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Convex Optimization of Wireless Power Transfer
Systems with Multiple Transmitters

Hans-Dieter Lang, Student Member, IEEE, Alon Ludwig, Member, IEEE,
and Costas D. Sarris, Senior Member, IEEE

Abstract—Wireless power transfer systems with multiple trans-
mitters promise advantages of higher transfer efficiencies and fo-
cusing effects over single transmitter systems. From the standard
formulation, straightforward maximization of the power transfer
efficiency is not trivial. By reformulating the problem, a convex
optimization problem emerges, which can be solved efficiently.
Further, using Lagrangian duality theory, analytical results are
found for the achievable maximum power transfer efficiency and
all parameters involved. With these closed-form results, planar
and coaxial wireless power transfer setups are investigated.

Index Terms—Convex Optimization, Maximum Transfer Effi-
ciency, Multiple Transmitters, Wireless Power Transfer.

I. INTRODUCTION

W IRELESS power transfer (WPT) continues to gain
much attention ever since Tesla’s ideas [1] were re-

discovered, realized and extended a few years ago [2]–[4].
Besides many applications, also the fundamentals, particularly
the limits of the transfer efficiency and enhancements thereof
have been studied [5]–[7].

More recently, systems with multiple transmitters were
investigated, both theoretically and experimentally [8]–[10].
Multiple transmitters provide more degrees of freedom of the
primary field or current distribution and, therefore, promise
the possibility of enhanced transfer efficiency as compared to
single transmitter systems. In this paper, systems with multiple
transmitters and a single receiver are investigated. In this
context, they will be called MISO (for multiple-input single-
output) systems, similar as, for example, in communication
systems. In contrast, systems with only one active transmitter
and a single receiver are called SISO (single-input, single-
output) WPT systems.

Optimization of WPT systems with multiple transmitters
(MISO WPT systems), particularly the required excitations
(voltages) and the capacitive loading to maximize the achiev-
able power transfer efficiency is not trivial. Numerous tests
have shown that even more elaborate and generally pow-
erful global optimization algorithms, such as pattern search
and genetic algorithms as well as particle swarm optimizers
have problems finding the best parameters — or they lead to
infeasible computational cost and long optimization periods.
In addition, using these methods, physical insight into the
problem and its characteristics is not necessarily available in
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a straightforward manner, but usually can only be obtained by
backtracking the end results.

In this paper, a physically intuitive design procedure using
convex optimization is presented. Besides being able to obtain
results such as the maximum power transfer efficiency and
the required excitations and capacitive loading efficiently, each
step of the formulation is physically meaningful. Furthermore,
using Lagrangian duality theory, analytical solutions for all
parameters involved are found. Applied to the WPT systems
with one or more transmitters, various interesting conclusions
can be drawn, for example in relation to subwavelength
focusing [11]–[13].

It is well understood that impedance matching of the re-
ceiver load to the total WPT system as source is important
to achieve maximum transfer efficiency [14]–[16]. However,
although it might be feasible to tune capacitors during opera-
tion (e.g. using varactors), adjustment of the load resistance via
(tunable) matching network is difficult and results in additional
loss. Therefore, the general question to be answered within
this paper is: What is the maximum achievable power transfer
efficiency for a particular WPT geometry/setup to a load RL
and how can it be achieved. Additionally, by analyzing the
closed-form expression of the maximum transfer efficiency
with respect to RL, the optimum R?L as well as the maximum
achievable power transfer efficiency are found.

The outline of this paper is as follows. First, in Section II,
the problem setup is introduced and the general mathematical
relations are given. Second, in Section III, the convex opti-
mization procedure is derived. In Section IV, using Lagrangian
duality theory, analytical solutions to the optimization prob-
lems are formulated for all parameters involved. Section V
discusses and compares some basic results and performances
of MISO and SISO WPT systems. Finally, in Section VI, a
summary and conclusions are given.

II. PROBLEM STATEMENT

A remark on the notation: Italicized letters represent vari-
ables, bold small letters refer to vectors, bold capital letters
are matrices (and similarly for functions resulting in vectors
and matrices); vT stands for the transpose of the vector v
while vH stands for its Hermitian (conjugate transpose). Real
parts of complex numbers are denoted by (·)′, imaginary parts
by (·)′′, and the conjugate complex is denoted by (·)∗, not to
be confused with the optimum solution (·)? to a particular
optimization problem.
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A. System geometry and electrical setup

The WPT systems considered here consist of transmit-
ter loops which are located at positions (xn, yn, zn), for
n = 1, ..., Ntx (where Ntx stands for the total number of
transmitters, the total number of loops is N = Ntx + 1) and
one receiver loop, located at (xN , yN , zN ), as shown in Fig. 1.
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Fig. 1. Illustration of the problem setup: multiple transmitters (here three
loops TX1 to TX3, Ntx = 3), at the positions (xn, yn, zn), n = 1, ..., Ntx

and one receiver at (xN , yN , zN ) = (d sin θ cosφ, d sin θ sinφ, d cos θ).
Each loop is loaded by a capacitor Cn, the receiver end also contains the
resistive load RL.

Each loop is loaded with a capacitor Cn (corresponding to
the respective capacitive reactance of interest at the operating
frequency). Additionally, the receiver loop is loaded with the
resistive load RL. Each transmitter loop is excited by a voltage
source vn ∈ C.

Note that, although here only cases with aligned (parallel)
loops are considered, this is not a requirement. In fact, the
derivation is general and can be used for impedance matrices
of arbitrary power transfer systems with one or more trans-
mitters and a single receiver.

The idea is to assess the maximum achievable power
transfer efficiency of a given WPT system in a given direction.
Thus, the receiver loop is positioned at various points in space,
scanning over a region around the transmitter loops. At each
position, the capacitors and the excitations are to be optimized
so as to maximize the total power transfer efficiency η.

B. Initial problem formulation

Using a voltage vector v = v1, v2, ... , vN and a current[ ]
vector i = i1, i2, ... , iN (all vn, in ∈ C), where the last
(N th) entries correspond to the receiver loop, the full system
can be formulated as

v = (Z− jXc + RL) i = Zloadi , (1)

where Z = R + jX, with Z ∈ CN×N and R,X ∈ RN×N , is
the unloaded impedance matrix of the WPT setup and Zload =
Z′load+jZ′′load = Rload+jXload is the fully loaded impedance
matrix, to be optimized at a later point. The capacitive loading

[ ]

comes from Xc = Diag(xc), a diagonal matrix containing the
(real) reactances of the capacitors,

xc =
[
x1, ... , xNtx

, x
]

=
1

ωC1
, ... ,

1

ωCNtx

,
1

ωCN
, (2)

[ ]
where all xn, x and Cn are real variables and ω is the angular
frequency of operation. Note that the last reactance value is
denoted by x instead of xN to simplify the notation throughout
the derivation later on. Finally, the load matrix

RL =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 RL

 (3)

 

is zero everywhere but at the very last element, corresponding
to the receiver; RL > 0 denotes the (real) load resistance at
the receiver end.

In more detail, the total system is
v1
...

vN−1
0


︸ ︷︷ ︸

v

=


z11− j

ωC1
z12 · · · z1N

z21 z22− j
ωC2

· · · z2N
...

...
. . .

...
zN1 zN2 · · · zNN − j

ωCN
+RL


︸ ︷︷ ︸

Zload


i1
i2
...
iN


︸ ︷︷ ︸

i
(4)

   

where znm denotes the elements from the unloaded impedance
matrix Z. Note that vN = 0, since the load RL is part of the
loaded impedance matrix Zload.

The goal is to find the optimal capacitive loading xc and
currents i so as to maximize the total transfer efficiency, given
by

η =
Pout

Pin
, (5)

where

Pin =

Ntx∑
n=1

Pin,n =
1

2

∑
n

Re [vni
∗
n] =

1

2
Re
[
iHv

]
(6)

and

Pout =
1

2
|iN |2RL =

1

2
iHRLi , (7)

under the constraint that the actually transferred power is
non-zero, or more precisely larger than some threshold value,
Pout ≥ Pout,min ≥ 0.

Various tests have confirmed that it is difficult to optimize
η from Eqns. (1), (6) and (7) directly, for example using
global optimization methods such as genetic and pattern search
algorithms as well as particle swarm optimizers. Often, the
results vary greatly between receiver positions arbitrarily close
to each other (e.g. between points at distances much smaller
than a quarter-wavelength), or they are unsymmetrical, even
though the problem geometry is symmetric, as shown in Fig. 2
(see setups in Fig. 3). These numerical artifacts originate from
both Re[·] being a non-analytic operation and the non-convex
(as well as nonlinear and highly resonant) form of Eqn. (5)
using Eqns. (1), (6) and (7) in general.
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and is convex in c, provided that Rload ≥ 0 (positive semi-
definite), which is always true (apart from some numerical is-
sues, addressed in the Appendix A) for impedance matrices of
passive networks [22]. In fact, since WPT systems are always
lossy (there is at least some small loss due to radiation), the
real part of the impedance matrices has to be positive definite,
Re Zload = Rload > 0, which also leads to R̃load > 0. Thus,
this objective function is well-suited for convex optimization
(minimization).

3) Constraints: As mentioned, the constraints have to ac-
count for the voltage at the receiver port being zero, since the
load is part of the impedance matrix, as shown in Eqn. (4).

the power transfer efficiency directly
from its standard formulation (real and imaginary parts of voltages, capacitor
values) using genetic algorithm (population size: 50, maximum number of
generations: 1000). The resulting efficiency pattern is spiky and unsymmetric
(even though the geometry is symmetric).

III. FORMULATION OF A CONVEX OPTIMIZATION
PROBLEM FOR MAXIMIZING MISO WPT EFFICIENCY

Before the convex optimization problem can be derived,
the voltages and currents are put into a vector form of
separated real and imaginary parts to obtain a fully real-valued
formulation.

The total input power over all transmitters is calculated by

Pin =
1

2
Re iHv =

1

2

∑
n

(i′nv
′
n + i′′nv

′′
n) =

1

2
cTw , (8)

[ ]
where

T
c = i′T , i′′T and

T
w = v′T ,v′′T are real vectors

(c,w ∈ R2N ) containing the separated real and imaginary
parts of the currents and voltages, respectively.

In similar fashion, for the output power, it is obtained that

[ ] [ ]

Pout =
1

2
iHRLi =

1

2
cT R̃Lc , (9)

where
R̃L =

[
RL 0
0 RL

]
. (10)

Using these expressions, the efficiency can be given in
standard form, involving only real-valued unknowns

η =
Pout

Pin
=

iHRLi

Re
[
iHv

] =
cT R̃Lc

cTw
, (11)

where the (separated) currents and voltages are related by

c =
Rload −Xload

Xload Rload

−1

w

=

[
Z′ + RL −Z′′ + Xc

Z′′ −Xc Z′ + RL

]−1
w (12)

[ ]

similar to i = Z−1loadv. Note that at this point only the capacitor
reactances on the diagonal of Xc and the voltages w are
unknowns; the currents c follow from Eqn. (12).

A. Convex optimization formulation
In the following, the problem is reformulated using the

currents c instead of the voltages w. Combined with the
assumption of unit received power, a convex optimization
problem is obtained.

1) Implicit voltages: The voltages w in the denominator
of Eqn. (11) are replaced by their relation to the currents
Eqn. (12). From the loaded impedance matrix v = Zloadi,
it follows for Eqns. (6) and (8), since Zload = ZTload,

Pin =
1

2
Re
[
iHv

]
=

1

2
Re
[
iHZloadi

]
=

1

2
iH(Re Zload)i

=
1

2

[
i′T , i′′T

] [Rload 0
0 Rload

] [
i′

i′′

]
=

1

2
cT R̃loadc , (13)

where R̃load is used to denote the matrix of the real parts
of Zload (i.e. whereas Rload = Re Zload, so relates R̃load

similarly to Z̃load).
The power transfer efficiency is then given by

η =
Pout

Pin
=

cT R̃Lc

cT R̃loadc
, (14)

which only contains c ∈ R2N as unknowns, since the capacitor
values are not part of R̃load. However, as will be shown
later, one of them is part of the equality constraints of the
optimization.

It should be noted that this form of η is not generally
concave (or 1/η not convex) and it does not account for the
zero voltage at the receiver, vN = 0, yet.

2) Convex reformulation of the objective function: By set-
ting the received power to a constant Pout = cT R̃Lc = 1,
meaning that 1 W power is received at the receiver load, the
objective function for minimization according to

ηmax = max η = min
1

η

−1

=
[
min
c
f(c)

]−1
(15)

[ ]
(with η ∈ (0, 1], since Pout = 0) becomes6

f(c) = cT R̃loadc (16)

˜

Thus,
vN =

k

zloadNk ik = zloadN i = 0 , (17)
∑

with zloadN being the N th (last) row of the loaded impedance
matrix Zload, corresponding to the receiver voltage vN . Sep-
arating real from imaginary parts, this translates to

v′N = wN = z′loadN ,−z′′loadN c = 0 (18a)

v′′N = w2N =
[
z′′loadN , z

′
loadN

]
c = 0 . (18b)

[ ]

Additionally, one is free to chose the real and imaginary parts
of the receiver current iN = cN+jc2N , as long as the received
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( )

i′N = cN =
1√
RL

(19a)

i′′N = c2N = 0 , (19b)

power remains Pout = cT R̃Lc = c2N + c22N RL = 1. The
natural choice is iN ∈ R (zero phase at the receiver), and thus

which will have to be accounted for in the constraints during
the optimization process.

These four constraints, Eqns. (18a) and (18b) as well as
(19a) and (19b), are then cast into the matrix form

a1

a2

a3

a4

 c =


b1
b2
b3
b4

 ⇔ Aeqc = beq , (20)

which is well-known to be affine in c [17], where Aeq ∈
R4×2N and beq ∈ R4. Note that all constraints for this problem
are of the equality type; there are no inequality constraints.

In more detail, the first two constraints in Eqn. (20) are

a1c = b1 = 0 (21a)
a2c = b2 = 0 , (21b)

where a1 = z′loadN ,−z′′loadN and a2 = z′′loadN , z
′
loadN .

The second pair of constraints are

[ ] [ ]
cN = a3c = b3 = 1/

√
RL (22a)

c2N = a4c = b4 = 0 , (22b)

where a3 and a4 are row vectors selecting the corresponding
N th and 2N th (last) entry, respectively, from the (real) current
vector c.

4) Partially convex optimization formulation: Using the
objective function, Eqn. (16), and the constraints, Eqn. (20),
a quadratic programming (QP) problem [17] is obtained:

ηmax(x) = max
c
η

=
[
min
c

cT R̃loadc︸ ︷︷ ︸
convex in c

s.t. Aeq(x)c = beq︸ ︷︷ ︸
affine in c

]−1
. (23)

Even though the reactance values xn (n = 1, ..., Ntx) are
not part of the convex optimization problem, the receiver
reactance x (the last entry in xc) cannot be optimized this
way, since it is part of the equality constraints, Aeq = Aeq(x).
Thus, the result is the maximum transfer efficiency given the
receiver reactance x, ηmax(x).

The problem of finding the maximum achievable transfer
efficiency can be solved by choosing some receiver reactance
x, optimizing η by finding the best currents c and then going
back and choosing a better x, resulting in an outer optimization
loop for x:

ηmax = max
x

ηmax(x) = max
x

{
max

c
η(x)

}
. (24)

5) Fully convex optimization formulation: Using the known
receiver current components iN = cN + jc2N , given from
Eqns. (19a) and (19b), explicitly (thereby reducing c by two
entries, leading to the transmitter current vector ctx), the
constraints become

[
z′N1, ... , z

′
NNtx

,−z′′N1, ... ,−z′′NNtx

z′′N1, ... , z
′′
NNtx

, z′N1, ... , z
′
NNtx

]
︸ ︷︷ ︸[

z′tx,−z′′tx
z′′tx, z

′
tx

]


c1
...

cN−1
cN+1

...
c2N−1


︸ ︷︷ ︸

ctx

+
1√
RL

[
z′NN +RL
z′′NN − x

]
= 0 , (25)

 

where as always Ntx = N − 1, for MISO WPT systems. The
receiver reactance x is an unknown and is, therefore, added
to the unknown vector, whereby ctx becomes ĉ, the modified
currents vector (losing some of its physical meaning, since it
contains not just currents anymore):

[
z′tx,−z′′tx, 0

z′′tx, z
′
tx,−1/

√
RL

]
︸ ︷︷ ︸

Âeq



c1
...

cNrx

cN+1

...
cN+Nrx

x


︸ ︷︷ ︸

ĉ

= − 1√
RL

[
z′NN +RL
z′′NN

]
︸ ︷︷ ︸

b̂eq

.

(26)

From here on, hats mark all “modified” vectors and matrices
(i.e. such with components/conditions of the reactance added
to the ones for the currents and not including the known
receiver currents) and z′tx and z′′tx refer to the real and imagi-
nary parts, respectively of the unloaded impedance matrix Z,
coupling each of the transmitters to the receiver (the Ntx first
elements of the N th (last) row of Z).

The matrix of the modified affine constraints is then of
dimensions 2 × (2N − 1), since it only has to account for
the transmitter voltage to be zero. This way, the receiver reac-
tance can be optimized together with the transmitter currents,
simultaneously, in a single optimization. The problem is still
of the quadratic programming type, but it has to be adjusted
somewhat, since the receiver power and mutual parts of the
receiver and transmitters are missing in the quadratic term:

cT R̃loadc = ĉT ˆ̃Rtxĉ + 2q̂T ĉ + p , (27)

where the modified matrix of the quadratic term is

ˆ̃Rtx =

[
R̃tx 0
0 0

]
=
Rtx 0 0

0 Rtx
...

0 · · · 0

 ≥ 0 , (28)

 

with Rtx being the part of the resistance matrix R correspond-
ing to the transmitters (i.e. R reduced by the last column and
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row). Note that this part of the matrix is the same for both R process to get the efficiency), where z′ and z′′n n are the real and
imaginary parts, respectively, of the nth row of the unloaded
impedance matrix Z.

There is no requirement as to how the voltage and capacitor
values should be chosen (other than practical realizability).
From common (SISO-type) WPT systems, it is known that
both the transmitter as well the receiver should be driven
at resonance, to maximize both the efficiency as well as the
actual power transferred to the load [7]. Since both input and
output of the transfer system are of the series resonant circuit
type, they are tuned to series resonance (in the coupled case,
not separately), thus to the point where the impedance has
its minimum and the amplitude of the voltage to produce a
certain current is minimal.

To obtain similar results and because it is well-known that
unconstrained least-square problems have analytical solutions,
the capacitive reactance values xn (for n = 1, ..., N − 1) are
chosen so as to minimize the voltages (i.e. thereby tuning the
coupled transmitters to resonance)

T
? 2 s tn
xn = arg min |v − n

n| = .
T

(33)
xn snsn

Finally, the capacitor values are found using Cn = 1/(ωx?n).

C. Summary of the convex optimization formulation

Two algorithms to optimize both the currents and receiver
capacitance such as to maximize the transfer efficiency of
WPT with multiple transmitters have been presented: The first
is in a physically intuitive inner/outer optimization loop form
(where only the inner loop is a standard convex optimization
form), the second is a fully convex optimization formulation.

The optimum transmitter capacitors are not essential for
maximizing the achievable power transfer efficiency. However,
they are responsible to generate the optimal currents from
given excitation voltages. Here, they are chosen by analyt-
ically minimizing the excitation amplitudes for the required
currents using Eqns. (32b) and (33). Minimizing the excita-
tion amplitudes relates the MISO solution to the maximized
output power condition (transmitter resonance) for SISO WPT
systems.

IV. CLOSED FORM RESULTS FOR THE MAXIMUM
TRANSFER EFFICIENCY OF MISO WPT SYSTEMS

The previously discussed optimization problem can be effi-
ciently solved using well-known quadratic programming algo-
rithms and the solutions are perfectly smooth (no optimization
issues as experienced with the global methods). However, as
shown next, this optimization problem actually has analytical
solutions.

As will be derived step by step, for WPT systems with
multiple transmitters, all parameters, i.e. all currents and
capacitors can be found analytically such as to maximize
the transfer efficiency, which has a closed-form solution as
well. Finally, using that formulation, the load resistance can
be optimized as well, so as to find the maximum achievable
transfer efficiency of a given WPT system directly from its
(unloaded) impedance matrix.

and Rload (since Rload = R + RL).
The linear term is (since all resistance matrices are sym-

metric) [ ] [ ]
q 1 z′Ttxq̂ = = √ (29)
0 RL 0

and the power in the receiver loop is p = (z′NN + RL)/RL
(both loss and power dissipated in the load).

Thus, the final single quadratic programming problem to
optimize both currents and the receiver reactance such as
to maximize the transfer efficiency (or rather minimize its
inverse) is   ˆ −1min ĉT R̃txĉ + 2q̂T ĉ + p

ηmax = ĉ , (30) 
s.t. Âeqĉ = b̂eq .

ˆwhere, again, the objective is convex in ĉ since R̃tx ≥ 0 and
the equality constraints are affine. Clearly, the last added scalar
p, the power in the receiver loop and load, is not necessary
for optimizing the parameters, but is added to get the optimal
value to be , directly.1/ηmax

ˆNote that R̃tx is only positive semi-definite (≥ 0) and not
positive definite (> 0) anymore, since one of its eigenvalues
is zero at all time (due to the row and column full of zeros).
Further, note that Âeq is obviously not square, thus the system
of constraints can not just be solved linearly for ĉ and be put
into the minimization to find the solution (trivial case).

B. Transmitter capacitors

As derived, the maximum transfer efficiency, Eqn. (24), is
independent of the transmitter capacitors Cn (or rather their
reactances xn), n = 1, ... , Ntx, since it depends on the currents
in the loops (and the receiver reactance x) directly. However,
the transmitter capacitors are essential to ensure that these
optimal currents actually result from the voltages, by which
the whole system is excited. Thus, in this second step, the
correct transmitter capacitor values to accomplish that task
have to be found.

Recall that a MISO-Ntx1 setup (total number of loops N =
Ntx + 1) can be described as       

v1 x1 0 · · · 0 i
. . 1 .    . .    .  ..    0 . 0 .    .   = Z− j  . + R   .

L  .    .
v Ntx

0   i 
tx

. 0 xN Ntx

vN = 0 0 · · · 0 x iN︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
v Xc i

(31)
Separating the voltages vn into real and imaginary parts and

putting it into vector form leads to[ ] [ ] [ ] [ ′ ]v′ z′
v n i′′ −z′′ i
n = ′′ = x n + n n

′ ′′ ′ ′′ (32a)
v n
n −in zn zn i

= xnsn + tn , (32b)

for n = 1, ... , Ntx (but not vN , since the receiver voltage is
already contained in the constraints of the convex optimization
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A. Dual formulation and the dual function Eqn. (36) reduces to

The basic idea of Lagrangian duality is to account for the g(ν1) = cT ˜
txRtxctx + 2qT ctx + p+ ν1(a1ctx − b1) (40a)

objective and the constraints in one function, by adding a
1 ( )

weighted sum of the constraints to the objective function [17].
−1

= − (2q + ν T T ˜ T
1a1 ) Rtx 2q + ν1a1 + p− ν1b1 .

4If certain conditions apply, then, by optimizing these weights (40b)
(called dual variables), the problem can be solved using this

This dual function is concave in ν ifdual formulation, which can be advantageous in some cases. 1

The Lagrangian function [17] follows straightforwardly
−1 −1

−ν1a1R̃tx aT ν = −a ˜
1Rtx aT1 ν

2
1 1 1 = −αν21 (41)

from the convex optimization formulation, Eqn. (23), by
is concave in ν1, meaning

−1
α =[ a1R̃tx a 0.adding the objective 1] ≥ Substitutinga weighted sum of the constraints to

the first constraint vector a = z′1 tx,−z′′tx in and using R̃function tx

from Eqn. (28), it can be seen that
ˆL(ĉ ν) ĉT R̃ ˆ [ ]

, = txĉ + 2q̂T ĉ + p+ νT (Âeqĉ− beq) , (34) −1 [ ] Rtx 0 [ ]T
a R̃ a ′ ,−z′′ ′ ,−z′′1 tx 1 = ztx tx z (42a)

0 R tx tx

where the dual variables (also called Lagrangian multipliers) tx[ ]
for equality constraints are

T H
ν = ν1, ν2 . Note that these = ztxRtxztx > 0 (42b)

variables are unconstrained, i.e. ν1, ν2 ∈ R. Further, note that since Rtx > 0, for real passive impedance matrices, because
if these variables are maximized (go to infinity), the original of radiation loss. Thus, the dual function is indeed concave in
problem results: ν1 and, therefore, has a single global maximum.  T ˆ T  The theorem of strong duality (SD) [17] states that, if the

min ĉ R̃txĉ + 2q̂ ĉ + p
min maxL(ĉ,ν) = ĉ . original problem is differentiable and convex in ĉ (which is(35)
ĉ ν  

s.t. Â ĉ = b̂ true in this case, as stated before), then the minimum of the
eq eq

upper bound (the original problem) and the maximum of the
Thus, the original problem is the minimum of the upper bound lower bound (dual problem) are equivalent:
of the Lagrangian function. SD

The dual function [17] is defined as the lower bound of the max minL(ĉ,ν) = min maxL(ĉ,ν) , (43a)︸ ν ĉ︷︷ ︸ ︸ ĉ ν︷︷ ︸Lagrangian given by
original problem dual problem

g(ν) = minL(ĉ,ν) , (36)
ĉ which translates to which in this case can be found analytically, at the point where  ˆ min ĉT R̃ ĉ + 2q̂T ĉ + pthe derivative with respect to the modified current vector ĉ SD tx

max g(ν) = ĉ . (43b)
(gradient) vanishes: ν 

.t. Â ĉ ˆ 
s eq = beq

∇ L(ĉ, ˆ̃ T Thus, solving (minimizing) the dual problem is equivalent to
ĉ ν) = 0 = 2Rtxĉ + 2q̂ + Âeqν (37a)

solving (maximizing) the original in this case.
1 ( ) problem,

1 −
ĉ = − R̂̃

T
2q̂ + Â ν . Note that maximizing Eqn. (40b) is still a quadratic pro-

2 tx eq (37b)
gramming problem, as it should be, since QPs are self-

ˆ dual. However, unlike the original problem, on the right-handHowever, R̃tx, as given in Eqn. (28) is obviously non- side of Eqn. (43b), the dual formulation (left-hand side) isinvertible. A closer look at this problem reveals unconstrained, since ν1 ∈ R.
ˆ̃ T

0 = 2Rtxĉ + 2q̂ + Âeqν (38a) solution the[ ] [ ] [ ] [ ] B. Analytical of dual problem[ ]
˜ c q aT1 aTR 2 ν Quadratic Programming (QP) problems are known to have= 2 tx 0 tx + 2 + 1

/2 .
0 0 0 − (38b)

x 1
0 R ν2

L analytic solutions in some cases, especially unconstrained. In
this case, the dual formulation of the QP problem has an

The last element/row is only zero if −ν2/RL = 0, thus the analytical solution. At the maximum of g(ν), the gradient with
second dual variable has to be ν2 = 0, for the Lagrangian to respect to the dual variable ν, which here reduces to just the
have a minimum. partial derivative with respect to ν , vanishes:

A dual variable equal to zero means there is slack in that
1

1 ( )
constraint or, in other words, that constraint is “not essential”

−1
∇ν1g(ν1) = 0 = − a ˜

1R
2 tx 2q + ν1a

T
1 − b1 (44a)

to solve the whole problem. Here, the optimal x has no 1
b ˜−influence on the rest of the problem (since the gradient of 1 + a1R q

ν = −2 tx . (44b)
the Lagrangian does not depend on it) and can be obtained at

1 −1
a1R̃ T

tx a
a later point, using that particular constraint and the optimized

1

As previously stated, ν = 0 and thus all dual variables are
currents. 2

defined and the dual problem is solved. Using these solutions,
The transmitter currents that minimize the Lagrangian are, the quantities actually looked for, the optimal transmitter

therefore,
− ( ) currents ctx and the receiver capacitance (via its reactance)1

c ˜ 1
tx = − Rtx 2q + ν T

1a1 (39) as well as the transfer efficiency are derived in the following.
2
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1) Transmitter currents: Substituting the optimal dual vari-
able ν1 from Eqn. (44b) as well as the (impedance) vectors
q = 1/

√
RL
[
z′tx,0

]T
, a1 =

[
z′tx,−z′′tx

]
and a2 =

[
z′′tx, z

′
tx

]
back into Eqn. (39) the transmitter currents are obtained as
follows:

ctx =
1

√
RL ztxR

−1
tx zHtx

[
β1R

−1
tx z′Ttx

β2R
−1
tx z′′Ttx

]
, (45)

where the coefficients are given by

β1 = −z′′txR
−1
tx z′′Ttx − z′NN −RL (46a)

β2 = −z′txR
−1
tx z′Ttx + z′NN +RL . (46b)

2) Receiver reactance and capacitor: The optimal receiver
reactance is obtained from the (up to this point still unused)
second constraint:

â2ĉ = a2ctx −
x√
RL

= b2 = − z′′NN√
RL

. (47)

Rearranging and substituting the transmitter currents ctx,
Eqn. (45), and the dual variable ν1, Eqn. (44b), in leads to

x = z′′NN −
√
RL a2R̃

−1
tx

(
q− b1 + a1R̃

−1
tx q

a1R̃
−1
tx aT1

aT1

)
. (48a)

Finally, by replacing the vectors by their respective definitions
q = 1/

√
RL
[
z′tx,0

]T
, a1 =

[
z′tx,−z′′tx

]
and a2 =

[
z′′tx, z

′
tx

]
as well as using the fact that a2R̃

−1
tx aT1 = 0, the optimal

receiver reactance is given by

x = z′′NN − z′′txR
−1
tx z′Ttx (48b)

and the capacitor value is obtained using CN = 1/(ωx).
3) Optimized and maximum achievable transfer efficiencies:

Starting from the dual function Eqn. (40b) and substituting in
the transmitter currents Eqn. (39), the transfer efficiency (to a
specific load RL) can be expressed by

ηmax =
1

g(ν1)
=

RL ztxR
−1
tx zHtx

(z′NN+RL−z′txR
−1
tx z′Ttx )(z′NN+RL+z′′txR

−1
tx z′′Ttx )

. (49)

It might seem like the efficiency could turn negative, be-
cause of the negative sign in the first factor in the denominator.
However, it can be shown that z′NN−z′txR

−1
tx z′Ttx > 0, because

it is a Schur complement of the (symmetric) resistance matrix
R = Re Z. As such, it has to be positive definite (or in this
case just positive, since it is a scalar in this case) together
with the submatrix Rtx > 0 being positive definite, for the
resistance matrix to be positive definite, R > 0. Both of these
last conditions are a given for lossy passive networks. Thus,
the transfer efficiency can never become negative.

It can easily be seen that the transfer efficiency ηmax given
in Eqn. (49) is concave in RL. Its maximum is found at

∂g(ν1)

∂RL

∣∣∣∣
RL=R?

L

= 0 (50)

and, thus, the optimal load resistance is given by

R?L =

√
(z′NN − z′txR

−1
tx z′Ttx )(z′NN + z′′txR

−1
tx z′′Ttx ) . (51)

Note that, for the same reason as before (Schur comple-
ment), the optimal R?L exists for all real and passive WPT
systems (and cannot turn complex). Further, in the SISO case
with identical antennas (z11 = z22), Eqns. (51) and (49) lead
to an ηmax(R?L) identical to the one given in [5].

Using the optimal load Eqn. (51) in Eqn. (49), the maximum
achievable transfer efficiency of any MISO WPT system can
be obtained. As expected (since the impedance matrix actually
already contains all information about the WPT system), the
maximum performance only depends on the systems (un-
loaded) impedance matrix.

V. RESULTS

A. Problem setups

For this paper, the unloaded impedance matrix Z was ob-
tained using the Double Multiradius Bridge-Current (DMBC)
method, [18], [19], implementing a thin-wire, piecewise sinu-
soidal Galerkin moment method in 64-bit precision. DMBC is
known to be powerful and accurate, [20], [21].

For verification, the optimized values were included in
loaded models and simulated using DMBC again. The results
were compared and agreed very well. Differences are mainly
due to the fact that for DMBC the capacitances and excitation
voltages have to be handed over in a text file and, thus, the
values are subject to round-off errors.

Depending on the method or software used to obtain the
unloaded impedance matrix, and for some models, non-passive
impedance matrices might be received. Using DMBC, this was
the case for a few angles, when considering lossless or very
highly conductive (but finite) loops (e.g. σ = 106 σCu) and
particularly for WPT systems with a higher number of ports,
e.g. 7 loops (i.e. MISO-61) or more. Since in these cases the
received impedance matrix does not represent the physics of
the model, passivity has been enforced as described in the
Appendix A. The change in the norm of the impedance matrix
always remained negligible.

B. Planar setups

1) One-dimensional models: First, the transfer efficiency of
WPT systems with multiple (up to three) transmitters is inves-
tigated. Fig. 3 shows the setups in question: the MISO-21 and
MISO-31 as well as the SISO reference. The transfer efficiency
patterns for RL = 1 Ω as well as the optimum load resistance
R?L are shown in Fig. 4, for loops with infinite conductance
(σ∞, left) and copper conductance (σCu = 58 × 106 S/m,
right), along with the respective optimum RL patterns.

y

x
φ

z

θ

(a) SISO (reference)

y

x
φ

z

θ

(b) MISO-21

y

x
φ

z

θ

(c) MISO-31

Fig. 3. Illustrations of the planar MISO WPT setups: multiple transmitters,
with the position (xn, yn, zn = 0), i = 1, ..., Ntx and a receiver at (d, θ, φ).
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(c) Optimum load resistance R?
L (in Ω), for σ∞

0.05 0.1 0.15R
⋆

L
(+) = 0

-60

-30

3 = 0

30

60

-9090  

 

MISO-31

MISO-21

SISO

(d) Optimum load resistance R?
L (in Ω), for σCu

Fig. 4. Planar MISO-21, MISO-31 vs. SISO: maximum transfer efficiency ηmax for RL = 1 Ω and R?
L vs. θ and optimum load resistance R?

L, for φ = 0, π,
RL = 1 Ω and lossless, σ∞, (a,c) and lossy, σCu, (b,d) loops at a distance d = 0.1λ.

The geometrical parameters involved are:
• separation between the transmitter loops ∆x = 0.05λ,
• loop radii rloop = 0.01λ,
• wire thickness rwire = 0.2 rloop,

where λ = c0/f and f = 40 MHz (the results are scalable).
As expected, the maximum achievable power transfer ef-

ficiency is higher in the cases with lossless loops, than in
those with lossy loops. However, it is more than just an
overall drop; for cases with multiple loops the overall form
of pattern changes. As is well-known, impedance matching,
meaning using the optimum load R?L has a strong impact on
the achieved transfer efficiency, particularly at broadside.

Note that, for lossless loops, the MISO-21 setup can perform
somewhat worse than the SISO case at broadside, since it is
missing a center element, whereas the MISO-31 always has
to perform equally well or better than the SISO reference.

2) Two-dimensional models: Fig. 5 shows two-dimensional
setups with loops arranged the xy-plane (at a constant distance
to the center element of 0.05λ). Their transfer efficiency
patterns for are shown in Fig. 6. The results seem physi-
cally reasonable, by comparison, since the resulting efficiency
pattern for the MISO-71 setup is the sum (“overlay”) of the
patterns of the MISO-61 (no center element) and MISO-51
(center element) setups.

While the patterns in Fig. 6a reveal substantial transfer
efficiency enhancement using multiple loops even at a distance
of d = λ/4, in the lossy case, see Fig. 6b, all efficiency
patterns collapse more or less to the one of the MISO-31 setup,
no matter if the optimum load R?L is present or not.

y

x
φ

z

θ

(a) MISO-51 setup

y

x
φ

z

θ

(b) MISO-61 and -71 (including
the dashed center element) setups

Fig. 5. Illustrations of the larger MISO WPT setups; the satellite transmitters
are arranged symmetrically in the xy-plane, at a constant distance of 0.05λ
around the center transmitter position.

3) Comparison & Interpretation: Comparison of the loss-
less and lossy cases reveals that the overall working principles
are different, for the two cases. Without conduction loss in
the loops, the only loss to minimize (to maximize transfer
efficiency), is radiation. Minimizing radiation is achieved by
minimizing far-field effects using (almost) canceling primary
fields due to currents of opposing direction and almost equal
amplitudes, see Fig. 8a. Since the amount of transferred power
is constant 1 W, and the currents almost cancel each others
fields, the primary currents are very high. Additionally, these
currents and fields do not change substantially, for different
receiver positions, shown in Fig. 7.

In cases with conduction loss, such high currents are not
feasible and the far-field cancellation cannot be achieved, at
least not to the same degree, as shown in Fig. 8b. The optimal
currents in the transmitter loops are very different for different



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 9

0.25 0.5 0.75 12 = 0

-60

-30

3 = 0

30

60

-9090

 

 

 MISO-71

MISO-61

MISO-51

MISO-31

(a) ηmax(RL), thick, ηmax(R?
L), thin, for σ∞, and d = 0.25λ

0.25 0.5 0.75 12 = 0

-60

-30

3 = 0

30

60

-9090

 

 

 MISO-71

MISO-61

MISO-51

MISO-31

(b) ηmax(RL), thick, ηmax(R?
L), thin, for σCu, and d = 0.1λ

Fig. 6. Transfer efficiencies for MISO-51, -61 and -71 setups vs. MISO-
31, without and with conduction loss: while in the lossless cases there is
substantial efficiency gain from using this many loops, in the lossy case all
patterns collapse to the MISO-31 pattern.

receiver positions — essentially all the energy is put into the
element closest to the receiver, shown in Fig. 7b. The primary
reason for higher transfer efficiency is closer proximity; the
transmitter closest to the receiver is favored, while the others
carry much lower currents.

This is the reason why there is no (substantial) performance
enhancement for lossy setups with more than three transmit-
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Fig. 8. Contours of the magnetic field |Bx|2 + |Bz |2 (in dB) in the y = 0
plane for MISO-31 setups with the receiver at 60 off broadside, d = 0.1λ.

ters, as shown in Fig. 6b: Since the distance to the closest
transmitter remains the same (for receivers in the xz-plane) for
all these setups, so does the achieved transfer efficiency. On the
other side, in the lossless cases, the far-field cancellation can
be achieved more efficiently (particularly in some directions)
with a larger number of transmitters, leading to an increased
transfer efficiency, as can be seen in Fig. 6a.
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Fig. 7. Optimized currents: MISO-31 and SISO vs. angle of elevation θ, at distance d = 0.1λ, for lossless and lossy loop conductors.
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4) Verification: This is verified using the models shown in
Fig. 9, where one or two loops are positioned off-center, so
as to represent part of the (centered) MISO-31 setup. As can
be seen from the transfer efficiency patterns in Fig. 10, in the
lossy case (b) the final MISO-31 pattern can be obtained by
“adding” the patterns from the offset cases, thus confirming
that the setup with multiple transmitters is essentially the same
as a single loop at the position closest to the receiver.

Note that this is not the case for lossless loops: due to the
fact that the fields can be canceled more efficiently with more
loops, the transfer efficiency pattern of the MISO constellation
cannot be obtained by overlaying the separated patterns.
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θ

(a) MISO-31

y

x
φ

z

θ

(b) MISO-21 offset

y

x
φ

z

θ

(c) SISO offset

Fig. 9. Illustrations of the MISO-31 WPT setup and its decompositions, offset
MISO-21 and offset SISO, to separate their effects on the efficiency.
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Fig. 10. Comparison of the separated transfer efficiency effects and the total
transfer efficiency pattern, at distance d = 0.08λ.

5) Realistic capacitor values: It is worth noticing that the
obtained optimal capacitor values are not unrealistic for a
practical realization of these MISO WPT systems.

Tab. I compares the obtained capacitor values for lossless
and lossy MISO-31 WPT setups, with the receiver loop at

three different angles, at a distance of d = 0.1λ. As can be
seen, the values seem not to change at all for the lossless
setup (changes appear at the fourth and fifth digit behind the
comma; thus, high sensitivity on actual values), since that
optimized solution essentially remains the same, independent
of the receiver position, see Fig. 7a. The values are different
overall and do change for the lossy setup, however, particularly
on the transmitter side (C1, C2 and C3).

MISO-31 lossless MISO-31 lossy
θ = 0◦ 30◦ 60◦ θ = 0◦ 30◦ 60◦

C1 35.22 pF 35.22 pF 35.22 pF 98.65 pF 97.47 pF 97.31 pF
C2 35.26 pF 35.26 pF 35.26 pF 97.62 pF 98.57 pF 96.06 pF
C3 35.22 pF 35.22 pF 35.22 pF 98.65 pF 96.86 pF 97.57 pF
C4 35.33 pF 35.33 pF 35.33 pF 97.43 pF 97.43 pF 97.43 pF

TABLE I
OPTIMIZED CAPACITOR VALUES AT THE DIFFERENT ANGLES AT DISTANCE

d = 0.1λ, FOR LOSSLESS AND LOSSY MISO-31 WPT SETUPS.

C. Coaxial setups

1) Non-planar setups: The only geometry which never
profits from proximity effects is a coaxial (but not necessarily
planar) arrangement of the transmitter loops, as illustrated
in Fig. 11; for any elevation angle θ (and azimuth φ), the
minimum distance between any of the transmitters and the
receiver is always the same or more as in the SISO case.

y

x φ

z

θ

(a) SISO

y

x φ

z

θ

(b) MISO-21 coaxial

y

x φ

z

θ

(c) MISO-31 coaxial

Fig. 11. The coaxial MISO WPT setups: multiple transmitters, with the
positions (0, 0, zn), i = 1, ..., Ntx, where zn ≤ 0 and a receiver at (d, θ, φ).

Fig. 12 shows the optimized results, again for the distance
of d = 0.1λ. As can be seen, even in lossy cases, there is
a slight increase in transfer efficiency, when using multiple
loops. Clearly, since the added transmitters are further away
from the receiver, this cannot be due to the same proximity
effect as before, in the planar case.

However, also in this case the working principles of the
lossless and lossy cases are different, as Figs. 13 and 15 reveal:
While in the lossless case again far-field radiation is minimized
by almost canceling currents, in the lossy case the loops are
used more or less in parallel, thereby reducing conduction loss.

2) Planar coaxial setup: The combination of both ideas,
to have a planar setup but multiple loops that are all at the
same distance (or further) from the receiver, leads to the
planar coaxial (concentric) setup, known from metasurface and
subwavelength focusing applications [12], depicted in Fig. 14.

Since, as is well known, larger transmitter loops lead to
higher flux and thus stronger coupling and higher transfer
efficiency, for a fair comparison, only loops of equal or smaller
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Fig. 12. Coaxial MISO-21, MISO-31 vs. SISO: maximum transfer efficiency ηmax for RL = 1 Ω and R?
L vs. θ and optimum load resistance R?

L, for
φ = 0, π, RL = 1 Ω and lossless, σ∞, (a,c) and lossy, σCu, (b,d) loops at a distance d = 0.1λ.
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Fig. 13. Contours of the magnetic field |Bx|2 + |Bz |2 (in dB) in the y = 0
plane for MISO-31 setups with the receiver at 60 off broadside, d = 0.1λ.
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(b) planar coaxial MISO-31

Fig. 14. Planar coaxial (concentric) MISO WPT setups.

radius than the receiver loop are considered: The loop radii are
[1, 0.5] rloop for the MISO-21 and [1, 0.66, 0.33] rloop.

The currents, capacitors and load resistance have been
optimized using the analytical formulations. Fig. 16 shows
the resulting efficiency patterns for lossless and lossy loops.
They look very similar to the one in Fig. 12b and also the
working principle is quite similar to the coaxial cases: While
in the lossless cases, the inner loops are used to cancel far-
field effects (radiation) of the outer loop, in the lossy case all
loops are used in parallel, to minimize conduction loss. Plots
of the optimal receiver resistance R?L are omitted since they
look very similar to Fig. 12d.

Thus, solutions with highly oscillating currents, as received
for subwavelength beamforming [12], are not feasible when
transfer (or coupling) efficiency is of the main interest.

Coaxial MISO WPT setups have shown that there is po-
tential transfer efficiency enhancement even without closer
proximity to the receiver. However, as can be seen from
Figs. 12b and 16b, the potential efficiency enhancement due to



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 12

10
-3

10
-2

10
-1

10
0

η

 

 

10
0

10
1

10
2

|i
n
| 
[A
]

-90 -60 -30 0 30 60 90
-1

0

-1

∠
i n
/π

 

 

θ = 0

(a) lossless, σ∞

10
-3

10
-2

10
-1

10
0

η

 

 

10
0

10
1

10
2

|i
n
| 
[A
]

-90 -60 -30 0 30 60 90
-1

0

-1

∠
i n
/π

 

 

θ = 0

(b) lossy, σCu

 

SISO
MISO-31

-90 -60 -30
 

SISO
MISO-31, i1
MISO-31, i2
MISO-31, i3

 

SISO
MISO-31

-90 -60 -30
 

SISO
MISO-31, i1
MISO-31, i2
MISO-31, i3

Fig. 15. Optimized currents: Coaxial MISO-31 and SISO setups vs. elevation angle θ, at distance d = 0.1λ, for lossless and lossy conductors.

multiple transmitters is smaller than the one due to impedance
matching: choosing the optimal load resistance RL is essential
to achieve maximum power transfer.

VI. SUMMARY & CONCLUSIONS

The transfer efficiency enhancement potential of wireless
power transfer systems with multiple transmitters (MISO
WPT systems) was analyzed using convex optimization and
Lagrangian duality theory.

A convex optimization algorithm (quadratic programming)
to maximize the transfer efficiency by optimizing the required
currents as well as the receiver capacitor was presented. The
excitation voltages together with the transmitter capacitors
were obtained by least-square minimization of the amplitudes.

Further, using Lagrangian duality theory, analytical solu-
tions of the dual optimization problem were found, with which
the maximum transfer efficiency of a given arrangement and
load RL as well as all required parameters could be obtained,
directly. From these formulations, also the optimum load R?L

could be obtained, to assess the maximum achievable transfer
efficiency of a given system.

For problems of non-passivity, originating from the numeri-
cal code(s) used to obtain the (unloaded) impedance matrix of
the WPT setup in the first place, a simple passivity enforce-
ment was applied. The negative eigenvalues of the eigenvalue
decomposition were replaced by positive ones, whereby both
passivity and physical meaning of the model was recovered.

Using these methods, performances and working principles
of planar and coaxial MISO WTP systems were analyzed
and compared for cases with lossless and lossy conductors.
Lossless cases lead to solutions similar to the ones obtained for
near-field focusing [11], [13], with almost canceling currents
to minimize far-field radiation. This working principle is
not feasible under lossy conditions, however, if (transfer)
efficiency is the main interest.

Since the impedance matrix and reactances vary with
frequency, the optimum is only achieved at the particular
frequency of operation; how fast the transfer efficiency drops
depends on the distance, geometry and quality factor of the
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Fig. 16. Concentric MISO-21, MISO-31 vs. SISO: maximum transfer efficiency ηmax for RL = 1 Ω and R?
L vs. θ for φ = 0, π, lossless, σ∞, (a) and lossy,

σCu, (b) loops at a distance d = 0.1λ. (Graphs for R?
L are omitted, since they look very similar to Fig. 12d.)
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whole system. Over larger frequency spans, resonance splitting
effects are obtained, similar in nature to those reported for
SISO systems [14], but with more resonances (due to the
higher number of resonators involved).

APPENDIX A
TREATMENT OF NON-PASSIVE MODELS

In some cases, numerical solvers such as DMBC or HFSS
return non-passive (unloaded) impedance matrices, especially
when using perfect conductors or very low-loss materials. In
these cases, the unloaded impedance matrix does not satisfy
the passivity condition [22]

Z + ZH ≥ 0 (52)

which with Z′ = Z′T reduces to

Z′ ≥ 0 , (53)

the (unloaded) resistance matrix being positive definite. Due
to the fact that there is at least some radiation loss, Eqns. (52)
and (53) actually reduce to strict inequalities.

Therefore, for non-positive semi-definite matrices, the
eigenvalue decomposition returns at least one negative eigen-
value. It is evident that the same is true for the (real) matrices
R̃ and R̃tx. Even if that eigenvalue is small, it will be picked
up during the optimization process by the quadratic program-
ming algorithm (the minimization leads to cHR̃c → −∞)
and the solution will be physically meaningless.

There are a variety of elaborate methods to enforce passivity
available. However, most of them rely on the impedance matrix
as a function of frequency (e.g. adequately sampled over
a certain frequency range) [23], [24]. While the impedance
matrix could be sampled over a certain frequency range, using
elaborate methods of enforcing passivity is beyond the scope
of this discussion. As numerical studies have shown, a much
more simple method suffices in these cases.

The general idea is to make the matrix positive definite by
replacing the negative eigenvalue(s) in the (diagonal) matrix
Λ obtained from the eigenvalue decomposition by a positive
one, making it purely positive Λ+ and resulting in a passive
approximation:

Z = QΛQ−1
enforce passivity−−−−−−−−−→ Z+ = QΛ+Q−1 . (54)

By comparing the norms of the matrices, it can be assessed
how much of the matrix changed and by comparing the
optimal solution to the corresponding eigenvector it can be
assessed of how much importance that particular eigenvalue/-
vector actually is.

The negative eigenvalue is replaced according to

λn → ε , (55)

where ε > 0 is a very small positive number, chosen smaller
than the smallest of all other eigenvalues, but large enough
as not to produce numerical problems. If the amplitude of
the negative eigenvalue is already (much) smaller than all the
other (positive) eigenvalues, then ε = |λn| could be an option,
which, as tests have shown, does not lead to numerical issues.

In the case of DMBC, non-passive matrices were only
obtained for larger models (7 loops and more) or for very
high (but finite) conductivity, e.g. 106×σCu. For these models
most of the time only one, in rare cases two of the eigenvalues
turn out negative and their amplitude is usually very small
in amplitude, compared to all others. Thus, the replacement
λn → |λn| was used.

Since those non-passive impedance matrices do not rep-
resent the physics of the model anyway, it stands to reason
to perturb them just enough so as to both be able to use
it for the optimization procedure as well as to get most of
the physical meaning back. The graphs in the result section
seem physically reasonable and serve, therefore, as evidence
of successful passivity enforcement.
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radiative mid-range energy transfer,” Annals of Physics, Vol. 323, No. 1,
pp. 34-48, Jan 2008.

[5] J. Lee and S. Nam “Fundamental Aspects of Near-Field Coupling Small
Antennas for Wireless Power Transfer,” IEEE Transactions on Antennas
and Propagation, Vol. 58, No. 11, November 2010.

[6] B. Wang, T. Nishino, and H. T. Koon “Wireless power transmission
efficiency enhancement with metamaterials,” 2010 IEEE International
Conference on Wireless Information Technology and Systems (ICWITS),
Vol. 58, No. 11, August/September 2010.

[7] Y. Urzhumov and D. R. Smith, “Metamaterial-enhanced coupling be-
tween magnetic dipoles for efficient wireless power transfer,” Physical
Review B, Vol. 83, No. 20, May 2011.

[8] J. J. Casanova, Z. N. Low, and J. Lin, “A Loosely Coupled Planar
Wireless Power System for Multiple Receivers,” IEEE Transactions on
Industrial Electronics, Vol. 56, No. 8, August 2009.

[9] I.-J. Yoon and H. Ling, “Investigation of Near-Field Wireless Power
Transfer Under Multiple Transmitters,” IEEE Antennas and Wireless
Propagation Letters, Vol. 10, pp. 662-665, 2011.

[10] D. Ahn and S. Hong, “Effect of Coupling Between Multiple Transmitters
or Multiple Receivers on Wireless Power Transfer,” IEEE Transactions
on Industrial Electronics, Vol. 60, No. 7, July 2011.

[11] L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “Spatially
Shifted Beam Approach to Subwavelength Focusing,” Physical Review
Letters, Vol. 101, No. 11, September 2008.

[12] A. Grbic, R. Merlin, E. M. Thomas, and M. F. Imani, “Near-Field Plates:
metamaterial Surfaces/Arrays for Subwavelength Focusing and Probing,”
Proceedings of the IEEE, Vol. 99, No. 10, October 2010.

[13] A. Ludwig, G. V. Eleftheriades, and C. D. Sarris, “FDTD Analysis
of Sub-Wavelength Focusing Phenomena in Plasmonic Meta-Screens,”
Journal of Lightwave Technology, Vol. 30, No. 13, July 2012.

[14] T. C. Beh, T. Imura, M. Kato, and Y. Hori, “Basic study of improving
efficiency of wireless power transfer via magnetic resonance coupling
based on impedance matching,” 2010 IEEE International Symposium on
Industrial Electronics (ISIE), pp. 2011-2016, July 2010.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 14

[15] M. Zargham and P. G. Gulak, “Maximum Achievable Efficiency in
Near-Field Coupled Power-Transfer Systems,” IEEE Transactions on
Biomedical Circuits and Systems, Vol. 6, No. 3, June 2012.

[16] M. Fu, T. Zhang, X. Zhu, and C. Ma, “A 13.56 MHz wireless power
transfer system without impedance matching networks,” 2013 IEEE
Wireless Power Transfer (WPT), pp. 222-225, 15-16 May 2013.

[17] S. Boyd and L. Vandenberghe, Convex Optimization, 12th printing.
Cambridge University Press, 2013.
Available for download: http://www.stanford.edu/∼boyd/cvxbook/

[18] M. A. Tilston and K. G. Balmain, “On the suppression of asymmetric
artifacts arising in an implementation of the thin-wire method of
moments,” IEEE Transactions on Antennas Propagation, Vol. 38, No. 2,
pp. 281-285, Feb. 1990.

[19] M. A. Tilston and K. G. Balmain, “A multiradius, reciprocal implemen-
tation of the thin-wire moment method,” IEEE Transactions on Antennas
Propagation, Vol. 38, No. 10, pp. 1636-1644, Oct. 1990.

[20] R. C. Hansen and R. E. Collin, Small Antenna Handbook, John Wiley
& Sons, August 2011

[21] M. Selvanayagam and G. V. Eleftheriades, ”Transmission-Line Metama-
terials on a Skewed Lattice for Transformation Electromagnetics,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 59, No. 12,
December 2011

[22] P. Triverio, S. Grivet-Tolcia, M. S. Nakhla, F. G. Canavero, and R. Achar,
“Stability, Causality, and Passivity in Electrical Interconnect Models,”
IEEE Transactions on Advanced Packaging, Vol. 30, No. 4, November
2007.

[23] B. Gustavsen and A. Semlyen, “Enforcing Passivity for Admittance
Matrices Approximated by Rational Functions,” IEEE Transactions on
Power Systems, Vol. 16, No. 1, February 2001.

[24] S. Grivet-Talocia, “Passivity Enforcement via Perturbation of Hamilto-
nian Matrices,” IEEE Transactions on Circuits and Systems I: Funda-
mental Theory and Applications, Vol. 51, No. 9, September 2004.


	Convex_Optimization_of_Wireless_2014_TSpace.pdf
	journal_2014TAP_WPT_convex_optimization.pdf



