B(&hashState, &in->objectName.b);

Part 3: Commands Trusted Platform Module Library

Page 284 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

54

55 // add new parent name

56 CryptUpdateDigest2B(&hashState, &in->newParentName.b);

57

58 // add includeObject

59 CryptUpdateDigestInt(&hashState, sizeof(TPMI_YES_NO), &in->includeObject);

60

61 // complete digest

62 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

63

64 // clear iscpHashDefined bit to indicate now this field contains a nameHash

65 session->attributes.iscpHashDefined = CLEAR;

66

67 // set commandCode in session context

68 session->commandCode = TPM_CC_Duplicate;

69

70 return TPM_RC_SUCCESS;

71 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 285

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.16 TPM2_PolicyAuthorize

25.16.1 General Description

This command allows policies to change. If a policy were static, then it would be difficult to add users to a

policy. This command lets a policy authority sign a new policy so that it may be used in an existing policy.

The authorizing entity signs a structure that contains

 aHash ≔ HaHashAlg(approvedPolicy || policyRef) (33)

The aHashAlg is required to be the nameAlg of the key used to sign the aHash. The aHash value is then

signed (symmetric or asymmetric) by keySign. That signature is then checked by the TPM in

TPM2_VerifySignature() which produces a ticket by

 HMAC(proof, (TPM_ST_VERIFIED || aHash || keySign→Name)) (34)

NOTE The reason for the validation is because of the expectation that the policy will be used multiple times
and it is more efficient to check a ticket than to load an object each time to check a signature.

The ticket is then used in TPM2_PolicyAuthorize() to validate the parameters.

The keySign parameter is required to be a valid object name using nameAlg other than TPM_ALG_NULL.

If the first two octets of keySign are not a valid hash algorithm, the TPM shall return TPM_RC_HASH. If

the remainder of the Name is not the size of the indicated digest, the TPM shall return TPM_RC_SIZE.

The TPM validates that the approvedPolicy matches the current value of policySession→policyDigest and

if not, shall return TPM_RC_VALUE.

The TPM then validates that the parameters to TPM2_PolicyAuthorize() match the values used to

generate the ticket. If so, the TPM will reset policySession→policyDigest to a Zero Digest. Then it will

create a TPM2B_NAME (keyName) using keySign and update policySession→policyDigest with

PolicyUpdate() (see 25.2.3).

 PolicyUpdate(TPM_CC_PolicyAuthorize, keyName, policyRef) (35)

If the ticket is not valid, the TPM shall return TPM_RC_POLICY.

If policySession is a trial session, policySession→policyDigest is extended as if the ticket is valid without

actual verification.

NOTE The unmarshaling process requires that a proper TPMT_TK_VERIFIED be provided for checkTicket
but it may be a NULL Ticket.

Part 3: Commands Trusted Platform Module Library

Page 286 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.16.2 Command and Response

Table 139 — TPM2_PolicyAuthorize Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorize

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST approvedPolicy digest of the policy being approved

TPM2B_NONCE policyRef a policy qualifier

TPM2B_NAME keySign Name of a key that can sign a policy addition

TPMT_TK_VERIFIED checkTicket
ticket validating that approvedPolicy and policyRef were
signed by keySign

Table 140 — TPM2_PolicyAuthorize Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 287

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.16.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyAuthorize_fp.h"

3 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_HASH hash algorithm in keyName is not supported .

TPM_RC_SIZE keyName is not the correct size for its hash algorithm

TPM_RC_VALUE the current policyDigest of policySession does not match approvedPolicy; or
checkTicket doesn't match the provided values

4 TPM_RC

5 TPM2_PolicyAuthorize(

6 PolicyAuthorize_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM2B_DIGEST authHash;

11 HASH_STATE hashState;

12 TPMT_TK_VERIFIED ticket;

13 TPM_ALG_ID hashAlg;

14 UINT16 digestSize;

15

16 // Input Validation

17

18 // Get pointer to the session structure

19 session = SessionGet(in->policySession);

20

21 // Extract from the Name of the key, the algorithm used to compute it's Name

22 hashAlg = BYTE_ARRAY_TO_UINT16(in->keySign.t.name);

23

24 // 'keySign' parameter needs to use a supported hash algorithm, otherwise

25 // can't tell how large the digest should be

26 digestSize = CryptGetHashDigestSize(hashAlg);

27 if(digestSize == 0)

28 return TPM_RC_HASH + RC_PolicyAuthorize_keySign;

29

30 if(digestSize != (in->keySign.t.size - 2))

31 return TPM_RC_SIZE + RC_PolicyAuthorize_keySign;

32

33 //If this is a trial policy, skip all validations

34 if(session->attributes.isTrialPolicy == CLEAR)

35 {

36 // Check that "approvedPolicy" matches the current value of the

37 // policyDigest in policy session

38 if(!Memory2BEqual(&session->u2.policyDigest.b,

39 &in->approvedPolicy.b))

40 return TPM_RC_VALUE + RC_PolicyAuthorize_approvedPolicy;

41

42 // Validate ticket TPMT_TK_VERIFIED

43 // Compute aHash. The authorizing object sign a digest

44 // aHash := hash(approvedPolicy || policyRef).

45 // Start hash

46 authHash.t.size = CryptStartHash(hashAlg, &hashState);

47

48 // add approvedPolicy

49 CryptUpdateDigest2B(&hashState, &in->approvedPolicy.b);

50

Part 3: Commands Trusted Platform Module Library

Page 288 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

51 // add policyRef

52 CryptUpdateDigest2B(&hashState, &in->policyRef.b);

53

54 // complete hash

55 CryptCompleteHash2B(&hashState, &authHash.b);

56

57 // re-compute TPMT_TK_VERIFIED

58 TicketComputeVerified(in->checkTicket.hierarchy, &authHash,

59 &in->keySign, &ticket);

60

61 // Compare ticket digest. If not match, return error

62 if(!Memory2BEqual(&in->checkTicket.digest.b, &ticket.digest.b))

63 return TPM_RC_VALUE+ RC_PolicyAuthorize_checkTicket;

64 }

65

66 // Internal Data Update

67

68 // Set policyDigest to zero digest

69 MemorySet(session->u2.policyDigest.t.buffer, 0, session->u2.policyDigest.t.size);

70

71 // Update policyDigest

72 PolicyUpdate(TPM_CC_PolicyAuthorize, &in->keySign, &in->policyRef, session);

73

74 return TPM_RC_SUCCESS;

75

76 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 289

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.17 TPM2_PolicyAuthValue

25.17.1 General Description

This command allows a policy to be bound to the authorization value of the authorized object.

When this command completes successfully, policySession→isAuthValueNeeded is SET to indicate that

the authValue will be included in hmacKey when the authorization HMAC is computed for this session.

Additionally, policySession→isPasswordNeeded will be CLEAR.

NOTE If a policy does not use this command, then the hmacKey for the authorized command would only
use sessionKey. If sessionKey is not present, then the hmacKey is an Empty Buffer and no HMAC
would be computed.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (36)

Part 3: Commands Trusted Platform Module Library

Page 290 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.17.2 Command and Response

Table 141 — TPM2_PolicyAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthValue

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 142 — TPM2_PolicyAuthValue Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 291

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.17.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyAuthValue_fp.h"

3 #include "Policy_spt_fp.h"

4 TPM_RC

5 TPM2_PolicyAuthValue(

6 PolicyAuthValue_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

11 HASH_STATE hashState;

12

13 // Internal Data Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Update policy hash

19 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

20 // Start hash

21 CryptStartHash(session->authHashAlg, &hashState);

22

23 // add old digest, which may be empty

24 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

25

26 // add commandCode

27 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

28

29 // complete the hash and get the results

30 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

31

32 // update isAuthValueNeeded bit in the session context

33 session->attributes.isAuthValueNeeded = SET;

34 session->attributes.isPasswordNeeded = CLEAR;

35

36 return TPM_RC_SUCCESS;

37 }

Part 3: Commands Trusted Platform Module Library

Page 292 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.18 TPM2_PolicyPassword

25.18.1 General Description

This command allows a policy to be bound to the authorization value of the authorized object.

When this command completes successfully, policySession→isPasswordNeeded is SET to indicate that

authValue of the authorized object will be checked when the session is used for authorization. The caller

will provide the authValue in clear text in the hmac parameter of the authorization. The comparison of

hmac to authValue is performed as if the authorization is a password.

NOTE 1 The parameter field in the policy session where the authorization value is provided is called hmac. If
TPM2_PolicyPassword() is part of the sequence, then the field will contain a password and not an
HMAC.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (37)

NOTE 2 This is the same extend value as used with TPM2_PolicyAuthValue so that the evaluation may be
done using either an HMAC or a password with no change to the authPolicy of the object. The
reason that two commands are present is to indicate to the TPM if the hmac field in the authorization
will contain an HMAC or a password value.

When this command is successful, policySession→isAuthValueNeeded will be CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 293

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.18.2 Command and Response

Table 143 — TPM2_PolicyPassword Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPassword

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 144 — TPM2_PolicyPassword Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 294 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.18.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyPassword_fp.h"

3 #include "Policy_spt_fp.h"

4 TPM_RC

5 TPM2_PolicyPassword(

6 PolicyPassword_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

11 HASH_STATE hashState;

12

13 // Internal Data Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Update policy hash

19 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

20 // Start hash

21 CryptStartHash(session->authHashAlg, &hashState);

22

23 // add old digest, which may be empty

24 CryptUpdateDigest2B(&hashState, &session->u2.policyDigest.b);

25

26 // add commandCode

27 CryptUpdateDigestInt(&hashState, sizeof(TPM_CC), &commandCode);

28

29 // complete the digest

30 CryptCompleteHash2B(&hashState, &session->u2.policyDigest.b);

31

32 // Update isPasswordNeeded bit

33 session->attributes.isPasswordNeeded = SET;

34 session->attributes.isAuthValueNeeded = CLEAR;

35

36 return TPM_RC_SUCCESS;

37 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 295

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.19 TPM2_PolicyGetDigest

25.19.1 General Description

This command returns the current policyDigest of the session. This command allows the TPM to be used

to perform the actions required to pre-compute the authPolicy for an object.

Part 3: Commands Trusted Platform Module Library

Page 296 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

25.19.2 Command and Response

Table 145 — TPM2_PolicyGetDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyGetDigest

TPMI_SH_POLICY policySession
handle for the policy session

Auth Index: None

Table 146 — TPM2_PolicyGetDigest Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST policyDigest the current value of the policySession→policyDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 297

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

25.19.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PolicyGetDigest_fp.h"

3 TPM_RC

4 TPM2_PolicyGetDigest(

5 PolicyGetDigest_In *in, // IN: input parameter list

6 PolicyGetDigest_Out *out // OUT: output parameter list

7)

8 {

9 SESSION *session;

10

11 // Command Output

12

13 // Get pointer to the session structure

14 session = SessionGet(in->policySession);

15

16 out->policyDigest = session->u2.policyDigest;

17

18 return TPM_RC_SUCCESS;

19 }

Part 3: Commands Trusted Platform Module Library

Page 298 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26 Hierarchy Commands

26.1 TPM2_CreatePrimary

26.1.1 General Description

This command is used to create a Primary Object under one of the Primary Seeds or a Temporary Object

under TPM_RH_NULL. The command uses a TPM2B_PUBLIC as a template for the object to be created.

The command will create and load a Primary Object. The sensitive area is not returned.

Any type of object and attributes combination that is allowed by TPM2_Create() may be created by this

command. The constraints on templates and parameters are the same as TPM2_Create() except that a

Primary Storage Key and a Temporary Storage Key are not constrained to use the algorithms of their

parents.

For setting of the attributes of the created object, fixedParent, fixedTPM, userWithAuth, adminWithPolicy,

encrypt, and restricted are implied to be SET in the parent (a Permanent Handle). The remaining

attributes are implied to be CLEAR.

The TPM will derive the object from the Primary Seed indicated in primaryHandle using an approved

KDF. All of the bits of the template are used in the creation of the Primary Key. Methods for creating a

Primary Object from a Primary Seed are described in Part 1 of this specification and implemented in Part

4.

If this command is called multiple times with the same inPublic parameter, inSensitive.data, and Primary

Seed, the TPM shall produce the same Primary Object.

NOTE If the Primary Seed is changed, the Primary Objects generated with the new seed shall be
statistically unique even if the parameters of the call are the same.

This command requires authorization. Authorization for a Primary Object attached to the Platform Primary

Seed (PPS) shall be provided by platformAuth or platformPolicy. Authorization for a Primary Object

attached to the Storage Primary Seed (SPS) shall be provided by ownerAuth or ownerPolicy.

Authorization for a Primary Key attached to the Endorsement Primary Seed (EPS) shall be provided by

endorsementAuth or endorsementPolicy.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 299

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.1.2 Command and Response

Table 147 — TPM2_CreatePrimary Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreatePrimary

TPMI_RH_HIERARCHY+ @primaryHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 148 — TPM2_CreatePrimary Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle Handle for created Primary Object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMT_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

TPM2B_NAME name the name of the created object

Part 3: Commands Trusted Platform Module Library

Page 300 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "CreatePrimary_fp.h"

3 #include "Object_spt_fp.h"

4 #include <Platform.h>

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when 'sensitive. data' is an Empty Buffer,
or is SET when 'sensitive. data' is not empty; fixedTPM, fixedParent, or
encryptedDuplication attributes are inconsistent between themselves or
with those of the parent object; inconsistent restricted, decrypt and sign
attributes; attempt to inject sensitive data for an asymmetric key;
attempt to create a symmetric cipher key that is not a decryption key

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_OBJECT_MEMORY there is no free slot for the object

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID; or
hash algorithm is inconsistent with the scheme ID for keyed hash object

TPM_RC_SIZE size of public auth policy or sensitive auth value does not match digest
size of the name algorithm sensitive data size for the keyed hash object
is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage key
with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type;

5 TPM_RC

6 TPM2_CreatePrimary(

7 CreatePrimary_In *in, // IN: input parameter list

8 CreatePrimary_Out *out // OUT: output parameter list

9)

10 {

11 // Local variables

12 TPM_RC result = TPM_RC_SUCCESS;

13 TPMT_SENSITIVE sensitive;

14

15 // Input Validation

16 // The sensitiveDataOrigin attribute must be consistent with the setting of

17 // the size of the data object in inSensitive.

18 if((in->inPublic.t.publicArea.objectAttributes.sensitiveDataOrigin == SET)

19 != (in->inSensitive.t.sensitive.data.t.size == 0))

20 // Mismatch between the object attributes and the parameter.

21 return TPM_RC_ATTRIBUTES + RC_CreatePrimary_inSensitive;

22

23 // Check attributes in input public area. TPM_RC_ATTRIBUTES, TPM_RC_KDF,

24 // TPM_RC_SCHEME, TPM_RC_SIZE, TPM_RC_SYMMETRIC, or TPM_RC_TYPE error may

25 // be returned at this point.

26 result = PublicAttributesValidation(FALSE, in->primaryHandle,

27 &in->inPublic.t.publicArea);

28 if(result != TPM_RC_SUCCESS)

29 return RcSafeAddToResult(result, RC_CreatePrimary_inPublic);

30

31 // Validate the sensitive area values

32 if(MemoryRemoveTrailingZeros(&in->inSensitive.t.sensitive.userAuth)

33 > CryptGetHashDigestSize(in->inPublic.t.publicArea.nameAlg))

34 return TPM_RC_SIZE + RC_CreatePrimary_inSensitive;

35

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 301

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

36 // Command output

37

38 // Generate Primary Object

39 // The primary key generation process uses the Name of the input public

40 // template to compute the key. The keys are generated from the template

41 // before anything in the template is allowed to be changed.

42 // A TPM_RC_KDF, TPM_RC_SIZE error may be returned at this point

43 result = CryptCreateObject(in->primaryHandle, &in->inPublic.t.publicArea,

44 &in->inSensitive.t.sensitive,&sensitive);

45 if(result != TPM_RC_SUCCESS)

46 return result;

47

48 // Fill in creation data

49 FillInCreationData(in->primaryHandle, in->inPublic.t.publicArea.nameAlg,

50 &in->creationPCR, &in->outsideInfo, &out->creationData,

51 &out->creationHash);

52

53 // Copy public area

54 out->outPublic = in->inPublic;

55

56 // Fill in private area for output

57 ObjectComputeName(&(out->outPublic.t.publicArea), &out->name);

58

59 // Compute creation ticket

60 TicketComputeCreation(EntityGetHierarchy(in->primaryHandle), &out->name,

61 &out->creationHash, &out->creationTicket);

62

63 // Create a internal object. A TPM_RC_OBJECT_MEMORY error may be returned

64 // at this point.

65 result = ObjectLoad(in->primaryHandle, &in->inPublic.t.publicArea, &sensitive,

66 &out->name, in->primaryHandle, TRUE, &out->objectHandle);

67

68 return result;

69 }

Part 3: Commands Trusted Platform Module Library

Page 302 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.2 TPM2_HierarchyControl

26.2.1 General Description

This command enables and disables use of a hierarchy. The command allows phEnable, shEnable, and

ehEnable to be changed when the proper authorization is provided.

This command may be used to CLEAR phEnable if platformAuth/platformPolicy is provided. phEnable

may not be SET using this command.

This command may be used to CLEAR shEnable if either platformAuth/platformPolicy or

ownerAuth/ownerPolicy is provided. shEnable may be SET if platformAuth/platformPolicy is provided.

This command may be used to CLEAR ehEnable if either platformAuth/platformPolicy or

endorsementAuth/endorsementPolicy is provided. ehEnable my be SET if platformAuth/platformPolicy is

provided.

When this command is used to CLEAR an enable, the TPM will disable use of any persistent entity

associated with the disabled hierarchy and to flush any transient objects associated with the disabled

hierarchy.

 If an NV Index has TPMA_NV_PLATFORMCREATE SET (indicating that the NV Index was defined a)

using platformAuth) and phEnable is CLEAR:

1) the NV Index may only be read if TPMA_NV_OWNERREAD is SET and the authorization handle

is TPM_RH_OWNER; and

2) the NV Index may only be updated if TPMA_NV_OWNERWRITE is SET and the authorization

handle is TPM_RH_OWNER.

 If an NV Index has TPMA_NV_PLATFORMCREATE is CLEAR (indicating that the NV Index was b)

defined using ownerAuth) and shEnable is CLEAR:

1) the NV Index may only be read if TPMA_NV_PPREAD is SET and the authorization handle is

TPM_RH_PLATFORM; and

2) the NV Index may only be updated if TPMA_NV_PPWRITE is SET and the authorization handle

is TPM_RH_PLATFORM.



Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 303

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.2.2 Command and Response

Table 149 — TPM2_HierarchyControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyControl {NV E}

TPMI_RH_HIERARCHY @authHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_HIERARCHY hierarchy

hierarchy of the enable being modified

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM

TPMI_YES_NO state
YES if the enable should be SET, NO if the enable
should be CLEAR

Table 150 — TPM2_HierarchyControl Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 304 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "HierarchyControl_fp.h"

Error Returns Meaning

TPM_RC_AUTH_TYPE authHandle is not applicable to hierarchy in its current state

3 TPM_RC

4 TPM2_HierarchyControl(

5 HierarchyControl_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // This command may cause the orderlyState to be cleared due to

11 // the update of state clear data. If this is the case, check if NV is

12 // available first

13 if(gp.orderlyState != SHUTDOWN_NONE)

14 {

15 // The command needs NV update. Check if NV is available.

16 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

17 // this point

18 result = NvIsAvailable();

19 if(result != TPM_RC_SUCCESS) return result;

20 }

21

22 // Input Validation

23 switch(in->hierarchy)

24 {

25 // Platform hierarchy has to be disabled by platform auth

26 // If the platform hierarchy has already been disabled, only a reboot

27 // can enable it again

28 case TPM_RH_PLATFORM:

29 if(in->authHandle != TPM_RH_PLATFORM)

30 return TPM_RC_AUTH_TYPE;

31 break;

32

33 // ShEnable may be disabled if PlatformAuth/PlatformPolicy or

34 // OwnerAuth/OwnerPolicy is provided. If ShEnable is disabled, then it

35 // may only be enabled if PlatformAuth/PlatformPolicy is provided.

36 case TPM_RH_OWNER:

37 if(in->authHandle != TPM_RH_PLATFORM

38 && in->authHandle != TPM_RH_OWNER)

39 return TPM_RC_AUTH_TYPE;

40 if(gc.shEnable == FALSE && in->state == YES

41 && in->authHandle != TPM_RH_PLATFORM)

42 return TPM_RC_AUTH_TYPE;

43 break;

44

45 // EhEnable may be disabled if either PlatformAuth/PlatformPolicy or

46 // EndosementAuth/EndorsementPolicy is provided. If EhEnable is disabled,

47 // then it may only be enabled if PlatformAuth/PlatformPolicy is

48 // provided.

49 case TPM_RH_ENDORSEMENT:

50 if(in->authHandle != TPM_RH_PLATFORM

51 && in->authHandle != TPM_RH_ENDORSEMENT)

52 return TPM_RC_AUTH_TYPE;

53 if(gc.ehEnable == FALSE && in->state == YES

54 && in->authHandle != TPM_RH_PLATFORM)

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 305

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

55 return TPM_RC_AUTH_TYPE;

56 break;

57

58 default:

59 pAssert(FALSE);

60 break;

61 }

62

63 // Internal Data Update

64

65 // Enable or disable hierarchy

66 switch(in->hierarchy)

67 {

68 case TPM_RH_OWNER:

69 if(in->state == YES)

70 gc.shEnable = TRUE;

71 else

72 gc.shEnable = FALSE;

73 break;

74 case TPM_RH_ENDORSEMENT:

75 if(in->state == YES)

76 gc.ehEnable = TRUE;

77 else

78 gc.ehEnable = FALSE;

79 break;

80 case TPM_RH_PLATFORM:

81 if(in->state == YES)

82 g_phEnable = TRUE;

83 else

84 g_phEnable = FALSE;

85 break;

86 default:

87 pAssert(FALSE);

88 break;

89 }

90

91 if(in->state == NO)

92 // Flush hierarchy

93 ObjectFlushHierarchy(in->hierarchy);

94

95 // orderly state should be cleared because of the update to state clear data

96 g_clearOrderly = TRUE;

97

98 return TPM_RC_SUCCESS;

99 }

Part 3: Commands Trusted Platform Module Library

Page 306 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.3 TPM2_SetPrimaryPolicy

26.3.1 General Description

This command allows setting of the authorization policy for the platform hierarchy (platformPolicy), the

storage hierarchy (ownerPolicy), and and the endorsement hierarchy (endorsementPolicy).

The command requires an authorization session. The session shall use the current authValue or satisfy

the current authPolicy for the referenced hierarchy.

The policy that is changed is the policy associated with authHandle.

If the enable associated with authHandle is not SET, then the associated authorization values (authValue

or authPolicy) may not be used.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 307

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.3.2 Command and Response

Table 151 — TPM2_SetPrimaryPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetPrimaryPolicy {NV}

TPMI_RH_HIERARCHY @authHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy

an authorization policy digest; may be the Empty Buffer

If hashAlg is TPM_ALG_NULL, then this shall be an
Empty Buffer.

TPMI_ALG_HASH+ hashAlg

the hash algorithm to use for the policy

If the authPolicy is an Empty Buffer, then this field shall
be TPM_ALG_NULL.

Table 152 — TPM2_SetPrimaryPolicy Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 308 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SetPrimaryPolicy_fp.h"

Error Returns Meaning

TPM_RC_SIZE size of input authPolicy is not consistent with input hash algorithm

3 TPM_RC

4 TPM2_SetPrimaryPolicy(

5 SetPrimaryPolicy_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // Input Validation

11

12 // Check the authPolicy consistent with hash algorithm

13 if(in->authPolicy.t.size != 0

14 && in->authPolicy.t.size != CryptGetHashDigestSize(in->hashAlg))

15 return TPM_RC_SIZE + RC_SetPrimaryPolicy_authPolicy;

16

17 // The command need NV update for OWNER and ENDORSEMENT hierarchy, and

18 // might need orderlyState update for PLATFROM hierarchy.

19 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

20 // error may be returned at this point

21 result = NvIsAvailable();

22 if(result != TPM_RC_SUCCESS)

23 return result;

24

25 // Internal Data Update

26

27 // Set hierarchy policy

28 switch(in->authHandle)

29 {

30 case TPM_RH_OWNER:

31 gp.ownerAlg = in->hashAlg;

32 gp.ownerPolicy = in->authPolicy;

33 NvWriteReserved(NV_OWNER_ALG, &gp.ownerAlg);

34 NvWriteReserved(NV_OWNER_POLICY, &gp.ownerPolicy);

35 break;

36 case TPM_RH_ENDORSEMENT:

37 gp.endorsementAlg = in->hashAlg;

38 gp.endorsementPolicy = in->authPolicy;

39 NvWriteReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg);

40 NvWriteReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy);

41 break;

42 case TPM_RH_PLATFORM:

43 gc.platformAlg = in->hashAlg;

44 gc.platformPolicy = in->authPolicy;

45 // need to update orderly state

46 g_clearOrderly = TRUE;

47 break;

48 default:

49 pAssert(FALSE);

50 break;

51 }

52

53 return TPM_RC_SUCCESS;

54 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 309

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.4 TPM2_ChangePPS

26.4.1 General Description

This replaces the current PPS with a value from the RNG and sets platformPolicy to the default

initialization value (the Empty Buffer).

NOTE 1 A policy that is the Empty Buffer can match no policy.

NOTE 2 platformAuth is not changed.

All loaded transient and persistent objects in the Platform hierarchy are flushed.

Saved contexts in the Platform hierarchy that were created under the old PPS will no longer be able to be

loaded.

The policy hash algorithm for PCR is reset to TPM_ALG_NULL.

This command does not clear any NV Index values.

NOTE 3 Index values belonging to the Platform are preserved because the indexes may have configuration
information that will be the same after the PPS changes. The Platform may remove the indexes that
are no longer needed using TPM2_NV_UndefineSpace().

This command requires platformAuth.

Part 3: Commands Trusted Platform Module Library

Page 310 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.4.2 Command and Response

Table 153 — TPM2_ChangePPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangePPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 154 — TPM2_ChangePPS Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 311

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ChangePPS_fp.h"

3 TPM_RC

4 TPM2_ChangePPS(

5 ChangePPS_In *in // IN: input parameter list

6)

7 {

8 UINT32 i;

9 TPM_RC result;

10

11 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

12 // error may be returned at this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Input parameter is not reference in command action

17 in = NULL;

18

19 // Internal Data Update

20

21 // Reset platform hierarchy seed from RNG

22 CryptGenerateRandom(PRIMARY_SEED_SIZE, gp.PPSeed.t.buffer);

23

24 // Create a new phProof value from RNG to prevent the saved platform

25 // hierarchy contexts being loaded

26 CryptGenerateRandom(PROOF_SIZE, gp.phProof.t.buffer);

27

28 // Set platform authPolicy to null

29 gc.platformAlg = TPM_ALG_NULL;

30 gc.platformPolicy.t.size = 0;

31

32 // Flush loaded object in platform hierarchy

33 ObjectFlushHierarchy(TPM_RH_PLATFORM);

34

35 // Flush platform evict object and index in NV

36 NvFlushHierarchy(TPM_RH_PLATFORM);

37

38 // Save hierarchy changes to NV

39 NvWriteReserved(NV_PP_SEED, &gp.PPSeed);

40 NvWriteReserved(NV_PH_PROOF, &gp.phProof);

41

42 // Re-initialize PCR policies

43 for(i = 0; i < NUM_POLICY_PCR_GROUP; i++)

44 {

45 gp.pcrPolicies.hashAlg[i] = TPM_ALG_NULL;

46 gp.pcrPolicies.policy[i].t.size = 0;

47 }

48 NvWriteReserved(NV_PCR_POLICIES, &gp.pcrPolicies);

49

50 // orderly state should be cleared because of the update to state clear data

51 g_clearOrderly = TRUE;

52

53 return TPM_RC_SUCCESS;

54 }

Part 3: Commands Trusted Platform Module Library

Page 312 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.5 TPM2_ChangeEPS

26.5.1 General Description

This replaces the current EPS with a value from the RNG and sets the Endorsement hierarchy controls to

their default initialization values: ehEnable is SET, endorsementAuth and endorsementPolicy both equal

to the Empty Buffer. It will flush any loaded objects in the EPS hierarchy and not allow objects in the

hierarchy associated with the previous EPS to be loaded.

NOTE In the reference implementation, ehProof is a non-volatile value from the RNG. It is allowed that the
ehProof be generated by a KDF using both the EPS and SPS as inputs. If generated with a KDF, the
ehProof can be generated on an as-needed basis or made a non-volatile value.

This command requires platformAuth.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 313

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.5.2 Command and Response

Table 155 — TPM2_ChangeEPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangeEPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 156 — TPM2_ChangeEPS Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 314 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ChangeEPS_fp.h"

3 TPM_RC

4 TPM2_ChangeEPS(

5 ChangeEPS_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Input parameter is not reference in command action

17 in = NULL;

18

19 // Internal Data Update

20

21 // Reset endorsement hierarchy seed from RNG

22 CryptGenerateRandom(PRIMARY_SEED_SIZE, gp.EPSeed.t.buffer);

23

24 // Create new ehProof value from RNG

25 CryptGenerateRandom(PROOF_SIZE, gp.ehProof.t.buffer);

26

27 // Enable endorsement hierarchy

28 gc.ehEnable = TRUE;

29

30 // set authValue buffer to zeros

31 MemorySet(gp.endorsementAuth.t.buffer, 0, gp.endorsementAuth.t.size);

32 // Set endorsement authValue to null

33 gp.endorsementAuth.t.size = 0;

34

35 // Set endorsement authPolicy to null

36 gp.endorsementAlg = TPM_ALG_NULL;

37 gp.endorsementPolicy.t.size = 0;

38

39 // Flush loaded object in endorsement hierarchy

40 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

41

42 // Flush evict object of endorsement hierarchy stored in NV

43 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

44

45 // Save hierarchy changes to NV

46 NvWriteReserved(NV_EP_SEED, &gp.EPSeed);

47 NvWriteReserved(NV_EH_PROOF, &gp.ehProof);

48 NvWriteReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth);

49 NvWriteReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg);

50 NvWriteReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy);

51

52 // orderly state should be cleared because of the update to state clear data

53 g_clearOrderly = TRUE;

54

55 return TPM_RC_SUCCESS;

56 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 315

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.6 TPM2_Clear

26.6.1 General Description

This command removes all TPM context associated with a specific Owner.

The clear operation will:

 flush loaded objects (persistent and volatile) in the Storage and Endorsement hierarchies;

 delete any NV Index with TPMA_NV_PLATFORMCREATE == CLEAR;

 change the SPS to a new value from the TPM’s random number generator (RNG),

 change shProof and ehProof,

NOTE The proof values may be set from the RNG or derived from the associated new Primary Seed. If
derived from the Primary Seeds, the derivation of ehProof shall use both the SPS and EPS. The
computation shall use the SPS as an HMAC key and the derived value may then be a parameter
in a second HMAC in which the EPS is the HMAC key. The reference design uses values from
the RNG.

 SET shEnable and ehEnable;

 set ownerAuth, endorsementAuth, and lockoutAuth to the Empty Buffer;

 set ownerPolicy and endorsementPolicy to the Empty Buffer;

 set Clock to zero;

 set resetCount to zero;

 set restartCount to zero; and

 set Safe to YES.

This command requires platformAuth or lockoutAuth. If TPM2_ClearControl() has disabled this command,

the TPM shall return TPM_RC_DISABLED.

If this command is authorized using lockoutAuth, the HMAC in the response shall use the new

lockoutAuth value (that is, the Empty Buffer) when computing response HMAC.

Part 3: Commands Trusted Platform Module Library

Page 316 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.6.2 Command and Response

Table 157 — TPM2_Clear Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_Clear {NV E}

TPMI_RH_CLEAR @authHandle

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 158 — TPM2_Clear Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 317

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Clear_fp.h"

Error Returns Meaning

TPM_RC_DISABLED Clear command has been disabled

3 TPM_RC

4 TPM2_Clear(

5 Clear_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // Input parameter is not reference in command action

11 in = NULL;

12

13 // The command needs NV update. Check if NV is available.

14 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

15 // this point

16 result = NvIsAvailable();

17 if(result != TPM_RC_SUCCESS) return result;

18

19 // Input Validation

20

21 // If Clear command is disabled, return an error

22 if(gp.disableClear)

23 return TPM_RC_DISABLED;

24

25 // Internal Data Update

26

27 // Reset storage hierarchy seed from RNG

28 CryptGenerateRandom(PRIMARY_SEED_SIZE, gp.SPSeed.t.buffer);

29

30 // Create new shProof and ehProof value from RNG

31 CryptGenerateRandom(PROOF_SIZE, gp.shProof.t.buffer);

32 CryptGenerateRandom(PROOF_SIZE, gp.ehProof.t.buffer);

33

34 // Enable storage and endorsement hierarchy

35 gc.shEnable = gc.ehEnable = TRUE;

36

37 // set the authValue buffers to zero

38 MemorySet(gp.ownerAuth.t.buffer, 0, gp.ownerAuth.t.size);

39 MemorySet(gp.endorsementAuth.t.buffer, 0, gp.endorsementAuth.t.size);

40 MemorySet(gp.lockoutAuth.t.buffer, 0, gp.lockoutAuth.t.size);

41 // Set storage, endorsement and lockout authValue to null

42 gp.ownerAuth.t.size = gp.endorsementAuth.t.size = gp.lockoutAuth.t.size = 0;

43

44 // Set storage and endorsement authPolicy to null

45 gp.ownerAlg = gp.endorsementAlg = TPM_ALG_NULL;

46 gp.ownerPolicy.t.size = gp.endorsementPolicy.t.size = 0;

47

48 // Flush loaded object in storage and endorsement hierarchy

49 ObjectFlushHierarchy(TPM_RH_OWNER);

50 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

51

52 // Flush owner and endorsement object and owner index in NV

53 NvFlushHierarchy(TPM_RH_OWNER);

54 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

Part 3: Commands Trusted Platform Module Library

Page 318 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

55

56 // Save hierarchy changes to NV

57 NvWriteReserved(NV_SP_SEED, &gp.SPSeed);

58 NvWriteReserved(NV_SH_PROOF, &gp.shProof);

59 NvWriteReserved(NV_EH_PROOF, &gp.ehProof);

60 NvWriteReserved(NV_OWNER_AUTH, &gp.ownerAuth);

61 NvWriteReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth);

62 NvWriteReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth);

63 NvWriteReserved(NV_OWNER_ALG, &gp.ownerAlg);

64 NvWriteReserved(NV_ENDORSEMENT_ALG, &gp.endorsementAlg);

65 NvWriteReserved(NV_OWNER_POLICY, &gp.ownerPolicy);

66 NvWriteReserved(NV_ENDORSEMENT_POLICY, &gp.endorsementPolicy);

67

68 // Initialize dictionary attack parameters

69 DAPreInstall_Init();

70

71 // Reset clock

72 go.clock = 0;

73 go.clockSafe = YES;

74 NvWriteReserved(NV_CLOCK, &go.clock);

75

76 // Reset counters

77 gp.resetCount = gr.restartCount = gr.clearCount = 0;

78 gp.auditCounter = 0;

79 NvWriteReserved(NV_RESET_COUNT, &gp.resetCount);

80 NvWriteReserved(NV_AUDIT_COUNTER, &gp.auditCounter);

81

82 // orderly state should be cleared because of the update to state clear data

83 g_clearOrderly = TRUE;

84

85 return TPM_RC_SUCCESS;

86 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 319

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.7 TPM2_ClearControl

26.7.1 General Description

TPM2_ClearControl() disables and enables the execution of TPM2_Clear().

The TPM will SET the TPM’s TPMA_PERMANENT.disableClear attribute if disable is YES and will

CLEAR the attribute if disable is NO. When the attribute is SET, TPM2_Clear() may not be executed.

NOTE This is to simplify the logic of TPM2_Clear(). TPM2_ClearControl() can be called using platformAuth
to CLEAR the disableClear attribute and then execute TPM2_Clear().

LockoutAuth may be used to SET disableClear but not to CLEAR it.

PlatformAuth may be used to SET or CLEAR disableClear.

Part 3: Commands Trusted Platform Module Library

Page 320 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.7.2 Command and Response

Table 159 — TPM2_ClearControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClearControl {NV}

TPMI_RH_CLEAR @auth

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_YES_NO disable
YES if the disableOwnerClear flag is to be SET, NO if
the flag is to be CLEAR.

Table 160 — TPM2_ClearControl Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 321

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ClearControl_fp.h"

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization is not properly given

3 TPM_RC

4 TPM2_ClearControl(

5 ClearControl_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Input Validation

17

18 // LockoutAuth may be used to set disableLockoutClear to TRUE but not to FALSE

19 if(in->auth == TPM_RH_LOCKOUT && in->disable == NO)

20 return TPM_RC_AUTH_FAIL;

21

22 // Internal Data Update

23

24 if(in->disable == YES)

25 gp.disableClear = TRUE;

26 else

27 gp.disableClear = FALSE;

28

29 // Record the change to NV

30 NvWriteReserved(NV_DISABLE_CLEAR, &gp.disableClear);

31

32 return TPM_RC_SUCCESS;

33 }

Part 3: Commands Trusted Platform Module Library

Page 322 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.8 TPM2_HierarchyChangeAuth

26.8.1 General Description

This command allows the authorization secret for a hierarchy or lockout to be changed using the current

authorization value as the command authorization.

If authHandle is TPM_RH_PLATFORM, then platformAuth is changed. If authHandle is

TPM_RH_OWNER, then ownerAuth is changed. If authHandle is TPM_RH_ENDORSEMENT, then

endorsementAuth is changed. If authHandle is TPM_RH_LOCKOUT, then lockoutAuth is changed.

If authHandle is TPM_RH_PLATFORM, then Physical Presence may need to be asserted for this

command to succeed (see 28.2, “TPM2_PP_Commands”).

The authorization value may be no larger than the digest produced by the hash algorithm used for context

integrity.

EXAMPLE If SHA384 is used in the computation of the integrity values for saved contexts, then the largest
authorization value is 48 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 323

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

26.8.2 Command and Response

Table 161 — TPM2_HierarchyChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyChangeAuth {NV}

TPMI_RH_HIERARCHY_AUTH @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH newAuth new authorization secret

Table 162 — TPM2_HierarchyChangeAuth Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 324 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

26.8.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "HierarchyChangeAuth_fp.h"

3 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth size is greater than that of integrity hash digest

4 TPM_RC

5 TPM2_HierarchyChangeAuth(

6 HierarchyChangeAuth_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 result = NvIsAvailable();

15 if(result != TPM_RC_SUCCESS) return result;

16

17 // Make sure the the auth value is a reasonable size (not larger than

18 // the size of the digest produced by the integrity hash. The integrity

19 // hash is assumed to produce the longest digest of any hash implemented

20 // on the TPM.

21 if(MemoryRemoveTrailingZeros(&in->newAuth)

22 > CryptGetHashDigestSize(CONTEXT_INTEGRITY_HASH_ALG))

23 return TPM_RC_SIZE + RC_HierarchyChangeAuth_newAuth;

24

25 // Set hierarchy authValue

26 switch(in->authHandle)

27 {

28 case TPM_RH_OWNER:

29 gp.ownerAuth = in->newAuth;

30 NvWriteReserved(NV_OWNER_AUTH, &gp.ownerAuth);

31 break;

32 case TPM_RH_ENDORSEMENT:

33 gp.endorsementAuth = in->newAuth;

34 NvWriteReserved(NV_ENDORSEMENT_AUTH, &gp.endorsementAuth);

35 break;

36 case TPM_RH_PLATFORM:

37 gc.platformAuth = in->newAuth;

38 // orderly state should be cleared

39 g_clearOrderly = TRUE;

40 break;

41 case TPM_RH_LOCKOUT:

42 gp.lockoutAuth = in->newAuth;

43 NvWriteReserved(NV_LOCKOUT_AUTH, &gp.lockoutAuth);

44 break;

45 default:

46 pAssert(FALSE);

47 break;

48 }

49

50 return TPM_RC_SUCCESS;

51 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 325

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

27 Dictionary Attack Functions

27.1 Introduction

A TPM is required to have support for logic that will help prevent a dictionary attack on an authorization

value. The protection is provided by a counter that increments when a password authorization or an

HMAC authorization fails. When the counter reaches a predefined value, the TPM will not accept, for

some time interval, further requests that require authorization and the TPM is in Lockout mode. While the

TPM is in Lockout mode, the TPM will return TPM_RC_LOCKED if the command requires use of an

object’s or Index’s authValue unless the authorization applies to an entry in the Platform hierarchy.

NOTE Authorizations for objects and NV Index values in the Platform hierarchy are never locked out.
However, a command that requires multiple authorizations will not be accepted when the TPM is in
Lockout mode unless all of the authorizations reference objects and indexes in the Platform
hierarchy.

If the TPM is continuously powered for the duration of newRecoveryTime and no authorization failures

occur, the authorization failure counter will be decremented by one. This property is called “self-healing.”

Self-healing shall not cause the count of failed attempts to decrement below zero.

The count of failed attempts, the lockout interval, and self-healing interval are settable using

TPM2_DictionaryAttackParameters(). The lockout parameters and the current value of the lockout

counter can be read with TPM2_GetCapability().

Dictionary attack protection does not apply to an entity associated with a permanent handle (handle type

== TPM_HT_PERMANENT).

27.2 TPM2_DictionaryAttackLockReset

27.2.1 General Description

This command cancels the effect of a TPM lockout due to a number of successive authorization failures.

If this command is properly authorized, the lockout counter is set to zero.

Only one authorization failure is allowed for this command during a lockoutRecovery interval (set using

TPM2_DictionaryAttackParameters().

Part 3: Commands Trusted Platform Module Library

Page 326 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

27.2.2 Command and Response

Table 163 — TPM2_DictionaryAttackLockReset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackLockReset {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

Table 164 — TPM2_DictionaryAttackLockReset Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 327

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

27.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "DictionaryAttackLockReset_fp.h"

3 TPM_RC

4 TPM2_DictionaryAttackLockReset(

5 DictionaryAttackLockReset_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // Input parameter is not reference in command action

11 in = NULL;

12

13 // The command needs NV update. Check if NV is available.

14 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

15 // this point

16 result = NvIsAvailable();

17 if(result != TPM_RC_SUCCESS) return result;

18

19 // Internal Data Update

20

21 // Set failed tries to 0

22 gp.failedTries = 0;

23

24 // Record the changes to NV

25 NvWriteReserved(NV_FAILED_TRIES, &gp.failedTries);

26

27 return TPM_RC_SUCCESS;

28 }

Part 3: Commands Trusted Platform Module Library

Page 328 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

27.3 TPM2_DictionaryAttackParameters

27.3.1 General Description

This command changes the lockout parameters.

The command requires lockoutAuth.

The timeout parameters (newRecoveryTime and lockoutRecovery) indicate values that are measured with

respect to the Time and not Clock.

NOTE Use of Time means that the TPM shall be continuously powered for the duration of a timeout.

If newRecoveryTime is zero, then DA protection is disabled. Authorizations are checked but authorization

failures will not cause the TPM to enter lockout.

If newMaxTries is zero, the TPM will be in lockout and use of DA protected entities will be disabled.

If lockoutRecovery is zero, then the recovery interval is a boot cycle (_TPM_Init followed by

Startup(CLEAR).

This command will set the authorization failure count (failedTries) to zero.

Only one authorization failure is allowed for this command during a lockoutRecovery interval.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 329

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

27.3.2 Command and Response

Table 165 — TPM2_DictionaryAttackParameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackParameters {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

UINT32 newMaxTries
count of authorization failures before the lockout is
imposed

UINT32 newRecoveryTime

time in seconds before the authorization failure count
is automatically decremented

A value of zero indicates that DA protection is
disabled.

UINT32 lockoutRecovery

time in seconds after a lockoutAuth failure before use
of lockoutAuth is allowed

A value of zero indicates that a reboot is required.

Table 166 — TPM2_DictionaryAttackParameters Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 330 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

27.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "DictionaryAttackParameters_fp.h"

3 TPM_RC

4 TPM2_DictionaryAttackParameters(

5 DictionaryAttackParameters_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Internal Data Update

17

18 // Set dictionary attack parameters

19 gp.maxTries = in->newMaxTries;

20 gp.recoveryTime = in->newRecoveryTime;

21 gp.lockoutRecovery = in->lockoutRecovery;

22

23 // Set failed tries to 0

24 gp.failedTries = 0;

25

26 // Record the changes to NV

27 NvWriteReserved(NV_FAILED_TRIES, &gp.failedTries);

28 NvWriteReserved(NV_MAX_TRIES, &gp.maxTries);

29 NvWriteReserved(NV_RECOVERY_TIME, &gp.recoveryTime);

30 NvWriteReserved(NV_LOCKOUT_RECOVERY, &gp.lockoutRecovery);

31

32 return TPM_RC_SUCCESS;

33 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 331

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

28 Miscellaneous Management Functions

28.1 Introduction

This clause contains commands that do not logically group with any other commands.

28.2 TPM2_PP_Commands

28.2.1 General Description

This command is used to determine which commands require assertion of Physical Presence (PP) in

addition to platformAuth/platformPolicy.

This command requires that auth is TPM_RH_PLATFORM and that Physical Presence be asserted.

After this command executes successfully, the commands listed in setList will be added to the list of

commands that require that Physical Presence be asserted when the handle associated with the

authorization is TPM_RH_PLATFORM. The commands in clearList will no longer require assertion of

Physical Presence in order to authorize a command.

If a command is not in either list, its state is not changed. If a command is in both lists, then it will no

longer require Physical Presence (for example, setList is processed first).

Only commands with handle types of TPMI_RH_PLATFORM, TPMI_RH_PROVISION,

TPMI_RH_CLEAR, or TPMI_RH_HIERARCHY can be gated with Physical Presence. If any other

command is in either list, it is discarded.

When a command requires that Physical Presence be provided, then Physical Presence shall be

asserted for either an HMAC or a Policy authorization.

NOTE Physical Presence may be made a requirement of any policy.

TPM2_PP_Commands() always requires assertion of Physical Presence.

Part 3: Commands Trusted Platform Module Library

Page 332 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

28.2.2 Command and Response

Table 167 — TPM2_PP_Commands Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_PP_Commands {NV}

TPMI_RH_PLATFORM @auth

TPM_RH_PLATFORM+PP

Auth Index: 1

Auth Role: USER + Physical Presence

TPML_CC setList
list of commands to be added to those that will require
that Physical Presence be asserted

TPML_CC clearList
list of commands that will no longer require that
Physical Presence be asserted

Table 168 — TPM2_PP_Commands Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 333

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

28.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "PP_Commands_fp.h"

3 TPM_RC

4 TPM2_PP_Commands(

5 PP_Commands_In *in // IN: input parameter list

6)

7 {

8 UINT32 i;

9

10 TPM_RC result;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 result = NvIsAvailable();

16 if(result != TPM_RC_SUCCESS) return result;

17

18 // Internal Data Update

19

20 // Process set list

21 for(i = 0; i < in->setList.count; i++)

22 // If command is implemented, set it as PP required. If the input

23 // command is not a PP command, it will be ignored at

24 // PhysicalPresenceCommandSet().

25 if(CommandIsImplemented(in->setList.commandCodes[i]))

26 PhysicalPresenceCommandSet(in->setList.commandCodes[i]);

27

28 // Process clear list

29 for(i = 0; i < in->clearList.count; i++)

30 // If command is implemented, clear it as PP required. If the input

31 // command is not a PP command, it will be ignored at

32 // PhysicalPresenceCommandClear(). If the input command is

33 // TPM2_PP_Commands, it will be ignored as well

34 if(CommandIsImplemented(in->clearList.commandCodes[i]))

35 PhysicalPresenceCommandClear(in->clearList.commandCodes[i]);

36

37 // Save the change of PP list

38 NvWriteReserved(NV_PP_LIST, &gp.ppList);

39

40 return TPM_RC_SUCCESS;

41 }

Part 3: Commands Trusted Platform Module Library

Page 334 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

28.3 TPM2_SetAlgorithmSet

28.3.1 General Description

This command allows the platform to change the set of algorithms that are used by the TPM. The

algorithmSet setting is a vendor-dependent value.

If the changing of the algorithm set results in a change of the algorithms of PCR banks, then the TPM will

need to be reset (_TPM_Init and TPM2_Startup(TPM_SU_CLEAR)) before the new PCR settings take

effect. After this command executes successfully, if startupType in the next TPM2_Startup() is not

TPM_SU_CLEAR, the TPM shall return TPM_RC_VALUE and enter Failure mode.

This command does not change the algorithms available to the platform.

NOTE The reference implementation does not have support for this command. In particular, it does n ot
support use of this command to selectively disable algorithms. Proper support would require
modification of the unmarshaling code so that each time an algorithm is unmarshaled, it would be
verified as being enabled.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 335

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

28.3.2 Command and Response

Table 169 — TPM2_SetAlgorithmSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetAlgorithmSet {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM

Auth Index: 1

Auth Role: USER

UINT32 algorithmSet
a TPM vendor-dependent value indicating the
algorithm set selection

Table 170 — TPM2_SetAlgorithmSet Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 336 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

28.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "SetAlgorithmSet_fp.h"

3 TPM_RC

4 TPM2_SetAlgorithmSet(

5 SetAlgorithmSet_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 result = NvIsAvailable();

14 if(result != TPM_RC_SUCCESS) return result;

15

16 // Internal Data Update

17 gp.algorithmSet = in->algorithmSet;

18

19 // Write the algorithm set changes to NV

20 NvWriteReserved(NV_ALGORITHM_SET, &gp.algorithmSet);

21

22 return TPM_RC_SUCCESS;

23 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 337

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29 Field Upgrade

29.1 Introduction

This clause contains the commands for managing field upgrade of the firmware in the TPM. The field

upgrade scheme may be used for replacement or augmentation of the firmware installed in the TPM.

EXAMPLE 1 If an algorithm is found to be flawed, a patch of that algori thm might be installed using the firmware
upgrade process. The patch might be a replacement of a portion of the code or a complete
replacement of the firmware.

EXAMPLE 2 If an additional set of ECC parameters is needed, the firmware process may be used to add the
parameters to the TPM data set.

The field upgrade process uses two commands (TPM2_FieldUpgradeStart() and

TPM2_FieldUpgradeData()). TPM2_FieldUpgradeStart() validates that a signature on the provided digest

is from the TPM manufacturer and that proper authorization is provided using platformPolicy.

NOTE 1 The platformPolicy for field upgraded is defined by the PM and may include requirements that the
upgrade be signed by the PM or the TPM owner and include any other constraints that are desired
by the PM.

If the proper authorization is given, the TPM will retain the signed digest and enter the Field Upgrade

mode (FUM). While in FUM, the TPM will accept TPM2_FieldUpgradeData() commands. It may accept

other commands if it is able to complete them using the previously installed firmware. Otherwise, it will

return TPM_RC_UPGRADE.

Each block of the field upgrade shall contain the digest of the next block of the field upgrade data. That

digest shall be included in the digest of the previous block. The digest of the first block is signed by the

TPM manufacturer. That signature and first block digest are the parameters for

TPM2_FieldUpgradeStart(). The digest is saved in the TPM as the required digest for the next field

upgrade data block and as the identifier of the field upgrade sequence.

For each field upgrade data block that is sent to the TPM by TPM2_FieldUpgradeData(), the TPM shall

validate that the digest matches the required digest and if not, shall return TPM_RC_VALUE. The TPM

shall extract the digest of the next expected block and return that value to the caller, along with the digest

of the first data block of the update sequence.

The system may attempt to abandon the firmware upgrade by using a zero-length buffer in

TPM2_FieldUpdateData(). If the TPM is able to resume operation using the firmware present when the

upgrade started, then the TPM will indicate that it has abandon the update by setting the digest of the

next block to the Empty Buffer. If the TPM cannot abandon the update, it will return the expected next

digest.

The system may also attempt to abandon the update because of a power interruption. If the TPM is able

to resume normal operations, then it will respond normally to TPM2_Startup(). If the TPM is not able to

resume normal operations, then it will respond to any command but TPM2_FieldUpgradeData() with

TPM_RC_FIELDUPGRADE.

After a _TPM_Init, system software may not be able to resume the field upgrade that was in process

when the power interruption occurred. In such case, the TPM firmware may be reset to one of two other

values:

 the original firmware that was installed at the factory (“initial firmware”); or

 the firmware that was in the TPM when the field upgrade process started (“previous firmware”).

The TPM retains the digest of the first block for these firmware images and checks to see if the first block

after _TPM_Init matches either of those digests. If so, the firmware update process restarts and the

original firmware may be loaded.

Part 3: Commands Trusted Platform Module Library

Page 338 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

NOTE 2 The TPM is required to accept the previous firmware as either a vendor-provided update or as
recovered from the TPM using TPM2_FirmwareRead().

When the last block of the firmware upgrade is loaded into the TPM (indicated to the TPM by data in the

data block in a TPM vendor-specific manner), the TPM will complete the upgrade process. If the TPM is

able to resume normal operations without a reboot, it will set the hash algorithm of the next block to

TPM_ALG_NULL and return TPM_RC_SUCCESS. If a reboot is required, the TPM shall return

TPM_RC_REBOOT in response to the last TPM2_FieldUpgradeData() and all subsequent TPM

commands until a _TPM_Init is received.

NOTE 3 Because no additional data is allowed when the response code is not TPM_RC_SUCCESS, the TPM
returns TPM_RC_SUCCESS for all calls to TPM2_FieldUpgradeData() except the last. In this
manner, the TPM is able to indicate the digest of the next block. If a _TPM_Init occurs while the
TPM is in FUM, the next block may be the digest for the first block of the original firmware. If it is
not, then the TPM will not accept the original firmware until the next _TPM_Init when the TPM is in
FUM.

During the field upgrade process, the TPM shall preserve:

 Primary Seeds;

 Hierarchy authValue, authPolicy, and proof values;

 Lockout authValue and authorization failure count values;

 PCR authValue and authPolicy values;

 NV Index allocations and contents;

 Persistent object allocations and contents; and

 Clock.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 339

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29.2 TPM2_FieldUpgradeStart

29.2.1 General Description

This command uses platformPolicy and a TPM Vendor Authorization Key to authorize a Field Upgrade

Manifest.

If the signature checks succeed, the authorization is valid and the TPM will accept

TPM2_FieldUpgradeData().

This signature is checked against the loaded key referenced by keyHandle. This key will have a Name

that is the same as a value that is part of the TPM firmware data. If the signature is not valid, the TPM

shall return TPM_RC_SIGNATURE.

NOTE A loaded key is used rather than a hard-coded key to reduce the amount of memory needed for this
key data in case more than one vendor key is needed.

Part 3: Commands Trusted Platform Module Library

Page 340 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

29.2.2 Command and Response

Table 171 — TPM2_FieldUpgradeStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeStart

TPMI_RH_PLATFORM @authorization

TPM_RH_PLATFORM+{PP}

Auth Index:1

Auth Role: ADMIN

TPMI_DH_OBJECT keyHandle

handle of a public area that contains the TPM Vendor
Authorization Key that will be used to validate
manifestSignature

Auth Index: None

TPM2B_DIGEST fuDigest digest of the first block in the field upgrade sequence

TPMT_SIGNATURE manifestSignature
signature over fuDigest using the key associated with
keyHandle (not optional)

Table 172 — TPM2_FieldUpgradeStart Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 341

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "FieldUpgradeStart_fp.h"

3 #if CC_FieldUpgradeStart == YES

4 TPM_RC

5 TPM2_FieldUpgradeStart(

6 FieldUpgradeStart_In *in // IN: input parameter list

7)

8 {

9 // Not implemented

10 UNUSED_PARAMETER(in);

11 return TPM_RC_SUCCESS;

12 }

13 #endif

Part 3: Commands Trusted Platform Module Library

Page 342 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

29.3 TPM2_FieldUpgradeData

29.3.1 General Description

This command will take the actual field upgrade image to be installed on the TPM. The exact format of

fuData is vendor-specific. This command is only possible following a successful

TPM2_FieldUpgradeStart(). If the TPM has not received a properly authorized

TPM2_FieldUpgradeStart(), then the TPM shall return TPM_RC_FIELDUPGRADE.

The TPM will validate that the digest of fuData matches an expected value. If so, the TPM may buffer or

immediately apply the update. If the digest of fuData does not match an expected value, the TPM shall

return TPM_RC_VALUE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 343

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29.3.2 Command and Response

Table 173 — TPM2_FieldUpgradeData Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeData {NV}

TPM2B_MAX_BUFFER fuData field upgrade image data

Table 174 — TPM2_FieldUpgradeData Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMT_HA+ nextDigest
tagged digest of the next block

TPM_ALG_NULL if field update is complete

TPMT_HA firstDigest tagged digest of the first block of the sequence

Part 3: Commands Trusted Platform Module Library

Page 344 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

29.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "FieldUpgradeData_fp.h"

3 #if CC_FieldUpgradeData == YES

4 TPM_RC

5 TPM2_FieldUpgradeData(

6 FieldUpgradeData_In *in, // IN: input parameter list

7 FieldUpgradeData_Out *out // OUT: output parameter list

8)

9 {

10 // Not implemented

11 UNUSED_PARAMETER(in);

12 UNUSED_PARAMETER(out);

13 return TPM_RC_SUCCESS;

14 }

15 #endif

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 345

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29.4 TPM2_FirmwareRead

29.4.1 General Description

This command is used to read a copy of the current firmware installed in the TPM.

The presumption is that the data will be returned in reverse order so that the last block in the sequence

would be the first block given to the TPM in case of a failure recovery. If the TPM2_FirmwareRead

sequence completes successfully, then the data provided from the TPM will be sufficient to allow the TPM

to recover from an abandoned upgrade of this firmware.

To start the sequence of retrieving the data, the caller sets sequenceNumber to zero. When the TPM has

returned all the firmware data, the TPM will return the Empty Buffer as fuData.

The contents of fuData are opaque to the caller.

NOTE 1 The caller should retain the ordering of the update blocks so that the blocks sent to the TPM have
the same size and inverse order as the blocks returned by a sequence of calls to this command.

NOTE 2 Support for this command is optional even if the TPM implements TPM2_FieldUpgradeStart() and
TPM2_FieldUpgradeData().

Part 3: Commands Trusted Platform Module Library

Page 346 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

29.4.2 Command and Response

Table 175 — TPM2_FirmwareRead Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_FirmwareRead

UINT32 sequenceNumber

the number of previous calls to this command in this
sequence

set to 0 on the first call

Table 176 — TPM2_FirmwareRead Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER fuData field upgrade image data

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 347

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

29.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "FirmwareRead_fp.h"

3 TPM_RC

4 TPM2_FirmwareRead(

5 FirmwareRead_In *in, // IN: input parameter list

6 FirmwareRead_Out *out // OUT: output parameter list

7)

8 {

9 // Not implemented

10 UNUSED_PARAMETER(in);

11 UNUSED_PARAMETER(out);

12 return TPM_RC_SUCCESS;

13 }

Part 3: Commands Trusted Platform Module Library

Page 348 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30 Context Management

30.1 Introduction

Three of the commands in this clause (TPM2_ContextSave(), TPM2_ContextLoad(), and

TPM2_FlushContext()) implement the resource management described in the "Context Management"

clause in Part 1.

The fourth command in this clause (TPM2_EvictControl()) is used to control the persistence of a loadable

objects in TPM memory. Background for this command may be found in the "Owner and Platform Evict

Objects" clause in Part 1.

30.2 TPM2_ContextSave

30.2.1 General Description

This command saves a session context, object context, or sequence object context outside the TPM.

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS.

NOTE This preclusion avoids complex issues of dealing with the same session in handle and in the session
area. While it might be possible to provide specificity, it would add unnecessary complexity to the
TPM and, because this capability would provide no application benefit, use of authorization sessi ons
for audit or encryption is prohibited.

The TPM shall encrypt and integrity protect the context as described in the "Context Protection" clause in

Part 1.

See the “Context Data” clause in Part 2 for a description of the context structure in the response.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 349

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.2.2 Command and Response

Table 177 — TPM2_ContextSave Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextSave

TPMI_DH_CONTEXT saveHandle
handle of the resource to save

Auth Index: None

Table 178 — TPM2_ContextSave Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMS_CONTEXT context

Part 3: Commands Trusted Platform Module Library

Page 350 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ContextSave_fp.h"

3 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP a contextID could not be assigned for a session context save

TPM_RC_TOO_MANY_CONTEXTS no more contexts can be saved as the counter has maxed out

4 TPM_RC

5 TPM2_ContextSave(

6 ContextSave_In *in, // IN: input parameter list

7 ContextSave_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 UINT16 fingerprintSize; // The size of fingerprint in context

12 // blob.

13 UINT64 contextID = 0; // session context ID

14 TPM2B_SYM_KEY symKey;

15 TPM2B_IV iv;

16

17 TPM2B_DIGEST integrity;

18 UINT16 integritySize;

19 BYTE *buffer;

20

21 // This command may cause the orderlyState to be cleared due to

22 // the update of state reset data. If this is the case, check if NV is

23 // available first

24 if(gp.orderlyState != SHUTDOWN_NONE)

25 {

26 // The command needs NV update. Check if NV is available.

27 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

28 // this point

29 result = NvIsAvailable();

30 if(result != TPM_RC_SUCCESS) return result;

31 }

32

33 // Internal Data Update

34

35 // Initialize output handle. At the end of command action, the output

36 // handle of an object will be replaced, while the output handle

37 // for a session will be the same as input

38 out->context.savedHandle = in->saveHandle;

39

40 // Get the size of fingerprint in context blob. The sequence value in

41 // TPMS_CONTEXT structure is used as the fingerprint

42 fingerprintSize = sizeof(out->context.sequence);

43

44 // Compute the integrity size at the beginning of context blob

45 integritySize = sizeof(integrity.t.size)

46 + CryptGetHashDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

47

48

49 // Perform object or session specific context save

50 switch(HandleGetType(in->saveHandle))

51 {

52 case TPM_HT_TRANSIENT:

53 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 351

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

54 OBJECT *object = ObjectGet(in->saveHandle);

55

56 // Set size of the context data. The contents of context blob is vendor

57 // defined. In this implementation, the size is size of integrity

58 // plus fingerprint plus the whole internal OBJECT structure

59 out->context.contextBlob.t.size = integritySize +

60 fingerprintSize + sizeof(*object);

61

62 // Copy the whole internal OBJECT structure to context blob, leave

63 // the size for fingerprint

64 MemoryCopy(out->context.contextBlob.t.buffer

65 + integritySize + fingerprintSize,

66 object, sizeof(*object));

67

68 // Increment object context ID

69 gr.objectContextID++;

70 // If object context ID overflows, TPM should be put in failure mode

71 if(gr.objectContextID == 0)

72 FAIL(FATAL_ERROR_INTERNAL);

73

74 // Fill in other return values for an object.

75 out->context.sequence = gr.objectContextID;

76 // For regular object, savedHandle is 0x80000000. For sequence object,

77 // savedHandle is 0x80000001. For object with stClear, savedHandle

78 // is 0x80000002

79 if(ObjectIsSequence(object))

80 {

81 out->context.savedHandle = 0x80000001;

82 }

83 else if(object->attributes.stClear == SET)

84 {

85 out->context.savedHandle = 0x80000002;

86 }

87 else

88 {

89 out->context.savedHandle = 0x80000000;

90 }

91

92 // Get object hierarchy

93 out->context.hierarchy = ObjectDataGetHierarchy(object);

94

95 break;

96 }

97 case TPM_HT_HMAC_SESSION:

98 case TPM_HT_POLICY_SESSION:

99 {

100 SESSION *session = SessionGet(in->saveHandle);

101

102 // Set size of the context data. The contents of context blob is vendor

103 // defined. In this implementation, the size of context blob is the

104 // size of a internal session structure plus the size of

105 // fingerprint plus the size of integrity

106 out->context.contextBlob.t.size = integritySize +

107 fingerprintSize + sizeof(*session);

108

109 // Copy the whole internal SESSION structure to context blob.

110 // Save space for fingerprint at the beginning of the buffer

111 // This is done before anything else so that the actual context

112 // can be reclaimed after this call

113 MemoryCopy(out->context.contextBlob.t.buffer

114 + integritySize + fingerprintSize,

115 session, sizeof(*session));

116

117 // Fill in the other return parameters for a session

Part 3: Commands Trusted Platform Module Library

Page 352 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

118 // Get a context ID and set the session tracking values appropriately

119 // TPM_RC_CONTEXT_GAP is a possible error.

120 // SessionContextSave() will flush the in-memory context

121 // so no additional errors may occur after this call.

122 result = SessionContextSave(out->context.savedHandle, &contextID);

123 if(result != TPM_RC_SUCCESS) return result;

124

125 // sequence number is the current session contextID

126 out->context.sequence = contextID;

127

128 // use TPM_RH_NULL as hierarchy for session context

129 out->context.hierarchy = TPM_RH_NULL;

130

131 break;

132 }

133 default:

134 // SaveContext may only take an object handle or a session handle.

135 // All the other handle type should be filtered out at unmarshal

136 pAssert(FALSE);

137 break;

138 }

139

140 // Save fingerprint at the beginning of encrypted area of context blob.

141 // Reserve the integrity space

142 MemoryCopy(out->context.contextBlob.t.buffer + integritySize,

143 &out->context.sequence, sizeof(out->context.sequence));

144

145 // Compute context encryption key

146 ComputeContextProtectionKey(&out->context, &symKey, &iv);

147

148 // Encrypt context blob

149 CryptSymmetricEncrypt(out->context.contextBlob.t.buffer + integritySize,

150 CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

151 TPM_ALG_CFB, symKey.t.buffer, &iv,

152 out->context.contextBlob.t.size - integritySize,

153 out->context.contextBlob.t.buffer + integritySize);

154

155 // Compute integrity hash for the object

156 // In this implementation, the same routine is used for both sessions

157 // and objects.

158 ComputeContextIntegrity(&out->context, &integrity);

159

160 // add integrity at the beginning of context blob

161 buffer = out->context.contextBlob.t.buffer;

162 TPM2B_DIGEST_Marshal(&integrity, &buffer, NULL);

163

164 // orderly state should be cleared because of the update of state reset and

165 // state clear data

166 g_clearOrderly = TRUE;

167

168 return TPM_RC_SUCCESS;

169 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 353

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.3 TPM2_ContextLoad

30.3.1 General Description

This command is used to reload a context that has been saved by TPM2_ContextSave().

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 30.2.1).

The TPM will return TPM_RC_HIERARCHY if the context is associated with a hierarchy that is disabled.

NOTE Contexts for authorization sessions and for sequence objects belong to the NULL hierarchy which is
never disabled.

See the “Context Data” clause in Part 2 for a description of the values in the context parameter.

If the integrity HMAC of the saved context is not valid, the TPM shall return TPM_RC_INTEGRITY.

The TPM shall perform a check on the decrypted context as described in the "Context Confidentiality

Protections" clause of Part 1 and enter failure mode if the check fails.

Part 3: Commands Trusted Platform Module Library

Page 354 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30.3.2 Command and Response

Table 179 — TPM2_ContextLoad Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextLoad

TPMS_CONTEXT context the context blob

Table 180 — TPM2_ContextLoad Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_CONTEXT loadedHandle
the handle assigned to the resource after it has been
successfully loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 355

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ContextLoad_fp.h"

3 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP there is only one available slot and this is not the oldest saved session
context

TPM_RC_HANDLE 'context. savedHandle' does not reference a saved session

TPM_RC_HIERARCHY 'context.hierarchy' is disabled

TPM_RC_INTEGRITY context integrity check fail

TPM_RC_OBJECT_MEMORY no free slot for an object

TPM_RC_SESSION_MEMORY no free session slots

TPM_RC_SIZE incorrect context blob size

4 TPM_RC

5 TPM2_ContextLoad(

6 ContextLoad_In *in, // IN: input parameter list

7 ContextLoad_Out *out // OUT: output parameter list

8)

9 {

10 // Local Variables

11 TPM_RC result = TPM_RC_SUCCESS;

12

13 TPM2B_DIGEST ingerityToCompare;

14 TPM2B_DIGEST integrity;

15 UINT16 integritySize;

16 UINT64 fingerprint;

17 BYTE *buffer;

18 INT32 size;

19

20 TPM_HT handleType;

21 TPM2B_SYM_KEY symKey;

22 TPM2B_IV iv;

23

24 // Input Validation

25

26 // Check context blob size

27 handleType = HandleGetType(in->context.savedHandle);

28

29 // Check integrity

30 // In this implementation, the same routine is used for both sessions

31 // and objects.

32 integritySize = sizeof(integrity.t.size)

33 + CryptGetHashDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

34

35 // Get integrity from context blob

36 buffer = in->context.contextBlob.t.buffer;

37 size = (INT32) in->context.contextBlob.t.size;

38 result = TPM2B_DIGEST_Unmarshal(&integrity, &buffer, &size);

39 if(result != TPM_RC_SUCCESS)

40 return result;

41

42 // Compute context integrity

43 ComputeContextIntegrity(&in->context, &ingerityToCompare);

Part 3: Commands Trusted Platform Module Library

Page 356 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

44

45 // Compare integrity

46 if(!Memory2BEqual(&integrity.b, &ingerityToCompare.b))

47 return TPM_RC_INTEGRITY + RC_ContextLoad_context;

48

49 // Compute context encryption key

50 ComputeContextProtectionKey(&in->context, &symKey, &iv);

51

52 // Decrypt context data in place

53 CryptSymmetricDecrypt(in->context.contextBlob.t.buffer + integritySize,

54 CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

55 TPM_ALG_CFB, symKey.t.buffer, &iv,

56 in->context.contextBlob.t.size - integritySize,

57 in->context.contextBlob.t.buffer + integritySize);

58

59 // Read the fingerprint value, skip the leading integrity size

60 MemoryCopy(&fingerprint, in->context.contextBlob.t.buffer + integritySize,

61 sizeof(fingerprint));

62 // Check fingerprint. If the check fails, TPM should be put to failure mode

63 if(fingerprint != in->context.sequence)

64 FAIL(FATAL_ERROR_INTERNAL);

65

66 // Perform object or session specific input check

67 switch(handleType)

68 {

69 case TPM_HT_TRANSIENT:

70 {

71 OBJECT object;

72

73 // Discard any changes to the handle that the TRM might have made

74 in->context.savedHandle = TRANSIENT_FIRST;

75 // Get a copy of the object data in input context blob, skip the

76 // integrity and fingerprint area

77 MemoryCopy(&object, in->context.contextBlob.t.buffer +

78 integritySize + sizeof(fingerprint),

79 sizeof(object));

80

81 // If hierarchy is disabled, no object context can be loaded in this

82 // hierarchy

83 if(!HierarchyIsEnabled(in->context.hierarchy))

84 return TPM_RC_HIERARCHY + RC_ContextLoad_context;

85

86 // Restore object. A TPM_RC_OBJECT_MEMORY error may be returned at

87 // this point

88 result = ObjectContextLoad(&object, &out->loadedHandle);

89 if(result != TPM_RC_SUCCESS) return result;

90

91 break;

92 }

93 case TPM_HT_POLICY_SESSION:

94 case TPM_HT_HMAC_SESSION:

95 {

96

97 SESSION session;

98

99 // This command may cause the orderlyState to be cleared due to

100 // the update of state reset data. If this is the case, check if NV is

101 // available first

102 if(gp.orderlyState != SHUTDOWN_NONE)

103 {

104 // The command needs NV update. Check if NV is available.

105 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned

106 // at this point

107 result = NvIsAvailable();

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 357

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

108 if(result != TPM_RC_SUCCESS) return result;

109 }

110

111 // Check if input handle points to a valid saved session

112 if(!SessionIsSaved(in->context.savedHandle))

113 return TPM_RC_HANDLE + RC_ContextLoad_context;

114

115 // Retrieve session data from input context blob, skip the

116 // integrity and fingerprint area

117 MemoryCopy(&session, in->context.contextBlob.t.buffer +

118 integritySize + sizeof(fingerprint),

119 sizeof(session));

120

121 // Restore session. A TPM_RC_SESSION_MEMORY, TPM_RC_CONTEXT_GAP error

122 // may be returned at this point

123 result = SessionContextLoad(&session, &in->context.savedHandle);

124 if(result != TPM_RC_SUCCESS) return result;

125

126 out->loadedHandle = in->context.savedHandle;

127

128 // orderly state should be cleared because of the update of state

129 // reset and state clear data

130 g_clearOrderly = TRUE;

131

132 break;

133 }

134 default:

135 // Context blob may only have an object handle or a session handle.

136 // All the other handle type should be filtered out at unmarshal

137 pAssert(FALSE);

138 break;

139 }

140

141 return TPM_RC_SUCCESS;

142 }

Part 3: Commands Trusted Platform Module Library

Page 358 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30.4 TPM2_FlushContext

30.4.1 General Description

This command causes all context associated with a loaded object or session to be removed from TPM

memory.

This command may not be used to remove a persistent object from the TPM.

A session does not have to be loaded in TPM memory to have its context flushed. The saved session

context associated with the indicated handle is invalidated.

No sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 30.2.1).

If the handle is for a transient object and the handle is not associated with a loaded object, then the TPM

shall return TPM_RC_HANDLE.

If the handle is for an authorization session and the handle does not reference a loaded or active session,

then the TPM shall return TPM_RC_HANDLE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 359

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.4.2 Command and Response

Table 181 — TPM2_FlushContext Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FlushContext

TPMI_DH_CONTEXT flushHandle
the handle of the item to flush

NOTE This is a use of a handle as a parameter.

Table 182 — TPM2_FlushContext Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 360 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "FlushContext_fp.h"

Error Returns Meaning

TPM_RC_HANDLE flushHandle does not reference a loaded object or session

3 TPM_RC

4 TPM2_FlushContext(

5 FlushContext_In *in // IN: input parameter list

6)

7 {

8 // Internal Data Update

9

10 // Call object or session specific routine to flush

11 switch(HandleGetType(in->flushHandle))

12 {

13 case TPM_HT_TRANSIENT:

14 if(!ObjectIsPresent(in->flushHandle))

15 return TPM_RC_HANDLE;

16 // Flush object

17 ObjectFlush(in->flushHandle);

18 break;

19 case TPM_HT_HMAC_SESSION:

20 case TPM_HT_POLICY_SESSION:

21 if(!SessionIsLoaded(in->flushHandle)

22 && !SessionIsSaved(in->flushHandle)

23)

24 return TPM_RC_HANDLE;

25

26 // If the session to be flushed is the exclusive audit session, then

27 // indicate that there is no exclusive audit session any longer.

28 if(in->flushHandle == g_exclusiveAuditSession)

29 g_exclusiveAuditSession = TPM_RH_UNASSIGNED;

30

31 // Flush session

32 SessionFlush(in->flushHandle);

33 break;

34 default:

35 // This command only take object or session handle. Other handles

36 // should be filtered out at handle unmarshal

37 pAssert(FALSE);

38 break;

39 }

40

41 return TPM_RC_SUCCESS;

42 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 361

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.5 TPM2_EvictControl

30.5.1 General Description

This command allows a transient object to be made persistent or a persistent object to be evicted.

NOTE 1 A transient object is one that may be removed from TPM memory using either TPM2_FlushContext
or TPM2_Startup(). A persistent object is not removed from TPM memory by TPM2_FlushContext()
or TPM2_Startup().

If objectHandle is a transient object, then the call is to make the object persistent and assign

persistentHandle to the persistent version of the object. If objectHandle is a persistent object, then the call

is to evict the persistent object.

Before execution of TPM2_EvictControl code below, the TPM verifies that objectHandle references an

object that is resident on the TPM and that persistentHandle is a valid handle for a persistent object.

NOTE 2 This requirement simplifies the unmarshaling code so that it only need check that persistentHandle
is always a persistent object.

If objectHandle references a transient object:

 The TPM shall return TPM_RC_ATTRIBUTES if a)

1) it is in the hierarchy of TPM_RH_NULL,

2) only the public portion of the object is loaded, or

3) the stClear is SET in the object or in an ancestor key.

 The TPM shall return TPM_RC_HIERARCHY if the object is not in the proper hierarchy as b)

determined by auth.

1) If auth is TPM_RH_PLATFORM, the proper hierarchy is the Platform hierarchy.

2) If auth is TPM_RH_OWNER, the proper hierarchy is either the Storage or the Endorsement

hierarchy.

 The TPM shall return TPM_RC_RANGE if persistentHandle is not in the proper range as determined c)

by auth.

1) If auth is TPM_RH_OWNER, then persistentHandle shall be in the inclusive range of

81 00 00 0016 to 81 7F FF FF16.

2) If auth is TPM_RH_PLATFORM, then persistentHandle shall be in the inclusive range of

81 80 00 0016 to 81 FF FF FF16.

 The TPM shall return TPM_RC_NV_DEFINED if a persistent object exists with the same handle as d)

persistentHandle.

 The TPM shall return TPM_RC_NV_SPACE if insufficient space is available to make the object e)

persistent.

 The TPM shall return TPM_RC_NV_SPACE if execution of this command will prevent the TPM from f)

being able to hold two transient objects of any kind.

NOTE 3 This requirement anticipates that a TPM may be implemented such that all TPM memory is non -
volatile and not subject to endurance issues. In such case, there is no movement of an object
between memory of different types and it is necessary that the TPM ensure that it is always
possible for the management software to move objects to/from TPM memory in order t o ensure
that the objects required for command execution can be context restored.

Part 3: Commands Trusted Platform Module Library

Page 362 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 If the TPM returns TPM_RC_SUCCESS, the object referenced by objectHandle will not be flushed g)

and both objectHandle and persistentHandle may be used to access the object.

If objectHandle references a persistent object:

 The TPM shall return TPM_RC_RANGE if objectHandle is not in the proper range as determined by h)

auth. If auth is TPM_RC_OWNER, objectHandle shall be in the inclusive range of 81 00 00 0016 to

81 7F FF FF16. If auth is TPM_RC_PLATFORM, objectHandle may be any valid persistent object

handle.

 If the TPM returns TPM_RC_SUCCESS, objectHandle will be removed from persistent memory and i)

no longer be accessible.

NOTE 4 The persistent object is not converted to a transient object, as this would prevent the immediate
revocation of an object by removing it from persistent memory.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 363

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

30.5.2 Command and Response

Table 183 — TPM2_EvictControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_EvictControl {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the handle of a loaded object

Auth Index: None

TPMI_DH_PERSISTENT persistentHandle

if objectHandle is a transient object handle, then this is
the persistent handle for the object

if objectHandle is a persistent object handle, then this
shall be the same value as persistentHandle

Table 184 — TPM2_EvictControl Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 364 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

30.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "EvictControl_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES an object with temporary, stClear or publicOnly attribute SET cannot be made
persistent

TPM_RC_HIERARCHY auth cannot authorize the operation in the hierarchy of evictObject

TPM_RC_HANDLE evictHandle of the persistent object to be evicted is not the same as the
persistentHandle argument

TPM_RC_NV_HANDLE persistentHandle is unavailable

TPM_RC_NV_SPACE no space in NV to make evictHandle persistent

TPM_RC_RANGE persistentHandle is not in the range corresponding to the hierarchy of
evictObject

3 TPM_RC

4 TPM2_EvictControl(

5 EvictControl_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 OBJECT *evictObject;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 result = NvIsAvailable();

15 if(result != TPM_RC_SUCCESS) return result;

16

17 // Input Validation

18

19 // Get internal object pointer

20 evictObject = ObjectGet(in->objectHandle);

21

22 // Temporary, stClear or public only objects can not be made persistent

23 if(evictObject->attributes.temporary == SET

24 || evictObject->attributes.stClear == SET

25 || evictObject->attributes.publicOnly == SET

26)

27 return TPM_RC_ATTRIBUTES + RC_EvictControl_objectHandle;

28

29 // If objectHandle refers to a persistent object, it should be the same as

30 // input persistentHandle

31 if(evictObject->attributes.evict == SET

32 && evictObject->evictHandle != in->persistentHandle

33)

34 return TPM_RC_HANDLE + RC_EvictControl_objectHandle;

35

36 // Additional auth validation

37 if(in->auth == TPM_RH_PLATFORM)

38 {

39 // To make persistent

40 if(evictObject->attributes.evict == CLEAR)

41 {

42 // Platform auth can not set evict object in storage or endorsement

43 // hierarchy

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 365

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

44 if(evictObject->attributes.ppsHierarchy == CLEAR)

45 return TPM_RC_HIERARCHY + RC_EvictControl_objectHandle;

46

47 // Platform cannot use a handle outside of platform persistent range.

48 if(!NvIsPlatformPersistentHandle(in->persistentHandle))

49 return TPM_RC_RANGE + RC_EvictControl_persistentHandle;

50 }

51 // Platform auth can delete any persistent object

52 }

53 else if(in->auth == TPM_RH_OWNER)

54 {

55 // Owner auth can not set or clear evict object in platform hierarchy

56 if(evictObject->attributes.ppsHierarchy == SET)

57 return TPM_RC_HIERARCHY + RC_EvictControl_objectHandle;

58

59 // Owner cannot use a handle outside of owner persistent range.

60 if(evictObject->attributes.evict == CLEAR

61 && !NvIsOwnerPersistentHandle(in->persistentHandle)

62)

63 return TPM_RC_RANGE + RC_EvictControl_persistentHandle;

64 }

65 else

66 {

67 // Other auth is not allowed in this command and should be filtered out

68 // at unmarshal process

69 pAssert(FALSE);

70 }

71

72 // Internal Data Update

73

74 // Change evict state

75 if(evictObject->attributes.evict == CLEAR)

76 {

77 // Make object persistent

78 // A TPM_RC_NV_HANDLE or TPM_RC_NV_SPACE error may be returned at this

79 // point

80 result = NvAddEvictObject(in->persistentHandle, evictObject);

81 if(result != TPM_RC_SUCCESS) return result;

82 }

83 else

84 {

85 // Delete the persistent object in NV

86 NvDeleteEntity(evictObject->evictHandle);

87 }

88

89 return TPM_RC_SUCCESS;

90

91 }

Part 3: Commands Trusted Platform Module Library

Page 366 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31 Clocks and Timers

31.1 TPM2_ReadClock

31.1.1 General Description

This command reads the current TPMS_TIME_INFO structure that contains the current setting of Time,

Clock, resetCount, and restartCount.

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS.

NOTE This command is intended to allow the TCB to have access to values that have the potential to be
privacy sensitive. The values may be read without authorization because the TCB will not disclose
these values. Since they are not signed and cannot be accessed in a command that uses an
authorization session, it is not possible for any entity, other than the TCB, to be assured that the
values are accurate.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 367

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

31.1.2 Command and Response

Table 185 — TPM2_ReadClock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadClock

Table 186 — TPM2_ReadClock Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC returnCode

TPMS_TIME_INFO currentTime

Part 3: Commands Trusted Platform Module Library

Page 368 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31.1.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ReadClock_fp.h"

3 TPM_RC

4 TPM2_ReadClock(

5 ReadClock_Out *out // OUT: output parameter list

6)

7 {

8 // Command Output

9

10 out->currentTime.time = g_time;

11 TimeFillInfo(&out->currentTime.clockInfo);

12

13 return TPM_RC_SUCCESS;

14 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 369

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

31.2 TPM2_ClockSet

31.2.1 General Description

This command is used to advance the value of the TPM’s Clock. The command will fail if newTime is less

than the current value of Clock or if the new time is greater than FF FF 00 00 00 00 00 0016. If both of

these checks succeed, Clock is set to newTime. If either of these checks fails, the TPM shall return

TPM_RC_VALUE and make no change to Clock.

NOTE This maximum setting would prevent Clock from rolling over to zero for approximately 8,000 years if
the Clock update rate was set so that TPM time was passing 33 percent faster than real time. This
would still be more than 6,000 years before Clock would roll over to zero. Because Clock will not roll
over in the lifetime of the TPM, there is no need for external software to deal with the possibility that
Clock may wrap around.

If the value of Clock after the update makes the volatile and non-volatile versions of

TPMS_CLOCK_INFO.clock differ by more than the reported update interval, then the TPM shall update

the non-volatile version of TPMS_CLOCK_INFO.clock before returning.

This command requires platformAuth or ownerAuth.

Part 3: Commands Trusted Platform Module Library

Page 370 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31.2.2 Command and Response

Table 187 — TPM2_ClockSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockSet {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

UINT64 newTime new Clock setting in milliseconds

Table 188 — TPM2_ClockSet Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC returnCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 371

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

31.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ClockSet_fp.h"

Read the current TPMS_TIMER_INFO structure settings

Error Returns Meaning

TPM_RC_VALUE invalid new clock

3 TPM_RC

4 TPM2_ClockSet(

5 ClockSet_In *in // IN: input parameter list

6)

7 {

8 #define CLOCK_UPDATE_MASK ((1ULL << NV_CLOCK_UPDATE_INTERVAL)- 1)

9 UINT64 clockNow;

10

11 // Input Validation

12

13 // new time can not be bigger than 0xFFFF000000000000 or smaller than

14 // current clock

15 if(in->newTime > 0xFFFF000000000000ULL

16 || in->newTime < go.clock)

17 return TPM_RC_VALUE + RC_ClockSet_newTime;

18

19 // Internal Data Update

20

21 // Internal Data Update

22 clockNow = go.clock; // grab the old value

23 go.clock = in->newTime; // set the new value

24 // Check to see if the update has caused a need for an nvClock update

25 if((in->newTime & CLOCK_UPDATE_MASK) > (clockNow & CLOCK_UPDATE_MASK))

26 {

27 NvWriteReserved(NV_CLOCK,&go.clock);

28 // Now the time state is safe

29 go.clockSafe = YES;

30 }

31

32 return TPM_RC_SUCCESS;

33 }

Part 3: Commands Trusted Platform Module Library

Page 372 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31.3 TPM2_ClockRateAdjust

31.3.1 General Description

This command adjusts the rate of advance of Clock and Time to provide a better approximation to real

time.

The rateAdjust value is relative to the current rate and not the nominal rate of advance.

EXAMPLE 1 If this command had been called three times with rateAdjust = TPM_CLOCK_COARSE_SLOWER
and once with rateAdjust = TPM_CLOCK_COARSE_FASTER, the net effect will be as if the
command had been called twice with rateAdjust = TPM_CLOCK_COARSE_SLOWER.

The range of adjustment shall be sufficient to allow Clock and Time to advance at real time but no more.

If the requested adjustment would make the rate advance faster or slower than the nominal accuracy of

the input frequency, the TPM shall return TPM_RC_VALUE.

EXAMPLE 2 If the frequency tolerance of the TPM's input clock is +/-10 percent, then the TPM will return
TPM_RC_VALUE if the adjustment would make Clock run more than 10 percent faster or slower than
nominal. That is, if the input oscillator were nominally 100 megahertz (MHz), then 1 millisecond (ms)
would normally take 100,000 counts. The update Clock should be adjustable so that 1 ms is between
90,000 and 110,000 counts.

The interpretation of “fine” and “coarse” adjustments is implementation-specific.

The nominal rate of advance for Clock and Time shall be accurate to within 15 percent. That is, with no

adjustment applied, Clock and Time shall be advanced at a rate within 15 percent of actual time.

NOTE If the adjustments are incorrect, it will be possible to make the difference between advance of
Clock/Time and real time to be as much as 1.15

2
 or ~1.33.

Changes to the current Clock update rate adjustment need not be persisted across TPM power cycles.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 373

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

31.3.2 Command and Response

Table 189 — TPM2_ClockRateAdjust Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockRateAdjust

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPM_CLOCK_ADJUST rateAdjust Adjustment to current Clock update rate

Table 190 — TPM2_ClockRateAdjust Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC returnCode

Part 3: Commands Trusted Platform Module Library

Page 374 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

31.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "ClockRateAdjust_fp.h"

3 TPM_RC

4 TPM2_ClockRateAdjust(

5 ClockRateAdjust_In *in // IN: input parameter list

6)

7 {

8 // Internal Data Update

9 TimeSetAdjustRate(in->rateAdjust);

10

11 return TPM_RC_SUCCESS;

12 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 375

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

32 Capability Commands

32.1 Introduction

The TPM has numerous values that indicate the state, capabilities, and properties of the TPM. These

values are needed for proper management of the TPM. The TPM2_GetCapability() command is used to

access these values.

TPM2_GetCapability() allows reporting of multiple values in a single call. The values are grouped

according to type.

NOTE TPM2_TestParms()is used to determine if a TPM supports a particular combination of algorithm
parameters

32.2 TPM2_GetCapability

32.2.1 General Description

This command returns various information regarding the TPM and its current state.

The capability parameter determines the category of data returned. The property parameter selects the

first value of the selected category to be returned. If there is no property that corresponds to the value of

property, the next higher value is returned, if it exists.

EXAMPLE 1 The list of handles of transient objects currently loaded in the TPM may be read one at a time. On
the first read, set the property to TRANSIENT_FIRST and propertyCount to one. If a transient object
is present, the lowest numbered handle is returned and moreData will be YES if transient objects
with higher handles are loaded. On the subsequent call, use returned handle value plus 1 in order to
access the next higher handle.

The propertyCount parameter indicates the number of capabilities in the indicated group that are

requested. The TPM will return the number of requested values (propertyCount) or until the last property

of the requested type has been returned.

NOTE 1 The type of the capability is determined by a combination of capability and property.

When all of the properties of the requested type have been returned, the moreData parameter in the

response will be set to NO. Otherwise, it will be set to YES.

NOTE 2 The moreData parameter will be YES if there are more properties even if the requested number of
capabilities has been returned.

The TPM is not required to return more than one value at a time. It is not required to provide the same

number of values in response to subsequent requests.

EXAMPLE 2 A TPM may return 4 properties in response to a TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTY, property = TPM_PT_MANUFACTURER, propertyCount = 8) and for a
latter request with the same parameters, the TPM may return as few as one and as many as 8
values.

When the TPM is in Failure mode, a TPM is required to allow use of this command for access of the

following capabilities:

Part 3: Commands Trusted Platform Module Library

Page 376 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 TPM_PT_MANUFACTURER

 TPM_PT_VENDOR_STRING_1

 TPM_PT_VENDOR_STRING_2
(3)

 TPM_PT_VENDOR_STRING_3
(3)

 TPM_PT_VENDOR_STRING_4
(3)

 TPM_PT_VENDOR_TPM_TYPE

 TPM_PT_FIRMWARE_VERSION_1

 TPM_PT_FIRMWARE_VERSION_2

NOTE 3 If the vendor string does not require one of these values, the property type does not need to exist.

A vendor may optionally allow the TPM to return other values.

If in Failure mode and a capability is requested that is not available in Failure mode, the TPM shall return

no value.

EXAMPLE 3 Assume the TPM is in Failure mode and the TPM only supports reporting of the minimum required
set of properties (the limited set to TPML_TAGGED_PCR_PROPERTY values). If a
TPM2_GetCapability is received requesting a capability that has a property type value greater than
TPM_PT_FIRMWARE_VERSION_2, the TPM will return a zero length list with the moreData
parameter set to NO. If the property type is less than TPM_PT_MANUFACTURER, the TPM will
return TPM_PT_MANUFACTURER.

In Failure mode, tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

The capability categories and the types of the return values are:

capability property Return Type

TPM_CAP_ALGS TPM_ALG_ID
(1)

 TPML_ALG_PROPERTY

TPM_CAP_HANDLES TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS TPM_CC TPML_CC

TPM_CAP_PCRS Reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVE TPM_ECC_CURVE
(1)

 TPML_ECC_CURVE

TPM_CAP_VENDOR_PROPERTY manufacturer specific manufacturer-specific values

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 377

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

 TPM_CAP_ALGS – Returns a list of TPMS_ALG_PROPERTIES. Each entry is an algorithm ID and a
set of properties of the algorithm.

 TPM_CAP_HANDLES – Returns a list of all of the handles within the handle range of the property
parameter. The range of the returned handles is determined by the handle type (the most-significant
octet (MSO) of the property). Any of the defined handle types is allowed

EXAMPLE 4 If the MSO of property is TPM_HT_NV_INDEX, then the TPM will return a list of NV Index
values.

EXAMPLE 5 If the MSO of property is TPM_HT_PCR, then the TPM will return a list of PCR.

 For this capability, use of TPM_HT_LOADED_SESSION and TPM_HT_SAVED_SESSION is
allowed. Requesting handles with a handle type of TPM_HT_LOADED_SESSION will return handles
for loaded sessions. The returned handle values will have a handle type of either
TPM_HT_HMAC_SESSION or TPM_HT_POLICY_SESSION. If saved sessions are requested, all
returned values will have the TPM_HT_HMAC_SESSION handle type because the TPM does not
track the session type of saved sessions.

NOTE 2 TPM_HT_LOADED_SESSION and TPM_HT_HMAC_SESSION have the same value, as do
TPM_HT_SAVED_SESSION and TPM_HT_POLICY_SESSION. It is not possible to request that
the TPM return a list of loaded HMAC sessions without including the policy sessions.

 TPM_CAP_COMMANDS – Returns a list of the command attributes for all of the commands
implemented in the TPM, starting with the TPM_CC indicated by the property parameter. If vendor
specific commands are implemented, the vendor-specific command attribute with the lowest
commandIndex, is returned after the non-vendor-specific (base) command.

NOTE 4 The type of the property parameter is a TPM_CC while the type of the returned list is
TPML_CCA.

 TPM_CAP_PP_COMMANDS – Returns a list of all of the commands currently requiring Physical
Presence for confirmation of platform authorization. The list will start with the TPM_CC indicated by
property.

 TPM_CAP_AUDIT_COMMANDS – Returns a list of all of the commands currently set for command
audit.

 TPM_CAP_PCRS – Returns the current allocation of PCR in a TPML_PCR_SELECTION. The
property parameter shall be zero. The TPM will always respond to this command with the full PCR
allocation and moreData will be NO.

 TPM_CAP_TPM_PROPERTIES – Returns a list of tagged properties. The tag is a TPM_PT and the
property is a 32-bit value. The properties are returned in groups. Each property group is on a 256-
value boundary (that is, the boundary occurs when the TPM_PT is evenly divisible by 256). The TPM
will only return values in the same group as the property parameter in the command.

 TPM_CAP_PCR_PROPERTIES – Returns a list of tagged PCR properties. The tag is a
TPM_PT_PCR and the property is a TPMS_PCR_SELECT.

The input command property is a TPM_PT_PCR (see Part 2 for PCR properties to be requested) that

specifies the first property to be returned. If propertyCount is greater than 1, the list of properties begins

with that property and proceeds in TPM_PT_PCR sequence.

NOTE 5 If the propertyCount selects an unimplemented property, the next higher implemented propery is
returned.

Each item in the list is a TPMS_PCR_SELECT structure that contains a bitmap of all PCR.

NOTE 6 A PCR index in all banks (all hash algorithms) has the same properties, so the hash algorithm is
not specified here.

Part 3: Commands Trusted Platform Module Library

Page 378 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

 TPM_CAP_TPM_ECC_CURVES – Returns a list of ECC curve identifiers currently available for use
in the TPM.

The moreData parameter will have a value of YES if there are more values of the requested type that

were not returned.

If no next capability exists, the TPM will return a zero-length list and moreData will have a value of NO.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 379

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

32.2.2 Command and Response

Table 191 — TPM2_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCapability

TPM_CAP capability group selection; determines the format of the response

UINT32 property further definition of information

UINT32 propertyCount number of properties of the indicated type to return

Table 192 — TPM2_GetCapability Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO moreData flag to indicate if there are more values of this type

TPMS_CAPABILITY_DATA capabilityData the capability data

Part 3: Commands Trusted Platform Module Library

Page 380 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

32.2.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "GetCapability_fp.h"

Error Returns Meaning

TPM_RC_HANDLE value of property is in an unsupported handle range for the TPM_CAP_HANDLES
capability value

TPM_RC_VALUE invalid capability; or property is not 0 for the TPM_CAP_PCRS capability value

3 TPM_RC

4 TPM2_GetCapability(

5 GetCapability_In *in, // IN: input parameter list

6 GetCapability_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // Set output capability type the same as input type

12 out->capabilityData.capability = in->capability;

13

14 switch(in->capability)

15 {

16 case TPM_CAP_ALGS:

17 out->moreData = AlgorithmCapGetImplemented((TPM_ALG_ID) in->property,

18 in->propertyCount, &out->capabilityData.data.algorithms);

19 break;

20 case TPM_CAP_HANDLES:

21 switch(HandleGetType((TPM_HANDLE) in->property))

22 {

23 case TPM_HT_TRANSIENT:

24 // Get list of handles of loaded transient objects

25 out->moreData = ObjectCapGetLoaded((TPM_HANDLE) in->property,

26 in->propertyCount,

27 &out->capabilityData.data.handles);

28 break;

29 case TPM_HT_PERSISTENT:

30 // Get list of handles of persistent objects

31 out->moreData = NvCapGetPersistent((TPM_HANDLE) in->property,

32 in->propertyCount,

33 &out->capabilityData.data.handles);

34 break;

35 case TPM_HT_NV_INDEX:

36 // Get list of defined NV index

37 out->moreData = NvCapGetIndex((TPM_HANDLE) in->property,

38 in->propertyCount,

39 &out->capabilityData.data.handles);

40 break;

41 case TPM_HT_LOADED_SESSION:

42 // Get list of handles of loaded sessions

43 out->moreData = SessionCapGetLoaded((TPM_HANDLE) in->property,

44 in->propertyCount,

45 &out->capabilityData.data.handles);

46 break;

47 case TPM_HT_ACTIVE_SESSION:

48 // Get list of handles of

49 out->moreData = SessionCapGetSaved((TPM_HANDLE) in->property,

50 in->propertyCount,

51 &out->capabilityData.data.handles);

52 break;

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 381

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

53 case TPM_HT_PCR:

54 // Get list of handles of PCR

55 out->moreData = PCRCapGetHandles((TPM_HANDLE) in->property,

56 in->propertyCount,

57 &out->capabilityData.data.handles);

58 break;

59 case TPM_HT_PERMANENT:

60 // Get list of permanent handles

61 out->moreData = PermanentCapGetHandles(

62 (TPM_HANDLE) in->property,

63 in->propertyCount,

64 &out->capabilityData.data.handles);

65 break;

66 default:

67 // Unsupported input handle type

68 return TPM_RC_HANDLE + RC_GetCapability_property;

69 break;

70 }

71 break;

72 case TPM_CAP_COMMANDS:

73 out->moreData = CommandCapGetCCList((TPM_CC) in->property,

74 in->propertyCount,

75 &out->capabilityData.data.command);

76 break;

77 case TPM_CAP_PP_COMMANDS:

78 out->moreData = PhysicalPresenceCapGetCCList((TPM_CC) in->property,

79 in->propertyCount, &out->capabilityData.data.ppCommands);

80 break;

81 case TPM_CAP_AUDIT_COMMANDS:

82 out->moreData = CommandAuditCapGetCCList((TPM_CC) in->property,

83 in->propertyCount,

84 &out->capabilityData.data.auditCommands);

85 break;

86 case TPM_CAP_PCRS:

87 // Input property must be 0

88 if(in->property != 0)

89 return TPM_RC_VALUE + RC_GetCapability_property;

90 out->moreData = PCRCapGetAllocation(in->propertyCount,

91 &out->capabilityData.data.assignedPCR);

92 break;

93 case TPM_CAP_PCR_PROPERTIES:

94 out->moreData = PCRCapGetProperties((TPM_PT_PCR) in->property,

95 in->propertyCount,

96 &out->capabilityData.data.pcrProperties);

97 break;

98 case TPM_CAP_TPM_PROPERTIES:

99 out->moreData = TPMCapGetProperties((TPM_PT) in->property,

100 in->propertyCount,

101 &out->capabilityData.data.tpmProperties);

102 break;

103 #ifdef TPM_ALG_ECC

104 case TPM_CAP_ECC_CURVES:

105 out->moreData = CryptCapGetECCCurve((TPM_ECC_CURVE) in->property,

106 in->propertyCount,

107 &out->capabilityData.data.eccCurves);

108 break;

109 #endif // TPM_ALG_ECC

110 case TPM_CAP_VENDOR_PROPERTY:

111 // vendor property is not implemented

112 default:

113 // Unexpected TPM_CAP value

114 return TPM_RC_VALUE;

115 break;

116 }

Part 3: Commands Trusted Platform Module Library

Page 382 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

117

118 return TPM_RC_SUCCESS;

119 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 383

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

32.3 TPM2_TestParms

32.3.1 General Description

This command is used to check to see if specific combinations of algorithm parameters are supported.

The TPM will unmarshal the provided TPMT_PUBLIC_PARMS. If the parameters unmarshal correctly,

then the TPM will return TPM_RC_SUCCESS, indicating that the parameters are valid for the TPM. The

TPM will return the appropriate unmarshaling error if a parameter is not valid.

Part 3: Commands Trusted Platform Module Library

Page 384 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

32.3.2 Command and Response

Table 193 — TPM2_TestParms Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_TestParms

TPMT_PUBLIC_PARMS parameters algorithm parameters to be validated

Table 194 — TPM2_TestParms Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode TPM_RC

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 385

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

32.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "TestParms_fp.h"

3 TPM_RC

4 TPM2_TestParms(

5 TestParms_In *in // IN: input parameter list

6)

7 {

8 // Input parameter is not reference in command action

9 in = NULL;

10

11 // The parameters are tested at unmarshal process. We do nothing in command

12 // action

13 return TPM_RC_SUCCESS;

14 }

Part 3: Commands Trusted Platform Module Library

Page 386 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33 Non-volatile Storage

33.1 Introduction

The NV commands are used to create, update, read, and delete allocations of space in NV memory.

Before an Index may be used, it must be defined (TPM2_NV_DefineSpace()).

An Index may be modified if the proper write authorization is provided or read if the proper read

authorization is provided. Different controls are available for reading and writing.

An Index may have an Index-specific authValue and authPolicy. The authValue may be used to authorize

reading if TPMA_NV_AUTHREAD is SET and writing if TPMA_NV_AUTHREAD is SET. The authPolicy

may be used to authorize reading if TPMA_NV_POLICYREAD is SET and writing if

TPMA_NV_POLICYWRITE is SET.

TPMA_NV_PPREAD and TPMA_NV_PPWRITE indicate if reading or writing of the NV Index may be

authorized by platformAuth or platformPolicy.

TPMA_NV_OWNERREAD and TPMA_NV_OWERWRITE indicate if reading or writing of the NV Index

may be authorized by ownerAuth or ownerPolicy.

If an operation on an NV index requires authorization, and the authHandle parameter is the handle of an

NV Index, then the nvIndex parameter must have the same value or thie TPM will return

TPM_RC_NV_AUTHORIZATION.

NOTE 1 This check ensures that the authorization that was provided is associated with the NV Index being
authorized.

For creating an Index, ownerAuth may not be used if shEnable is CLEAR and platformAuth may not be

used if phEnable is CLEAR.

If an Index was defined using platformAuth, then that Index is not accessible when phEnable is CLEAR. If

an Index was defined using ownerAuth, then that Index is not accessible when shEnable is CLEAR.

For read access control, any combination of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD,

TPMA_NV_AUTHREAD, or TPMA_NV_POLICYREAD is allowed as long as at least one is SET.

For write access control, any combination of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE,

TPMA_NV_AUTHWRITE, or TPMA_NV_POLICYWRITE is allowed as long as at least one is SET.

If an Index has been defined and not written, then any operation on the NV Index that requires read

authorization will fail (TPM_RC_NV_INITIALIZED). This check may be made before or after other

authorization checks but shall be performed before checking the NV Index authValue. An authorization

failure due to the NV Index not having been written shall not be logged by the dictionary attack logic.

If TPMA_NV_CLEAR_STCLEAR is SET, then the TPMA_NV_WRITTEN will be CLEAR on each

TPM2_Startup(TPM_SU_CLEAR). TPMA_NV_CLEAR_STCLEAR shall not be SET if

TPMA_NV_COUNTER is SET.

The code in the “Detailed Actions” clause of each command is written to interface with an implementation-

dependent library that allows access to NV memory. The actions assume no specific layout of the

structure of the NV data.

Only one NV Index may be directly referenced in a command.

NOTE 2 This means that, if authHandle references an NV Index, then nvIndex will have the same value.
However, this does not limit the number of changes that may occur as side effects. For example, any
number of NV Indexes might be relocated as a result of deleting or adding a NV Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 387

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.2 NV Counters

When an Index has the TPMA_NV_COUNTER attribute set, it behaves as a monotonic counter and may

only be updated using TPM2_NV_Increment().

When an NV counter is created, the TPM shall initialize the 8-octet counter value with a number that is

greater than any count value for any NV counter on the TPM since the time of TPM manufacture.

An NV counter may be defined with the TPMA_NV_ORDERLY attribute to indicate that the NV Index is

expected to be modified at a high frequency and that the data is only required to persist when the TPM

goes through an orderly shutdown process. The TPM may update the counter value in RAM and

occasionally update the non-volatile version of the counter. An orderly shutdown is one occasion to

update the non-volatile count. If the difference between the volatile and non-volatile version of the counter

becomes as large as MAX_ORDERLY_COUNT, this shall be another occasion for updating the non-

volatile count.

Before an NV counter can be used, the TPM shall validate that the count is not less than a previously

reported value. If the TPMA_NV_ORDERLY attribute is not SET, or if the TPM experienced an orderly

shutdown, then the count is assumed to be correct. If the TPMA_NV_ORDERLY attribute is SET, and the

TPM shutdown was not orderly, then the TPM shall OR MAX_ORDERLY_COUNT to the contents of the

non-volatile counter and set that as the current count.

NOTE 1 Because the TPM would have updated the NV Index if the difference between the count values was
equal to MAX_ORDERLY_COUNT + 1, the highest value that could have been in the NV Index is
MAX_ORDERLY_COUNT so it is safe to restore that value.

NOTE 2 The TPM may implement the RAM portion of the counter such that the effective value of the NV
counter is the sum of both the volatile and non-volatile parts. If so, then the TPM may initialize the
RAM version of the counter to MAX_ORDERLY_COUNT and no update of NV is necessary.

NOTE 3 When a new NV counter is created, the TPM may search all the counters to determine which has the
highest value. In this search, the TPM would use the sum of the non-volatile and RAM portions of
the counter. The RAM portion of the counter shall be properly initialized to reflect shutdown process
(orderly or not) of the TPM.

Part 3: Commands Trusted Platform Module Library

Page 388 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.3 TPM2_NV_DefineSpace

33.3.1 General Description

This command defines the attributes of an NV Index and causes the TPM to reserve space to hold the

data associated with the NV Index. If a definition already exists at the NV Index, the TPM will return

TPM_RC_NV_DEFINED.

The TPM will return TPM_RC_ATTRIBUTES if more than one of TPMA_NV_COUNTER,

TPMA_NV_BITS, or TPMA_NV_EXTEND is SET in publicInfo.

NOTE It is not required that any of these three attributes be set.

The TPM shall return TPM_RC_ATTRIBUTES if TPMA_NV_WRITTEN, TPM_NV_READLOCKED, or

TPMA_NV_WRITELOCKED is SET.

If TPMA_NV_COUNTER or TPMA_NV_BITS is SET, then publicInfo→dataSize shall be set to eight (8) or

the TPM shall return TPM_RC_SIZE.

If TPMA_NV_EXTEND is SET, then publicInfo→dataSize shall match the digest size of the

publicInfo.nameAlg or the TPM shall return TPM_RC_SIZE.

If the NV Index is an ordinary Index and publicInfo→dataSize is larger than supported by the TPM

implementation then the TPM shall return TPM_RC_SIZE.

NOTE The limit for the data size may vary according to the type of the index. For example, if the index is
has TPMA_NV_ORDERLY SET, then the maximum size of an ordinary NV Index may be less than
the size of an ordianary NV Index that has TPMA_NV_ORDERLY CLEAR.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_CLEAR_STCLEAR is SET, then TPMA_NV_COUNTER shall be CLEAR or the TPM shall

return TPM_RC_ATTRIBUTES.

If platformAuth/platformPolicy is used for authorization, then TPMA_NV_PLATFORMCREATE shall be

SET in publicInfo. If ownerAuth/ownerPolicy is used for authorization, TPMA_NV_PLATFORMCREATE

shall be CLEAR in publicInfo. If TPMA_NV_PLATFORMCREATE is not set correctly for the authorization,

the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_POLICY_DELETE is SET, then the authorization shall be with platformAuth or the TPM

shall return TPM_RC_ATTRIBUTES.

If the implementation does not support TPM2_NV_Increment(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_COUNTER is SET.

If the implementation does not support TPM2_NV_SetBits(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_BITS is SET.

If the implementation does not support TPM2_NV_Extend(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_EXTEND is SET.

If the implementation does not support TPM2_NV_UndefineSpaceSpecial(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_POLICY_DELETE is SET.

After the successful completion of this command, the NV Index exists but TPMA_NV_WRITTEN will be

CLEAR. Any access of the NV data will return TPM_RC_NV_UINITIALIZED.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 389

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

In some implementations, an NV Index with the TPMA_NV_COUNTER attribute may require special TPM

resources that provide higher endurance than regular NV. For those implementations, if this command

fails because of lack of resources, the TPM will return TPM_RC_NV_COUNTER.

The value of auth is saved in the created structure. The size of auth is limited to be no larger than the size

of the digest produced by the NV Index's nameAlg.

Part 3: Commands Trusted Platform Module Library

Page 390 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.3.2 Command and Response

Table 195 — TPM2_NV_DefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_DefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth the authorization data

TPM2B_NV_PUBLIC publicInfo the public parameters of the NV area

Table 196 — TPM2_NV_DefineSpace Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 391

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.3.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_DefineSpace_fp.h"

Error Returns Meaning

TPM_RC_NV_ATTRIBUTES attributes of the index are not consistent

TPM_RC_NV_DEFINED index already exists

TPM_RC_HIERARCHY index already exists and belongs to a disabled hierarchy

TPM_RC_NV_SPACE Insufficient space for the index

TPM_RC_SIZE 'auth->size' or 'publicInfo->authPolicy. size' is larger than the digest size
of 'publicInfo->nameAlg', or 'publicInfo->dataSize' is not consistent with
'publicInfo->attributes'.

3 TPM_RC

4 TPM2_NV_DefineSpace(

5 NV_DefineSpace_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 TPMA_NV attributes;

10 UINT16 nameSize;

11

12 nameSize = CryptGetHashDigestSize(in->publicInfo.t.nvPublic.nameAlg);

13

14 // Check if NV is available. NvIsAvailable may return TPM_RC_NV_UNAVAILABLE

15 // TPM_RC_NV_RATE or TPM_RC_SUCCESS.

16 result = NvIsAvailable();

17 if(result != TPM_RC_SUCCESS)

18 return result;

19

20 // Input Validation

21

22 attributes = in->publicInfo.t.nvPublic.attributes;

23

24 //TPMS_NV_PUBLIC validation.

25 // Counters and bit fields must have a size of 8

26 if ((attributes.TPMA_NV_COUNTER == SET || attributes.TPMA_NV_BITS == SET)

27 && (in->publicInfo.t.nvPublic.dataSize != 8))

28 return TPM_RC_SIZE + RC_NV_DefineSpace_publicInfo;

29

30 // check that the authPolicy consistent with hash algorithm

31 if(in->publicInfo.t.nvPublic.authPolicy.t.size != 0

32 && in->publicInfo.t.nvPublic.authPolicy.t.size != nameSize)

33 return TPM_RC_SIZE + RC_NV_DefineSpace_publicInfo;

34

35 // make sure that the authValue is not too large

36 MemoryRemoveTrailingZeros(&in->auth);

37 if(in->auth.t.size > nameSize)

38 return TPM_RC_SIZE + RC_NV_DefineSpace_auth;

39

40

41 //TPMA_NV validation.

42 // Locks may not be SET and written cannot be SET

43 if(attributes.TPMA_NV_WRITTEN == SET

44 || attributes.TPMA_NV_WRITELOCKED == SET

45 || attributes.TPMA_NV_READLOCKED == SET)

Part 3: Commands Trusted Platform Module Library

Page 392 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

46 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

47

48 // There must be a way to read the index

49 if(attributes.TPMA_NV_OWNERREAD == CLEAR

50 && attributes.TPMA_NV_PPREAD == CLEAR

51 && attributes.TPMA_NV_AUTHREAD == CLEAR

52 && attributes.TPMA_NV_POLICYREAD == CLEAR)

53 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

54

55 // There must be a way to write the index unless it is a bit field

56 // (can set up the bit field so that it is only write with NV_TestAndSet

57 // and can only be deleted)

58 if(attributes.TPMA_NV_OWNERWRITE == CLEAR

59 && attributes.TPMA_NV_PPWRITE == CLEAR

60 && attributes.TPMA_NV_AUTHWRITE == CLEAR

61 && attributes.TPMA_NV_POLICYWRITE == CLEAR

62 && attributes.TPMA_NV_BITS == CLEAR)

63 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

64

65 // Make sure that no attribute is used that is not supported by the proper

66 // command

67 #if CC_NV_Increment == NO

68 if(attributes.TPMA_NV_COUNTER == SET)

69 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

70 #endif

71 #if CC_NV_SetBits == NO

72 if(attributes.TPMA_NV_BITS == SET)

73 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

74 #endif

75 #if CC_NV_Extend == NO

76 if(attributes.TPMA_NV_EXTEND == SET)

77 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

78 #endif

79 #if CC_NV_UndefineSpaceSpecial == NO

80 if(attributes.TPMA_NV_POLICY_DELETE == SET)

81 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

82 #endif

83

84 // Can be COUNTER or BITS or EXTEND but not more than one

85 if(attributes.TPMA_NV_COUNTER == SET

86 && attributes.TPMA_NV_BITS == SET)

87 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

88 if(attributes.TPMA_NV_COUNTER == SET

89 && attributes.TPMA_NV_EXTEND == SET)

90 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

91 if(attributes.TPMA_NV_BITS == SET

92 && attributes.TPMA_NV_EXTEND == SET)

93 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

94

95 // An index with TPMA_NV_CLEAR_STCLEAR can't be a counter

96 if(attributes.TPMA_NV_CLEAR_STCLEAR == SET

97 && attributes.TPMA_NV_COUNTER == SET)

98 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

99

100 // The index is allowed to have one of GLOBALLOCK or WRITEDEFINE SET

101 if(attributes.TPMA_NV_GLOBALLOCK == SET

102 && attributes.TPMA_NV_WRITEDEFINE == SET)

103 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

104

105 // Make sure that the creator of the index can delete the index

106 if((in->publicInfo.t.nvPublic.attributes.TPMA_NV_PLATFORMCREATE == SET

107 && in->authHandle == TPM_RH_OWNER

108)

109 || (in->publicInfo.t.nvPublic.attributes.TPMA_NV_PLATFORMCREATE == CLEAR

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 393

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

110 && in->authHandle == TPM_RH_PLATFORM

111)

112)

113 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_authHandle;

114

115 // If TPMA_NV_POLICY_DELETE is SET, then the index must be defined by

116 // the platform

117 if(in->publicInfo.t.nvPublic.attributes.TPMA_NV_POLICY_DELETE == SET

118 && TPM_RH_PLATFORM != in->authHandle

119)

120 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

121

122 // If the NV index is used as a PCR, the data size must match the digest

123 // size

124 if(in->publicInfo.t.nvPublic.attributes.TPMA_NV_EXTEND == SET

125 && in->publicInfo.t.nvPublic.dataSize != nameSize

126)

127 return TPM_RC_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

128

129 // See if the index is already defined. Error returns from NvIsUndefinedIndex()

130 // are TPM_RC_NV_DEFINED or TPM_RC_HIERARCHY

131 result = NvIsUndefinedIndex(in->publicInfo.t.nvPublic.nvIndex);

132 if(result != TPM_RC_SUCCESS)

133 return RcSafeAddToResult(result, RC_NV_DefineSpace_publicInfo);

134

135 // Internal Data Update

136 // define the space. A TPM_RC_NV_SPACE error may be returned at this point

137 result = NvDefineIndex(&in->publicInfo.t.nvPublic, &in->auth);

138 if(result != TPM_RC_SUCCESS)

139 return result;

140

141 return TPM_RC_SUCCESS;

142

143 }

Part 3: Commands Trusted Platform Module Library

Page 394 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.4 TPM2_NV_UndefineSpace

33.4.1 General Description

This command removes an Index from the TPM.

If nvIndex is not defined, the TPM shall return TPM_RC_NV_DEFINED.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE attribute SET, the TPM shall

return TPM_RC_NV_AUTHORITY unless platformAuth is provided.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with platformAuth.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 395

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.4.2 Command and Response

Table 197 — TPM2_NV_UndefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to remove from NV space

Auth Index: None

Table 198 — TPM2_NV_UndefineSpace Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 396 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.4.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_UndefineSpace_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is SET in the Index referenced by
nvIndex so this command may not be used to delete this Index (see
TPM2_NV_UndefineSpaceSpecial())

TPM_RC_NV_AUTHORIZATION attempt to use ownerAuth to delete an index created by the platform

3 TPM_RC

4 TPM2_NV_UndefineSpace(

5 NV_UndefineSpace_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 NV_INDEX nvIndex;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 result = NvIsAvailable();

15 if(result != TPM_RC_SUCCESS) return result;

16

17 // Input Validation

18

19 // Get NV index info

20 NvGetIndexInfo(in->nvIndex, &nvIndex);

21

22 // This command can't be used to delete an index with TPMA_NV_POLICY_DELETE SET

23 if(SET == nvIndex.publicArea.attributes.TPMA_NV_POLICY_DELETE)

24 return TPM_RC_ATTRIBUTES + RC_NV_UndefineSpace_nvIndex;

25

26 // The owner may only delete an index that was defined with ownerAuth. The

27 // platform may delete an index that was created with either auth.

28 if(in->authHandle == TPM_RH_OWNER

29 && nvIndex.publicArea.attributes.TPMA_NV_PLATFORMCREATE == SET)

30 return TPM_RC_NV_AUTHORIZATION;

31

32 // Internal Data Update

33

34 // Call implementation dependent internal routine to delete NV index

35 NvDeleteEntity(in->nvIndex);

36

37 return TPM_RC_SUCCESS;

38 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 397

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.5 TPM2_NV_UndefineSpaceSpecial

33.5.1 General Description

This command allows removal of a platform-created NV Index that has TPMA_NV_POLICY_DELETE

SET.

This command requires that the policy of the NV Index be satisfied before the NV Index may be deleted.

Because administrative role is required, the policy must contain a command that sets the policy command

code to TPM_CC_NV_UndefineSpaceSpecial.

If nvIndex is not defined, the TPM shall return TPM_RC_NV_DEFINED.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE or

TPMA_NV_POLICY_DELETE attribute CLEAR, the TPM shall return TPM_RC_NV_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with TPM2_UndefineSpace ().

Part 3: Commands Trusted Platform Module Library

Page 398 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.5.2 Command and Response

Table 199 — TPM2_NV_UndefineSpaceSpecial Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpaceSpecial {NV}

TPMI_RH_NV_INDEX @nvIndex

Index to be deleted

Auth Index: 1

Auth Role: ADMIN

TPMI_RH_PLATFORM @platform

TPM_RH_PLATFORM + {PP}

Auth Index: 2

Auth Role: USER

Table 200 — TPM2_NV_UndefineSpaceSpecial Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 399

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.5.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_UndefineSpaceSpecial_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is not SET in the Index referenced by nvIndex

3 TPM_RC

4 TPM2_NV_UndefineSpaceSpecial(

5 NV_UndefineSpaceSpecial_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 NV_INDEX nvIndex;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 result = NvIsAvailable();

15 if(result != TPM_RC_SUCCESS)

16 return result;

17

18 // Input Validation

19

20 // Get NV index info

21 NvGetIndexInfo(in->nvIndex, &nvIndex);

22

23 // This operation only applies when the TPMA_NV_POLICY_DELETE attribute is SET

24 if(CLEAR == nvIndex.publicArea.attributes.TPMA_NV_POLICY_DELETE)

25 return TPM_RC_ATTRIBUTES + RC_NV_UndefineSpaceSpecial_nvIndex;

26

27 // Internal Data Update

28

29 // Call implementation dependent internal routine to delete NV index

30 NvDeleteEntity(in->nvIndex);

31

32 return TPM_RC_SUCCESS;

33 }

Part 3: Commands Trusted Platform Module Library

Page 400 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.6 TPM2_NV_ReadPublic

33.6.1 General Description

This command is used to read the public area and Name of an NV Index. The public area of an Index is

not privacy-sensitive and no authorization is required to read this data.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 401

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.6.2 Command and Response

Table 201 — TPM2_NV_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadPublic

TPMI_RH_NV_INDEX nvIndex
the NV Index

Auth Index: None

Table 202 — TPM2_NV_ReadPublic Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_NV_PUBLIC nvPublic the public area of the NV Index

TPM2B_NAME nvName the Name of the nvIndex

Part 3: Commands Trusted Platform Module Library

Page 402 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.6.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_ReadPublic_fp.h"

3 TPM_RC

4 TPM2_NV_ReadPublic(

5 NV_ReadPublic_In *in, // IN: input parameter list

6 NV_ReadPublic_Out *out // OUT: output parameter list

7)

8 {

9 NV_INDEX nvIndex;

10

11 // Command Output

12

13 // Get NV index info

14 NvGetIndexInfo(in->nvIndex, &nvIndex);

15

16 // Copy data to output

17 out->nvPublic.t.nvPublic = nvIndex.publicArea;

18

19 // Compute NV name

20 out->nvName.t.size = NvGetName(in->nvIndex, out->nvName.t.name);

21

22 return TPM_RC_SUCCESS;

23 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 403

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.7 TPM2_NV_Write

33.7.1 General Description

This command writes a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPWRITE;

TPMA_NV_OWNERWRITE; TPMA_NV_AUTHWRITE; and, if TPMA_NV_POLICY_WRITE is SET, the

authPolicy of the NV Index.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 1 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

If TPMA_NV_COUNTER, TPMA_NV_BITS or TPMA_NV_EXTEND of the NV Index is SET, then the

TPM shall return TPM_RC_NV_ATTRIBUTE.

If the size of the data parameter plus the offset parameter adds to a value that is greater than the size of

the NV Index data, the TPM shall return TPM_RC_NV_RANGE and not write any data to the NV Index.

If the TPMA_NV_WRITEALL attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_RANGE if the size of the data parameter of the command is not the same as the data field

of the NV Index.

If all checks succeed, the TPM will merge the data.size octets of data.buffer value into the nvIndex→data

starting at nvIndex→data[offset]. If the NV memory is implemented with a technology that has endurance

limitations, the TPM shall check that the merged data is different from the current contents of the NV

Index and only perform a write to NV memory if they differ.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 2 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined or the NV Index is
cleared.

Part 3: Commands Trusted Platform Module Library

Page 404 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.7.2 Command and Response

Table 203 — TPM2_NV_Write Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Write {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to write

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to write

UINT16 offset the offset into the NV Area

Table 204 — TPM2_NV_Write Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 405

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.7.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_Write_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES Index referenced by nvIndex has either TPMA_NV_BITS,
TPMA_NV_COUNTER, or TPMA_NV_EVENT attribute SET

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED Index referenced by nvIndex is write locked

TPM_RC_NV_RANGE if TPMA_NV_WRITEALL is SET then the write is not the size of the
Index referenced by nvIndex; otherwise, the write extends beyond the

limits of the Index

4 TPM_RC

5 TPM2_NV_Write(

6 NV_Write_In *in // IN: input parameter list

7)

8 {

9 NV_INDEX nvIndex;

10 TPM_RC result;

11

12 // Input Validation

13

14 // Get NV index info

15 NvGetIndexInfo(in->nvIndex, &nvIndex);

16

17 // common access checks. NvWrtieAccessChecks() may return

18 // TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

19 result = NvWriteAccessChecks(in->authHandle, in->nvIndex);

20 if(result != TPM_RC_SUCCESS)

21 return result;

22

23 // Bits index, extend index or counter index may not be updated by

24 // TPM2_NV_Write

25 if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER == SET

26 || nvIndex.publicArea.attributes.TPMA_NV_BITS == SET

27 || nvIndex.publicArea.attributes.TPMA_NV_EXTEND == SET)

28 return TPM_RC_ATTRIBUTES;

29

30 // Too much data

31 if((in->data.t.size + in->offset) > nvIndex.publicArea.dataSize)

32 return TPM_RC_NV_RANGE;

33

34 // If this index requires a full sized write, make sure that input range is

35 // full sized

36 if(nvIndex.publicArea.attributes.TPMA_NV_WRITEALL == SET

37 && in->data.t.size < nvIndex.publicArea.dataSize)

38 return TPM_RC_NV_RANGE;

39

40 // Internal Data Update

41

42 // Perform the write. This called routine will SET the TPMA_NV_WRITTEN

43 // attribute if it has not already been SET. If NV isn't available, an error

44 // will be returned.

45 return NvWriteIndexData(in->nvIndex, &nvIndex, in->offset,

Part 3: Commands Trusted Platform Module Library

Page 406 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

46 in->data.t.size, in->data.t.buffer);

47

48 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 407

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.8 TPM2_NV_Increment

33.8.1 General Description

This command is used to increment the value in an NV Index that has TPMA_NV_COUNTER SET. The

data value of the NV Index is incremented by one.

NOTE 1 The NV Index counter is an unsigned value.

If TPMA_NV_COUNTER is not SET in the indicated NV Index, the TPM shall return

TPM_RC_ATTRIBUTES.

If TPMA_NV_WRITELOCKED is SET, the TPM shall return TPM_RC_NV_LOCKED.

If TPMA_NV_WRITTEN is CLEAR, it will be SET.

If TPMA_NV_ORDERLY is SET, and the difference between the volatile and non-volatile versions of this

field is greater than MAX_ORDERLY_COUNT, then the non-volatile version of the counter is updated.

NOTE 2 If a TPM implements TPMA_NV_ORDERLY and an Index is defined with TPMA_NV_ORDERLY and
TPM_NV_COUNTER both SET, then in the Event of a non-orderly shutdown, the non-volatile value
for the counter Index will be advanced by MAX_ORDERLY_COUNT at the next TPM2_Startup().

NOTE 3 An allowed implementation would keep a counter value in NV and a resettable counter in RAM. The
reported value of the NV Index would be the sum of the two values. When the RAM count increments
past the maximum allowed value (MAX_ORDERLY_COUNT), the non-volatile version of the count is
updated with the sum of the values and the RAM count is reset to zero.

Part 3: Commands Trusted Platform Module Library

Page 408 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.8.2 Command and Response

Table 205 — TPM2_NV_Increment Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Increment {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to increment

Auth Index: None

Table 206 — TPM2_NV_Increment Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 409

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.8.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_Increment_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES NV index is not a counter

TPM_RC_NV_AUTHORIZATION authorization failure

TPM_RC_NV_LOCKED Index is write locked

4 TPM_RC

5 TPM2_NV_Increment(

6 NV_Increment_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_INDEX nvIndex;

11 UINT64 countValue;

12

13

14 // Input Validation

15

16 // Common access checks, a TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

17 // error may be returned at this point

18 result = NvWriteAccessChecks(in->authHandle, in->nvIndex);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 // Get NV index info

23 NvGetIndexInfo(in->nvIndex, &nvIndex);

24

25 // Make sure that this is a counter

26 if(nvIndex.publicArea.attributes.TPMA_NV_COUNTER != SET)

27 return TPM_RC_ATTRIBUTES + RC_NV_Increment_nvIndex;

28

29 // Internal Data Update

30

31 // If counter index is not been written, initialize it

32 if(nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)

33 countValue = NvInitialCounter();

34 else

35 // Read NV data in native format for TPM CPU.

36 NvGetIntIndexData(in->nvIndex, &nvIndex, &countValue);

37

38 // Do the increment

39 countValue++;

40

41 // If this is an orderly counter that just rolled over, need to be able to

42 // write to NV to proceed. This check is done here, because NvWriteIndexData()

43 // does not see if the update is for counter rollover.

44 if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == SET

45 && (countValue & MAX_ORDERLY_COUNT) == 0)

46 {

47 result = NvIsAvailable();

48 if(result != TPM_RC_SUCCESS)

49 return result;

50

51 // Need to force an NV update

Part 3: Commands Trusted Platform Module Library

Page 410 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

52 g_updateNV = TRUE;

53 }

54

55 // Write NV data back. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may

56 // be returned at this point. If necessary, this function will set the

57 // TPMA_NV_WRITTEN attribute

58 return NvWriteIndexData(in->nvIndex, &nvIndex, 0, 8, &countValue);

59

60 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 411

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.9 TPM2_NV_Extend

33.9.1 General Description

This command extends a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace.

If TPMA_NV_EXTEND is not SET, then the TPM shall return TPM_RC_ATTRIBUTES.

Proper write authorizations are required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 1 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined or the NV Index is
cleared.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 2 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

The data.buffer parameter may be larger than the defined size of the NV Index.

The Index will be updated by:

 nvIndex→datanew ≔ HnameAkg(nvIndex→dataold || data.buffer) (38)

where

HnameAkg() the hash algorithm indicated in nvIndex→nameAlg

nvIndex→data the value of the data field in the NV Index

data.buffer the data buffer of the command parameter

NOTE 3 If TPMA_NV_WRITTEN is CLEAR, then nvIndex→data is a Zero Digest.

Part 3: Commands Trusted Platform Module Library

Page 412 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.9.2 Command and Response

Table 207 — TPM2_NV_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Extend {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to extend

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to extend

Table 208 — TPM2_NV_Extend Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 413

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.9.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_Extend_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_EXTEND attribute is not SET in the Index referenced
by nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_Extend(

6 NV_Extend_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_INDEX nvIndex;

11

12 TPM2B_DIGEST oldDigest;

13 TPM2B_DIGEST newDigest;

14 HASH_STATE hashState;

15

16 // Input Validation

17

18 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

19 // or TPM_RC_NV_LOCKED

20 result = NvWriteAccessChecks(in->authHandle, in->nvIndex);

21 if(result != TPM_RC_SUCCESS)

22 return result;

23

24 // Get NV index info

25 NvGetIndexInfo(in->nvIndex, &nvIndex);

26

27 // Make sure that this is an extend index

28 if(nvIndex.publicArea.attributes.TPMA_NV_EXTEND != SET)

29 return TPM_RC_ATTRIBUTES + RC_NV_Extend_nvIndex;

30

31 // If the Index is not-orderly, or if this is the first write, NV will

32 // need to be updated.

33 if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == CLEAR

34 || nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)

35 {

36 // Check if NV is available. NvIsAvailable may return TPM_RC_NV_UNAVAILABLE

37 // TPM_RC_NV_RATE or TPM_RC_SUCCESS.

38 result = NvIsAvailable();

39 if(result != TPM_RC_SUCCESS)

40 return result;

41 }

42

43 // Internal Data Update

44

45 // Perform the write.

46 oldDigest.t.size = CryptGetHashDigestSize(nvIndex.publicArea.nameAlg);

47 if(nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == SET)

48 {

49 NvGetIndexData(in->nvIndex, &nvIndex, 0,

Part 3: Commands Trusted Platform Module Library

Page 414 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

50 oldDigest.t.size, oldDigest.t.buffer);

51 }

52 else

53 {

54 MemorySet(oldDigest.t.buffer, 0, oldDigest.t.size);

55 }

56 // Start hash

57 newDigest.t.size = CryptStartHash(nvIndex.publicArea.nameAlg, &hashState);

58

59 // Adding old digest

60 CryptUpdateDigest2B(&hashState, &oldDigest.b);

61

62 // Adding new data

63 CryptUpdateDigest2B(&hashState, &in->data.b);

64

65 // Complete hash

66 CryptCompleteHash2B(&hashState, &newDigest.b);

67

68 // Write extended hash back.

69 // Note, this routine will SET the TPMA_NV_WRITTEN attribute if necessary

70 return NvWriteIndexData(in->nvIndex, &nvIndex, 0,

71 newDigest.t.size, newDigest.t.buffer);

72 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 415

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.10 TPM2_NV_SetBits

33.10.1 General Description

This command is used to SET bits in an NV Index that was created as a bit field. Any number of bits from

0 to 64 may be SET. The contents of data are ORed with the current contents of the NV Index starting at

offset. The checks on data and offset are the same as for TPM2_NV_Write.

If TPMA_NV_WRITTEN is not SET, then, for the purposes of this command, the NV Index is considered

to contain all zero bits and data is OR with that value.

If TPMA_NV_BITS is not SET, then the TPM shall return TPM_RC_ATTRIBUTES.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE TPMA_NV_WRITTEN will be SET even if no bits were SET.

Part 3: Commands Trusted Platform Module Library

Page 416 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.10.2 Command and Response

Table 209 — TPM2_NV_SetBits Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_SetBits {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
NV Index of the area in which the bit is to be set

Auth Index: None

UINT64 bits the data to OR with the current contents

Table 210 — TPM2_NV_SetBits Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 417

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.10.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_SetBits_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_BITS attribute is not SET in the Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_SetBits(

6 NV_SetBits_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_INDEX nvIndex;

11 UINT64 bitValue;

12

13

14

15 // Input Validation

16

17 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

18 // or TPM_RC_NV_LOCKED

19 // error may be returned at this point

20 result = NvWriteAccessChecks(in->authHandle, in->nvIndex);

21 if(result != TPM_RC_SUCCESS)

22 return result;

23

24 // Get NV index info

25 NvGetIndexInfo(in->nvIndex, &nvIndex);

26

27 // Make sure that this is a bit field

28 if(nvIndex.publicArea.attributes.TPMA_NV_BITS != SET)

29 return TPM_RC_ATTRIBUTES + RC_NV_SetBits_nvIndex;

30

31 // If the Index is not-orderly, or if this is the first write, NV will

32 // need to be updated.

33 if(nvIndex.publicArea.attributes.TPMA_NV_ORDERLY == CLEAR

34 || nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)

35 {

36 // Check if NV is available. NvIsAvailable may return TPM_RC_NV_UNAVAILABLE

37 // TPM_RC_NV_RATE or TPM_RC_SUCCESS.

38 result = NvIsAvailable();

39 if(result != TPM_RC_SUCCESS)

40 return result;

41 }

42

43 // Internal Data Update

44

45 // If index is not been written, initialize it

46 if(nvIndex.publicArea.attributes.TPMA_NV_WRITTEN == CLEAR)

47 bitValue = 0;

48 else

49 // Read index data

Part 3: Commands Trusted Platform Module Library

Page 418 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

50 NvGetIntIndexData(in->nvIndex, &nvIndex, &bitValue);

51

52 // OR in the new bit setting

53 bitValue |= in->bits;

54

55 // Write index data back. If necessary, this function will SET

56 // TPMA_NV_WRITTEN.

57 return NvWriteIndexData(in->nvIndex, &nvIndex, 0, 8, &bitValue);

58

59 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 419

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.11 TPM2_NV_WriteLock

33.11.1 General Description

If the TPMA_NV_WRITEDEFINE or TPMA_NV_WRITE_STCLEAR attributes of an NV location are SET,

then this command may be used to inhibit further writes of the NV Index.

Proper write authorization is required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

It is not an error if TPMA_NV_WRITELOCKED for the NV Index is already SET.

If neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR of the NV Index is SET, then the

TPM shall return TPM_RC_ATTRIBUTES.

If the command is properly authorized and TPMA_NV_WRITE_STCLEAR or TPMA_NV_WRITEDEFINE

is SET, then the TPM shall SET TPMA_NV_WRITELOCKED for the NV Index.

TPMA_NV_WRITELOCKED will be clear on the next TPM2_Startup(TPM_SU_CLEAR) unless

TPMA_NV_WRITEDEFINE is SET.

Part 3: Commands Trusted Platform Module Library

Page 420 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.11.2 Command and Response

Table 211 — TPM2_NV_WriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_WriteLock {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to lock

Auth Index: None

Table 212 — TPM2_NV_WriteLock Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 421

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.11.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_WriteLock_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES neither TPMA_NV_WRITEDEFINE nor
TPMA_NV_WRITE_STCLEAR is SET in Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_WriteLock(

6 NV_WriteLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_INDEX nvIndex;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 result = NvIsAvailable();

16 if(result != TPM_RC_SUCCESS)

17 return result;

18

19 // Input Validation:

20

21 // Common write access checks, a TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

22 // error may be returned at this point

23 result = NvWriteAccessChecks(in->authHandle, in->nvIndex);

24 if(result != TPM_RC_SUCCESS)

25 {

26 if(result == TPM_RC_NV_AUTHORIZATION)

27 return TPM_RC_NV_AUTHORIZATION;

28 // If write access failed because the index is already locked, then it is

29 // no error.

30 return TPM_RC_SUCCESS;

31 }

32

33

34 // Get NV index info

35 NvGetIndexInfo(in->nvIndex, &nvIndex);

36

37 // if non of TPMA_NV_WRITEDEFINE or TPMA_NV_WRITE_STCLEAR is set, the index

38 // can not be write-locked

39 if(nvIndex.publicArea.attributes.TPMA_NV_WRITEDEFINE == CLEAR

40 && nvIndex.publicArea.attributes.TPMA_NV_WRITE_STCLEAR == CLEAR)

41 return TPM_RC_ATTRIBUTES + RC_NV_WriteLock_nvIndex;

42

43 // Internal Data Update

44

45 // Set the WRITELOCK attribute

46 nvIndex.publicArea.attributes.TPMA_NV_WRITELOCKED = SET;

47

48 // Write index info back

49 NvWriteIndexInfo(in->nvIndex, &nvIndex);

50

Part 3: Commands Trusted Platform Module Library

Page 422 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

51 return TPM_RC_SUCCESS;

52 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 423

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.12 TPM2_NV_GlobalWriteLock

33.12.1 General Description

The command will SET TPMA_NV_WRITELOCKED for all indexes that have their

TPMA_NV_GLOBALLOCK attribute SET.

If an Index has both TPMA_NV_WRITELOCKED and TPMA_NV_WRITEDEFINE SET, then this

command will permanently lock the NV Index for writing.

NOTE If an Index is defined with TPMA_NV_GLOBALLOCK SET, then the global lock does not apply until
the next time this command is executed.

This command requires either platformAuth/platformPolicy or ownerAuth/ownerPolicy.

Part 3: Commands Trusted Platform Module Library

Page 424 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.12.2 Command and Response

Table 213 — TPM2_NV_GlobalWriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_GlobalWriteLock

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 214 — TPM2_NV_GlobalWriteLock Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 425

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.12.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_GlobalWriteLock_fp.h"

3 TPM_RC

4 TPM2_NV_GlobalWriteLock(

5 NV_GlobalWriteLock_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9

10 // Input parameter is not reference in command action

11 in = NULL; // to silence compiler warnings.

12

13 // The command needs NV update. Check if NV is available.

14 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

15 // this point

16 result = NvIsAvailable();

17 if(result != TPM_RC_SUCCESS)

18 return result;

19

20 // Internal Data Update

21

22 // Implementation dependent method of setting the global lock

23 NvSetGlobalLock();

24

25 return TPM_RC_SUCCESS;

26 }

Part 3: Commands Trusted Platform Module Library

Page 426 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.13 TPM2_NV_Read

33.13.1 General Description

This command reads a value from an area in NV memory previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

NOTE If authorization sessions are present, they are checked before the read-lock status of the NV Index
is checked.

If the size parameter plus the offset parameter adds to a value that is greater than the size of the NV

Index data area, the TPM shall return TPM_RC_NV_RANGE and not read any data from the NV Index.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UINITIALIZED even if size is zero.

The data parameter in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 427

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.13.2 Command and Response

Table 215 — TPM2_NV_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Read

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be read

Auth Index: None

UINT16 size number of octets to read

UINT16 offset

octet offset into the area

This value shall be less than or equal to the size of the
nvIndex data.

Table 216 — TPM2_NV_Read Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_NV_BUFFER data the data read

Part 3: Commands Trusted Platform Module Library

Page 428 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.13.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_Read_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is read locked

TPM_RC_NV_RANGE read range defined by size and offset is outside the range of the
Index referenced by nvIndex

TPM_RC_NV_UNINITIALIZED the Index referenced by nvIndex has not been initialized (written)

4 TPM_RC

5 TPM2_NV_Read(

6 NV_Read_In *in, // IN: input parameter list

7 NV_Read_Out *out // OUT: output parameter list

8)

9 {

10 NV_INDEX nvIndex;

11 TPM_RC result;

12

13 // Input Validation

14

15 // Get NV index info

16 NvGetIndexInfo(in->nvIndex, &nvIndex);

17

18 // Common read access checks. NvReadAccessChecks() returns

19 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

20 // error may be returned at this point

21 result = NvReadAccessChecks(in->authHandle, in->nvIndex);

22 if(result != TPM_RC_SUCCESS)

23 return result;

24

25 // Too much data

26 if((in->size + in->offset) > nvIndex.publicArea.dataSize)

27 return TPM_RC_NV_RANGE;

28

29 // Command Output

30

31 // Set the return size

32 out->data.t.size = in->size;

33 // Perform the read

34 NvGetIndexData(in->nvIndex, &nvIndex, in->offset, in->size, out->data.t.buffer);

35

36 return TPM_RC_SUCCESS;

37 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 429

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.14 TPM2_NV_ReadLock

33.14.1 General Description

If TPMA_NV_READ_STCLEAR is SET in an Index, then this command may be used to prevent further

reads of the NV Index until the next TPM2_Startup (TPM_SU_CLEAR).

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

NOTE Only an entity that may read an Index is allowed to lock the NV Index for read.

If the command is properly authorized and TPMA_NV_READ_STCLEAR of the NV Index is SET, then the

TPM shall SET TPMA_NV_READLOCKED for the NV Index. If TPMA_NV_READ_STCLEAR of the NV

Index is CLEAR, then the TPM shall return TPM_RC_NV_ATTRIBUTE. TPMA_NV_READLOCKED will

be CLEAR by the next TPM2_Startup(TPM_SU_CLEAR).

It is not an error to use this command for an Index that is already locked for reading.

An Index that had not been written may be locked for reading.

Part 3: Commands Trusted Platform Module Library

Page 430 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.14.2 Command and Response

Table 217 — TPM2_NV_ReadLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadLock

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be locked

Auth Index: None

Table 218 — TPM2_NV_ReadLock Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 431

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.14.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_ReadLock_fp.h"

3 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_READ_STCLEAR is not SET so Index referenced by
nvIndex may not be write locked

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_ReadLock(

6 NV_ReadLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_INDEX nvIndex;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 result = NvIsAvailable();

16 if(result != TPM_RC_SUCCESS) return result;

17

18 // Input Validation

19

20 // Common read access checks. NvReadAccessChecks() returns

21 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

22 // error may be returned at this point

23 result = NvReadAccessChecks(in->authHandle, in->nvIndex);

24 if(result != TPM_RC_SUCCESS)

25 {

26 if(result == TPM_RC_NV_AUTHORIZATION)

27 return TPM_RC_NV_AUTHORIZATION;

28 // Index is already locked for write

29 else if(result == TPM_RC_NV_LOCKED)

30 return TPM_RC_SUCCESS;

31

32 // If NvReadAccessChecks return TPM_RC_NV_UNINITALIZED, then continue.

33 // It is not an error to read lock an uninitialized Index.

34 }

35

36 // Get NV index info

37 NvGetIndexInfo(in->nvIndex, &nvIndex);

38

39 // if TPMA_NV_READ_STCLEAR is not set, the index can not be read-locked

40 if(nvIndex.publicArea.attributes.TPMA_NV_READ_STCLEAR == CLEAR)

41 return TPM_RC_ATTRIBUTES + RC_NV_ReadLock_nvIndex;

42

43 // Internal Data Update

44

45 // Set the READLOCK attribute

46 nvIndex.publicArea.attributes.TPMA_NV_READLOCKED = SET;

47 // Write NV info back

48 NvWriteIndexInfo(in->nvIndex, &nvIndex);

49

50 return TPM_RC_SUCCESS;

51 }

Part 3: Commands Trusted Platform Module Library

Page 432 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.15 TPM2_NV_ChangeAuth

33.15.1 General Description

This command allows the authorization secret for an NV Index to be changed.

If successful, the authorization secret (authValue) of the NV Index associated with nvIndex is changed.

This command requires that a policy session be used for authorization of nvIndex so that the ADMIN role

may be asserted and that commandCode in the policy session context shall be

TPM_CC_NV_ChangeAuth. That is, the policy must contain a specific authorization for changing the

authorization value of the referenced object.

NOTE The reason for this restriction is to ensure that the admin istrative actions on nvIndex require explicit
approval while other commands may use policy that is not command-dependent.

The size of the newAuth value may be no larger than the size of authorization indicated when the NV

Index was defined.

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 433

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.15.2 Command and Response

Table 219 — TPM2_NV_ChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ChangeAuth {NV}

TPMI_RH_NV_INDEX @nvIndex

handle of the object

Auth Index: 1

Auth Role: ADMIN

TPM2B_AUTH newAuth new authorization secret

Table 220 — TPM2_NV_ChangeAuth Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 434 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.15.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "NV_ChangeAuth_fp.h"

Error
Returns

Meaning

TPM_RC_SIZE newAuth size is larger than the digest size of the Name algorithm for the Index
referenced by 'nvIndex

3 TPM_RC

4 TPM2_NV_ChangeAuth(

5 NV_ChangeAuth_In *in // IN: input parameter list

6)

7 {

8 TPM_RC result;

9 NV_INDEX nvIndex;

10

11 // Input Validation

12 // Check if NV is available. NvIsAvailable may return TPM_RC_NV_UNAVAILABLE

13 // TPM_RC_NV_RATE or TPM_RC_SUCCESS.

14 result = NvIsAvailable();

15 if(result != TPM_RC_SUCCESS) return result;

16

17 // Read index info from NV

18 NvGetIndexInfo(in->nvIndex, &nvIndex);

19

20 // Remove any trailing zeros that might have been added by the caller

21 // to obfuscate the size.

22 MemoryRemoveTrailingZeros(&(in->newAuth));

23

24 // Make sure that the authValue is no larger than the nameAlg of the Index

25 if(in->newAuth.t.size > CryptGetHashDigestSize(nvIndex.publicArea.nameAlg))

26 return TPM_RC_SIZE + RC_NV_ChangeAuth_newAuth;

27

28 // Internal Data Update

29 // Change auth

30 nvIndex.authValue = in->newAuth;

31 // Write index info back to NV

32 NvWriteIndexInfo(in->nvIndex, &nvIndex);

33

34 return TPM_RC_SUCCESS;

35 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 435

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.16 TPM2_NV_Certify

33.16.1 General Description

The purpose of this command is to certify the contents of an NV Index or portion of an NV Index.

If proper authorization for reading the NV Index is provided, the portion of the NV Index selected by size

and offset are included in an attestation block and signed using the key indicated by signHandle. The

attestation also includes size and offset so that the range of the data can be determined.

NOTE See 20.1 for description of how the signing scheme is selected.

Part 3: Commands Trusted Platform Module Library

Page 436 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

33.16.2 Command and Response

Table 221 — TPM2_NV_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Certify

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value
for the NV Index

Auth Index: 2

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
Index for the area to be certified

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

UINT16 size number of octets to certify

UINT16 offset

octet offset into the area

This value shall be less than or equal to the size of the
nvIndex data.

Table 222 — TPM2_NV_Certify Response

Type Name Description

TPM_ST tag see clause 8

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” Published Page 437

Level 00 Revision 00.96 Copyright © TCG 2006-2013 March 15, 2013

33.16.3 Detailed Actions

1 #include "InternalRoutines.h"

2 #include "Attest_spt_fp.h"

3 #include "NV_spt_fp.h"

4 #include "NV_Certify_fp.h"

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_KEY signHandle does not reference a signing key

TPM_RC_NV_LOCKED Index referenced by nvIndex is locked for reading

TPM_RC_NV_RANGE offset plus size extends outside of the data range of the Index
referenced by nvIndex

TPM_RC_NV_UNINITIALIZED Index referenced by nvIndex has not been written

TPM_RC_SCHEME inScheme is not an allowed value for the key definition

5 TPM_RC

6 TPM2_NV_Certify(

7 NV_Certify_In *in, // IN: input parameter list

8 NV_Certify_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 NV_INDEX nvIndex;

13 TPMS_ATTEST certifyInfo;

14

15 // Attestation command may cause the orderlyState to be cleared due to

16 // the reporting of clock info. If this is the case, check if NV is

17 // available first

18 if(gp.orderlyState != SHUTDOWN_NONE)

19 {

20 // The command needs NV update. Check if NV is available.

21 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

22 // this point

23 result = NvIsAvailable();

24 if(result != TPM_RC_SUCCESS)

25 return result;

26 }

27

28 // Input Validation

29

30 // Get NV index info

31 NvGetIndexInfo(in->nvIndex, &nvIndex);

32

33 // Common access checks. A TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

34 // error may be returned at this point

35 result = NvReadAccessChecks(in->authHandle, in->nvIndex);

36 if(result != TPM_RC_SUCCESS)

37 return result;

38

39 // See if the range to be certified is out of the bounds of the defined

40 // Index

41 if((in->size + in->offset) > nvIndex.publicArea.dataSize)

42 return TPM_RC_NV_RANGE;

43

44 // Command Output

Part 3: Commands Trusted Platform Module Library

Page 438 Published Family “2.0”

March 15, 2013 Copyright © TCG 2006-2013 Level 00 Revision 00.96

45

46 // Filling in attest information

47 // Common fields

48 // FillInAttestInfo can return TPM_RC_SCHEME or TPM_RC_KEY

49 result = FillInAttestInfo(in->signHandle,

50 &in->inScheme,

51 &in->qualifyingData,

52 &certifyInfo);

53 if(result != TPM_RC_SUCCESS)

54 {

55 if(result == TPM_RC_KEY)

56 return TPM_RC_KEY + RC_NV_Certify_signHandle;

57 else

58 return RcSafeAddToResult(result, RC_NV_Certify_inScheme);

59 }

60 // NV certify specific fields

61 // Attestation type

62 certifyInfo.type = TPM_ST_ATTEST_NV;

63

64 // Get the name of the index

65 certifyInfo.attested.nv.indexName.t.size =

66 NvGetName(in->nvIndex, certifyInfo.attested.nv.indexName.t.name);

67

68 // Set the return size

69 certifyInfo.attested.nv.nvContents.t.size = in->size;

70

71 // Set the offset

72 certifyInfo.attested.nv.offset = in->offset;

73

74 // Perform the read

75 NvGetIndexData(in->nvIndex, &nvIndex,

76 in->offset, in->size,

77 certifyInfo.attested.nv.nvContents.t.buffer);

78

79 // Sign attestation structure. A NULL signature will be returned if

80 // signHandle is TPM_RH_NULL. SignAttestInfo() may return TPM_RC_VALUE,

81 // TPM_RC_SCHEME or TPM_RC_ATTRUBUTES.

82 // Note: SignAttestInfo may return TPM_RC_ATTRIBUTES if the key is not a

83 // signing key but that was checked above. TPM_RC_VALUE would mean that the

84 // data to sign is too large but the data to sign is a digest

85 result = SignAttestInfo(in->signHandle,

86 &in->inScheme,

87 &certifyInfo,

88 &in->qualifyingData,

89 &out->certifyInfo,

90 &out->signature);

91 if(result != TPM_RC_SUCCESS)

92 return result;

93

94 // orderly state should be cleared because of the reporting of clock info

95 // if signing happens

96 if(in->signHandle != TPM_RH_NULL)

97 g_clearOrderly = TRUE;

98

99 return TPM_RC_SUCCESS;

100 }

