

ERRATA

Errata Version 1.1
March 2, 2017

FOR

TCG Trusted Platform Module Library

Family “2.0”
Level 00 Revision 1.38
September 29, 2016

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2017

mailto:admin@trustedcomputinggroup.org

 Errata for TCG Trusted Platform Module Library
 Family “2.0” Level 00 Revision 1.38

Page ii TCG Published
March 2, 2017 Copyright © TCG 2017 Errata Version 1.1

Disclaimers, Notices, and License Terms
THIS ERRATA IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE.

Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of substitute
goods or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or
special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use or
reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or
implied, is granted herein other than as follows: You may not copy or reproduce the document
or distribute it to others without written permission from TCG, except that you may freely do so
for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing,
or promoting information technology standards and best practices, so long as you distribute the
document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

http://www.trustedcomputinggroup.org/

Errata for TCG Trusted Platform Module Library
Family “2.0” Level 00 Revision 1.38

 TCG Published Page iii
Errata Version 1.1 Copyright © TCG 2017 March 2, 2017

CONTENTS
1. Introduction ... 1

2. Errata .. 1

2.1 Object Derivation... 1
2.1.1 Introduction .. 1

2.1.2 Incorrect KDF Seed ... 1

2.1.2.1 Code Fix ... 1

2.1.3 Incorrect Label and Context ... 1

2.1.3.1 Code Fix ... 1

2.1.4 Incorrect Byte Order .. 3
2.1.4.1 Code Fix ... 3

2.1.5 Derivation Parameters ... 4

2.2 Attribute Check for KEYEDHASH Objects .. 4

2.3 Attribute Check in TPM2_CreatePrimary .. 4

2.4 TPM2_ECC_Parameters .. 4

2.5 TPM2_DictionaryAttackParameters .. 4
2.6 Self-healing ... 5

2.7 TDES Key Parity Calculation .. 5

2.8 Mode validation in TPM2_EncryptDecrypt, and TPM2_EncryptDecrypt2 5

2.9 TPM2_Import – encryptedDuplication Check ... 5

2.10 TPM2_PolicyTemplate .. 5
2.11 TPMS_TIME_INFO.time ... 6

2.12 Separation Indicator 0x00 in KDFa ... 6

2.13 TPM2_EvictControl ... 6

2.14 TPM2B_TIMEOUT .. 6

2.15 Error Codes ... 6

2.15.1 Introduction .. 6
2.15.2 TPM2_StartAuthSession – key scheme .. 7

2.15.3 Lockout Mode .. 7

2.15.4 NV Locked ... 7

2.15.5 BnPointMul ... 7

Errata for TCG Trusted Platform Module Library
Family “2.0” Level 00 Revision 1.38

 TCG Published Page 1
Errata Version 1.1 Copyright © TCG 2017 March 2, 2017

1. Introduction
This document describes errata and clarifications for the TCG Trusted Platform Module Library Version
2.0 Revision 1.38 as published. The information in this document is likely – but not certain – to be
incorporated into a future version of the specification. Suggested fixes proposed in this document may be
modified before being published in a later TCG Specification. Therefore, the contents of this document
are not normative and only become normative when included in an updated version of the published
specification. Note that since the errata in this document are non-normative, the patent licensing rights
granted by Section 16.4 of the Bylaws do not apply.

2. Errata

2.1 Object Derivation

2.1.1 Introduction
This section summarizes errata with regards to Object Derivation in TPM2_CreateLoaded(). For
interoperability of Derived Objects, it is essential that all parties, given the same Derivation Parent and the
same Derivation Parameters, derive the same key. Therefore, external software that uses the Library
Spec reference code to implement Object Derivation outside of the TPM needs to consider the code fixes
in this section as well.

2.1.2 Incorrect KDF Seed
The reference code in Part 3, 12.9 TPM2_CreateLoaded uses an incorrect key in the key derivation
function (KDF) to generate a Derived Object. The reference code uses the Derivation Parent’s seedValue
instead of the Derivation Parent’s sensitive value. This affects the key generation of all types of Derived
Objects (TPM_ALG_SYMCIPHER, TPM_ALG_KEYEDHASH, and TPM_ALG_ECC).

This issue is caused by an incorrect parameter in the function call to DRBG_InstantiateSeededKdf(). To
fix this, the seed used for the KDF should be replaced with the sensitive value (see code fix in 2.1.2.1).
The correct KDF parameters for Object derivation are specified in Part 1, 28.4 Entropy for Derived
Objects.

2.1.2.1 Code Fix
Part 3, 12.9.3 Detailed Actions (of TPM2_CreateLoaded), line 73

 DRBG_InstantiateSeededKdf((KDF_STATE *)rand,
 scheme->details.xor.hashAlg,
 scheme->details.xor.kdf,
- &parent->sensitive.seedValue.b,
+ &parent->sensitive.sensitive.bits.b,
 &publicArea->unique.derive.label.b,
 &publicArea->unique.derive.context.b);

2.1.3 Incorrect Label and Context
The reference code in Part 3, 12.9 TPM2_CreateLoaded does not correctly include label and context in
the key derivation function (KDF) when a Derived Object of the type TPM_ALG_ECC is generated.

The reference code reuses the unique field in the public area of the object to store the label and context
parameters that are provided by the caller. However, the unique field is also used during the key
generation to output the ECC public key. As a result, the label and context values are overwritten and
incorrect parameters are used in the derivation of the sensitive value and seedValue. To fix this, a
separate structure variable needs to be allocated to store context and label (see code fixes in 2.1.3.1).

2.1.3.1 Code Fix
 Part 3, 12.9.3 Detailed Actions (of TPM2_CreateLoaded), line 16

 TPMT_PUBLIC *publicArea;

 Errata for TCG Trusted Platform Module Library
 Family “2.0” Level 00 Revision 1.38

Page 2 TCG Published
March 2, 2017 Copyright © TCG 2017 Errata Version 1.1

 RAND_STATE randState;
 RAND_STATE *rand = &randState;
+ TPMS_DERIVE labelContext;
// Input Validation

Part 3, 12.9.3 Detailed Actions (of TPM2_CreateLoaded), line 66

 return RcSafeAddToResult(result, RC_CreateLoaded_inPublic);
 // Process the template and sensitive areas to get the actual 'label' and
 // 'context' values to be used for this derivation.
- result = SetLabelAndContext(publicArea, &in->inSensitive.sensitive.data);
+ result = SetLabelAndContext(&labelContext, publicArea,
+ &in->inSensitive.sensitive.data);
 if(result != TPM_RC_SUCCESS)
 return result;
 // Set up the KDF for object generation

Part 3, 12.9.3 Detailed Actions (of TPM2_CreateLoaded), line 73

 DRBG_InstantiateSeededKdf((KDF_STATE *)rand,
 scheme->details.xor.hashAlg,
 scheme->details.xor.kdf,
 &parent->sensitive.sensitive.bits.b,
- &publicArea->unique.derive.label.b,
- &publicArea->unique.derive.context.b);
+ &labelContext.label.b,
+ &labelContext.context.b);
 // Clear the sensitive size so that the creation functions will not try
 // to use this value.
 in->inSensitive.sensitive.data.t.size = 0;

Part 4, 7.6.3.18 SetLabelAndContext(), line 1070

 TPM_RC
 SetLabelAndContext(
+ TPMS_DERIVE *labelContext, // OUT: the recovered label and context
 TPMT_PUBLIC *publicArea, // IN/OUT: the public area containing
 // the unmarshaled template
 TPM2B_SENSITIVE_DATA *sensitive // IN: the sensitive data

Part 4, 7.6.3.18 SetLabelAndContext(), line 1077

 TPM_RC result;
 INT32 size;
 BYTE *buff;
- TPM2B_LABEL label;
+//
+ // In case neither the sensitive nor publicArea have a label or a context
+ labelContext->label.b.size = 0;
+ labelContext->context.b.size = 0;

 // Unmarshal a TPMS_DERIVE from the TPM2B_SENSITIVE_DATA buffer
- size = sensitive->t.size;
 // If there is something to unmarshal...
- if(size != 0)
+ if(sensitive->t.size != 0)
 {

Errata for TCG Trusted Platform Module Library
Family “2.0” Level 00 Revision 1.38

 TCG Published Page 3
Errata Version 1.1 Copyright © TCG 2017 March 2, 2017

+ size = sensitive->t.size;
 buff = sensitive->t.buffer;
- result = TPM2B_LABEL_Unmarshal(&label, &buff, &size);
- if(result != TPM_RC_SUCCESS)
- return result;
- // If there is a label in the publicArea, it overrides
- if(publicArea->unique.derive.label.t.size == 0)
- MemoryCopy2B(&publicArea->unique.derive.label.b, &label.b,
- sizeof(publicArea->unique.derive.label.t.buffer));
- result = TPM2B_LABEL_Unmarshal(&label, &buff, &size);
+ result = TPMS_DERIVE_Unmarshal(labelContext, &buff, &size);
 if(result != TPM_RC_SUCCESS)
 return result;
- if(publicArea->unique.derive.context.t.size == 0)
- MemoryCopy2B(&publicArea->unique.derive.context.b, &label.b,
- sizeof(publicArea->unique.derive.context.t.buffer));
 }
+ // If there is a label string in publicArea, it overrides
+ if(publicArea->unique.derive.label.t.size != 0)
+ MemoryCopy2B(&labelContext->label.b, &publicArea->unique.derive.label.b,
+ sizeof(labelContext->label.t.buffer));
+ // if there is a context string in publicArea, it overrides
+ if(publicArea->unique.derive.context.t.size != 0)
+ MemoryCopy2B(&labelContext->context.b,
+ &publicArea->unique.derive.context.b,
+ sizeof(labelContext->label.t.buffer));
 return TPM_RC_SUCCESS;
 }

2.1.4 Incorrect Byte Order
When the reference code creates a Derived Object using TPM2_CreateLoaded(), the byte order of the
generated sensitive value and seedValue of the object is processor dependent. With the same Derivation
Parent and the same derivation parameters, a different Derived Object is generated on a big endian and
little endian TPM. This affects the key generation of all types of Derived Objects
(TPM_ALG_SYMCIPHER, TPM_ALG_KEYEDHASH, and TPM_ALG_ECC).

The reference code generates the random bits that are used as secret (ECC private key or symmetric
key) of the Derived Object in an internal format (bigNum). When later converted to canonical form
(TPM2B), the byte order changes dependent on the endianness of the TPM. To fix this, the random bits in
BnGetRandomBits() should be generated in canonical form (TPM2B) and then converted to internal
format for processing (see code fix in 2.1.4.1).

2.1.4.1 Code Fix
 Part 4, 10.2.4.3.20 BnGetRandomBits(), line 353

 RAND_STATE *rand
)
 {
- n->size = BITS_TO_CRYPT_WORDS(bits);
- if(n->size > n->allocated)
- n->size = n->allocated;
- DRBG_Generate(rand, (BYTE *)n->d, (UINT16)(n->size * RADIX_BYTES));
+ TPM2B_TYPE(LARGEST, LARGEST_NUMBER);
+ TPM2B_LARGEST large;
+ large.b.size = (UINT16)BITS_TO_BYTES(bits);
+ DRBG_Generate(rand, large.t.buffer, large.t.size);
+ BnFrom2B(n, &large.b);

 Errata for TCG Trusted Platform Module Library
 Family “2.0” Level 00 Revision 1.38

Page 4 TCG Published
March 2, 2017 Copyright © TCG 2017 Errata Version 1.1

 BnMaskBits(n, bits);
 return TRUE;
 }

2.1.5 Derivation Parameters
Part 1, 28.2 Derivation Parameters contains an incorrect statement which says, “If (label or context is)
provided in the unique field, the corresponding value in the inPrivate.data field is required to be an empty
buffer.”

It should say, “If provided in the unique field, the corresponding value in the inSensitive.data field is
ignored.”

2.2 Attribute Check for KEYEDHASH Objects
It is recommended to add the following attribute check to the reference code in Part 4, 7.6.3.3
CreateChecks().

When a restricted decrypt or restricted sign TPM_ALG_KEYEDHASH Object is created with
sensitiveDataOrigin CLEAR (i.e. the sensitive data is provided by the caller), then fixedParent and
fixedTPM are required to be CLEAR, otherwise the TPM will return TPM_RC_ATTRIBUTES.

This attribute check is implemented in the reference code for TPM_ALG_SYMCIPHER Objects, but is
missing for TPM_ALG_KEYEDHASH Objects.

2.3 Attribute Check in TPM2_CreatePrimary
The following attribute check is missing in the reference code in Part 3, 24.1 TPM2_CreatePrimary.

When a TPM_ALG_KEYEDHASH or TPM_ALG_SYMCIPHER Object is created using
TPM2_CreatePrimary with sensitiveDataOrigin CLEAR (i.e. the sensitive data is provided by the caller),
then sensitive.data must be not empty, otherwise the TPM will return TPM_RC_ATTRIBUTES.

2.4 TPM2_ECC_Parameters
Part 1, C.8 ECC Point Padding contains an inaccurate statement which says, “When the ECC parameters
are returned by the command TPM2_ECC_Parameters(), they have to match the exact format as
specified in the TCG Algorithm registry.”

Only the numerical values of the ECC curve parameters returned by TPM2_ECC_Parameters() must be
the same as listed in the TCG Algorithm Registry. The size may not be the same.

An ECC parameter with a numerical value of zero is incorrectly returned by the reference code as Empty
Buffer. It should be returned as a sized buffer with only the data value set to zero.

2.5 TPM2_DictionaryAttackParameters
According to the description and reference code in Part 3, 25.3, TPM2_DictionaryAttackParameters will
set the authorization failure count (failedTries) to zero.

This is incorrect. TPM2_DictionaryAttackParameters must not set the authorization failure count
(failedTries) to zero but leave failedTries unmodified. As a result, the TPM2_DictionaryAttackParameters()
command may cause the TPM to enter lockout. If maxTries is changed to a value that is less than the
current value of failedTries, the TPM goes into lockout until failedTries is less than maxTries.

EXAMPLE For this example, (m, n) is used as notation for (maxTries, recoveryTime in minutes). If the
parameters are (32, 120) and failedTries is 30, and the parameters are changed to (10, 10), then the
TPM will be in lockout until failedTries counts down to 9 at one count per each 10 minutes elapsed
since the moment of the last failed authorization attempt (the one that brought failedTries to 30). In
this example it may take from 91 to 210 minutes depending on how much time had elapsed within
original recoveryTime interval by the moment when the parameters were changed (with the possible
range being from 0 to 119 minutes).

Errata for TCG Trusted Platform Module Library
Family “2.0” Level 00 Revision 1.38

 TCG Published Page 5
Errata Version 1.1 Copyright © TCG 2017 March 2, 2017

2.6 Self-healing
According to Part 1, 19.8.2 Lockout Mode Configuration Parameters, paragraph a); 2), failedTries is
decremented by one after recoveryTime seconds if there is no power interruption. This is inaccurate and
paragraph 2) should be removed.

It is allowed for the self-healing (failedTries decrement) to accumulate between TPM Reset, TPM Restart,
and TPM Resume. In the current reference implementation, the self-healing does not accumulate
between boots because selfHealTimer and lockoutTimer are stored in volatile memory. Instead these
values could be stored in the orderly data structure which is saved to non-volatile memory on each
TPM2_Shutdown. When the DA parameters are initialized at TPM2_Startup, credit can be given for the
accumulated time.

A note should be added to Part 1, 19.8.2 Lockout Mode Configuration Parameters that the TPM may
keep track of the time elapsed toward recoveryTime at shutdown and use that against the recoveryTIme
upon power up.

2.7 TDES Key Parity Calculation
The following description on the parity calculation of TDES keys should be added to Part 1.

A TDES key is generated by getting 24 bytes from the random number generator appropriate for the type
of key generation (such as a KDF for a derived key). The 24 bytes are treated as 3, 64-bit values in
canonical TPM form (big-endian bytes). The odd parity is then generated for each byte with the parity
replacing the least significant bit in each byte to create 3 DES keys. The resulting three DES keys are
then validated to make sure that none of them is on the list of prohibited DES key values. If any of the
generated key values is prohibited, then the TPM will repeat the key generating process by generating 24
new bytes.

2.8 Mode validation in TPM2_EncryptDecrypt, and TPM2_EncryptDecrypt2
The reference code in Part 3, 15.2 TPM2_EncryptDecrypt and 15.3 TPM2_EncryptDecrypt2 incorrectly
validate the mode. If the symmetric mode specified in the mode input parameter is TPM_ALG_NULL and
the mode of the key is not TPM_ALG_NULL, then the check for the input IV and the input data block size
are performed with a wrong mode variable (set to TPM_ALG_NULL instead of the actual value). As a
result, the TPM might return TPM_RC_SIZE even though input IV and input data are correctly set for the
selected mode.

2.9 TPM2_Import – encryptedDuplication Check
The General Description in Part 3, 13.3 TPM2_Import says, “If encryptedDuplication is SET in the object
referenced by parentHandle, then encryptedDuplication shall be SET in objectPublic
(TPM_RC_ATTRIBUTES).”

In the reference code, TPM2_Load() verifies that if a parent object has fixedTPM CLEAR, the child must
have the same encryptedDuplication value as its parent and otherwise return TPM_RC_ATTRIBUTES.
This check may be done at TPM2_Import(). On TPM2_Load() this must be checked unless it was
checked at TPM2_Import().

The parent and child object must have the same value for encryptedDuplication (both SET or CLEAR) if
they are in the same duplication group. All objects in a duplication group are required to have the same
setting for encryptedDuplication. Therefore, if a parent object has fixedTPM CLEAR, the child must have
the same encryptedDuplication value as its parent.

2.10 TPM2_PolicyTemplate
The following input validation checks are missing in the reference code in Part 3, 23.21
TPM2_PolicyTemplate.

• If policySession→templateHash has previously been set to a different value, the TPM shall return
TPM_RC_VALUE.

• If the size of the templateHash input parameter is not the size of policySession→policyDigest, the
TPM shall return TPM_RC_SIZE.

 Errata for TCG Trusted Platform Module Library
 Family “2.0” Level 00 Revision 1.38

Page 6 TCG Published
March 2, 2017 Copyright © TCG 2017 Errata Version 1.1

The General Description and the error return code table in Part 3 indicate that for the first type of error,
TPM_RC_CPHASH is returned. It should say TPM_RC_VALUE.

2.11 TPMS_TIME_INFO.time
The General Description in Part 3, 9.3 TPM2_Startup says, TPMS_TIME_INFO.time shall be reset to zero
on any TPM2_Startup. This text is incorrect and should be removed. The behaviour of
TPMS_TIME_INFO.time is described in Part 1, 36.2 Time.

2.12 Separation Indicator 0x00 in KDFa
To clarify the use of the separation indicator 0x00 in KDFa, note 2 in Part 1, 11.4.9.2 KDFa() should be
replaced with the following text.

As shown in equation (6), there is an octet of zero that separates Label from Context. In SP800-108,
Label is a sequence of octets that may or may not have a final octet that is zero. If Label is not present, a
zero octet is added. If Label is present and is not NULL-terminated, a zero octet is added. If Label is
present and is NULL-terminated, the NULL becomes the zero octet and no additional zero octet is added.

2.13 TPM2_EvictControl
The reference code in Part 3, 28.5 TPM2_EvictControl allows a child key in the NULL hierarchy to be
persisted. This is because the hierarchy information is not being properly propagated.

Objects in the NULL hierarchy are Temporary Objects that become unusable after a TPM Reset and that
may not be converted into Persistent Objects. The condition when an object is allowed to be persisted is
described in Part 1, 37.3 Owner and Platform Evict Objects.

2.14 TPM2B_TIMEOUT
In Part 2, 10.4.10 TPM2B_TIMEOUT is defined as TPM-dependent structure with the size limited to the
same as the digest structure (TPM2B_DIGEST). For the timeout parameter in TPM2_PolicySigned,
TPM2_PolicySecret, and TPM2_PolicyTicket, the reference code uses an implementation-specific size of
UINT64 plus one where the additional byte serves as indicator whether an authorization ticket will expire
on TPM Reset or TPM Restart.

This causes incompatibility with existing software. To fix this, only the format of TPM2B_TIMEOUT may
be TPM-dependent. The maximum size of timeout is allowed to be 64 bit. Therefore, Table 81 in Part 2,
10.4.10 TPM2B_TIMEOUT should be replaced with:

Table 81 — Definition of Types for TPM2B_TIMEOUT

Parameter Type Description

Size UINT16 size of the timeout value
This value is fixed for a TPM implementation.

buffer [size] {:sizeof(UINT64)} BYTE the timeout value

NOTE In the reference implementation the MSb is used as a flag to indicate whether a ticket expires on
TPM Reset or TPM Restart.

2.15 Error Codes

2.15.1 Introduction
The following section resolves ambiguities with regards to errors codes where the specification text and
the reference code specify something different.

Errata for TCG Trusted Platform Module Library
Family “2.0” Level 00 Revision 1.38

 TCG Published Page 7
Errata Version 1.1 Copyright © TCG 2017 March 2, 2017

2.15.2 TPM2_StartAuthSession – key scheme
The General Description in Part 3, 11.1 TPM2_StartAuthSession specifies that the TPM shall return
TPM_RC_SCHEME if the scheme of the key (referenced by tpmKey) is not TPM_ALG_OAEP or
TPM_ALG_NULL. However, the reference code returns TPM_RC_VALUE.

The preferred error code for this failure is TPM_RC_VALUE. But TPM_RC_SCHEME is also acceptable.

2.15.3 Lockout Mode
The text in Part 3, 25.1 Introduction of Dictionary Attack Functions says, “While the TPM is in Lockout
mode, the TPM will return TPM_RC_LOCKED if the command requires use of an object’s or Index’s
authValue unless the authorization applies to an entry in the Platform hierarchy.”

The error code should be TPM_RC_LOCKOUT.

2.15.4 NV Locked
In Part 3, 5.4 Handle Area Validation, paragraph b; 3) the text says,

i) If the command requires write access to the index data then TPMA_NV_WRITELOCKED is
not SET (TPM_RC_LOCKED)

ii) If the command requires read access to the index data then TPMA_NV_READLOCKED is
not SET (TPM_RC_LOCKED)

Both error codes should be TPM_RC_NV_LOCKED.

2.15.5 BnPointMul
In Part 4, 10.2.11.2.19 BnPointMul(), the entry in the return code table for TPM_RC_VALUE is incorrect.
It says, TPM_RC_VALUE is returned if “d or u is not 0 < d < n”.

The values for the scalars d and u are allowed to be zero. This type of error is returned if d and u are
NULL, S is present but d is NULL, only one of u or Q is present, or the curve parameters are NULL.

	1. Introduction
	2. Errata
	2.1 Object Derivation
	2.1.1 Introduction
	2.1.2 Incorrect KDF Seed
	2.1.2.1 Code Fix

	2.1.3 Incorrect Label and Context
	2.1.3.1 Code Fix

	2.1.4 Incorrect Byte Order
	2.1.4.1 Code Fix

	2.1.5 Derivation Parameters

	2.2 Attribute Check for KEYEDHASH Objects
	2.3 Attribute Check in TPM2_CreatePrimary
	2.4 TPM2_ECC_Parameters
	2.5 TPM2_DictionaryAttackParameters
	2.6 Self-healing
	2.7 TDES Key Parity Calculation
	2.8 Mode validation in TPM2_EncryptDecrypt, and TPM2_EncryptDecrypt2
	2.9 TPM2_Import – encryptedDuplication Check
	2.10 TPM2_PolicyTemplate
	2.11 TPMS_TIME_INFO.time
	2.12 Separation Indicator 0x00 in KDFa
	2.13 TPM2_EvictControl
	2.14 TPM2B_TIMEOUT
	2.15 Error Codes
	2.15.1 Introduction
	2.15.2 TPM2_StartAuthSession – key scheme
	2.15.3 Lockout Mode
	2.15.4 NV Locked
	2.15.5 BnPointMul

